Parallelize code using CUDA [migrated]
- by user878944
If I have a code which takes struct variable as input and manipulate it's elements, how can I parallelize this using CUDA?
void BackpropagateLayer(NET* Net, LAYER* Upper, LAYER* Lower)
{
  INT  i,j;
  REAL Out, Err;
  for (i=1; i<=Lower->Units; i++) {
    Out = Lower->Output[i];
    Err = 0;
    for (j=1; j<=Upper->Units; j++) {
      Err += Upper->Weight[j][i] * Upper->Error[j];
    }
    Lower->Error[i] = Net->Gain * Out * (1-Out) * Err;
  }
}
Where NET and LAYER are structs defined as:
typedef struct {                     /* A LAYER OF A NET:                     */
        INT           Units;         /* - number of units in this layer       */
        REAL*         Output;        /* - output of ith unit                  */
        REAL*         Error;         /* - error term of ith unit              */
        REAL**        Weight;        /* - connection weights to ith unit      */
        REAL**        WeightSave;    /* - saved weights for stopped training  */
        REAL**        dWeight;       /* - last weight deltas for momentum     */
} LAYER;
typedef struct {                     /* A NET:                                */
        LAYER**       Layer;         /* - layers of this net                  */
        LAYER*        InputLayer;    /* - input layer                         */
        LAYER*        OutputLayer;   /* - output layer                        */
        REAL          Alpha;         /* - momentum factor                     */
        REAL          Eta;           /* - learning rate                       */
        REAL          Gain;          /* - gain of sigmoid function            */
        REAL          Error;         /* - total net error                     */
} NET;
What I could think of is to first convert the 2d Weight into 1d. And then send it to kernel to take the product or just use the CUBLAS library. Any suggestions?