Search Results

Search found 1 results on 1 pages for 'user342079'.

Page 1/1 | 1 

  • Python optimization problem?

    - by user342079
    Alright, i had this homework recently (don't worry, i've already done it, but in c++) but I got curious how i could do it in python. The problem is about 2 light sources that emit light. I won't get into details tho. Here's the code (that I've managed to optimize a bit in the latter part): import math, array import numpy as np from PIL import Image size = (800,800) width, height = size s1x = width * 1./8 s1y = height * 1./8 s2x = width * 7./8 s2y = height * 7./8 r,g,b = (255,255,255) arr = np.zeros((width,height,3)) hy = math.hypot print 'computing distances (%s by %s)'%size, for i in xrange(width): if i%(width/10)==0: print i, if i%20==0: print '.', for j in xrange(height): d1 = hy(i-s1x,j-s1y) d2 = hy(i-s2x,j-s2y) arr[i][j] = abs(d1-d2) print '' arr2 = np.zeros((width,height,3),dtype="uint8") for ld in [200,116,100,84,68,52,36,20,8,4,2]: print 'now computing image for ld = '+str(ld) arr2 *= 0 arr2 += abs(arr%ld-ld/2)*(r,g,b)/(ld/2) print 'saving image...' ar2img = Image.fromarray(arr2) ar2img.save('ld'+str(ld).rjust(4,'0')+'.png') print 'saved as ld'+str(ld).rjust(4,'0')+'.png' I have managed to optimize most of it, but there's still a huge performance gap in the part with the 2 for-s, and I can't seem to think of a way to bypass that using common array operations... I'm open to suggestions :D

    Read the article

1