Search Results

Search found 417 results on 17 pages for 'visualstudio'.

Page 1/17 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • VisualStudio 2010 plugin settings constantly get reset [migrated]

    - by ArtDeineka
    I have VS2010 Ultimate on my dev machine, along with ReSharper, VSCommands2010 and few others. settings for vs2010, resharper, and other plugins get reset every once in a while - so i have to go in and set them up again, then restart VS for new settings to kick in. examples of settings i'm talking about: *resharper intellisense ingreation *resharper highlite current line *resharper participation in customer program (systray icon) *VSCommands2010 regex solution name *etc. is it possible to make VS remember all those settings once and forever.

    Read the article

  • Enum.HasFlag method in C# 4.0

    - by Jalpesh P. Vadgama
    Enums in dot net programming is a great facility and we all used it to increase code readability. In earlier version of .NET framework we don’t have any method anything that will check whether a value is assigned to it or not. In C# 4.0 we have new static method called HasFlag which will check that particular value is assigned or not. Let’s take an example for that. First I have created a enum called PaymentType which could have two values Credit Card or Debit Card. Just like following. public enum PaymentType { DebitCard=1, CreditCard=2 } Now We are going to assigned one of the value to this enum instance and then with the help of HasFlag method we are going to check whether particular value is assigned to enum or not like following. protected void Page_Load(object sender, EventArgs e) { PaymentType paymentType = PaymentType.CreditCard; if (paymentType.HasFlag(PaymentType.DebitCard)) { Response.Write("Process Debit Card"); } if (paymentType.HasFlag(PaymentType.CreditCard)) { Response.Write("Process Credit Card"); } } Now Let’s check out in browser as following. As expected it will print process Credit Card as we have assigned that value to enum. That’s it It’s so simple and cool. Stay tuned for more.. Happy Programming.. Technorati Tags: Enum,C#4.0,ASP.NET 4.0

    Read the article

  • Is Your ASP.NET Development Server Not Working?

    - by Paulo Morgado
    Since Visual Studio 2005, Visual Studio comes with a development web server: the ASP.NET Development Server. I’ve been using this web server for simple test projects since than with Visual Studio 2005 and Visual Studio 2008 in Windows XP Professional on my work laptop and Windows XP Professional, Windows Vista 64bit Ultimate and Windows 7 64bit Ultimate at my home desktop without any problems (apart the known custom identity problem, that is). When I received my new work laptop, I installed Windows Vista 64bit Enterprise and Visual Studio 2008 and, for my surprise, the ASP.NET Development Server wasn’t working. I started looking for differences between the laptop environment and the desktop environment and the most notorious differences were: System Laptop Desktop SKU Windows Vista 64bit Enterprise Windows Vista 64bit Ultimate Joined to a Domain Yes No Anti-Virus McAffe ESET After asserting that no domain policies were being applied to my laptop and domain user and nothing was being logged by the ant-virus, my suspicions turned to the fact that the laptop was running an Enterprise SKU and the desktop was running an Ultimate SKU. After having problems with other applications I was sure that problem was the Enterprise SKU, but never found a solution to the problem. Because I wasn’t doing any web development at the time, I left it alone. After upgrading to Windows 7, the problem persisted but, because I wasn’t doing any web development at the time, once again, I left it alone. Now that I installed Visual Studio 2010 I had to solve this. After searching around forums and blogs that either didn’t offer an answer or offered very complicated workarounds that, sometimes, involved messing with the registry, I came to the conclusion that the solution is, in fact, very simple. When Windows Vista is installed, hosts file, according to this contains this definition: 127.0.0.1 localhost ::1 localhost This was not what I had on my laptop hosts file. What I had was this: #127.0.0.1 localhost #::1 localhost I might have changed it myself, but from the amount of people that I found complaining about this problem on Windows Vista, this was probably the way it was. The installation of Windows 7 leaves the hosts file like this: #127.0.0.1 localhost #::1 localhost And although the ASP.NET Development Server works fine on Windows 7 64bit Ultimate, on Windows 7 64bit Enterprise it needs to be change to this: 127.0.0.1 localhost ::1 localhost And I suspect it’s the same with Windows Vista 64bit Enterprise.

    Read the article

  • GPU Debugging with VS 11

    - by Daniel Moth
    With VS 11 Developer Preview we have invested tremendously in parallel debugging for both CPU (managed and native) and GPU debugging. I'll be doing a whole bunch of blog posts on those topics, and in this post I just wanted to get people started with GPU debugging, i.e. with debugging C++ AMP code. First I invite you to watch 6 minutes of a glimpse of the C++ AMP debugging experience though this video (ffw to minute 51:54, up until minute 59:16). Don't read the rest of this post, just go watch that video, ideally download the High Quality WMV. Summary GPU debugging essentially means debugging the lambda that you pass to the parallel_for_each call (plus any functions you call from the lambda, of course). CPU debugging means debugging all the code above and below the parallel_for_each call, i.e. all the code except the restrict(direct3d) lambda and the functions that it calls. With VS 11 you have to choose what debugger you want to use for a particular debugging session, CPU or GPU. So you can place breakpoints all over your code, then choose what debugger you want (CPU or GPU), and you'll only be able to hit breakpoints for the code type that the debugger engine understands – the remaining breakpoints will appear as unbound. If you want to hit the unbound breakpoints, you'd have to stop debugging, and start again with the other debugger. Sorry. We suck. We know. But once you are past that limitation, I think you'll find the experience truly rewarding – seriously! Switching debugger engines With the Developer Preview bits, one way to switch the debugger engine is through the project properties – see the screenshots that follow. This one is showing the CPU option selected, which is basically the default that you are all familiar with: This screenshot is showing the GPU option selected, by changing the debugger launcher (notice that this applies for both the local and remote case): You actually do not have to open the project properties just for switching the debugger engine, you can switch the selection from the toolbar in VS 11 Developer Preview too – see following screenshot (the effect is the same as if you opened the project properties and switched there) Breakpoint behavior Here are two screenshots, one showing a debugging session for CPU and the other a debugging session for GPU (notice the unbound breakpoints in each case) …and here is the GPU case (where we cannot bind the CPU breakpoints but can the GPU breakpoint, which is actually hit) Give C++ AMP debugging a try So to debug your C++ AMP code, pull down the drop down under the 'play' button to select the 'GPU C++ Direct3D Compute Debugger' menu option, then hit F5 (or the 'play' button itself). Then you can explore debugging by exploring the menus under the Debug and under the Debug->Windows menus. One way to do that exploration is through the C++ AMP debugging walkthrough on MSDN. Another way to explore the C++ AMP debugging experience, you can use the moth.cpp code file, which is what I used in my BUILD session debugger demo. Note that for my demo I was using the latest internal VS11 bits, so your experience with the Developer Preview bits won't be identical to what you saw me demonstrate, but it shouldn't be far off. Stay tuned for a lot more content on the parallel debugger in VS 11, both CPU and GPU, both managed and native. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • C# Proposal: Compile Time Static Checking Of Dynamic Objects

    - by Paulo Morgado
    C# 4.0 introduces a new type: dynamic. dynamic is a static type that bypasses static type checking. This new type comes in very handy to work with: The new languages from the dynamic language runtime. HTML Document Object Model (DOM). COM objects. Duck typing … Because static type checking is bypassed, this: dynamic dynamicValue = GetValue(); dynamicValue.Method(); is equivalent to this: object objectValue = GetValue(); objectValue .GetType() .InvokeMember( "Method", BindingFlags.InvokeMethod, null, objectValue, null); Apart from caching the call site behind the scenes and some dynamic resolution, dynamic only looks better. Any typing error will only be caught at run time. In fact, if I’m writing the code, I know the contract of what I’m calling. Wouldn’t it be nice to have the compiler do some static type checking on the interactions with these dynamic objects? Imagine that the dynamic object that I’m retrieving from the GetValue method, besides the parameterless method Method also has a string read-only Property property. This means that, from the point of view of the code I’m writing, the contract that the dynamic object returned by GetValue implements is: string Property { get; } void Method(); Since it’s a well defined contract, I could write an interface to represent it: interface IValue { string Property { get; } void Method(); } If dynamic allowed to specify the contract in the form of dynamic(contract), I could write this: dynamic(IValue) dynamicValue = GetValue(); dynamicValue.Method(); This doesn’t mean that the value returned by GetValue has to implement the IValue interface. It just enables the compiler to verify that dynamicValue.Method() is a valid use of dynamicValue and dynamicValue.OtherMethod() isn’t. If the IValue interface already existed for any other reason, this would be fine. But having a type added to an assembly just for compile time usage doesn’t seem right. So, dynamic could be another type construct. Something like this: dynamic DValue { string Property { get; } void Method(); } The code could now be written like this; DValue dynamicValue = GetValue(); dynamicValue.Method(); The compiler would never generate any IL or metadata for this new type construct. It would only thee used for compile type static checking of dynamic objects. As a consequence, it makes no sense to have public accessibility, so it would not be allowed. Once again, if the IValue interface (or any other type definition) already exists, it can be used in the dynamic type definition: dynamic DValue : IValue, IEnumerable, SomeClass { string Property { get; } void Method(); } Another added benefit would be IntelliSense. I’ve been getting mixed reactions to this proposal. What do you think? Would this be useful?

    Read the article

  • Visual Studio 2010 Service Pack 1 And .NET Framework 4.0 Update

    - by Paulo Morgado
    As announced by Jason Zender in his blog post, Visual Studio 2010 Service Pack 1 is available for download for MSDN subscribers since March 8 and is available to the general public since March 10. Brian Harry provides information related to TFS and S. "Soma" Somasegar provides information on the latest Visual Studio 2010 enhancements. With this service pack for Visual Studio an update to the .NET Framework 4.0 is also released. For detailed information about these releases, please refer to the corresponding KB articles: Update for Microsoft .NET Framework 4 Description of Visual Studio 2010 Service Pack 1 Update: When I was upgrading from the Beta to the final release on Windows 7 Enterprise 64bit, the instalation hanged with Returning IDCANCEL. INSTALLMESSAGE_WARNING [Warning 1946.Property 'System.AppUserModel.ExcludeFromShowInNewInstall' for shortcut 'Manage Help Settings - ENU.lnk' could not be set.]. Canceling the installation didn’t work and I had to kill the setup.exe process. When reapplying it again, rollbacks were reported, so I reapplied it again – this time with succes.

    Read the article

  • Visual Studio 2010 released!

    - by Daniel Moth
    Visual Studio 2010 releases to the word today. Get the full story from Soma's blog post (inc. links for buy, try etc). Our team is very proud of what we have contributed to this release and you can learn more about it through our content on the Parallel Computing MSDN home. Comments about this post welcome at the original blog.

    Read the article

  • Debugging and Profiling in Visual Studio 2013

    - by Daniel Moth
    The recently released Visual Studio 2013 Preview includes a boat-load of new features in the diagnostics space, that my team delivered (along with other teams at Microsoft). I enumerated my favorites over on the official Visual Studio blog so if you are interested go read the list and follow the links: Visual Studio 2013 Diagnostics Investments Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • asynchrony is viral

    - by Daniel Moth
    It is becoming hard to write code today without introducing some form of asynchrony and, if you are using .NET (e.g. for Windows Phone 8 or Windows Store apps), that means sooner or later you have to await something and mark your method as async. My most recent examples included introducing speech recognition in my Translator By Moth phone app where I had to await mySpeechRecognizerUI.RecognizeWithUIAsync() and when moving that code base to a Windows Store project just to show a MessageBox I had to await myMessageDialog.ShowAsync(). Any time you need to invoke an asynchronous method in your code, you have a choice to make: kick off the operation but don’t wait for it to complete (otherwise known as fire-and-forget), synchronously wait for it to complete (which will entail blocking, which can be bad, especially on a UI thread), or asynchronously wait for it to complete before continuing on with the rest of the method’s work. In most cases, you want the latter, and the await keyword makes that trivial to implement.  When you use the magical await keyword in front of an API call, then you typically have to make additional changes to your code: This await usage is within a method of course, and now you have to annotate that method with async. Furthermore, you have to change the return type of the method you just annotated so it returns a Task (if it previously returned void), or Task<myOldReturnType> (if it previously returned myOldReturnType). Note that if it returns void, in some cases you could cheat and stop there. Furthermore, any method that called this method you just annotated with async will now also be invoking an asynchronous operation, so you have to make that change in the body of the caller method to introduce the await keyword before the call to the method. …you guessed it, you now have to change this caller method to be annotated with async and have its return types tweaked... …and it goes on virally… At some point you reach the root of your user code, e.g. a GUI event handler, and whoever calls that void method can already deal with the fact that you marked it as async and the viral introduction of the keywords stops there… This is all wonderful progress and a very powerful mechanism, and I just wish someone had written a refactoring tool to take care of this… anyone? I mentioned earlier that you have a choice when invoking an asynchronous operation. If the first time you encounter this you wish to localize the impact of all these changes and essentially try to turn the asynchronous behavior into synchronous by blocking - don't! For reasons why you don't want to do that, read Toub's excellent blog post (and check out the rest of his blog with gems on async programming starting with the Async FAQ). Just embrace the pattern knowing that when you use one instance of an await, you'll propagate the change all the way to the root user code method, e.g. typically an event handler. Related aside: I just finished re-writing my MessageBox wrapper class for Phone projects, including making it work in Windows Store projects, and it does expect you to use it with an await :-). I'll share that in an upcoming post for those of you that have the same need… Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • Visual Studio 11 not 2011

    - by Daniel Moth
    A little pet peeve of mine is when people incorrectly refer to the Developer Preview (or the upcoming Beta) as Visual Studio 2011 instead of the correct Visual Studio 11. The "11" refers to the version number (internally we call it Dev11). What the product will be called when it is released is anyone's guess (it could keep the name or it could have a year appended to it, or it could be something else, who knows). Even if it does have a year appended to the name, I think it is a safe bet it won't be last year! For reference, version 10 was the previous version of Visual Studio which happened to be released in 2010, hence it got the name Visual Studio 2010. That is what confuses new people to this product I guess... they think that the two-digit number matches the year, just because it coincided like that last year. (btw, internally we called it Dev10). For further reference, older releases were: Visual Studio 2008 (v9) aka "Orcas", Visual Studio 2005 (v8) aka "Whidbey", Visual Studio .NET 2003 (v7.1) aka "Everett", and Visual Studio .NET 2002 (v7) aka "Rainier". Before that, we were in the pre-.NET era with Visual Studio 6 (where the version and the product name matched, without the year appended to the name). So next time you hear someone saying "Visual Studio 2011", point them to this post for some mini-education... thanks. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • Start Debugging in Visual Studio

    - by Daniel Moth
    Every developer is familiar with hitting F5 and debugging their application, which starts their app with the Visual Studio debugger attached from the start (instead of attaching later). This is one way to achieve step 1 of the Live Debugging process. Hitting F5, F11, Ctrl+F10 and the other ways to start the process under the debugger is covered in this MSDN "How To". The way you configure the debugging experience, before you hit F5, is by selecting the "Project" and then the "Properties" menu (Alt+F7 on my keyboard bindings). Dependent on your project type there are different options, but if you browse to the Debug (or Debugging) node in the properties page you'll have a way to select local or remote machine debugging, what debug engines to use, command line arguments to use during debugging etc. Currently the .NET and C++ project systems are different, but one would hope that one day they would be unified to use the same mechanism and UI (I don't work on that product team so I have no knowledge of whether that is a goal or if it will ever happen). Personally I like the C++ one better, here is what it looks like (and it is described on this MSDN page): If you were following along in the "Attach to Process" blog post, the equivalent to the "Select Code Type" dialog is the "Debugger Type" dropdown: that is how you change the debug engine. Some of the debugger properties options appear on the standard toolbar in VS. With Visual Studio 11, the Debug Type option has been added to the toolbar If you don't see that in your installation, customize the toolbar to show it - VS 11 tends to be conservative in what you see by default, especially for the non-C++ Visual Studio profiles. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • Creating Visual Studio projects that only contain static files

    - by Eilon
    Have you ever wanted to create a Visual Studio project that only contained static files and didn’t contain any code? While working on ASP.NET MVC we had a need for exactly this type of project. Most of the projects in the ASP.NET MVC solution contain code, such as managed code (C#), unit test libraries (C#), and Script# code for generating our JavaScript code. However, one of the projects, MvcFuturesFiles, contains no code at all. It only contains static files that get copied to the build output folder: As you may well know, adding static files to an existing Visual Studio project is easy. Just add the file to the project and in the property grid set its Build Action to “Content” and the Copy to Output Directory to “Copy if newer.” This works great if you have just a few static files that go along with other code that gets compiled into an executable (EXE, DLL, etc.). But this solution does not work well if the projects only contains static files and has no compiled code. If you create a new project in Visual Studio and add static files to it you’ll still get an EXE or DLL copied to the output folder, despite not having any actual code. We wanted to avoid having a teeny little DLL generated in the output folder. In ASP.NET MVC 2 we came up with a simple solution to this problem. We started out with a regular C# Class Library project but then edited the project file to alter how it gets built. The critical part to get this to work is to define the MSBuild targets for Build, Clean, and Rebuild to perform custom tasks instead of running the compiler. The Build, Clean, and Rebuild targets are the three main targets that Visual Studio requires in every project so that the normal UI functions properly. If they are not defined then running certain commands in Visual Studio’s Build menu will cause errors. Once you create the class library projects there are a few easy steps to change it into a static file project: The first step in editing the csproj file is to remove the reference to the Microsoft.CSharp.targets file because the project doesn’t contain any C# code: <Import Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The second step is to define the new Build, Clean, and Rebuild targets to delete and then copy the content files: <Target Name="Build"> <Copy SourceFiles="@(Content)" DestinationFiles="@(Content->'$(OutputPath)%(RelativeDir)%(Filename)%(Extension)')" /> </Target> <Target Name="Clean"> <Exec Command="rd /s /q $(OutputPath)" Condition="Exists($(OutputPath))" /> </Target> <Target Name="Rebuild" DependsOnTargets="Clean;Build"> </Target> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The third and last step is to add all the files to the project as normal Content files (as you would do in any project type). To see how we did this in the ASP.NET MVC 2 project you can download the source code and inspect the MvcFutureFules.csproj project file. If you’re working on a project that contains many static files I hope this solution helps you out!

    Read the article

  • ASP.NET4.0-Compatibility Settings for rendering controls

    - by Jalpesh P. Vadgama
    With asp.net 4.0 Microsoft has taken a great step for rendering controls. Now it will have more cleaner html there are lots of enhancement for rendering html controls in asp.net 4.0 now all controls like Menu, List View and other controls renders more cleaner html. But recently i have faced strange problem in rendering controls I have my site in asp.net 3.5 and i want to convert it in asp.net 4.0. I have applied my style as per 3.5 rendering and some of items are obsolete in asp.net 4.0. Modifying style sheet was a tedious job here asp.net 4.0 compatibility  setting comes into help. Asp.net 4.0 compatibility settings provides full backward compatibility in terms of the rendering controls. You can assign this in your web.config section like following. XML, using GeSHi 1.0.8.6<system.web> <pages controlRenderingCompatibilityVersion="3.5|4.0"/> </system.web>  Parsed in 0.001 seconds at 84.92 KB/s Here the values of controlRenderingCompatibility is a string which will indicate on which way control should render in browser if you provide 4.0 then it will controls with more cleaner html and while if you want to go with old legacy rendering like 3.5 then you can put 3.5 and it will render same way as you are doing in asp.net 3.5. Hope this help you!!! Technorati Tags: ASP.NET 4.0,controlRenderingCompatibility

    Read the article

  • Attach to Process in Visual Studio

    - by Daniel Moth
    One option for achieving step 1 in the Live Debugging process is attaching to an already running instance of the process that hosts your code, and this is a good place for me to talk about debug engines. You can attach to a process by selecting the "Debug" menu and then the "Attach To Process…" menu in Visual Studio 11 (Ctrl+Alt+P with my keyboard bindings), and you should see something like this screenshot: I am not going to explain this UI, besides being fairly intuitive, there is good documentation on MSDN for the Attach dialog. I do want to focus on the row of controls that starts with the "Attach to:" label and ends with the "Select..." button. Between them is the readonly textbox that indicates the debug engine that will be used for the selected process if you click the "Attach" button. If you haven't encountered that term before, read on MSDN about debug engines. Notice that the "Type" column shows the Code Type(s) that can be detected for the process. Typically each debug engine knows how to debug a specific code type (the two terms tend to be used interchangeably). If you click on a different process in the list with a different code type, the debug engine used will be different. However note that this is the automatic behavior. If you believe you know best, or more typically you want to choose the debug engine for a process using more than one code type, you can do so by clicking the "Select..." button, which should yield a "Select Code Type" dialog like this one: In this dialog you can switch to the debug engine you want to use by checking the box in front of your desired one, then hit "OK", then hit "Attach" to use it. Notice that the dialog suggests that you can select more than one. Not all combinations work (you'll get an error if you select two incompatible debug engines), but some do. Also notice in the list of debug engines one of the new players in Visual Studio 11, the GPU debug engine - I will be covering that on the C++ AMP team blog (and no, it cannot be combined with any others in this release). Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • Code refactoring with Visual Studio 2010 Part-1

    - by Jalpesh P. Vadgama
    Visual studio 2010 is a Great IDE(Integrated Development Environment) and we all are using it in day by day for our coding purpose. There are many great features provided by Visual Studio 2010 and Today I am going to show one of great feature called for code refactoring. This feature is one of the most unappreciated features of Visual Studio 2010 as lots of people still not using that and doing stuff manfully. So to explain feature let’s create a simple console application which will print first name and last name like following. And following is code for that. using System; namespace CodeRefractoring { class Program { static void Main(string[] args) { string firstName = "Jalpesh"; string lastName = "Vadgama"; Console.WriteLine(string.Format("FirstName:{0}",firstName)); Console.WriteLine(string.Format("LastName:{0}", lastName)); Console.ReadLine(); } } } So as you can see this is a very basic console application and let’s run it to see output. So now lets explore our first feature called extract method in visual studio you can also do that via refractor menu like following. Just select the code for which you want to extract method and then click refractor menu and then click extract method. Now I am selecting three lines of code and clicking on refactor –> Extract Method just like following. Once you click menu a dialog box will appear like following. As you can I have highlighted two thing first is Method Name where I put Print as Method Name and another one Preview method signature where its smart enough to extract parameter also as We have just selected three lines with  console.writeline.  One you click ok it will extract the method and you code will be like this. using System; namespace CodeRefractoring { class Program { static void Main(string[] args) { string firstName = "Jalpesh"; string lastName = "Vadgama"; Print(firstName, lastName); } private static void Print(string firstName, string lastName) { Console.WriteLine(string.Format("FirstName:{0}", firstName)); Console.WriteLine(string.Format("LastName:{0}", lastName)); Console.ReadLine(); } } } So as you can see in above code its has created a static method called Print and also passed parameter for as firstname and lastname. Isn’t that great!!!. It has also created static print method as I am calling it from static void main.  Hope you liked it.. Stay tuned for more..Till that Happy programming.

    Read the article

  • Code refactoring with Visual Studio 2010 Part-2

    - by Jalpesh P. Vadgama
    In previous post I have written about Extract Method Code refactoring option. In this post I am going to some other code refactoring features of Visual Studio 2010.  Renaming variables and methods is one of the most difficult task for a developer. Normally we do like this. First we will rename method or variable and then we will find all the references then do remaining over that stuff. This will be become difficult if your variable or method are referenced at so many files and so many place. But once you use refactor menu rename it will be bit Easy. I am going to use same code which I have created in my previous post. I am just once again putting that code here for your reference. using System; namespace CodeRefractoring { class Program { static void Main(string[] args) { string firstName = "Jalpesh"; string lastName = "Vadgama"; Print(firstName, lastName); } private static void Print(string firstName, string lastName) { Console.WriteLine(string.Format("FirstName:{0}", firstName)); Console.WriteLine(string.Format("LastName:{0}", lastName)); Console.ReadLine(); } } } Now I want to rename print method in this code. To rename the method you can select method name and then select Refactor-> Rename . Once I selected Print method and then click on rename a dialog box will appear like following. Now I am renaming this Print method to PrintMyName like following.   Now once you click OK a dialog will appear with preview of code like following. It will show preview of code. Now once you click apply. You code will be changed like following. using System; namespace CodeRefractoring { class Program { static void Main(string[] args) { string firstName = "Jalpesh"; string lastName = "Vadgama"; PrintMyName(firstName, lastName); } private static void PrintMyName(string firstName, string lastName) { Console.WriteLine(string.Format("FirstName:{0}", firstName)); Console.WriteLine(string.Format("LastName:{0}", lastName)); Console.ReadLine(); } } } So that’s it. This will work in multiple files also. Hope you liked it.. Stay tuned for more.. Till that Happy Programming.

    Read the article

  • Code refactoring with Visual Studio 2010-Part 3

    - by Jalpesh P. Vadgama
    I have been writing few post about Code refactoring features of visual studio 2010 and This blog post is also one of them. In this post I am going to show you reorder parameters features in visual studio 2010. As a developer you might need to reorder parameter of a method or procedure in code for better readability of the the code and if you do this task manually then it is tedious job to do. But Visual Studio Reorder Parameter code refactoring feature can do this stuff within a minute. So let’s see how its works. For this I have created a simple console application which I have used earlier posts . Following is a code for that. using System; namespace CodeRefractoring { class Program { static void Main(string[] args) { string firstName = "Jalpesh"; string lastName = "Vadgama"; PrintMyName(firstName, lastName); } private static void PrintMyName(string firstName, string lastName) { Console.WriteLine(string.Format("FirstName:{0}", firstName)); Console.WriteLine(string.Format("LastName:{0}", lastName)); Console.ReadLine(); } } } Above code is very simple. It just print a firstname and lastname via PrintMyName method. Now I want to reorder the firstname and lastname parameter of PrintMyName. So for that first I have to select method and then click Refactor Menu-> Reorder parameters like following. Once you click a dialog box appears like following where it will give options to move parameter with arrow navigation like following. Now I am moving lastname parameter as first parameter like following. Once you click OK it will show a preview option where I can see the effects of changes like following. Once I clicked Apply my code will be changed like following. using System; namespace CodeRefractoring { class Program { static void Main(string[] args) { string firstName = "Jalpesh"; string lastName = "Vadgama"; PrintMyName(lastName, firstName); } private static void PrintMyName(string lastName, string firstName) { Console.WriteLine(string.Format("FirstName:{0}", firstName)); Console.WriteLine(string.Format("LastName:{0}", lastName)); Console.ReadLine(); } } } As you can see its very easy to use this feature. Hoped you liked it.. Stay tuned for more.. Till that happy programming.

    Read the article

  • Union,Except and Intersect operator in Linq

    - by Jalpesh P. Vadgama
    While developing a windows service using Linq-To-SQL i was in need of something that will intersect the two list and return a list with the result. After searching on net i have found three great use full operators in Linq Union,Except and Intersect. Here are explanation of each operator. Union Operator: Union operator will combine elements of both entity and return result as third new entities. Except Operator: Except operator will remove elements of first entities which elements are there in second entities and will return as third new entities. Intersect Operator: As name suggest it will return common elements of both entities and return result as new entities. Let’s take a simple console application as  a example where i have used two string array and applied the three operator one by one and print the result using Console.Writeline. Here is the code for that. C#, using GeSHi 1.0.8.6 using System; using System.Collections.Generic; using System.Linq; using System.Text;     namespace ConsoleApplication1 {     class Program     {         static void Main(string[] args)         {             string[] a = { "a", "b", "c", "d" };             string[] b = { "d","e","f","g"};               var UnResult = a.Union(b);             Console.WriteLine("Union Result");               foreach (string s in UnResult)             {                 Console.WriteLine(s);                          }               var ExResult = a.Except(b);             Console.WriteLine("Except Result");             foreach (string s in ExResult)             {                 Console.WriteLine(s);             }               var InResult = a.Intersect(b);             Console.WriteLine("Intersect Result");             foreach (string s in InResult)             {                 Console.WriteLine(s);             }             Console.ReadLine();                        }          } }   Parsed in 0.022 seconds at 45.54 KB/s Here is the output of console application as Expected. Hope this will help you.. Technorati Tags: Linq,Except,InterSect,Union,C#

    Read the article

  • Visual Studio Exceptions dialogs

    - by Daniel Moth
    Previously I covered step 1 of live debugging with start and attach. Once the debugger is attached, you want to go to step 2 of live debugging, which is to break. One way to break under the debugger is to do nothing, and just wait for an exception to occur in your code. This is true for all types of code that you debug in Visual Studio, and let's consider the following piece of C# code:3: static void Main() 4: { 5: try 6: { 7: int i = 0; 8: int r = 5 / i; 9: } 10: catch (System.DivideByZeroException) {/*gulp. sue me.*/} 11: System.Console.ReadLine(); 12: } If you run this under the debugger do you expect an exception on line 8? It is a trick question: you have to know whether I have configured the debugger to break when exceptions are thrown (first-chance exceptions) or only when they are unhandled. The place you do that is in the Exceptions dialog which is accessible from the Debug->Exceptions menu and on my installation looks like this: Note that I have checked all CLR exceptions. I could have expanded (like shown for the C++ case in my screenshot) and selected specific exceptions. To read more about this dialog, please read the corresponding Exception Handling debugging msdn topic and all its subtopics. So, for the code above, the debugger will break execution due to the thrown exception (exactly as if the try..catch was not there), so I see the following Exception Thrown dialog: Note the following: I can hit continue (or hit break and then later continue) and the program will continue fine since I have a catch handler. If this was an unhandled exception, then that is what the dialog would say (instead of first chance exception) and continuing would crash the app. That hyperlinked text ("Open Exception Settings") opens the Exceptions dialog I described further up. The coolest thing to note is the checkbox - this is new in this latest release of Visual Studio: it is a shortcut to the checkbox in the Exceptions dialog, so you don't have to open it to change this setting for this specific exception - you can toggle that option right from this dialog. Finally, if you try the code above on your system, you may observe a couple of differences from my screenshots. The first is that you may have an additional column of checkboxes in the Exceptions dialog. The second is that the last dialog I shared may look different to you. It all depends on the Debug->Options settings, and the two relevant settings are in this screenshot: The Exception assistant is what configures the look of the UI when the debugger wants to indicate exception to you, and the Just My Code setting controls the extra column in the Exception dialog. You can read more about those options on MSDN: How to break on User-Unhandled exceptions (plus Gregg’s post) and Exception Assistant. Before I leave you to go play with this stuff a bit more, please note that this level of debugging is now available for JavaScript too, and if you are looking at the Exceptions dialog and wondering what the "GPU Memory Access Exceptions" node is about, stay tuned on the C++ AMP blog ;-) Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • Dark Visual Experience in Visual Studio 2012

    - by Jalpesh P. Vadgama
    I have written whole series related to Visual Studio 2012 features and this post will also be part of same series.You can get all my post related to visual studio from the following link. Visual Studio 2012 feature series Before some days I was searching something and found a great way to change the visual experience of visual studio 2012. I found that there are two type of themes available in visual studio 2012 light and dark under Tools->Option-> General environment value. This is one of newest feature I have found in visual studio 2012. Read More >>

    Read the article

  • Start Debugging in Visual Studio

    - by Daniel Moth
    Every developer is familiar with hitting F5 and debugging their application, which starts their app with the Visual Studio debugger attached from the start (instead of attaching later). This is one way to achieve step 1 of the Live Debugging process. Hitting F5, F11, Ctrl+F10 and the other ways to start the process under the debugger is covered in this MSDN "How To". The way you configure the debugging experience, before you hit F5, is by selecting the "Project" and then the "Properties" menu (Alt+F7 on my keyboard bindings). Dependent on your project type there are different options, but if you browse to the Debug (or Debugging) node in the properties page you'll have a way to select local or remote machine debugging, what debug engines to use, command line arguments to use during debugging etc. Currently the .NET and C++ project systems are different, but one would hope that one day they would be unified to use the same mechanism and UI (I don't work on that product team so I have no knowledge of whether that is a goal or if it will ever happen). Personally I like the C++ one better, here is what it looks like (and it is described on this MSDN page): If you were following along in the "Attach to Process" blog post, the equivalent to the "Select Code Type" dialog is the "Debugger Type" dropdown: that is how you change the debug engine. Some of the debugger properties options appear on the standard toolbar in VS. With Visual Studio 11, the Debug Type option has been added to the toolbar If you don't see that in your installation, customize the toolbar to show it - VS 11 tends to be conservative in what you see by default, especially for the non-C++ Visual Studio profiles. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >