Search Results

Search found 12 results on 1 pages for 'user1423893'.

Page 1/1 | 1 

  • Sampler referencing in HLSL - Sampler parameter must come from a literal expression

    - by user1423893
    The following method works fine when referencing a sampler in HLSL float3 P = lightScreenPos; sampler ShadowSampler = DPFrontShadowSampler; float depth; if (alpha >= 0.5f) { // Reference the correct sampler ShadowSampler = DPFrontShadowSampler; // Front hemisphere 'P0' P.z = P.z + 1.0; P.x = P.x / P.z; P.y = P.y / P.z; P.z = lightLength / LightAttenuation.z; // Rescale viewport to be [0, 1] (texture coordinate space) P.x = 0.5f * P.x + 0.5f; P.y = -0.5f * P.y + 0.5f; depth = tex2D(ShadowSampler, P.xy).x; depth = 1.0 - depth; } else { // Reference the correct sampler ShadowSampler = DPBackShadowSampler; // Back hemisphere 'P1' P.z = 1.0 - P.z; P.x = P.x / P.z; P.y = P.y / P.z; P.z = lightLength / LightAttenuation.z; // Rescale viewport to be [0, 1] (texture coordinate space) P.x = 0.5f * P.x + 0.5f; P.y = -0.5f * P.y + 0.5f; depth = tex2D(ShadowSampler, P.xy).x; depth = 1.0 - depth; } // [Standard Depth Calculation] float mydepth = P.z; shadow = depth + Bias.x < mydepth ? 0.0f : 1.0f; If I try and do anything with the sampler reference outside the if statement then I get the following error: Sampler parameter must come from a literal expression This code demonstrates that float3 P = lightScreenPos; sampler ShadowSampler = DPFrontShadowSampler; if (alpha >= 0.5f) { // Reference the correct sampler ShadowSampler = DPFrontShadowSampler; // Front hemisphere 'P0' P.z = P.z + 1.0; P.x = P.x / P.z; P.y = P.y / P.z; P.z = lightLength / LightAttenuation.z; } else { // Reference the correct sampler ShadowSampler = DPBackShadowSampler; // Back hemisphere 'P1' P.z = 1.0 - P.z; P.x = P.x / P.z; P.y = P.y / P.z; P.z = lightLength / LightAttenuation.z; } // Rescale viewport to be [0, 1] (texture coordinate space) P.x = 0.5f * P.x + 0.5f; P.y = -0.5f * P.y + 0.5f; // [Standard Depth Calculation] float depth = tex2D(ShadowSampler, P.xy).x; depth = 1.0 - depth; float mydepth = P.z; shadow = depth + Bias.x < mydepth ? 0.0f : 1.0f; How can I reference the sampler in this manner without triggering the error?

    Read the article

  • Adding VFACE semantic causes overlapping output semantics error

    - by user1423893
    My pixel shader input is a follows struct VertexShaderOut { float4 Position : POSITION0; float2 TextureCoordinates : TEXCOORD0; float4 PositionClone : TEXCOORD1; // Final position values must be cloned to be used in PS calculations float3 Normal : TEXCOORD2; //float3x3 TBN : TEXCOORD3; float CullFace : VFACE; // A negative value faces backwards (-1), while a positive value (+1) faces the camera (requires ps_3_0) }; I'm using ps_3_0 and I wish to utilise the VFACE semantic for correct lighting of normals depending on the cull mode. If I add the VFACE semantic then I get the following errors: error X5639: dcl usage+index: position,0 has already been specified for an output register error X4504: overlapping output semantics Why would this occur? I can't see why there would be too much data.

    Read the article

  • Deferred rendering with VSM - Scaling light depth loses moments

    - by user1423893
    I'm calculating my shadow term using a VSM method. This works correctly when using forward rendered lights but fails with deferred lights. // Shadow term (1 = no shadow) float shadow = 1; // [Light Space -> Shadow Map Space] // Transform the surface into light space and project // NB: Could be done in the vertex shader, but doing it here keeps the // "light shader" abstraction and doesn't limit the number of shadowed lights float4x4 LightViewProjection = mul(LightView, LightProjection); float4 surf_tex = mul(position, LightViewProjection); // Re-homogenize // 'w' component is not used in later calculations so no need to homogenize (it will equal '1' if homogenized) surf_tex.xyz /= surf_tex.w; // Rescale viewport to be [0,1] (texture coordinate system) float2 shadow_tex; shadow_tex.x = surf_tex.x * 0.5f + 0.5f; shadow_tex.y = -surf_tex.y * 0.5f + 0.5f; // Half texel offset //shadow_tex += (0.5 / 512); // Scaled distance to light (instead of 'surf_tex.z') float rescaled_dist_to_light = dist_to_light / LightAttenuation.y; //float rescaled_dist_to_light = surf_tex.z; // [Variance Shadow Map Depth Calculation] // No filtering float2 moments = tex2D(ShadowSampler, shadow_tex).xy; // Flip the moments values to bring them back to their original values moments.x = 1.0 - moments.x; moments.y = 1.0 - moments.y; // Compute variance float E_x2 = moments.y; float Ex_2 = moments.x * moments.x; float variance = E_x2 - Ex_2; variance = max(variance, Bias.y); // Surface is fully lit if the current pixel is before the light occluder (lit_factor == 1) // One-tailed inequality valid if float lit_factor = (rescaled_dist_to_light <= moments.x - Bias.x); // Compute probabilistic upper bound (mean distance) float m_d = moments.x - rescaled_dist_to_light; // Chebychev's inequality float p = variance / (variance + m_d * m_d); p = ReduceLightBleeding(p, Bias.z); // Adjust the light color based on the shadow attenuation shadow *= max(lit_factor, p); This is what I know for certain so far: The lighting is correct if I do not try and calculate the shadow term. (No shadows) The shadow term is correct when calculated using forward rendered lighting. (VSM works with forward rendered lights) With the current rescaled light distance (lightAttenuation.y is the far plane value): float rescaled_dist_to_light = dist_to_light / LightAttenuation.y; The light is correct and the shadow appears to be zoomed in and misses the blurring: When I do not rescale the light and use the homogenized 'surf_tex': float rescaled_dist_to_light = surf_tex.z; the shadows are blurred correctly but the lighting is incorrect and the cube model is no longer lit Why is scaling by the far plane value (LightAttenuation.y) zooming in too far? The only other factor involved is my world pixel position, which is calculated as follows: // [Position] float4 position; // [Screen Position] position.xy = input.PositionClone.xy; // Use 'x' and 'y' components already homogenized for uv coordinates above position.z = tex2D(DepthSampler, texCoord).r; // No need to homogenize 'z' component position.z = 1.0 - position.z; position.w = 1.0; // 1.0 = position.w / position.w // [World Position] position = mul(position, CameraViewProjectionInverse); // Re-homogenize position (xyz AND w, otherwise shadows will bend when camera is close) position.xyz /= position.w; position.w = 1.0; Using the inverse matrix of the camera's view x projection matrix does work for lighting but maybe it is incorrect for shadow calculation? EDIT: Light calculations for shadow including 'dist_to_light' // Work out the light position and direction in world space float3 light_position = float3(LightViewInverse._41, LightViewInverse._42, LightViewInverse._43); // Direction might need to be negated float3 light_direction = float3(-LightViewInverse._31, -LightViewInverse._32, -LightViewInverse._33); // Unnormalized light vector float3 dir_to_light = light_position - position; // Direction from vertex float dist_to_light = length(dir_to_light); // Normalise 'toLight' vector for lighting calculations dir_to_light = normalize(dir_to_light); EDIT2: These are the calculations for the moments (depth) //============================================= //---[Vertex Shaders]-------------------------- //============================================= DepthVSOutput depth_VS( float4 Position : POSITION, uniform float4x4 shadow_view, uniform float4x4 shadow_view_projection) { DepthVSOutput output = (DepthVSOutput)0; // First transform position into world space float4 position_world = mul(Position, World); output.position_screen = mul(position_world, shadow_view_projection); output.light_vec = mul(position_world, shadow_view).xyz; return output; } //============================================= //---[Pixel Shaders]--------------------------- //============================================= DepthPSOutput depth_PS(DepthVSOutput input) { DepthPSOutput output = (DepthPSOutput)0; // Work out the depth of this fragment from the light, normalized to [0, 1] float2 depth; depth.x = length(input.light_vec) / FarPlane; depth.y = depth.x * depth.x; // Flip depth values to avoid floating point inaccuracies depth.x = 1.0f - depth.x; depth.y = 1.0f - depth.y; output.depth = depth.xyxy; return output; } EDIT 3: I have tried the folloiwng: float4 pp; pp.xy = input.PositionClone.xy; // Use 'x' and 'y' components already homogenized for uv coordinates above pp.z = tex2D(DepthSampler, texCoord).r; // No need to homogenize 'z' component pp.z = 1.0 - pp.z; pp.w = 1.0; // 1.0 = position.w / position.w // Determine the depth of the pixel with respect to the light float4x4 LightViewProjection = mul(LightView, LightProjection); float4x4 matViewToLightViewProj = mul(CameraViewProjectionInverse, LightViewProjection); float4 vPositionLightCS = mul(pp, matViewToLightViewProj); float fLightDepth = vPositionLightCS.z / vPositionLightCS.w; // Transform from light space to shadow map texture space. float2 vShadowTexCoord = 0.5 * vPositionLightCS.xy / vPositionLightCS.w + float2(0.5f, 0.5f); vShadowTexCoord.y = 1.0f - vShadowTexCoord.y; // Offset the coordinate by half a texel so we sample it correctly vShadowTexCoord += (0.5f / 512); //g_vShadowMapSize This suffers the same problem as the second picture. I have tried storing the depth based on the view x projection matrix: output.position_screen = mul(position_world, shadow_view_projection); //output.light_vec = mul(position_world, shadow_view); output.light_vec = output.position_screen; depth.x = input.light_vec.z / input.light_vec.w; This gives a shadow that has lots surface acne due to horrible floating point precision errors. Everything is lit correctly though. EDIT 4: Found an OpenGL based tutorial here I have followed it to the letter and it would seem that the uv coordinates for looking up the shadow map are incorrect. The source uses a scaled matrix to get the uv coordinates for the shadow map sampler /// <summary> /// The scale matrix is used to push the projected vertex into the 0.0 - 1.0 region. /// Similar in role to a * 0.5 + 0.5, where -1.0 < a < 1.0. /// <summary> const float4x4 ScaleMatrix = float4x4 ( 0.5, 0.0, 0.0, 0.0, 0.0, -0.5, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.5, 0.5, 0.5, 1.0 ); I had to negate the 0.5 for the y scaling (M22) in order for it to work but the shadowing is still not correct. Is this really the correct way to scale? float2 shadow_tex; shadow_tex.x = surf_tex.x * 0.5f + 0.5f; shadow_tex.y = surf_tex.y * -0.5f + 0.5f; The depth calculations are exactly the same as the source code yet they still do not work, which makes me believe something about the uv calculation above is incorrect.

    Read the article

  • Converting world space coordinate to screen space coordinate and getting incorrect range of values

    - by user1423893
    I'm attempting to convert from world space coordinates to screen space coordinates. I have the following code to transform my object position Vector3 screenSpacePoint = Vector3.Transform(object.WorldPosition, camera.ViewProjectionMatrix); The value does not appear to be in screen space coordinates and is not limited to a [-1, 1] range. What step have I missed out in the conversion process? EDIT: Projection Matrix Perspective(game.GraphicsDevice.Viewport.AspectRatio, nearClipPlaneZ, farClipPlaneZ); private void Perspective(float aspect_Ratio, float z_NearClipPlane, float z_FarClipPlane) { nearClipPlaneZ = z_NearClipPlane; farClipPlaneZ = z_FarClipPlane; float yZoom = 1f / (float)Math.Tan(fov * 0.5f); float xZoom = yZoom / aspect_Ratio; matrix_Projection.M11 = xZoom; matrix_Projection.M12 = 0f; matrix_Projection.M13 = 0f; matrix_Projection.M14 = 0f; matrix_Projection.M21 = 0f; matrix_Projection.M22 = yZoom; matrix_Projection.M23 = 0f; matrix_Projection.M24 = 0f; matrix_Projection.M31 = 0f; matrix_Projection.M32 = 0f; matrix_Projection.M33 = z_FarClipPlane / (nearClipPlaneZ - farClipPlaneZ); matrix_Projection.M34 = -1f; matrix_Projection.M41 = 0f; matrix_Projection.M42 = 0f; matrix_Projection.M43 = (nearClipPlaneZ * farClipPlaneZ) / (nearClipPlaneZ - farClipPlaneZ); matrix_Projection.M44 = 0f; } View Matrix // Make our view matrix Matrix.CreateFromQuaternion(ref orientation, out matrix_View); matrix_View.M41 = -Vector3.Dot(Right, position); matrix_View.M42 = -Vector3.Dot(Up, position); matrix_View.M43 = Vector3.Dot(Forward, position); matrix_View.M44 = 1f; // Create the combined view-projection matrix Matrix.Multiply(ref matrix_View, ref matrix_Projection, out matrix_ViewProj); // Update the bounding frustum boundingFrustum.SetMatrix(matrix_ViewProj);

    Read the article

  • Deferred rendering with both Clockwise and CounterClockwise culling

    - by user1423893
    I have a deferred rendering system that works well with objects that appear solid and drawn using CounterClockwise culling. I have a problem with Clockwise culled objects that are supposed to represent hollow that display their inside faces only. The image below shows a CounterClockwise culled object (left) Clockwise culled object (right). The Clockwise culled object faces display what would be displayed on the CounterClockwise face. How can I get the lighting to light the inner faces for Clockwise culled objects and continue lighting the outer CounterClockwise faces as normal? My lighting method is below private void DeferredLighting(GameTime gameTime) { // Set the render target for the lights game.GraphicsDevice.SetRenderTarget(lightMap); // Clear the render target to (0, 0, 0, 0) game.GraphicsDevice.Clear(Color.Transparent); // Set the render states game.GraphicsDevice.BlendState = BlendState.Additive; game.GraphicsDevice.DepthStencilState = DepthStencilState.None; game.GraphicsDevice.RasterizerState = RasterizerState.CullCounterClockwise; // Set sampler state to Point as the Surface type requires it in XNA 4.0 game.GraphicsDevice.SamplerStates[0] = SamplerState.PointClamp; // Set the camera properties for all lights BaseLight.SetCameraProperties(game.ActiveCamera); // Draw the lights int numLights = lights.Count; for (int i = 0; i < numLights; ++i) { if (lights[i].Diffuse.W > 0f) { lights[i].Render(gameTime, ref normalMap, ref depthMap, ref sgrMap); } } // Resolve the render target game.GraphicsDevice.SetRenderTarget(null); } I have tried adjusting the render states but no combination works for both objects.

    Read the article

  • Rotating a child shape relative to its parent's orientation

    - by user1423893
    When rotating a shape using a quaternion value I also wish rotate its child shape. The parent and child shapes both start with different orientations but their relative orientations should always be the same. How can I use the difference between the previous and current quaternions of the parent shape in order to transform the child segment and rotate it relative to its parent shape? public Quaternion Orientation { get { return entity.Orientation; } set { Quaternion previousValue = entity.Orientation; entity.Orientation = value; // Use the difference between the quaternion values to update child orientation } }

    Read the article

  • OpenGL - Rendering from part of an index and vertex array depending on an element count

    - by user1423893
    I'm currently drawing my shapes as lines by using a VAO and then assigning the dynamic vertices and indices each frame. // Bind VAO glBindVertexArray(m_vao); // Update the vertex buffer with the new data (Copy data into the vertex buffer object) glBufferData(GL_ARRAY_BUFFER, numVertices * sizeof(VertexPosition), m_vertices.data(), GL_DYNAMIC_DRAW); // Update the index buffer with the new data (Copy data into the index buffer object) glBufferData(GL_ELEMENT_ARRAY_BUFFER, numIndices * sizeof(unsigned short), indices.data(), GL_DYNAMIC_DRAW); glDrawElements(GL_LINES, numIndices, GL_UNSIGNED_SHORT, BUFFER_OFFSET(0)); // Unbind VAO glBindVertexArray(0); What I would like to do is draw the lines using only part of the data stored in the index and vertex buffer objects. The vertex buffer has its vertices set from an array of defined maximum size: std::array<VertexPosition, maxVertices> m_vertices; The index buffer has its elements set from an array of defined maximum size: std::array<unsigned short, maxIndices> indices = { 0 }; A running total is kept of the number of vertices and indices needed for each draw call numVertices numIndices Can I not specify that the buffer data contain the entire array and only read from part of it when drawing? For example using the vertex buffer object glBufferData(GL_ARRAY_BUFFER, numVertices * sizeof(VertexPosition), m_vertices.data(), GL_DYNAMIC_DRAW); m_vertices.data() = Entire array is stored numVertices * sizeof(VertexPosition) = Amount of data to read from the entire array Is this not the correct way to approach this? I do not wish to use std::vector if possible.

    Read the article

  • XNA - Obtaining depth from the scene's render target?

    - by user1423893
    I'm currently rendering my scene to a render target so it can be used for rendering methods such as post processing and order independent transparency. rtScene = new RenderTarget2D( GraphicsDevice, GraphicsDevice.PresentationParameters.BackBufferWidth, GraphicsDevice.PresentationParameters.BackBufferHeight, false, SurfaceFormat.Rgba64, DepthFormat.Depth24Stencil8, // Requires a depth format for objects to be drawn correctly (e.g. wireframe model surrounding model) 0, RenderTargetUsage.PreserveContents ); I am required to use RenderTargetUsage.PreserveContents so that the same render target can be rendered to multiple times, once for each of the draw methods below. DrawBackground DrawDeferred DrawForward DrawTransparent The problem is that DrawTransparent requires a copy of the scene's depth as a texture. Is there any way to obtain this from the scene render target above (rtScene)? I can't have more than one render target with RenderTargetUsage.PreserveContents as this causes problems on hardware such as the XBOX 360, so rendering the depth to a separate render target at the same time as I render the scene isn't possible as far as I can tell. Would I be able to get around this problem by "Ping-Ponging" two render targets (using the more compatible RenderTargetUsage.DiscardContents) and using the result for the depth texture?

    Read the article

  • Rendering design. How can I effectively deal with forward, deferred and transparent rendering?

    - by user1423893
    I have many objects in my game world that all derive from one base class. Each object will have different materials and will therefore be required to be drawn using various rendering techniques. I currently use the following order for rendering my objects. Deferred Forward Transparent (order independent) Each object has a rendering flag that denotes which one of the above methods should be used. The list of base objects in the scene are then iterated through and added to separate lists of deferred, forward or transparent objects based on their rendering flag value. The individual lists are then iterated through and drawn using the order above. Each list is cleared at the end of the frame. This methods works fairly well but it requires different draw methods for each material type. For example each object will require the following methods in order to be compatible with the possible flag settings. object.DrawDeferred() object.DrawForward() object.DrawTransparent() It is also hard to see where methods outside of materials, such as rendering shadow maps, would fit using this "flag & method" design. object.DrawShadow() I was hoping that someone may have some suggestions for improving this rendering process, possibly making it more generic and less verbose?

    Read the article

  • What should I do if my text exceeds my text render target boundaries?

    - by user1423893
    I have a method for drawing strings in 3D that does the following: Set a render target Draw each character as a quadrangle using a orthographic projection to the render target Unset the render target Draw the render target texture using a perspective projection and a world transform My problem is how to deal with strings whose characters length exceeds that of the render target dimensions? For example if I have string "This is a reallllllllllly long string" and the render target can't accommodate it, it will only capture "This is a realllll". The render target (and its size) could be set each frame but wouldn't that be far too costly?

    Read the article

  • Translating multiple objects in GUI based on average position?

    - by user1423893
    I use this method to move a single object in 3D space, it accounts for a local offset based on where the cursor ray hits the widget and the center of the widget. var cursorRay = cursor.Ray; Vector3 goalPosition = translationWidget.GoalPosition; Vector3 position = cursorRay.Origin + cursorRay.Direction * grabDistance; // Constrain object movement based on selected axis switch (translationWidget.AxisSelected) { case AxisSelected.All: goalPosition = position; break; case AxisSelected.None: break; case AxisSelected.X: goalPosition.X = position.X; break; case AxisSelected.Y: goalPosition.Y = position.Y; break; case AxisSelected.Z: goalPosition.Z = position.Z; break; } translationWidget.GoalPosition = goalPosition; Vector3 p = goalPosition - translationWidget.LocalOffset; objectSelected.Position = p; I would like to move multiple objects based on the same principle and using a widget which is located at the average position of all the objects currently selected. I thought that I would have to translate each object based on their offset from the average point and then include the local offset. var cursorRay = cursor.Ray; Vector3 goalPosition = translationWidget.GoalPosition; Vector3 position = cursorRay.Origin + cursorRay.Direction * grabDistance; // Constrain object movement based on selected axis switch (translationWidget.AxisSelected) { case AxisSelected.All: goalPosition = position; break; case AxisSelected.None: break; case AxisSelected.X: goalPosition.X = position.X; break; case AxisSelected.Y: goalPosition.Y = position.Y; break; case AxisSelected.Z: goalPosition.Z = position.Z; break; } translationWidget.GoalPosition = goalPosition; Vector3 p = goalPosition - translationWidget.LocalOffset; int numSelectedObjects = objectSelectedList.Count; for (int i = 0; i < numSelectedObjects; ++i) { objectSelectedList[i].Position = (objectSelectedList[i].Position - translationWidget.Position) + p; } This doesn't work as the object starts shaking, which I think is because I haven't accounted for the new offset correctly. Where have I gone wrong?

    Read the article

  • MIDI - Continous control of pitch outside the standard pitch bend range?

    - by user1423893
    After I send a note on message I can control the pitch of a note within a ±2 semitone range using the pitch bend channel command. How can I continuously update a pitch of a note outside of the normal pitch bend range without retriggering the note (i.e. sending another note on message with the new pitch?) In other words the current note is still sounding after a note on message and its envelope has not reached the end of its release stage. I would like to change the pitch outside the pitch bend range, preferably anywhere within the audible frequency range.

    Read the article

1