Search Results

Search found 50 results on 2 pages for 'vcpu'.

Page 1/2 | 1 2  | Next Page >

  • How to hot-add a vCPU to a virtual SQL Server

    One of the benefits of running SQL on virtual environment is the capability to present additional vCPUs to the virtual server online and real-time without interruption to running processes. Our VM administrator normally presents only 1 vCPU on the virtual server and extends as required. This article describes how SQL Server is able to detect hot-added vCPUs in my virtual server. New! SQL Prompt 6 – now with tab historyWriting, exploring, and editing SQL just became even more effortless with SQL Prompt 6. Download a free trial.

    Read the article

  • Help me understand how Xen vCPU/CPU works

    - by luckytaxi
    Say I have a Dual-Core server, that's 4 cores w/ two physical processors. I read numerous articles that states the dom0 should get one physical core to itself. By core, does that mean a single CPU core or one of the 4 logical cores? Ideally I would like to dedicate a single CPU core (2 logical) to the dom0. Then I would give the other CPU split between the 3 VMs. I've seen examples where ppl would assign more than the available number of cores to a VM and I don't know what good that would do. I mean, why would I want to assign 4 vCPU to a single VM when I only have 2 available (if my math is correct)? I assume I only have 2 available from the one core as I've given dom0 a CPU to itself.

    Read the article

  • virsh vcpu_period and vcpu_quota

    - by Programster
    I have been looking into ways to divide my CPU amongst KVM guests other than by just setting vCPU access limits. I understand the concept of cpu_shares which can be set/displayed with virsh schedinfo, but I also found vcpu_period and vcpu_quota listed with this command as shown below: Looking at the man page, I know what the acceptable input values are but could somebody please explain in simple terms what these two parameters actually do?

    Read the article

  • How many VPS' can I create on my server?

    - by user197692
    I need to create as many VPS's on my dedicated server (KVM or OpenVZ) in order to sell them but I really don't know the answer. RAM calculation is simple, it's more about CPU resources, how many VPS's can hold. I'am talking about Intel i7-2600 (4 cores, 8 Threads). I need to deploy as many VPS's. It's all about the nr threads? i.e. 8 threads = maximum 8 x 1vCPU or maximum 4 x 2vCPU? I'am planning to use 1Gb and 2Gb memory on each VPS, the server has 16Gb (but I can raise RAM if need it. So, can I create 8 KVM VPS's with 4 vCPU and 2Gb ram each ? How about 20 VPS's with 1Gb ram and 4vCPU each? How is this decision affected by the hypervisor (KVM, OpenVZ, VMware)?

    Read the article

  • Do Hyper-V guests see multiple CPUs (sockets) or multiple CPU cores when assigned more than 1 vCPU?

    - by Filip Kierzek
    I have SQL Server 2008 Express running on Hyper-V based virtual machine with two vCPU-s. I've just been reading up on SQL Server 2012 Express and noticed that it's CPU is "Limited to lesser of 1 Socket or 4 cores" (http://msdn.microsoft.com/en-us/library/cc645993(v=SQL.110).aspx) My question is how do the SQL Server 2012 limits on CPUs/Cores translate into vCPU-s? Are they "processors" or are they "cores"?

    Read the article

  • Virtualized CPU cores vs. threads

    - by nedm
    We've got a KVM host system on Ubuntu 9.10 with a newer Quad-core Xeon CPU with hyperthreading. As detailed on Intel's product page, the processor has 4 cores but 8 threads. /proc/cpuinfo and htop both list 8 processors, though each one states 4 cores in cpuinfo. KVM/QEMU also reports 8 VCPUs available to assign to guests. My question is when I'm allocating VCPUs to VM guests, should I allocate per-core or per-thread? Since KVM/QEMU reports the server has 8 VCPUs to allocate, should I go ahead and set a guest to use 4 CPUs where I previously would have set it to use 2 (assuming 4 total VCPUs available)? I'd like to get the most possible out of the host hardware without over-allocating.

    Read the article

  • Can KVM CPU assignment count differ from physical hosts CPU count?

    - by javano
    I have read this question. I knew already that I could for example, have a quad core machine with four guests each having two vCPUs. As they don't all be require 100% CPU usage all the time, the scheduler would handle this for me. My question is about how this relates to a fail-over or migration situation; If host1 has two dual-core CPUs, and I assign guest1 four vCPUs (so it accessed all four physical cores), what will happen if I try and migrate it to host2 which only has one dual-core CPU? Can qemu-kvm emulate more vCPUs than there are physical? Or would I have to shut down the virtual machine, change the CPU assignment, migrate it, and then boot it back up (so no live migration)? Many thanks.

    Read the article

  • Pantech Link II, Ubuntu and Virtual XP

    - by user85041
    Okay this is my problem. I have a Pantech Link II, dmesg states: [ 896.072037] usb 2-3: new high-speed USB device number 3 using ehci_hcd [ 896.258562] cdc_acm 2-3:1.0: ttyACM0: USB ACM device [ 896.260039] usbcore: registered new interface driver cdc_acm [ 896.260042] cdc_acm: USB Abstract Control Model driver for USB modems and ISDN adapters Have it installed through wine (pc suite and driver) and it doesn't see it. Virtual XP through VMWare Player sees my device, knows it needs a driver. The removable devices says Curitel Pantech USB Device (Maybe Driver). I have PC Suite installed in XP, I install the driver through the executable.. it says problem with installing hardware, and then it disappears. Ubuntu sees it after restart, but if I start XP with that driver installed, it disappears from both and I get these errors in dmesg: [ 1047.760555] /dev/vmmon[2882]: PTSC: initialized at 3093322000 Hz using TSC, TSCs are synchronized. [ 1048.174033] /dev/vmmon[2882]: Monitor IPI vector: 0 [ 1055.293060] /dev/vmnet: open called by PID 3163 (vmx-vcpu-0) [ 1055.293074] /dev/vmnet: port on hub 8 successfully opened [ 1055.293088] /dev/vmnet: open called by PID 3163 (vmx-vcpu-0) [ 1055.293094] /dev/vmnet: port on hub 8 successfully opened [ 1072.446305] /dev/vmnet: open called by PID 3163 (vmx-vcpu-0) [ 1072.446316] /dev/vmnet: port on hub 8 successfully opened [ 1072.446328] /dev/vmnet: open called by PID 3163 (vmx-vcpu-0) [ 1072.446334] /dev/vmnet: port on hub 8 successfully opened [ 1072.856024] usb 1-1: reset high-speed USB device number 2 using ehci_hcd [ 1079.292024] usb 1-1: reset high-speed USB device number 2 using ehci_hcd [ 1079.732024] usb 1-1: reset high-speed USB device number 2 using ehci_hcd [ 1127.743034] NET: Registered protocol family 39 [ 1127.749320] [3163]: VMCI: IOCTL_VMCI_QUEUEPAIR_ALLOC (cid=1522210225,result=4). [ 1144.104031] usb 2-3: reset high-speed USB device number 3 using ehci_hcd [ 1144.412031] usb 2-3: reset high-speed USB device number 3 using ehci_hcd [ 1155.889976] ehci_hcd 0000:00:13.2: force halt; handshake ffffc90000642024 00004000 00000000 -> -110 [ 1155.889980] ehci_hcd 0000:00:13.2: HC died; cleaning up [ 1155.890008] usb 2-3: USB disconnect, device number 3 [ 1155.890013] usb 2-3: usbfs: usb_submit_urb returned -110 [ 1658.310777] [3163]: VMCI: IOCTL_VMCI_QUEUEPAIR_DETACH (cid=1522210225,result=3). [ 1658.392018] NET: Unregistered protocol family 39 [ 1666.546438] /dev/vmnet: open called by PID 3163 (vmx-vcpu-0) [ 1666.546450] /dev/vmnet: port on hub 8 successfully opened [ 1666.546462] /dev/vmnet: open called by PID 3163 (vmx-vcpu-0) [ 1666.546467] /dev/vmnet: port on hub 8 successfully opened [ 1671.431383] uvcvideo: Found UVC 1.00 device USB2.0 Camera (1871:0101) [ 1671.432533] input: USB2.0 Camera as /devices/pci0000:00/0000:00:12.2/usb1/1-1/1-1:1.0/input/input13 lessa@X:~$ dmesg|tail [ 1155.890008] usb 2-3: USB disconnect, device number 3 [ 1155.890013] usb 2-3: usbfs: usb_submit_urb returned -110 [ 1658.310777] [3163]: VMCI: IOCTL_VMCI_QUEUEPAIR_DETACH (cid=1522210225,result=3). [ 1658.392018] NET: Unregistered protocol family 39 [ 1666.546438] /dev/vmnet: open called by PID 3163 (vmx-vcpu-0) [ 1666.546450] /dev/vmnet: port on hub 8 successfully opened [ 1666.546462] /dev/vmnet: open called by PID 3163 (vmx-vcpu-0) [ 1666.546467] /dev/vmnet: port on hub 8 successfully opened [ 1671.431383] uvcvideo: Found UVC 1.00 device USB2.0 Camera (1871:0101) [ 1671.432533] input: USB2.0 Camera as /devices/pci0000:00/0000:00:12.2/usb1/1-1/1-1:1.0/input/input13 I have tried uninstalling, and installing manually from the device manager update driver while it's still has the warning sign.. it doesn't see the drivers as valid. No idea how to fix this.. would prefer to not have to go to another computer. I'm not trying to do anything but get the pictures off of it. I have to restart ubuntu, plug in device, for ubuntu to see it correctly again. I am like a month and a half old linux newbie so I have no idea the commands I could use for this, and I don't have a memory card in the phone to mount.

    Read the article

  • Best Practices - Core allocation

    - by jsavit
    This post is one of a series of "best practices" notes for Oracle VM Server for SPARC (also called Logical Domains) Introduction SPARC T-series servers currently have up to 4 CPU sockets, each of which has up to 8 or (on SPARC T3) 16 CPU cores, while each CPU core has 8 threads, for a maximum of 512 dispatchable CPUs. The defining feature of Oracle VM Server for SPARC is that each domain is assigned CPU threads or cores for its exclusive use. This avoids the overhead of software-based time-slicing and emulation (or binary rewriting) of system state-changing privileged instructions used in traditional hypervisors. To create a domain, administrators specify either the number of CPU threads or cores that the domain will own, as well as its memory and I/O resources. When CPU resources are assigned at the individual thread level, the logical domains constraint manager attempts to assign threads from the same cores to a domain, and avoid "split core" situations where the same CPU core is used by multiple domains. Sometimes this is unavoidable, especially when domains are allocated and deallocated CPUs in small increments. Why split cores can matter Split core allocations can silenty reduce performance because multiple domains with different address spaces and memory contents are sharing the core's Level 1 cache (L1$). This is called false cache sharing since even identical memory addresses from different domains must point to different locations in RAM. The effect of this is increased contention for the cache, and higher memory latency for each domain using that core. The degree of performance impact can be widely variable. For applications with very small memory working sets, and with I/O bound or low-CPU utilization workloads, it may not matter at all: all machines wait for work at the same speed. If the domains have substantial workloads, or are critical to performance then this can have an important impact: This blog entry was inspired by a customer issue in which one CPU core was split among 3 domains, one of which was the control and service domain. The reported problem was increased I/O latency in guest domains, but the root cause might be higher latency servicing the I/O requests due to the control domain being slowed down. What to do about it Split core situations are easily avoided. In most cases the logical domain constraint manager will avoid it without any administrative action, but it can be entirely prevented by doing one of the several actions: Assign virtual CPUs in multiples of 8 - the number of threads per core. For example: ldm set-vcpu 8 mydomain or ldm add-vcpu 24 mydomain. Each domain will then be allocated on a core boundary. Use the whole core constraint when assigning CPU resources. This allocates CPUs in increments of entire cores instead of virtual CPU threads. The equivalent of the above commands would be ldm set-core 1 mydomain or ldm add-core 3 mydomain. Older syntax does the same thing by adding the -c flag to the add-vcpu, rm-vcpu and set-vcpu commands, but the new syntax is recommended. When whole core allocation is used an attempt to add cores to a domain fails if there aren't enough completely empty cores to satisfy the request. See https://blogs.oracle.com/sharakan/entry/oracle_vm_server_for_sparc4 for an excellent article on this topic by Eric Sharakan. Don't obsess: - if the workloads have minimal CPU requirements and don't need anywhere near a full CPU core, then don't worry about it. If you have low utilization workloads being consolidated from older machines onto a current T-series, then there's no need to worry about this or to assign an entire core to domains that will never use that much capacity. In any case, make sure the most important domains have their own CPU cores, in particular the control domain and any I/O or service domain, and of course any important guests. Summary Split core CPU allocation to domains can potentially have an impact on performance, but the logical domains manager tends to prevent this situation, and it can be completely and simply avoided by allocating virtual CPUs on core boundaries.

    Read the article

  • Best Practices - Dynamic Reconfiguration

    - by jsavit
    This post is one of a series of "best practices" notes for Oracle VM Server for SPARC (formerly named Logical Domains) Overview of dynamic Reconfiguration Oracle VM Server for SPARC supports Dynamic Reconfiguration (DR), making it possible to add or remove resources to or from a domain (virtual machine) while it is running. This is extremely useful because resources can be shifted to or from virtual machines in response to load conditions without having to reboot or interrupt running applications. For example, if an application requires more CPU capacity, you can add CPUs to improve performance, and remove them when they are no longer needed. You can use even use Dynamic Resource Management (DRM) policies that automatically add and remove CPUs to domains based on load. How it works (in broad general terms) Dynamic Reconfiguration is done in coordination with Solaris, which recognises a hypervisor request to change its virtual machine configuration and responds appropriately. In essence, Solaris receives a message saying "you now have 16 more CPUs numbered 16 to 31" or "8GB more RAM starting at address X" or "here's a new network or disk device - have fun with it". These actions take very little time. Solaris then can start using the new resource. In the case of added CPUs, that means dispatching processes and potentially binding interrupts to the new CPUs. For memory, Solaris adds the new memory pages to its "free" list and starts using them. Comparable actions occur with network and disk devices: they are recognised by Solaris and then used. Removing is the reverse process: after receiving the DR message to free specific CPUs, Solaris unbinds interrupts assigned to the CPUs and stops dispatching process threads. That takes very little time. primary # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-cv- SP 16 4G 1.0% 6d 22h 29m ldom1 active -n---- 5000 16 8G 0.9% 6h 59m primary # ldm set-core 5 ldom1 primary # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-cv- SP 16 4G 0.2% 6d 22h 29m ldom1 active -n---- 5000 40 8G 0.1% 6h 59m primary # ldm set-core 2 ldom1 primary # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-cv- SP 16 4G 1.0% 6d 22h 29m ldom1 active -n---- 5000 16 8G 0.9% 6h 59m Memory pages are vacated by copying their contents to other memory locations and wiping them clean. Solaris may have to swap memory contents to disk if the remaining RAM isn't enough to hold all the contents. For this reason, deallocating memory can take longer on a loaded system. Even on a lightly loaded system it took several 7 or 8 seconds to switch the domain below between 8GB and 24GB of RAM. primary # ldm set-mem 24g ldom1 primary # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-cv- SP 16 4G 0.1% 6d 22h 36m ldom1 active -n---- 5000 16 24G 0.2% 7h 6m primary # ldm set-mem 8g ldom1 primary # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-cv- SP 16 4G 0.7% 6d 22h 37m ldom1 active -n---- 5000 16 8G 0.3% 7h 7m What if the device is in use? (this is the anecdote that inspired this blog post) If CPU or memory is being removed, releasing it pretty straightforward, using the method described above. The resources are released, and Solaris continues with less capacity. It's not as simple with a network or I/O device: you don't want to yank a device out from underneath an application that might be using it. In the following example, I've added a virtual network device to ldom1 and want to take it away, even though it's been plumbed. primary # ldm rm-vnet vnet19 ldom1 Guest LDom returned the following reason for failing the operation: Resource Information ---------------------------------------------------------- ----------------------- /devices/virtual-devices@100/channel-devices@200/network@1 Network interface net1 VIO operation failed because device is being used in LDom ldom1 Failed to remove VNET instance That's what I call a helpful error message - telling me exactly what was wrong. In this case the problem is easily solved. I know this NIC is seen in the guest as net1 so: ldom1 # ifconfig net1 down unplumb Now I can dispose of it, and even the virtual switch I had created for it: primary # ldm rm-vnet vnet19 ldom1 primary # ldm rm-vsw primary-vsw9 If I had to take away the device disruptively, I could have used ldm rm-vnet -f but that could disrupt whoever was using it. It's better if that can be avoided. Summary Oracle VM Server for SPARC provides dynamic reconfiguration, which lets you modify a guest domain's CPU, memory and I/O configuration on the fly without reboot. You can add and remove resources as needed, and even automate this for CPUs by setting up resource policies. Taking things away can be more complicated than giving, especially for devices like disks and networks that may contain application and system state or be involved in a transaction. LDoms and Solaris cooperative work together to coordinate resource allocation and de-allocation in a safe and effective way. For best practices, use dynamic reconfiguration to make the best use of your system's resources.

    Read the article

  • guest crash on long backup via rsync

    - by ToreTrygg
    I recently upgraded host to Ubuntu 9.10 with vmware server 2.0.2, i had two guest machine. One is a sme server i had several crash during a session of backup with rsync to another pc. Normal activities run regularly. The other guest is up without problem since 25 days. I found in the log a lot o f row like these Dec 20 05:29:27.445: vcpu-1| VLANCE: Ethernet0 skipped 2560 time(s) Dec 20 05:29:27.445: vcpu-1| VLANCE: 66 12 5 8 2 3 3 0 1 0 0 1 0 1 2 0 Dec 20 05:29:27.445: vcpu-1| VLANCE: 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 2452 Dec 20 05:29:27.651: vmx| ide0:0: Command WRITE(10) took 1.947 seconds (ok) Dec 20 05:29:37.945: vmx| ide0:0: Command WRITE(10) took 1.033 seconds (ok) when the vitual machine crash the log report, I paste here only some part to limit the lenght of the message Dec 27 01:48:05.686: Worker#2| Caught signal 6 -- tid 700 Dec 27 01:48:05.686: Worker#2| SIGNAL: eip 0x460422 esp 0xb124c024 ebp 0xb124c03 Dec 27 01:48:05.712: Worker#2| SymBacktrace12 00000000 eip 0x39d7ee in function clone in object /lib/tls/i686/cmov/libc.so.6 loaded at 0x2d1000 Dec 27 01:48:05.719: Worker#2| Unexpected signal: 6. Dec 27 01:48:05.720: Worker#2| Core dump limit is 0 KB. Dec 27 01:48:05.762: Worker#2| Child process 10455 failed to dump core (status 0 x6). Dec 27 01:48:05.762: Worker#2|SymBacktrace13 00000000 eip 0x39d7ee in function clone in object /lib/tls/i686/cmov/libc.so.6 loaded at 0x2d1000 Dec 27 01:48:05.779: Worker#2|Msg_Post: Error Dec 27 01:48:05.780: Worker#2|http://msg.log.error.unrecoverable VMware Server unrecoverable error: (Worker#2) Dec 27 01:48:05.780: Worker#2|Unexpected signal: 6. I have no idea how to solve the problem with this installation, I think to dowgrade the host to a version more compatible with vmware server 2. I read a lot of post about difficult of installation I think the problem of compilation during install could be related to my problem. Excuse me if the post isn't very clear, it's my first post here. Any help or suggest will be appreciated. Thanks

    Read the article

  • T4 Performance Counters explained

    - by user13346607
    Now that T4 is out for a few month some people might have wondered what details of the new pipeline you can monitor. A "cpustat -h" lists a lot of events that can be monitored, and only very few are self-explanatory. I will try to give some insight on all of them, some of these "PIC events" require an in-depth knowledge of T4 pipeline. Over time I will try to explain these, for the time being these events should simply be ignored. (Side note: some counters changed from tape-out 1.1 (*only* used in the T4 beta program) to tape-out 1.2 (used in the systems shipping today) The table only lists the tape-out 1.2 counters) 0 0 1 1058 6033 Oracle Microelectronics 50 14 7077 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin;} pic name (cpustat) Prose Comment Sel-pipe-drain-cycles, Sel-0-[wait|ready], Sel-[1,2] Sel-0-wait counts cycles a strand waits to be selected. Some reasons can be counted in detail; these are: Sel-0-ready: Cycles a strand was ready but not selected, that can signal pipeline oversubscription Sel-1: Cycles only one instruction or µop was selected Sel-2: Cycles two instructions or µops were selected Sel-pipe-drain-cycles: cf. PRM footnote 8 to table 10.2 Pick-any, Pick-[0|1|2|3] Cycles one, two, three, no or at least one instruction or µop is picked Instr_FGU_crypto Number of FGU or crypto instructions executed on that vcpu Instr_ld dto. for load Instr_st dto. for store SPR_ring_ops dto. for SPR ring ops Instr_other dto. for all other instructions not listed above, PRM footnote 7 to table 10.2 lists the instructions Instr_all total number of instructions executed on that vcpu Sw_count_intr Nr of S/W count instructions on that vcpu (sethi %hi(fc000),%g0 (whatever that is))  Atomics nr of atomic ops, which are LDSTUB/a, CASA/XA, and SWAP/A SW_prefetch Nr of PREFETCH or PREFETCHA instructions Block_ld_st Block loads or store on that vcpu IC_miss_nospec, IC_miss_[L2_or_L3|local|remote]\ _hit_nospec Various I$ misses, distinguished by where they hit. All of these count per thread, but only primary events: T4 counts only the first occurence of an I$ miss on a core for a certain instruction. If one strand misses in I$ this miss is counted, but if a second strand on the same core misses while the first miss is being resolved, that second miss is not counted This flavour of I$ misses counts only misses that are caused by instruction that really commit (note the "_nospec") BTC_miss Branch target cache miss ITLB_miss ITLB misses (synchronously counted) ITLB_miss_asynch dto. but asynchronously [I|D]TLB_fill_\ [8KB|64KB|4MB|256MB|2GB|trap] H/W tablewalk events that fill ITLB or DTLB with translation for the corresponding page size. The “_trap” event occurs if the HWTW was not able to fill the corresponding TLB IC_mtag_miss, IC_mtag_miss_\ [ptag_hit|ptag_miss|\ ptag_hit_way_mismatch] I$ micro tag misses, with some options for drill down Fetch-0, Fetch-0-all fetch-0 counts nr of cycles nothing was fetched for this particular strand, fetch-0-all counts cycles nothing was fetched for all strands on a core Instr_buffer_full Cycles the instruction buffer for a strand was full, thereby preventing any fetch BTC_targ_incorrect Counts all occurences of wrongly predicted branch targets from the BTC [PQ|ROB|LB|ROB_LB|SB|\ ROB_SB|LB_SB|RB_LB_SB|\ DTLB_miss]\ _tag_wait ST_q_tag_wait is listed under sl=20. These counters monitor pipeline behaviour therefore they are not strand specific: PQ_...: cycles Rename stage waits for a Pick Queue tag (might signal memory bound workload for single thread mode, cf. Mail from Richard Smith) ROB_...: cycles Select stage waits for a ROB (ReOrderBuffer) tag LB_...: cycles Select stage waits for a Load Buffer tag SB_...: cycles Select stage waits for Store Buffer tag combinations of the above are allowed, although some of these events can overlap, the counter will only be incremented once per cycle if any of these occur DTLB_...: cycles load or store instructions wait at Pick stage for a DTLB miss tag [ID]TLB_HWTW_\ [L2_hit|L3_hit|L3_miss|all] Counters for HWTW accesses caused by either DTLB or ITLB misses. Canbe further detailed by where they hit IC_miss_L2_L3_hit, IC_miss_local_remote_remL3_hit, IC_miss I$ prefetches that were dropped because they either miss in L2$ or L3$ This variant counts misses regardless if the causing instruction commits or not DC_miss_nospec, DC_miss_[L2_L3|local|remote_L3]\ _hit_nospec D$ misses either in general or detailed by where they hit cf. the explanation for the IC_miss in two flavours for an explanation of _nospec and the reasoning for two DC_miss counters DTLB_miss_asynch counts all DTLB misses asynchronously, there is no way to count them synchronously DC_pref_drop_DC_hit, SW_pref_drop_[DC_hit|buffer_full] L1-D$ h/w prefetches that were dropped because of a D$ hit, counted per core. The others count software prefetches per strand [Full|Partial]_RAW_hit_st_[buf|q] Count events where a load wants to get data that has not yet been stored, i. e. it is still inside the pipeline. The data might be either still in the store buffer or in the store queue. If the load's data matches in the SB and in the store queue the data in buffer takes precedence of course since it is younger [IC|DC]_evict_invalid, [IC|DC|L1]_snoop_invalid, [IC|DC|L1]_invalid_all Counter for invalidated cache evictions per core St_q_tag_wait Number of cycles pipeline waits for a store queue tag, of course counted per core Data_pref_[drop_L2|drop_L3|\ hit_L2|hit_L3|\ hit_local|hit_remote] Data prefetches that can be further detailed by either why they were dropped or where they did hit St_hit_[L2|L3], St_L2_[local|remote]_C2C, St_local, St_remote Store events distinguished by where they hit or where they cause a L2 cache-to-cache transfer, i.e. either a transfer from another L2$ on the same die or from a different die DC_miss, DC_miss_\ [L2_L3|local|remote]_hit D$ misses either in general or detailed by where they hit cf. the explanation for the IC_miss in two flavours for an explanation of _nospec and the reasoning for two DC_miss counters L2_[clean|dirty]_evict Per core clean or dirty L2$ evictions L2_fill_buf_full, L2_wb_buf_full, L2_miss_buf_full Per core L2$ buffer events, all count number of cycles that this state was present L2_pipe_stall Per core cycles pipeline stalled because of L2$ Branches Count branches (Tcc, DONE, RETRY, and SIT are not counted as branches) Br_taken Counts taken branches (Tcc, DONE, RETRY, and SIT are not counted as branches) Br_mispred, Br_dir_mispred, Br_trg_mispred, Br_trg_mispred_\ [far_tbl|indir_tbl|ret_stk] Counter for various branch misprediction events.  Cycles_user counts cycles, attribute setting hpriv, nouser, sys controls addess space to count in Commit-[0|1|2], Commit-0-all, Commit-1-or-2 Number of times either no, one, or two µops commit for a strand. Commit-0-all counts number of times no µop commits for the whole core, cf. footnote 11 to table 10.2 in PRM for a more detailed explanation on how this counters interacts with the privilege levels

    Read the article

  • How many per-core licenses do I need?

    - by GavinPayneUK
      With SQL Server 2012, your licensing requirements can chose to use or be required to use a per-core model depending on the edition you’re deploying. This is a change to previous editions which used a per-CPU socket model that made counting how many per-CPU licences you needed easier – cores and HyperThreading didn’t influence the CPU socket count.  Any complications which people did have typically came from running SQL Server in a virtualised environment, was a vCPU a socket or did licensing...(read more)

    Read the article

  • What's up with LDoms: Part 5 - A few Words about Consoles

    - by Stefan Hinker
    Back again to look at a detail of LDom configuration that is often forgotten - the virtual console server. Remember, LDoms are SPARC systems.  As such, each guest will have it's own OBP running.  And to connect to that OBP, the administrator will need a console connection.  Since it's OBP, and not some x86 BIOS, this console will be very serial in nature ;-)  It's really very much like in the good old days, where we had a terminal concentrator where all those serial cables ended up in.  Just like with other components in LDoms, the virtualized solution looks very similar. Every LDom guest requires exactly one console connection.  Envision this similar to the RS-232 port on older SPARC systems.  The LDom framework provides one or more console services that provide access to these connections.  This would be the virtual equivalent of a network terminal server (NTS), where all those serial cables are plugged in.  In the physical world, we'd have a list somewhere, that would tell us which TCP-Port of the NTS was connected to which server.  "ldm list" does just that: root@sun # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-cv- UART 16 7680M 0.4% 27d 8h 22m jupiter bound ------ 5002 20 8G mars active -n---- 5000 2 8G 0.5% 55d 14h 10m venus active -n---- 5001 2 8G 0.5% 56d 40m pluto inactive ------ 4 4G The column marked "CONS" tells us, where to reach the console of each domain. In the case of the primary domain, this is actually a (more) physical connection - it's the console connection of the physical system, which is either reachable via the ILOM of that system, or directly via the serial console port on the chassis. All the other guests are reachable through the console service which we created during the inital setup of the system.  Note that pluto does not have a port assigned.  This is because pluto is not yet bound.  (Binding can be viewed very much as the assembly of computer parts - CPU, Memory, disks, network adapters and a serial console cable are all put together when binding the domain.)  Unless we set the port number explicitly, LDoms Manager will do this on a first come, first serve basis.  For just a few domains, this is fine.  For larger deployments, it might be a good idea to assign these port numbers manually using the "ldm set-vcons" command.  However, there is even better magic associated with virtual consoles. You can group several domains into one console group, reachable through one TCP port of the console service.  This can be useful when several groups of administrators are to be given access to different domains, or for other grouping reasons.  Here's an example: root@sun # ldm set-vcons group=planets service=console jupiter root@sun # ldm set-vcons group=planets service=console pluto root@sun # ldm bind jupiter root@sun # ldm bind pluto root@sun # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-cv- UART 16 7680M 6.1% 27d 8h 24m jupiter bound ------ 5002 200 8G mars active -n---- 5000 2 8G 0.6% 55d 14h 12m pluto bound ------ 5002 4 4G venus active -n---- 5001 2 8G 0.5% 56d 42m root@sun # telnet localhost 5002 Trying 127.0.0.1... Connected to localhost. Escape character is '^]'. sun-vnts-planets: h, l, c{id}, n{name}, q:l DOMAIN ID DOMAIN NAME DOMAIN STATE 2 jupiter online 3 pluto online sun-vnts-planets: h, l, c{id}, n{name}, q:npluto Connecting to console "pluto" in group "planets" .... Press ~? for control options .. What I did here was add the two domains pluto and jupiter to a new console group called "planets" on the service "console" running in the primary domain.  Simply using a group name will create such a group, if it doesn't already exist.  By default, each domain has its own group, using the domain name as the group name.  The group will be available on port 5002, chosen by LDoms Manager because I didn't specify it.  If I connect to that console group, I will now first be prompted to choose the domain I want to connect to from a little menu. Finally, here's an example how to assign port numbers explicitly: root@sun # ldm set-vcons port=5044 group=pluto service=console pluto root@sun # ldm bind pluto root@sun # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-cv- UART 16 7680M 3.8% 27d 8h 54m jupiter active -t---- 5002 200 8G 0.5% 30m mars active -n---- 5000 2 8G 0.6% 55d 14h 43m pluto bound ------ 5044 4 4G venus active -n---- 5001 2 8G 0.4% 56d 1h 13m With this, pluto would always be reachable on port 5044 in its own exclusive console group, no matter in which order other domains are bound. Now, you might be wondering why we always have to mention the console service name, "console" in all the examples here.  The simple answer is because there could be more than one such console service.  For all "normal" use, a single console service is absolutely sufficient.  But the system is flexible enough to allow more than that single one, should you need them.  In fact, you could even configure such a console service on a domain other than the primary (or control domain), which would make that domain a real console server.  I actually have a customer who does just that - they want to separate console access from the control domain functionality.  But this is definately a rather sophisticated setup. Something I don't want to go into in this post is access control.  vntsd, which is the daemon providing all these console services, is fully RBAC-aware, and you can configure authorizations for individual users to connect to console groups or individual domain's consoles.  If you can't wait until I get around to security, check out the man page of vntsd. Further reading: The Admin Guide is rather reserved on this subject.  I do recommend to check out the Reference Manual. The manpage for vntsd will discuss all the control sequences as well as the grouping and authorizations mentioned here.

    Read the article

  • vSphere education - What are the downsides of configuring virtual machines with *too* much RAM?

    - by ewwhite
    VMware memory management seems to be a tricky balancing act. With cluster RAM, Resource Pools, VMware's management techniques (TPS, ballooning, host swapping), in-guest RAM utilization, swapping, reservations, shares and limits, there are a lot of variables. I'm in a situation where clients are using dedicated vSphere cluster resources. However, they are configuring the virtual machines as though they were on physical hardware. In turn, this means a standard VM build may have 4 vCPUs and 16GB or more of RAM. I come from the school of starting small (1 vCPU, minimal RAM), checking real-world use and adjusting up as necessary. Some examples from a "problem" cluster. Resource pool summary - Looks almost 4:1 overcommitted. Note the high amount of ballooned RAM. Resource allocation - The Worst Case Allocation column shows that these VMs would have access to less than 50% of their configured RAM under constrained conditions. The real-time memory utilization graph of the top VM in the listing above. 4 vCPU and 64GB RAM allocated. It averages under 9GB use. Summary of the same VM What are the downsides of overcommitting and overconfiguring resources (specifically RAM) in vSphere environments? Assuming that the VMs can run in less RAM, is it fair to say that there's overhead to configuring virtual machines with more RAM than they need? What is the counter-argument to: "if a VM has 16GB of RAM allocated, but only uses 4GB, what's the problem??"? E.g. do customers need to be educated? What specific metric should be used to meter RAM usage. Tracking the peaks of "Active" versus time?

    Read the article

  • Very slow KVM in Ubuntu 12.04

    - by Guy Fawkes
    I use Ubuntu 12.04 64-bit and KVM, my CPU is Core i5 3.3 GHz and I have 8 GB of DDR3 RAM. I run Windows 7 in KVM and it's extremely slow. My co-worker use Debian on the same PC configuration and can run Windows 7 extremely fast! Where can be my problem? sudo cat /etc/libvirt/qemu/windows.xml <!-- WARNING: THIS IS AN AUTO-GENERATED FILE. CHANGES TO IT ARE LIKELY TO BE OVERWRITTEN AND LOST. Changes to this xml configuration should be made using: virsh edit windows or other application using the libvirt API. --> <domain type='kvm'> <name>windows</name> <uuid>5c685175-baea-0ca6-591f-8269d923ffb8</uuid> <memory>2097152</memory> <currentMemory>2097152</currentMemory> <vcpu>1</vcpu> <os> <type arch='x86_64' machine='pc-1.0'>hvm</type> <boot dev='hd'/> </os> <features> <acpi/> <apic/> <pae/> </features> <clock offset='localtime'/> <on_poweroff>destroy</on_poweroff> <on_reboot>restart</on_reboot> <on_crash>restart</on_crash> <devices> <emulator>/usr/bin/kvm</emulator> <disk type='file' device='disk'> <driver name='qemu' type='raw'/> <source file='/var/lib/libvirt/images/windows.img'/> <target dev='hda' bus='ide'/> <address type='drive' controller='0' bus='0' unit='0'/> </disk> <controller type='ide' index='0'> <address type='pci' domain='0x0000' bus='0x00' slot='0x01' function='0x1'/> </controller> <interface type='network'> <mac address='52:54:00:94:63:91'/> <source network='default'/> <address type='pci' domain='0x0000' bus='0x00' slot='0x03' function='0x0'/> </interface> <serial type='pty'> <target port='0'/> </serial> <console type='pty'> <target type='serial' port='0'/> </console> <input type='tablet' bus='usb'/> <input type='mouse' bus='ps2'/> <graphics type='vnc' port='-1' autoport='yes'/> <sound model='ich6'> <address type='pci' domain='0x0000' bus='0x00' slot='0x04' function='0x0'/> </sound> <video> <model type='vga' vram='262144' heads='1'/> <address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x0'/> </video> <memballoon model='virtio'> <address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0'/> </memballoon> </devices> </domain>

    Read the article

  • vmware esx licensing limit on vCPUs per VM

    - by maruti
    when a server has more than 8 cores per CPU (total 16 logical procs) and ESX standard license is applied, what does it mean for VM performance? Since each VM on host is allowed only 4 vCPUs max VMWare ESX/ESXi limits the no of vCPUs per guest VM depending on the license: standard Lic = 4 vCPU Advanced Lic = 4 since i dont know exact number is there need to upgrade to Advanced version for any perf benefits if none of VMs have workloads that need more than 4 vCPUs?

    Read the article

  • Installing Windows 8 on vmware 6.5

    - by Aditya
    Is there any way to install Windows 8 on a VMWare Workstation 6.5. I can't install it, get this message: The installation failed with this error "vcpu-0:NOT_IMPLEMENTED vmcore/vmm/intr/apic.c I found this link http://www.sharepointsolutioncenter.net/Blog/Lists/Posts/Post.aspx?ID=46 It says don't try it but just in case anyone has done it please tell. I don't want to download vmware workstation 8 or 9

    Read the article

  • ubuntu 10.04; kvm bridged networking not working with public ip addresses

    - by senorsmile
    I have a dedicated hosted server box with ubuntu 10.04 64 bit installed. I would like to run kvm with ubuntu 8.04 installed for some php 5.2 compatible apps(they don't work right with php 5.3, the default in ubuntu 10.04). I installed KVM as instructed at https://help.ubuntu.com/community/KVM/Installation . I installed the vm using virt-manager. I never could figure out how use virt-install or any of those automated installers. I just installed it using the disc. I set up bridged networking as per https://help.ubuntu.com/community/KVM/Networking . However, the bridged connection doesn't work. Here's my /etc/network/interfaces on the host, running ubuntu 10.04. (with specific public ip blanked) auto lo iface lo inet loopback auto eth0 iface eth0 inet manual auto br0 iface br0 inet static address xx.xx.xx.xx netmask 255.255.255.248 gateway xx.xx.xx.xa bridge_ports eth0 bridge_stp on bridge_fd 0 bridge_maxwait 10 ` Here's my /etc/network/interfaces on the guest, running ubuntu 8.04. auto lo iface lo inet loopback auto eth0 iface eth0 inet static address xx.xx.xx.xy netmask 255.255.255.248 gateway xx.xx.xx.xa The two vm's can communicate to each other. But, the guest vm can't access anyone in the real world. Here's my /etc/libvirt/qemu/store_804.xml <domain type='kvm'> <name>store_804</name> <uuid>27acfb75-4f90-a34c-9a0b-70a6927ae84c</uuid> <memory>2097152</memory> <currentMemory>2097152</currentMemory> <vcpu>2</vcpu> <os> <type arch='x86_64' machine='pc-0.12'>hvm</type> <boot dev='hd'/> </os> <features> <acpi/> <apic/> <pae/> </features> <clock offset='utc'/> <on_poweroff>destroy</on_poweroff> <on_reboot>restart</on_reboot> <on_crash>restart</on_crash> <devices> <emulator>/usr/bin/kvm</emulator> <disk type='file' device='disk'> <driver name='qemu' type='raw'/> <source file='/var/lib/libvirt/images/store_804.img'/> <target dev='hda' bus='ide'/> </disk> <disk type='block' device='cdrom'> <driver name='qemu' type='raw'/> <target dev='hdc' bus='ide'/> <readonly/> </disk> <interface type='bridge'> <mac address='52:54:00:26:0b:c6'/> <source bridge='br0'/> <model type='virtio'/> </interface> <console type='pty'> <target port='0'/> </console> <console type='pty'> <target port='0'/> </console> <input type='mouse' bus='ps2'/> <graphics type='vnc' port='-1' autoport='yes'/> <sound model='es1370'/> <video> <model type='cirrus' vram='9216' heads='1'/> </video> </devices> </domain> Any idea where I've gone wrong?

    Read the article

  • What's up with LDoms: Part 2 - Creating a first, simple guest

    - by Stefan Hinker
    Welcome back! In the first part, we discussed the basic concepts of LDoms and how to configure a simple control domain.  We saw how resources were put aside for guest systems and what infrastructure we need for them.  With that, we are now ready to create a first, very simple guest domain.  In this first example, we'll keep things very simple.  Later on, we'll have a detailed look at things like sizing, IO redundancy, other types of IO as well as security. For now,let's start with this very simple guest.  It'll have one core's worth of CPU, one crypto unit, 8GB of RAM, a single boot disk and one network port.  CPU and RAM are easy.  The network port we'll create by attaching a virtual network port to the vswitch we created in the primary domain.  This is very much like plugging a cable into a computer system on one end and a network switch on the other.  For the boot disk, we'll need two things: A physical piece of storage to hold the data - this is called the backend device in LDoms speak.  And then a mapping between that storage and the guest domain, giving it access to that virtual disk.  For this example, we'll use a ZFS volume for the backend.  We'll discuss what other options there are for this and how to chose the right one in a later article.  Here we go: root@sun # ldm create mars root@sun # ldm set-vcpu 8 mars root@sun # ldm set-mau 1 mars root@sun # ldm set-memory 8g mars root@sun # zfs create rpool/guests root@sun # zfs create -V 32g rpool/guests/mars.bootdisk root@sun # ldm add-vdsdev /dev/zvol/dsk/rpool/guests/mars.bootdisk \ mars.root@primary-vds root@sun # ldm add-vdisk root mars.root@primary-vds mars root@sun # ldm add-vnet net0 switch-primary mars That's all, mars is now ready to power on.  There are just three commands between us and the OK prompt of mars:  We have to "bind" the domain, start it and connect to its console.  Binding is the process where the hypervisor actually puts all the pieces that we've configured together.  If we made a mistake, binding is where we'll be told (starting in version 2.1, a lot of sanity checking has been put into the config commands themselves, but binding will catch everything else).  Once bound, we can start (and of course later stop) the domain, which will trigger the boot process of OBP.  By default, the domain will then try to boot right away.  If we don't want that, we can set "auto-boot?" to false.  Finally, we'll use telnet to connect to the console of our newly created guest.  The output of "ldm list" shows us what port has been assigned to mars.  By default, the console service only listens on the loopback interface, so using telnet is not a large security concern here. root@sun # ldm set-variable auto-boot\?=false mars root@sun # ldm bind mars root@sun # ldm start mars root@sun # ldm list NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-cv- UART 8 7680M 0.5% 1d 4h 30m mars active -t---- 5000 8 8G 12% 1s root@sun # telnet localhost 5000 Trying 127.0.0.1... Connected to localhost. Escape character is '^]'. ~Connecting to console "mars" in group "mars" .... Press ~? for control options .. {0} ok banner SPARC T3-4, No Keyboard Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved. OpenBoot 4.33.1, 8192 MB memory available, Serial # 87203131. Ethernet address 0:21:28:24:1b:50, Host ID: 85241b50. {0} ok We're done, mars is ready to install Solaris, preferably using AI, of course ;-)  But before we do that, let's have a little look at the OBP environment to see how our virtual devices show up here: {0} ok printenv auto-boot? auto-boot? = false {0} ok printenv boot-device boot-device = disk net {0} ok devalias root /virtual-devices@100/channel-devices@200/disk@0 net0 /virtual-devices@100/channel-devices@200/network@0 net /virtual-devices@100/channel-devices@200/network@0 disk /virtual-devices@100/channel-devices@200/disk@0 virtual-console /virtual-devices/console@1 name aliases We can see that setting the OBP variable "auto-boot?" to false with the ldm command worked.  Of course, we'd normally set this to "true" to allow Solaris to boot right away once the LDom guest is started.  The setting for "boot-device" is the default "disk net", which means OBP would try to boot off the devices pointed to by the aliases "disk" and "net" in that order, which usually means "disk" once Solaris is installed on the disk image.  The actual devices these aliases point to are shown with the command "devalias".  Here, we have one line for both "disk" and "net".  The device paths speak for themselves.  Note that each of these devices has a second alias: "net0" for the network device and "root" for the disk device.  These are the very same names we've given these devices in the control domain with the commands "ldm add-vnet" and "ldm add-vdisk".  Remember this, as it is very useful once you have several dozen disk devices... To wrap this up, in this part we've created a simple guest domain, complete with CPU, memory, boot disk and network connectivity.  This should be enough to get you going.  I will cover all the more advanced features and a little more theoretical background in several follow-on articles.  For some background reading, I'd recommend the following links: LDoms 2.2 Admin Guide: Setting up Guest Domains Virtual Console Server: vntsd manpage - This includes the control sequences and commands available to control the console session. OpenBoot 4.x command reference - All the things you can do at the ok prompt

    Read the article

  • Running Solaris 11 as a control domain on a T2000

    - by jsavit
    There is increased adoption of Oracle Solaris 11, and many customers are deploying it on systems that previously ran Solaris 10. That includes older T1-processor based systems like T1000 and T2000. Even though they are old (from 2005) and don't have the performance of current SPARC servers, they are still functional, stable servers that customers continue to operate. One reason to install Solaris 11 on them is that older machines are attractive for testing OS upgrades before updating current, production systems. Normally this does not present a challenge, because Solaris 11 runs on any T-series or M-series SPARC server. One scenario adds a complication: running Solaris 11 in a control domain on a T1000 or T2000 hosting logical domains. Solaris 11 pre-installed Oracle VM Server for SPARC incompatible with T1 Unlike Solaris 10, Solaris 11 comes with Oracle VM Server for SPARC preinstalled. The ldomsmanager package contains the logical domains manager for Oracle VM Server for SPARC 2.2, which requires a SPARC T2, T2+, T3, or T4 server. It does not work with T1-processor systems, which are only supported by LDoms Manager 1.2 and earlier. The following screenshot shows what happens (bold font) if you try to use Oracle VM Server for SPARC 2.x commands in a Solaris 11 control domain. The commands were issued in a control domain on a T2000 that previously ran Solaris 10. We also display the version of the logical domains manager installed in Solaris 11: root@t2000 psrinfo -vp The physical processor has 4 virtual processors (0-3) UltraSPARC-T1 (chipid 0, clock 1200 MHz) # prtconf|grep T SUNW,Sun-Fire-T200 # ldm -V Failed to connect to logical domain manager: Connection refused # pkg info ldomsmanager Name: system/ldoms/ldomsmanager Summary: Logical Domains Manager Description: LDoms Manager - Virtualization for SPARC T-Series Category: System/Virtualization State: Installed Publisher: solaris Version: 2.2.0.0 Build Release: 5.11 Branch: 0.175.0.8.0.3.0 Packaging Date: May 25, 2012 10:20:48 PM Size: 2.86 MB FMRI: pkg://solaris/system/ldoms/[email protected],5.11-0.175.0.8.0.3.0:20120525T222048Z The 2.2 version of the logical domains manager will have to be removed, and 1.2 installed, in order to use this as a control domain. Preparing to change - create a new boot environment Before doing anything else, lets create a new boot environment: # beadm list BE Active Mountpoint Space Policy Created -- ------ ---------- ----- ------ ------- solaris NR / 2.14G static 2012-09-25 10:32 # beadm create solaris-1 # beadm activate solaris-1 # beadm list BE Active Mountpoint Space Policy Created -- ------ ---------- ----- ------ ------- solaris N / 4.82M static 2012-09-25 10:32 solaris-1 R - 2.14G static 2012-09-29 11:40 # init 0 Normally an init 6 to reboot would have been sufficient, but in the next step I reset the system anyway in order to put the system in factory default mode for a "clean" domain configuration. Preparing to change - reset to factory default There was a leftover domain configuration on the T2000, so I reset it to the factory install state. Since the ldm command is't working yet, it can't be done from the control domain, so I did it by logging onto to the service processor: $ ssh -X admin@t2000-sc Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. Oracle Advanced Lights Out Manager CMT v1.7.9 Please login: admin Please Enter password: ******** sc> showhost Sun-Fire-T2000 System Firmware 6.7.10 2010/07/14 16:35 Host flash versions: OBP 4.30.4.b 2010/07/09 13:48 Hypervisor 1.7.3.c 2010/07/09 15:14 POST 4.30.4.b 2010/07/09 14:24 sc> bootmode config="factory-default" sc> poweroff Are you sure you want to power off the system [y/n]? y SC Alert: SC Request to Power Off Host. SC Alert: Host system has shut down. sc> poweron SC Alert: Host System has Reset At this point I rebooted into the new Solaris 11 boot environment, and Solaris commands showed it was running on the factory default configuration of a single domain owning all 32 CPUs and 32GB of RAM (that's what it looked like in 2005.) # psrinfo -vp The physical processor has 8 cores and 32 virtual processors (0-31) The core has 4 virtual processors (0-3) The core has 4 virtual processors (4-7) The core has 4 virtual processors (8-11) The core has 4 virtual processors (12-15) The core has 4 virtual processors (16-19) The core has 4 virtual processors (20-23) The core has 4 virtual processors (24-27) The core has 4 virtual processors (28-31) UltraSPARC-T1 (chipid 0, clock 1200 MHz) # prtconf|grep Mem Memory size: 32640 Megabytes Note that the older processor has 4 virtual CPUs per core, while current processors have 8 per core. Remove ldomsmanager 2.2 and install the 1.2 version The Solaris 11 pkg command is now used to remove the 2.2 version that shipped with Solaris 11: # pkg uninstall ldomsmanager Packages to remove: 1 Create boot environment: No Create backup boot environment: No Services to change: 2 PHASE ACTIONS Removal Phase 130/130 PHASE ITEMS Package State Update Phase 1/1 Package Cache Update Phase 1/1 Image State Update Phase 2/2 Finally, LDoms 1.2 installed via its install script, the same way it was done years ago: # unzip LDoms-1_2-Integration-10.zip # cd LDoms-1_2-Integration-10/Install/ # ./install-ldm Welcome to the LDoms installer. You are about to install the Logical Domains Manager package that will enable you to create, destroy and control other domains on your system. Given the capabilities of the LDoms domain manager, you can now change the security configuration of this Solaris instance using the Solaris Security Toolkit. ... ... normal install messages omitted ... The Solaris Security Toolkit applies to Solaris 10, and cannot be used in Solaris 11 (in which several things hardened by the Toolkit are already hardened by default), so answer b in the choice below: You are about to install the Logical Domains Manager package that will enable you to create, destroy and control other domains on your system. Given the capabilities of the LDoms domain manager, you can now change the security configuration of this Solaris instance using the Solaris Security Toolkit. Select a security profile from this list: a) Hardened Solaris configuration for LDoms (recommended) b) Standard Solaris configuration c) Your custom-defined Solaris security configuration profile Enter a, b, or c [a]: b ... other install messages omitted for brevity... After install I ensure that the necessary services are enabled, and verify the version of the installed LDoms Manager: # svcs ldmd STATE STIME FMRI online 22:00:36 svc:/ldoms/ldmd:default # svcs vntsd STATE STIME FMRI disabled Aug_19 svc:/ldoms/vntsd:default # ldm -V Logical Domain Manager (v 1.2-debug) Hypervisor control protocol v 1.3 Using Hypervisor MD v 1.1 System PROM: Hypervisor v. 1.7.3. @(#)Hypervisor 1.7.3.c 2010/07/09 15:14\015 OpenBoot v. 4.30.4. @(#)OBP 4.30.4.b 2010/07/09 13:48 Set up control domain and domain services At this point we have a functioning LDoms 1.2 environment that can be configured in the usual fashion. One difference is that LDoms 1.2 behavior had 'delayed configuration mode (as expected) during initial configuration before rebooting the control domain. Another minor difference with a Solaris 11 control domain is that you define virtual switches using the 'vanity name' of the network interface, rather than the hardware driver name as in Solaris 10. # ldm list ------------------------------------------------------------------------------ Notice: the LDom Manager is running in configuration mode. Configuration and resource information is displayed for the configuration under construction; not the current active configuration. The configuration being constructed will only take effect after it is downloaded to the system controller and the host is reset. ------------------------------------------------------------------------------ NAME STATE FLAGS CONS VCPU MEMORY UTIL UPTIME primary active -n-c-- SP 32 32640M 3.2% 4d 2h 50m # ldm add-vdiskserver primary-vds0 primary # ldm add-vconscon port-range=5000-5100 primary-vcc0 primary # ldm add-vswitch net-dev=net0 primary-vsw0 primary # ldm set-mau 2 primary # ldm set-vcpu 8 primary # ldm set-memory 4g primary # ldm add-config initial # ldm list-spconfig factory-default initial [current] That's it, really. After reboot, we are ready to install guest domains. Summary - new wine in old bottles This example shows that (new) Solaris 11 can be installed on (old) T2000 servers and used as a control domain. The main activity is to remove the preinstalled Oracle VM Server for 2.2 and install Logical Domains 1.2 - the last version of LDoms to support T1-processor systems. I tested Solaris 10 and Solaris 11 guest domains running on this server and they worked without any surprises. This is a viable way to get further into Solaris 11 adoption, even on older T-series equipment.

    Read the article

  • Crashing HVM domain, what do I do?

    - by rassie
    My DomUs on a Xen 3.4 on an RHEL5 are crashing when too much memory is needed: (XEN) p2m_pod_demand_populate: Out of populate-on-demand memory! (XEN) domain_crash called from p2m.c:1091 (XEN) Domain 15 (vcpu#3) crashed on cpu#2: (XEN) ----[ Xen-3.4.0 x86_64 debug=n Not tainted ]---- (XEN) CPU: 2 (XEN) RIP: 0010:[<ffffffff80062c02>] (XEN) RFLAGS: 0000000000010216 CONTEXT: hvm guest (XEN) rax: 0000000000000000 rbx: 0000000000000001 rcx: 000000000000003f (XEN) rdx: 0000000004812000 rsi: ffff810001000000 rdi: ffff810004812000 (XEN) rbp: 0000000000000282 rsp: ffff810007635cf0 r8: ffff810037c0288e (XEN) r9: 00000000000023e1 r10: 0000000000000000 r11: 0000000000000001 (XEN) r12: ffff81000000cb00 r13: ffff8100007e43f0 r14: ffff81000000fc10 (XEN) r15: 00000000000280d2 cr0: 0000000080050033 cr4: 00000000000006e0 (XEN) cr3: 0000000006760000 cr2: 0000000003d47078 (XEN) ds: 0000 es: 0000 fs: 0000 gs: 0000 ss: 0000 cs: 0010 Can I disable populate-on-demand for HVM somehow? Xen 3.3 didn't exhibit such behaviour...

    Read the article

  • Performance issue when configuring non HA VM in cluster

    - by laiys
    Hi, I saw this article http://technet.microsoft.com/en-us/library/cc764243.aspx Quote taken from the link “ Important It is recommended that you not deploy virtual machines that are not highly available on your host clusters. Although you can do this by using Hyper-V (VMM does not allow it), the non-highly available virtual machines will consume resources that otherwise would be available to the HAVMs What kind of resources (CPU,memory, NIC, etc) that non HA VM will consume? Just curious as not all VM (in production) not to be in Failover Cluster and Live Migration. If i put the VM into CSV but did not make it as HA, what impact does it make since i allocate same vCPU, vNic and VMemory into the VM. (not to mention that i lost failover feature). Curious to understand more about this. Please advise. Thanks

    Read the article

  • KVM machine does not start ssh, network is started, used to work

    - by lleto
    have been searching an pulling my hear out for the last 6 hours. I have a virtual machine that has been running fine for the last six months. I was happy ssh'ing into it and it was running a database and some small apps. Tonight ssh stopped working, so I decided to reboot the machine. I now have the following situation: virsh list --all states machine as running I can ping the machine and get a reply When I ssh to the machine I see "ssh: connect to host [myserver] port 22: Connection refused" nmap does not show port 22 as open I have tried to: - reboot the machine once more (no luck) - mount the filesystem and check /etc/ssh/sshd.conf (has not changed since working situation) - install virsh console, however this does not seem to work When I mount the fs directly using losetup the strange thing is that file dates seem to be frozen in /var/log/ around the time of the crash. If I look in /var/run/ I can see an sshd.pid, but the time is 6 hours ago (and numerous reboots). My virsh xml looks like this: <domain type='kvm' id='21'> <name>myserver</name> <uuid>09678c8d-a99b-1d18-a7af-88d027cc8f93</uuid> <memory>1048576</memory> <currentMemory>1048576</currentMemory> <vcpu>1</vcpu> <os> <type arch='x86_64' machine='pc-1.0'>hvm</type> <boot dev='hd'/> </os> <features> <acpi/> </features> <clock offset='utc'/> <on_poweroff>destroy</on_poweroff> <on_reboot>restart</on_reboot> <on_crash>destroy</on_crash> <devices> <emulator>/usr/bin/kvm</emulator> <disk type='file' device='disk'> <driver name='qemu' type='raw'/> <source file='/dev/disk01/myserver'/> <target dev='hda' bus='ide'/> <alias name='ide0-0-0'/> <address type='drive' controller='0' bus='0' unit='0'/> </disk> <controller type='ide' index='0'> <alias name='ide0'/> <address type='pci' domain='0x0000' bus='0x00' slot='0x01' function='0x1'/> </controller> <interface type='bridge'> <mac address='52:54:00:e3:13:86'/> <source bridge='br0'/> <target dev='vnet0'/> <model type='virtio'/> <alias name='net0'/> <address type='pci' domain='0x0000' bus='0x00' slot='0x03' function='0x0'/> </interface> <serial type='pty'> <source path='/dev/pts/1'/> <target port='0'/> <alias name='serial0'/> </serial> <console type='pty' tty='/dev/pts/1'> <source path='/dev/pts/1'/> <target type='serial' port='0'/> <alias name='serial0'/> </console> <input type='mouse' bus='ps2'/> <graphics type='vnc' port='5900' autoport='yes' listen='127.0.0.1'> <listen type='address' address='127.0.0.1'/> </graphics> <video> <model type='cirrus' vram='9216' heads='1'/> <alias name='video0'/> <address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x0'/> </video> <memballoon model='virtio'> <alias name='balloon0'/> <address type='pci' domain='0x0000' bus='0x00' slot='0x04' function='0x0'/> </memballoon> </devices> <seclabel type='dynamic' model='apparmor' relabel='yes'> <label>libvirt-09678c8d-a99b-1d18-a7af-88d027cc8f93</label> <imagelabel>libvirt-09678c8d-a99b-1d18-a7af-88d027cc8f93</imagelabel> </seclabel> </domain> I'm sort of lost as to where I can look to get the machine up and running again. On the same instance of kvm I have another server running which is working fine. Both are Ubuntu 12.04. All help is welcome....

    Read the article

  • Proper network configuration for a KVM guest to be on the same networks at the host

    - by Steve Madsen
    I am running a Debian Linux server on Lenny. Within it, I am running another Lenny instance using KVM. Both servers are externally available, with public IPs, as well as a second interface with private IPs for the LAN. Everything works fine, except the VM sees all network traffic as originating from the host server. I suspect this might have something to do with the iptables-based firewall I'm running on the host. What I'd like to figure out is: how to I properly configure the host's networking such that all of these requirements are met? Both host and VMs have 2 network interfaces (public and private). Both host and VMs can be independently firewalled. Ideally, VM traffic does not have to traverse the host firewall. VMs see real remote IP addresses, not the host's. Currently, the host's network interfaces are configured as bridges. eth0 and eth1 do not have IP addresses assigned to them, but br0 and br1 do. /etc/network/interfaces on the host: # The primary network interface auto br1 iface br1 inet static address 24.123.138.34 netmask 255.255.255.248 network 24.123.138.32 broadcast 24.123.138.39 gateway 24.123.138.33 bridge_ports eth1 bridge_stp off auto br1:0 iface br1:0 inet static address 24.123.138.36 netmask 255.255.255.248 network 24.123.138.32 broadcast 24.123.138.39 # Internal network auto br0 iface br0 inet static address 192.168.1.1 netmask 255.255.255.0 network 192.168.1.0 broadcast 192.168.1.255 bridge_ports eth0 bridge_stp off This is the libvirt/qemu configuration file for the VM: <domain type='kvm'> <name>apps</name> <uuid>636b6620-0949-bc88-3197-37153b88772e</uuid> <memory>393216</memory> <currentMemory>393216</currentMemory> <vcpu>1</vcpu> <os> <type arch='i686' machine='pc'>hvm</type> <boot dev='hd'/> </os> <features> <acpi/> <apic/> <pae/> </features> <clock offset='utc'/> <on_poweroff>destroy</on_poweroff> <on_reboot>restart</on_reboot> <on_crash>restart</on_crash> <devices> <emulator>/usr/bin/kvm</emulator> <disk type='file' device='cdrom'> <target dev='hdc' bus='ide'/> <readonly/> </disk> <disk type='file' device='disk'> <source file='/raid/kvm-images/apps.qcow2'/> <target dev='vda' bus='virtio'/> </disk> <interface type='bridge'> <mac address='54:52:00:27:5e:02'/> <source bridge='br0'/> <model type='virtio'/> </interface> <interface type='bridge'> <mac address='54:52:00:40:cc:7f'/> <source bridge='br1'/> <model type='virtio'/> </interface> <serial type='pty'> <target port='0'/> </serial> <console type='pty'> <target port='0'/> </console> <input type='mouse' bus='ps2'/> <graphics type='vnc' port='-1' autoport='yes' keymap='en-us'/> </devices> </domain> Along with the rest of my firewall rules, the firewalling script includes this command to pass packets destined for a KVM guest: # Allow bridged packets to pass (for KVM guests). iptables -A FORWARD -m physdev --physdev-is-bridged -j ACCEPT (Not applicable to this question, but a side-effect of my bridging configuration appears to be that I can't ever shut down cleanly. The kernel eventually tells me "unregister_netdevice: waiting for br1 to become free" and I have to hard reset the system. Maybe a sign I've done something dumb?)

    Read the article

1 2  | Next Page >