Search Results

Search found 71978 results on 2880 pages for 'windows service'.

Page 1/2880 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Windows 7 Phone Database Rapid Repository – V2.0 Beta Released

    - by SeanMcAlinden
    Hi All, A V2.0 beta has been released for the Windows 7 Phone database Rapid Repository, this can be downloaded at the following: http://rapidrepository.codeplex.com/ Along with the new View feature which greatly enhances querying and performance, various bugs have been fixed including a more serious bug with the caching that caused the GetAll() method to sometimes return inconsistent results (I’m a little bit embarrased by this bug). If you are currently using V1.0 in development, I would recommend swapping in the beta immediately. A full release will be available very shortly, I just need a few more days of testing and some input from other users/testers.   *Breaking Changes* The only real change is the RapidContext has moved under the main RapidRepository namespace. Various internal methods have been actually made ‘internal’ and replaced with a more friendly API (I imagine not many users will notice this change). Hope you like it Kind Regards, Sean McAlinden

    Read the article

  • Windows 7 Phone Database – Querying with Views and Filters

    - by SeanMcAlinden
    I’ve just added a feature to Rapid Repository to greatly improve how the Windows 7 Phone Database is queried for performance (This is in the trunk not in Release V1.0). The main concept behind it is to create a View Model class which would have only the minimum data you need for a page. This View Model is then stored and retrieved rather than the whole list of entities. Another feature of the views is that they can be pre-filtered to even further improve performance when querying. You can download the source from the Microsoft Codeplex site http://rapidrepository.codeplex.com/. Setting up a view Lets say you have an entity that stores lots of data about a game result for example: GameScore entity public class GameScore : IRapidEntity {     public Guid Id { get; set; }     public string GamerId {get;set;}     public string Name { get; set; }     public Double Score { get; set; }     public Byte[] ThumbnailAvatar { get; set; }     public DateTime DateAdded { get; set; } }   On your page you want to display a list of scores but you only want to display the score and the date added, you create a View Model for displaying just those properties. GameScoreView public class GameScoreView : IRapidView {     public Guid Id { get; set; }     public Double Score { get; set; }     public DateTime DateAdded { get; set; } }   Now you have the view model, the first thing to do is set up the view at application start up. This is done using the following syntax. View Setup public MainPage() {     RapidRepository<GameScore>.AddView<GameScoreView>(x => new GameScoreView { DateAdded = x.DateAdded, Score = x.Score }); } As you can see, using a little bit of lambda syntax, you put in the code for constructing a single view, this is used internally for mapping an entity to a view. *Note* you do not need to map the Id property, this is done automatically, a view model id will always be the same as it’s corresponding entity.   Adding Filters One of the cool features of the view is that you can add filters to limit the amount of data stored in the view, this will dramatically improve performance. You can add multiple filters using the fluent syntax if required. In this example, lets say that you will only ever show the scores for the last 10 days, you could add a filter like the following: Add single filter public MainPage() {     RapidRepository<GameScore>.AddView<GameScoreView>(x => new GameScoreView { DateAdded = x.DateAdded, Score = x.Score })         .AddFilter(x => x.DateAdded > DateTime.Now.AddDays(-10)); } If you wanted to further limit the data, you could also say only scores above 100: Add multiple filters public MainPage() {     RapidRepository<GameScore>.AddView<GameScoreView>(x => new GameScoreView { DateAdded = x.DateAdded, Score = x.Score })         .AddFilter(x => x.DateAdded > DateTime.Now.AddDays(-10))         .AddFilter(x => x.Score > 100); }   Querying the view model So the important part is how to query the data. This is done using the repository, there is a method called Query which accepts the type of view as a generic parameter (you can have multiple View Model types per entity type) You can either use the result of the query method directly or perform further querying on the result is required. Querying the View public void DisplayScores() {     RapidRepository<GameScore> repository = new RapidRepository<GameScore>();     List<GameScoreView> scores = repository.Query<GameScoreView>();       // display logic } Further Filtering public void TodaysScores() {     RapidRepository<GameScore> repository = new RapidRepository<GameScore>();     List<GameScoreView> todaysScores = repository.Query<GameScoreView>().Where(x => x.DateAdded > DateTime.Now.AddDays(-1)).ToList();       // display logic }   Retrieving the actual entity Retrieving the actual entity can be done easily by using the GetById method on the repository. Say for example you allow the user to click on a specific score to get further information, you can use the Id populated in the returned View Model GameScoreView and use it directly on the repository to retrieve the full entity. Get Full Entity public void GetFullEntity(Guid gameScoreViewId) {     RapidRepository<GameScore> repository = new RapidRepository<GameScore>();     GameScore fullEntity = repository.GetById(gameScoreViewId);       // display logic } Synchronising The View If you are upgrading from Rapid Repository V1.0 and are likely to have data in the repository already, you will need to perform a synchronisation to ensure the views and entities are fully in sync. You can either do this as a one off during the application upgrade or if you are a little more cautious, you could run this at each application start up. Synchronise the view public void MyUpgradeTasks() {     RapidRepository<GameScore>.SynchroniseView<GameScoreView>(); } It’s worth noting that in normal operation, the view keeps itself in sync with the entities so this is only really required if you are upgrading from V1.0 to V2.0 when it gets released shortly.   Summary I really hope you like this feature, it will be great for performance and I believe supports good practice by promoting the use of View Models for specific pages. I’m hoping to produce a beta for this over the next few days, I just want to add some more tests and hopefully iron out any bugs. I would really appreciate any thoughts on this feature and would really love to know of any bugs you find. You can download the source from the following : http://rapidrepository.codeplex.com/ Kind Regards, Sean McAlinden.

    Read the article

  • Easily Tweak Windows 7 and Vista by Adding Tabs to Explorer, Creating Context Menu Entries, and More

    - by Lori Kaufman
    7Plus is a very useful, free tool for Windows 7 and Vista that adds a lot of features to Windows, such as the ability to add tabs to Windows Explorer, set up hotkeys for common tasks, and other settings to make working with Windows easier. 7Plus is powered by AutoHotkey and allows most of the features to be fully customized. You can also create your own features by creating custom events. 7Plus does not need to be installed. Simply extract the files from the .zip file you downloaded (see the link at the end of this article) and double-click on the 7plus.exe file. HTG Explains: What is the Windows Page File and Should You Disable It? How To Get a Better Wireless Signal and Reduce Wireless Network Interference How To Troubleshoot Internet Connection Problems

    Read the article

  • Service Discovery in WCF 4.0 &ndash; Part 1

    - by Shaun
    When designing a service oriented architecture (SOA) system, there will be a lot of services with many service contracts, endpoints and behaviors. Besides the client calling the service, in a large distributed system a service may invoke other services. In this case, one service might need to know the endpoints it invokes. This might not be a problem in a small system. But when you have more than 10 services this might be a problem. For example in my current product, there are around 10 services, such as the user authentication service, UI integration service, location service, license service, device monitor service, event monitor service, schedule job service, accounting service, player management service, etc..   Benefit of Discovery Service Since almost all my services need to invoke at least one other service. This would be a difficult task to make sure all services endpoints are configured correctly in every service. And furthermore, it would be a nightmare when a service changed its endpoint at runtime. Hence, we need a discovery service to remove the dependency (configuration dependency). A discovery service plays as a service dictionary which stores the relationship between the contracts and the endpoints for every service. By using the discovery service, when service X wants to invoke service Y, it just need to ask the discovery service where is service Y, then the discovery service will return all proper endpoints of service Y, then service X can use the endpoint to send the request to service Y. And when some services changed their endpoint address, all need to do is to update its records in the discovery service then all others will know its new endpoint. In WCF 4.0 Discovery it supports both managed proxy discovery mode and ad-hoc discovery mode. In ad-hoc mode there is no standalone discovery service. When a client wanted to invoke a service, it will broadcast an message (normally in UDP protocol) to the entire network with the service match criteria. All services which enabled the discovery behavior will receive this message and only those matched services will send their endpoint back to the client. The managed proxy discovery service works as I described above. In this post I will only cover the managed proxy mode, where there’s a discovery service. For more information about the ad-hoc mode please refer to the MSDN.   Service Announcement and Probe The main functionality of discovery service should be return the proper endpoint addresses back to the service who is looking for. In most cases the consume service (as a client) will send the contract which it wanted to request to the discovery service. And then the discovery service will find the endpoint and respond. Sometimes the contract and endpoint are not enough. It also contains versioning, extensions attributes. This post I will only cover the case includes contract and endpoint. When a client (or sometimes a service who need to invoke another service) need to connect to a target service, it will firstly request the discovery service through the “Probe” method with the criteria. Basically the criteria contains the contract type name of the target service. Then the discovery service will search its endpoint repository by the criteria. The repository might be a database, a distributed cache or a flat XML file. If it matches, the discovery service will grab the endpoint information (it’s called discovery endpoint metadata in WCF) and send back. And this is called “Probe”. Finally the client received the discovery endpoint metadata and will use the endpoint to connect to the target service. Besides the probe, discovery service should take the responsible to know there is a new service available when it goes online, as well as stopped when it goes offline. This feature is named “Announcement”. When a service started and stopped, it will announce to the discovery service. So the basic functionality of a discovery service should includes: 1, An endpoint which receive the service online message, and add the service endpoint information in the discovery repository. 2, An endpoint which receive the service offline message, and remove the service endpoint information from the discovery repository. 3, An endpoint which receive the client probe message, and return the matches service endpoints, and return the discovery endpoint metadata. WCF 4.0 discovery service just covers all these features in it's infrastructure classes.   Discovery Service in WCF 4.0 WCF 4.0 introduced a new assembly named System.ServiceModel.Discovery which has all necessary classes and interfaces to build a WS-Discovery compliant discovery service. It supports ad-hoc and managed proxy modes. For the case mentioned in this post, what we need to build is a standalone discovery service, which is the managed proxy discovery service mode. To build a managed discovery service in WCF 4.0 just create a new class inherits from the abstract class System.ServiceModel.Discovery.DiscoveryProxy. This class implemented and abstracted the procedures of service announcement and probe. And it exposes 8 abstract methods where we can implement our own endpoint register, unregister and find logic. These 8 methods are asynchronized, which means all invokes to the discovery service are asynchronously, for better service capability and performance. 1, OnBeginOnlineAnnouncement, OnEndOnlineAnnouncement: Invoked when a service sent the online announcement message. We need to add the endpoint information to the repository in this method. 2, OnBeginOfflineAnnouncement, OnEndOfflineAnnouncement: Invoked when a service sent the offline announcement message. We need to remove the endpoint information from the repository in this method. 3, OnBeginFind, OnEndFind: Invoked when a client sent the probe message that want to find the service endpoint information. We need to look for the proper endpoints by matching the client’s criteria through the repository in this method. 4, OnBeginResolve, OnEndResolve: Invoked then a client sent the resolve message. Different from the find method, when using resolve method the discovery service will return the exactly one service endpoint metadata to the client. In our example we will NOT implement this method.   Let’s create our own discovery service, inherit the base System.ServiceModel.Discovery.DiscoveryProxy. We also need to specify the service behavior in this class. Since the build-in discovery service host class only support the singleton mode, we must set its instance context mode to single. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using System.ServiceModel; 7:  8: namespace Phare.Service 9: { 10: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 11: public class ManagedProxyDiscoveryService : DiscoveryProxy 12: { 13: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 14: { 15: throw new NotImplementedException(); 16: } 17:  18: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 19: { 20: throw new NotImplementedException(); 21: } 22:  23: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 24: { 25: throw new NotImplementedException(); 26: } 27:  28: protected override IAsyncResult OnBeginResolve(ResolveCriteria resolveCriteria, AsyncCallback callback, object state) 29: { 30: throw new NotImplementedException(); 31: } 32:  33: protected override void OnEndFind(IAsyncResult result) 34: { 35: throw new NotImplementedException(); 36: } 37:  38: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 39: { 40: throw new NotImplementedException(); 41: } 42:  43: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 44: { 45: throw new NotImplementedException(); 46: } 47:  48: protected override EndpointDiscoveryMetadata OnEndResolve(IAsyncResult result) 49: { 50: throw new NotImplementedException(); 51: } 52: } 53: } Then let’s implement the online, offline and find methods one by one. WCF discovery service gives us full flexibility to implement the endpoint add, remove and find logic. For the demo purpose we will use an internal dictionary to store the services’ endpoint metadata. In the next post we will see how to serialize and store these information in database. Define a concurrent dictionary inside the service class since our it will be used in the multiple threads scenario. 1: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 2: public class ManagedProxyDiscoveryService : DiscoveryProxy 3: { 4: private ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata> _services; 5:  6: public ManagedProxyDiscoveryService() 7: { 8: _services = new ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata>(); 9: } 10: } Then we can simply implement the logic of service online and offline. 1: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 2: { 3: _services.AddOrUpdate(endpointDiscoveryMetadata.Address, endpointDiscoveryMetadata, (key, value) => endpointDiscoveryMetadata); 4: return new OnOnlineAnnouncementAsyncResult(callback, state); 5: } 6:  7: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 8: { 9: OnOnlineAnnouncementAsyncResult.End(result); 10: } 11:  12: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 13: { 14: EndpointDiscoveryMetadata endpoint = null; 15: _services.TryRemove(endpointDiscoveryMetadata.Address, out endpoint); 16: return new OnOfflineAnnouncementAsyncResult(callback, state); 17: } 18:  19: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 20: { 21: OnOfflineAnnouncementAsyncResult.End(result); 22: } Regards the find method, the parameter FindRequestContext.Criteria has a method named IsMatch, which can be use for us to evaluate which service metadata is satisfied with the criteria. So the implementation of find method would be like this. 1: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 2: { 3: _services.Where(s => findRequestContext.Criteria.IsMatch(s.Value)) 4: .Select(s => s.Value) 5: .All(meta => 6: { 7: findRequestContext.AddMatchingEndpoint(meta); 8: return true; 9: }); 10: return new OnFindAsyncResult(callback, state); 11: } 12:  13: protected override void OnEndFind(IAsyncResult result) 14: { 15: OnFindAsyncResult.End(result); 16: } As you can see, we checked all endpoints metadata in repository by invoking the IsMatch method. Then add all proper endpoints metadata into the parameter. Finally since all these methods are asynchronized we need some AsyncResult classes as well. Below are the base class and the inherited classes used in previous methods. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.Threading; 6:  7: namespace Phare.Service 8: { 9: abstract internal class AsyncResult : IAsyncResult 10: { 11: AsyncCallback callback; 12: bool completedSynchronously; 13: bool endCalled; 14: Exception exception; 15: bool isCompleted; 16: ManualResetEvent manualResetEvent; 17: object state; 18: object thisLock; 19:  20: protected AsyncResult(AsyncCallback callback, object state) 21: { 22: this.callback = callback; 23: this.state = state; 24: this.thisLock = new object(); 25: } 26:  27: public object AsyncState 28: { 29: get 30: { 31: return state; 32: } 33: } 34:  35: public WaitHandle AsyncWaitHandle 36: { 37: get 38: { 39: if (manualResetEvent != null) 40: { 41: return manualResetEvent; 42: } 43: lock (ThisLock) 44: { 45: if (manualResetEvent == null) 46: { 47: manualResetEvent = new ManualResetEvent(isCompleted); 48: } 49: } 50: return manualResetEvent; 51: } 52: } 53:  54: public bool CompletedSynchronously 55: { 56: get 57: { 58: return completedSynchronously; 59: } 60: } 61:  62: public bool IsCompleted 63: { 64: get 65: { 66: return isCompleted; 67: } 68: } 69:  70: object ThisLock 71: { 72: get 73: { 74: return this.thisLock; 75: } 76: } 77:  78: protected static TAsyncResult End<TAsyncResult>(IAsyncResult result) 79: where TAsyncResult : AsyncResult 80: { 81: if (result == null) 82: { 83: throw new ArgumentNullException("result"); 84: } 85:  86: TAsyncResult asyncResult = result as TAsyncResult; 87:  88: if (asyncResult == null) 89: { 90: throw new ArgumentException("Invalid async result.", "result"); 91: } 92:  93: if (asyncResult.endCalled) 94: { 95: throw new InvalidOperationException("Async object already ended."); 96: } 97:  98: asyncResult.endCalled = true; 99:  100: if (!asyncResult.isCompleted) 101: { 102: asyncResult.AsyncWaitHandle.WaitOne(); 103: } 104:  105: if (asyncResult.manualResetEvent != null) 106: { 107: asyncResult.manualResetEvent.Close(); 108: } 109:  110: if (asyncResult.exception != null) 111: { 112: throw asyncResult.exception; 113: } 114:  115: return asyncResult; 116: } 117:  118: protected void Complete(bool completedSynchronously) 119: { 120: if (isCompleted) 121: { 122: throw new InvalidOperationException("This async result is already completed."); 123: } 124:  125: this.completedSynchronously = completedSynchronously; 126:  127: if (completedSynchronously) 128: { 129: this.isCompleted = true; 130: } 131: else 132: { 133: lock (ThisLock) 134: { 135: this.isCompleted = true; 136: if (this.manualResetEvent != null) 137: { 138: this.manualResetEvent.Set(); 139: } 140: } 141: } 142:  143: if (callback != null) 144: { 145: callback(this); 146: } 147: } 148:  149: protected void Complete(bool completedSynchronously, Exception exception) 150: { 151: this.exception = exception; 152: Complete(completedSynchronously); 153: } 154: } 155: } 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using Phare.Service; 7:  8: namespace Phare.Service 9: { 10: internal sealed class OnOnlineAnnouncementAsyncResult : AsyncResult 11: { 12: public OnOnlineAnnouncementAsyncResult(AsyncCallback callback, object state) 13: : base(callback, state) 14: { 15: this.Complete(true); 16: } 17:  18: public static void End(IAsyncResult result) 19: { 20: AsyncResult.End<OnOnlineAnnouncementAsyncResult>(result); 21: } 22:  23: } 24:  25: sealed class OnOfflineAnnouncementAsyncResult : AsyncResult 26: { 27: public OnOfflineAnnouncementAsyncResult(AsyncCallback callback, object state) 28: : base(callback, state) 29: { 30: this.Complete(true); 31: } 32:  33: public static void End(IAsyncResult result) 34: { 35: AsyncResult.End<OnOfflineAnnouncementAsyncResult>(result); 36: } 37: } 38:  39: sealed class OnFindAsyncResult : AsyncResult 40: { 41: public OnFindAsyncResult(AsyncCallback callback, object state) 42: : base(callback, state) 43: { 44: this.Complete(true); 45: } 46:  47: public static void End(IAsyncResult result) 48: { 49: AsyncResult.End<OnFindAsyncResult>(result); 50: } 51: } 52:  53: sealed class OnResolveAsyncResult : AsyncResult 54: { 55: EndpointDiscoveryMetadata matchingEndpoint; 56:  57: public OnResolveAsyncResult(EndpointDiscoveryMetadata matchingEndpoint, AsyncCallback callback, object state) 58: : base(callback, state) 59: { 60: this.matchingEndpoint = matchingEndpoint; 61: this.Complete(true); 62: } 63:  64: public static EndpointDiscoveryMetadata End(IAsyncResult result) 65: { 66: OnResolveAsyncResult thisPtr = AsyncResult.End<OnResolveAsyncResult>(result); 67: return thisPtr.matchingEndpoint; 68: } 69: } 70: } Now we have finished the discovery service. The next step is to host it. The discovery service is a standard WCF service. So we can use ServiceHost on a console application, windows service, or in IIS as usual. The following code is how to host the discovery service we had just created in a console application. 1: static void Main(string[] args) 2: { 3: using (var host = new ServiceHost(new ManagedProxyDiscoveryService())) 4: { 5: host.Opened += (sender, e) => 6: { 7: host.Description.Endpoints.All((ep) => 8: { 9: Console.WriteLine(ep.ListenUri); 10: return true; 11: }); 12: }; 13:  14: try 15: { 16: // retrieve the announcement, probe endpoint and binding from configuration 17: var announcementEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 18: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 19: var binding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 20: var announcementEndpoint = new AnnouncementEndpoint(binding, announcementEndpointAddress); 21: var probeEndpoint = new DiscoveryEndpoint(binding, probeEndpointAddress); 22: probeEndpoint.IsSystemEndpoint = false; 23: // append the service endpoint for announcement and probe 24: host.AddServiceEndpoint(announcementEndpoint); 25: host.AddServiceEndpoint(probeEndpoint); 26:  27: host.Open(); 28:  29: Console.WriteLine("Press any key to exit."); 30: Console.ReadKey(); 31: } 32: catch (Exception ex) 33: { 34: Console.WriteLine(ex.ToString()); 35: } 36: } 37:  38: Console.WriteLine("Done."); 39: Console.ReadKey(); 40: } What we need to notice is that, the discovery service needs two endpoints for announcement and probe. In this example I just retrieve them from the configuration file. I also specified the binding of these two endpoints in configuration file as well. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> And this is the console screen when I ran my discovery service. As you can see there are two endpoints listening for announcement message and probe message.   Discoverable Service and Client Next, let’s create a WCF service that is discoverable, which means it can be found by the discovery service. To do so, we need to let the service send the online announcement message to the discovery service, as well as offline message before it shutdown. Just create a simple service which can make the incoming string to upper. The service contract and implementation would be like this. 1: [ServiceContract] 2: public interface IStringService 3: { 4: [OperationContract] 5: string ToUpper(string content); 6: } 1: public class StringService : IStringService 2: { 3: public string ToUpper(string content) 4: { 5: return content.ToUpper(); 6: } 7: } Then host this service in the console application. In order to make the discovery service easy to be tested the service address will be changed each time it’s started. 1: static void Main(string[] args) 2: { 3: var baseAddress = new Uri(string.Format("net.tcp://localhost:11001/stringservice/{0}/", Guid.NewGuid().ToString())); 4:  5: using (var host = new ServiceHost(typeof(StringService), baseAddress)) 6: { 7: host.Opened += (sender, e) => 8: { 9: Console.WriteLine("Service opened at {0}", host.Description.Endpoints.First().ListenUri); 10: }; 11:  12: host.AddServiceEndpoint(typeof(IStringService), new NetTcpBinding(), string.Empty); 13:  14: host.Open(); 15:  16: Console.WriteLine("Press any key to exit."); 17: Console.ReadKey(); 18: } 19: } Currently this service is NOT discoverable. We need to add a special service behavior so that it could send the online and offline message to the discovery service announcement endpoint when the host is opened and closed. WCF 4.0 introduced a service behavior named ServiceDiscoveryBehavior. When we specified the announcement endpoint address and appended it to the service behaviors this service will be discoverable. 1: var announcementAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 2: var announcementBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 3: var announcementEndpoint = new AnnouncementEndpoint(announcementBinding, announcementAddress); 4: var discoveryBehavior = new ServiceDiscoveryBehavior(); 5: discoveryBehavior.AnnouncementEndpoints.Add(announcementEndpoint); 6: host.Description.Behaviors.Add(discoveryBehavior); The ServiceDiscoveryBehavior utilizes the service extension and channel dispatcher to implement the online and offline announcement logic. In short, it injected the channel open and close procedure and send the online and offline message to the announcement endpoint.   On client side, when we have the discovery service, a client can invoke a service without knowing its endpoint. WCF discovery assembly provides a class named DiscoveryClient, which can be used to find the proper service endpoint by passing the criteria. In the code below I initialized the DiscoveryClient, specified the discovery service probe endpoint address. Then I created the find criteria by specifying the service contract I wanted to use and invoke the Find method. This will send the probe message to the discovery service and it will find the endpoints back to me. The discovery service will return all endpoints that matches the find criteria, which means in the result of the find method there might be more than one endpoints. In this example I just returned the first matched one back. In the next post I will show how to extend our discovery service to make it work like a service load balancer. 1: static EndpointAddress FindServiceEndpoint() 2: { 3: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 4: var probeBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 5: var discoveryEndpoint = new DiscoveryEndpoint(probeBinding, probeEndpointAddress); 6:  7: EndpointAddress address = null; 8: FindResponse result = null; 9: using (var discoveryClient = new DiscoveryClient(discoveryEndpoint)) 10: { 11: result = discoveryClient.Find(new FindCriteria(typeof(IStringService))); 12: } 13:  14: if (result != null && result.Endpoints.Any()) 15: { 16: var endpointMetadata = result.Endpoints.First(); 17: address = endpointMetadata.Address; 18: } 19: return address; 20: } Once we probed the discovery service we will receive the endpoint. So in the client code we can created the channel factory from the endpoint and binding, and invoke to the service. When creating the client side channel factory we need to make sure that the client side binding should be the same as the service side. WCF discovery service can be used to find the endpoint for a service contract, but the binding is NOT included. This is because the binding was not in the WS-Discovery specification. In the next post I will demonstrate how to add the binding information into the discovery service. At that moment the client don’t need to create the binding by itself. Instead it will use the binding received from the discovery service. 1: static void Main(string[] args) 2: { 3: Console.WriteLine("Say something..."); 4: var content = Console.ReadLine(); 5: while (!string.IsNullOrWhiteSpace(content)) 6: { 7: Console.WriteLine("Finding the service endpoint..."); 8: var address = FindServiceEndpoint(); 9: if (address == null) 10: { 11: Console.WriteLine("There is no endpoint matches the criteria."); 12: } 13: else 14: { 15: Console.WriteLine("Found the endpoint {0}", address.Uri); 16:  17: var factory = new ChannelFactory<IStringService>(new NetTcpBinding(), address); 18: factory.Opened += (sender, e) => 19: { 20: Console.WriteLine("Connecting to {0}.", factory.Endpoint.ListenUri); 21: }; 22: var proxy = factory.CreateChannel(); 23: using (proxy as IDisposable) 24: { 25: Console.WriteLine("ToUpper: {0} => {1}", content, proxy.ToUpper(content)); 26: } 27: } 28:  29: Console.WriteLine("Say something..."); 30: content = Console.ReadLine(); 31: } 32: } Similarly, the discovery service probe endpoint and binding were defined in the configuration file. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> OK, now let’s have a test. Firstly start the discovery service, and then start our discoverable service. When it started it will announced to the discovery service and registered its endpoint into the repository, which is the local dictionary. And then start the client and type something. As you can see the client asked the discovery service for the endpoint and then establish the connection to the discoverable service. And more interesting, do NOT close the client console but terminate the discoverable service but press the enter key. This will make the service send the offline message to the discovery service. Then start the discoverable service again. Since we made it use a different address each time it started, currently it should be hosted on another address. If we enter something in the client we could see that it asked the discovery service and retrieve the new endpoint, and connect the the service.   Summary In this post I discussed the benefit of using the discovery service and the procedures of service announcement and probe. I also demonstrated how to leverage the WCF Discovery feature in WCF 4.0 to build a simple managed discovery service. For test purpose, in this example I used the in memory dictionary as the discovery endpoint metadata repository. And when finding I also just return the first matched endpoint back. I also hard coded the bindings between the discoverable service and the client. In next post I will show you how to solve the problem mentioned above, as well as some additional feature for production usage. You can download the code here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Minimize Windows Live Mail to the System Tray in Windows 7

    - by Asian Angel
    Are you frustrated that you can not minimize Windows Live Mail to the system tray in Windows 7? With just a few tweaks you can make Live Mail minimize to the system tray just like in earlier versions of Windows. Windows Live Mail in Windows Vista In Windows Vista you could minimize Windows Live Mail to the system tray if desired using the context menu… Windows Live Mail in Windows 7 In Windows 7 you can minimize the app window but not hide it in the system tray. The Hide window when minimized menu entry is missing from the context menu and all you have is the window icon taking up space in your taskbar. How to Add the Context Menu Entry Back Right click on the program shortcut(s) and select properties. When the properties window opens click on the compatibility tab and enable the Run this program in compatibility mode for setting. Choose Windows Vista (Service Pack 2) from the drop-down menu and click OK. Once you have restarted Windows Live Mail you will have access to the Hide window when minimized menu entry again. And just like that your taskbar is clear again when Windows Live Mail is minimized. If you have wanted the ability to minimize Windows Live Mail to the system tray in Windows 7 then this little tweak will fix the problem. Similar Articles Productive Geek Tips Make Windows Live Messenger Minimize to the System Tray in Windows 7Move Live Messenger Icon to the System Tray in Windows 7Backup Windows Mail Messages and Contacts in VistaTurn off New Mail Notification for PocoMail Junk Mail FolderPut Your PuTTY in the System Tray TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips HippoRemote Pro 2.2 Xobni Plus for Outlook All My Movies 5.9 CloudBerry Online Backup 1.5 for Windows Home Server Know if Someone Accessed Your Facebook Account Shop for Music with Windows Media Player 12 Access Free Documentaries at BBC Documentaries Rent Cameras In Bulk At CameraRenter Download Songs From MySpace Steve Jobs’ iPhone 4 Keynote Video

    Read the article

  • Stupid Geek Tricks: How to Perform Date Calculations in Windows Calculator

    - by Usman
    Would you like to know how many days old are you today? Can you tell what will be the date 78 days from now? How many days are left till Christmas? How many days have passed since your last birthday? All these questions have their answers hidden within Windows! Curious? Keep reading to see how you can answer these questions in an instant using Windows’ built-in utility called ‘Calculator’. No, no. This isn’t a guide to show you how to perform basic calculations on calculator. This is an application of a unique feature in the Calculator application in Windows, and the feature is called Date Calculation. Most of us don’t really use the Windows’ Calculator that much, and when we do, it’s only for an instant (to do small calculations). However, it is packed with some really interesting features, so lets go ahead and see how Date Calculation works. To start, open Calculator by pressing the winkey, and type calcul… (it should’ve popped up by now, if not, you can type the rest of the ‘…ator’ as well just to be sure). Open it. And by the way, this date calculation function works in both Windows 7 and 8. Why Does 64-Bit Windows Need a Separate “Program Files (x86)” Folder? Why Your Android Phone Isn’t Getting Operating System Updates and What You Can Do About It How To Delete, Move, or Rename Locked Files in Windows

    Read the article

  • Rapid Repository – Silverlight Development

    - by SeanMcAlinden
    Hi All, One of the questions I was recently asked was whether the Rapid Repository would work for normal Silverlight development as well as for the Windows 7 Phone. I can confirm that the current code in the trunk will definitely work for both the Windows 7 Phone and normal Silverlight development. I haven’t tested V.1.0 for compatibility but V2.0 which will be released fairly soon will work absolutely fine.   Kind Regards, Sean McAlinden.

    Read the article

  • The 35 Best Tips and Tricks for Maintaining Your Windows PC

    - by Lori Kaufman
    When working (or playing) on your computer, you probably don’t think much about how you are going to clean up your files, backup your data, keep your system virus free, etc. However, these are tasks that need attention. We’ve published useful article about different aspects of maintaining your computer. Below is a list our most useful articles about maintaining your computer, operating system, software, and data. HTG Explains: Learn How Websites Are Tracking You Online Here’s How to Download Windows 8 Release Preview Right Now HTG Explains: Why Linux Doesn’t Need Defragmenting

    Read the article

  • Windows 8 / IIS 8 Concurrent Requests Limit

    - by OWScott
    IIS 8 on Windows Server 2012 doesn’t have any fixed concurrent request limit, apart from whatever limit would be reached when resources are maxed. However, the client version of IIS 8, which is on Windows 8, does have a concurrent connection request limitation to limit high traffic production uses on a client edition of Windows. Starting with IIS 7 (Windows Vista), the behavior changed from previous versions.  In previous client versions of IIS, excess requests would throw a 403.9 error message (Access Forbidden: Too many users are connected.).  Instead, Windows Vista, 7 and 8 queue excessive requests so that they will be handled gracefully, although there is a maximum number of requests that will be processed simultaneously. Thomas Deml provided a concurrent request chart for Windows Vista many years ago, but I have been unable to find an equivalent chart for Windows 8 so I asked Wade Hilmo from the IIS team what the limits are.  Since this is controlled not by the IIS team itself but rather from the Windows licensing team, he asked around and found the authoritative answer, which I’ll provide below. Windows 8 – IIS 8 Concurrent Requests Limit Windows 8 3 Windows 8 Professional 10 Windows RT N/A since IIS does not run on Windows RT Windows 7 – IIS 7.5 Concurrent Requests Limit Windows 7 Home Starter 1 Windows 7 Basic 1 Windows 7 Premium 3 Windows 7 Ultimate, Professional, Enterprise 10 Windows Vista – IIS 7 Concurrent Requests Limit Windows Vista Home Basic (IIS process activation and HTTP processing only) 3 Windows Vista Home Premium 3 Windows Vista Ultimate, Professional 10 Windows Server 2003, Windows Server 2008, Windows Server 2008 R2 and Windows Server 2012 allow an unlimited amount of simultaneously requests.

    Read the article

  • Tellago && Tellago Studios 2010

    - by gsusx
    With 2011 around the corner we, at Tellago and Tellago Studios , we have been spending a lot of times evaluating our successes and failures (yes those too ;)) of 2010 and delineating some of our goals and strategies for 2011. When I look at 2010 here are some of the things that quickly jump off the page: Growing Tellago by 300% Launching a brand new company: Tellago Studios Expanding our customer base Establishing our business intelligence practice http://tellago.com/what-we-say/events/business-intelligence...(read more)

    Read the article

  • How to Use Windows’ Advanced Search Features: Everything You Need to Know

    - by Chris Hoffman
    You should never have to hunt down a lost file on modern versions of Windows — just perform a quick search. You don’t even have to wait for a cartoon dog to find your files, like on Windows XP. The Windows search indexer is constantly running in the background to make quick local searches possible. This enables the kind of powerful search features you’d use on Google or Bing — but for your local files. Controlling the Indexer By default, the Windows search indexer watches everything under your user folder — that’s C:\Users\NAME. It reads all these files, creating an index of their names, contents, and other metadata. Whenever they change, it notices and updates its index. The index allows you to quickly find a file based on the data in the index. For example, if you want to find files that contain the word “beluga,” you can perform a search for “beluga” and you’ll get a very quick response as Windows looks up the word in its search index. If Windows didn’t use an index, you’d have to sit and wait as Windows opened every file on your hard drive, looked to see if the file contained the word “beluga,” and moved on. Most people shouldn’t have to modify this indexing behavior. However, if you store your important files in other folders — maybe you store your important data a separate partition or drive, such as at D:\Data — you may want to add these folders to your index. You can also choose which types of files you want to index, force Windows to rebuild the index entirely, pause the indexing process so it won’t use any system resources, or move the index to another location to save space on your system drive. To open the Indexing Options window, tap the Windows key on your keyboard, type “index”, and click the Indexing Options shortcut that appears. Use the Modify button to control the folders that Windows indexes or the Advanced button to control other options. To prevent Windows from indexing entirely, click the Modify button and uncheck all the included locations. You could also disable the search indexer entirely from the Programs and Features window. Searching for Files You can search for files right from your Start menu on Windows 7 or Start screen on Windows 8. Just tap the Windows key and perform a search. If you wanted to find files related to Windows, you could perform a search for “Windows.” Windows would show you files that are named Windows or contain the word Windows. From here, you can just click a file to open it. On Windows 7, files are mixed with other types of search results. On Windows 8 or 8.1, you can choose to search only for files. If you want to perform a search without leaving the desktop in Windows 8.1, press Windows Key + S to open a search sidebar. You can also initiate searches directly from Windows Explorer — that’s File Explorer on Windows 8. Just use the search box at the top-right of the window. Windows will search the location you’ve browsed to. For example, if you’re looking for a file related to Windows and know it’s somewhere in your Documents library, open the Documents library and search for Windows. Using Advanced Search Operators On Windows 7, you’ll notice that you can add “search filters” form the search box, allowing you to search by size, date modified, file type, authors, and other metadata. On Windows 8, these options are available from the Search Tools tab on the ribbon. These filters allow you to narrow your search results. If you’re a geek, you can use Windows’ Advanced Query Syntax to perform advanced searches from anywhere, including the Start menu or Start screen. Want to search for “windows,” but only bring up documents that don’t mention Microsoft? Search for “windows -microsoft”. Want to search for all pictures of penguins on your computer, whether they’re PNGs, JPEGs, or any other type of picture file? Search for “penguin kind:picture”. We’ve looked at Windows’ advanced search operators before, so check out our in-depth guide for more information. The Advanced Query Syntax gives you access to options that aren’t available in the graphical interface. Creating Saved Searches Windows allows you to take searches you’ve made and save them as a file. You can then quickly perform the search later by double-clicking the file. The file functions almost like a virtual folder that contains the files you specify. For example, let’s say you wanted to create a saved search that shows you all the new files created in your indexed folders within the last week. You could perform a search for “datecreated:this week”, then click the Save search button on the toolbar or ribbon. You’d have a new virtual folder you could quickly check to see your recent files. One of the best things about Windows search is that it’s available entirely from the keyboard. Just press the Windows key, start typing the name of the file or program you want to open, and press Enter to quickly open it. Windows 8 made this much more obnoxious with its non-unified search, but unified search is finally returning with Windows 8.1.     

    Read the article

  • Itautec Accelerates Profitable High Tech Customer Service

    - by charles.knapp
    Itautec is a Brazilian-based global high technology products and services firm with strong performance in the global market of banking and commercial automation, with more than 2,300 global clients. It recently deployed Siebel CRM for sales, customer support, and field service. In the first year of use, Siebel CRM enabled a 30% growth in services revenue. Siebel CRM also reduced support costs. "Oracle's Siebel CRM has minimized costs and made our customer service more agile," said Adriano Rodrigues da Silva, IT Manager. "Before deployment, 95% of our customer service contacts were made by phone. Siebel CRM made it possible to expand' choices, so that now 55% of our customers contact our helpdesk through the newer communications channels." Read more here about Itautec's success, and learn more here about how Siebel CRM can help your firm to grow customer service revenues, improve service levels, and reduce costs.

    Read the article

  • Which is Better? The Start Screen in Windows 8 or the Old Start Menu? [Analysis]

    - by Asian Angel
    There has been quite a bit of controversy surrounding Microsoft’s emphasis on the new Metro UI Start Screen in Windows 8, but when it comes down to it which is really better? The Start Screen in Windows 8 or the old Start Menu? Tech blog 7 Tutorials has done a quick analysis to see which one actually works better (and faster) when launching applications and doing searches. Images courtesy of 7 Tutorials. You can view the results and a comparison table by visiting the blog post linked below. Windows 8 Analysis: Is the Start Screen an Improvement vs. the Start Menu? [7 Tutorials] How to Stress Test the Hard Drives in Your PC or Server How To Customize Your Android Lock Screen with WidgetLocker The Best Free Portable Apps for Your Flash Drive Toolkit

    Read the article

  • Upgrading Windows 8 boot to VHD to Windows 8.1&ndash;Step by step guide

    - by Liam Westley
    Originally posted on: http://geekswithblogs.net/twickers/archive/2013/10/19/upgrading-windows-8-boot-to-vhd-to-windows-8.1ndashstep-by.aspxBoot to VHD – dual booting Windows 7 and Windows 8 became easy When Windows 8 arrived, quite a few people decided that they would still dual boot their machines, and instead of mucking about with resizing disk partitions to free up space for Windows 8 they decided to use the boot from VHD feature to create a huge hard disc image into which Windows 8 could be installed.  Scott Hanselman wrote this installation guide, while I myself used the installation guide from Ed Bott of ZD net fame. Boot to VHD is a great solution, it achieves a dual boot, can be backed up easily and had virtually no effect on the original Windows 7 partition. As a developer who has dual booted Windows operating systems for years, hacking boot.ini files, the boot to VHD was a much easier solution. Upgrade to Windows 8.1 – ah, you can’t do that on a virtual disk installation (boot to VHD) Last week the final version of Windows 8.1 arrived, and I went into the Windows Store to upgrade.  Luckily I’m on a fast download service, and use an SSD, because once the upgrade was downloaded and prepared Windows informed that This PC can’t run Windows 8.1, and provided the reason, You can’t install Windows on a virtual drive.  You can see an image of the message and discussion that sparked my search for a solution in this Microsoft Technet forum post. I was determined not to have to resize partitions yet again and fiddle with VHD to disk utilities and back again, and in the end I did succeed in upgrading to a Windows 8.1 boot to VHD partition.  It takes quite a bit of effort though … tldr; Simple steps of how you upgrade Boot into Windows 7 – make a copy of your Windows 8 VHD, to become Windows 8.1 Enable Hyper-V in your Windows 8 (the original boot to VHD partition) Create a new virtual machine, attaching the copy of your Windows 8 VHD Start the virtual machine, upgrade it via the Windows Store to Windows 8.1 Shutdown the virtual machine Boot into Windows 7 – use the bcedit tool to create a new Windows 8.1 boot to VHD option (pointing at the copy) Boot into the new Windows 8.1 option Reactivate Windows 8.1 (it will have become deactivated by running under Hyper-V) Remove the original Windows 8 VHD, and in Windows 7 use bcedit to remove it from the boot menu Things you’ll need A system that can run Hyper-V under Windows 8 (Intel i5, i7 class CPU) Enough space to have your original Windows 8 boot to VHD and a copy at the same time An ISO or DVD for Windows 8 to create a bootable Windows 8 partition Step by step guide Boot to your base o/s, the real one, Windows 7. Make a copy of the Windows 8 VHD file that you use to boot Windows 8 (via boot from VHD) – I copied it from a folder on C: called VHD-Win8 to VHD-Win8.1 on my N: drive. Reboot your system into Windows 8, and enable Hyper-V if not already present (this may require reboot) Use the Hyper-V manager , create a new Hyper-V machine, using half your system memory, and use the option to attach an existing VHD on the main IDE controller – this will be the new copy you made in Step 2. Start the virtual machine, use Connect to view it, and you’ll probably discover it cannot boot as there is no boot record If this is the case, go to Hyper-V manager, edit the Settings for the virtual machine to attach an ISO of a Windows 8 DVD to the second IDE controller. Start the virtual machine, use Connect to view it, and it should now attempt a fresh installation of Windows 8.  You should select Advanced Options and choose Repair - this will make VHD bootable When the setup reboots your virtual machine, turn off the virtual machine, and remove the ISO of the Windows 8 DVD from the virtual machine settings. Start virtual machine, use Connect to view it.  You will see the devices to be re-discovered (including your quad CPU becoming single CPU).  Eventually you should see the Windows Login screen. You may notice that your desktop background (Win+D) will have turned black as your Windows installation has become deactivate due to the hardware changes between your real PC and Hyper-V. Fortunately becoming deactivated, does not stop you using the Windows Store, where you can select the update to Windows 8.1. You can now watch the progress joy of the Windows 8 update; downloading, preparing to update, checking compatibility, gathering info, preparing to restart, and finally, confirm restart - remember that you are restarting your virtual machine sitting on the copy of the VHD, not the Windows 8 boot to VHD you are currently using to run Hyper-V (confused yet?) After the reboot you get the real upgrade messages; setting up x%, xx%, (quite slow) After a while, Getting ready Applying PC Settings x%, xx% (really slow) Updating your system (fast) Setting up a few more things x%, (quite slow) Getting ready, again Accept license terms Express settings Confirmed previous password Next, I had to set up a Microsoft account – which is possibly now required, and not optional Using the Microsoft account required a 2 factor authorization, via text message, a 7 digit code for me Finalising settings Blank screen, HI .. We're setting up things for you (similar to original Windows 8 install) 'You can get new apps from the Store', below which is ’Installing your apps’ - I had Windows Media Center which is counts as an app from the Store ‘Taking care of a few things’, below which is ‘Installing your apps’ ‘Taking care of a few things’, below ‘Don't turn off your PC’ ‘Getting your apps ready’, below ‘Don't turn off your PC’ ‘Almost ready’, below ‘Don't turn off your PC’ … finally, we get the Windows 8.1 start menu, and a quick Win+D to check the desktop confirmed all the application icons I expected, pinned items on the taskbar, and one app moaning about a missing drive At this point the upgrade is complete – you can shutdown the virtual machine Reboot from the original Windows 8 and return to Windows 7 to configure booting to the Windows 8.1 copy of the VHD In an administrator command prompt do following use the bcdedit tool (from an MSDN blog about configuring VHD to boot in Windows 7) Type bcedit to list the current boot options, so you can copy the GUID (complete with brackets/braces) for the original Windows 8 boot to VHD Create a new menu option, copy of the Windows 8 option; bcdedit /copy {originalguid} /d "Windows 8.1" Point the new Windows 8.1 option to the copy of the VHD; bcdedit /set {newguid} device vhd=[D:]\Image.vhd Point the new Windows 8.1 option to the copy of the VHD; bcdedit /set {newguid} osdevice vhd=[D:]\Image.vhd Set autodetection of the HAL (may already be set); bcdedit /set {newguid} detecthal on Reboot from Windows 7 and select the new option 'Windows 8.1' on the boot menu, and you’ll have some messages to look at, as your hardware is redetected (as you are back from 1 CPU to 4 CPUs) ‘Getting devices ready, blank then %xx, with occasional blank screen, for the graphics driver, (fast-ish) Getting Ready message (fast) You will have to suffer one final reboots, choose 'Windows 8.1' and you can now login to a lovely Windows 8.1 start screen running on non virtualized hardware via boot to VHD After checking everything is running fine, you can now choose to Activate Windows, which for me was a toll free phone call to the automated system where you type in lots of numbers to be given a whole bunch of new activation codes. Once you’re happy with your new Windows 8.1 boot to VHD, and no longer need the Windows 8 boot to VHD, feel free to delete the old one.  I do believe once you upgrade, you are no longer licensed to use it anyway. There, that was simple wasn’t it? Looking at the huge list of steps it took to perform this upgrade, you may wonder whether I think this is worth it.  Well, I think it is worth booting to VHD.  It makes backups a snap (go to Windows 7, copy the VHD, you backed up the o/s) and helps with disk management – want to move the o/s, you can move the VHD and repoint the boot menu to the new location. The downside is that Microsoft has complete neglected to support boot to VHD as an upgradable option.  Quite a poor decision in my opinion, and if you read twitter and the forums quite a few people agree with that view.  It’s a shame this got missed in the work on creating the upgrade packages for Windows 8.1.

    Read the article

  • 8 Backup Tools Explained for Windows 7 and 8

    - by Chris Hoffman
    Backups on Windows can be confusing. Whether you’re using Windows 7 or 8, you have quite a few integrated backup tools to think about. Windows 8 made quite a few changes, too. You can also use third-party backup software, whether you want to back up to an external drive or back up your files to online storage. We won’t cover third-party tools here — just the ones built into Windows. Backup and Restore on Windows 7 Windows 7 has its own Backup and Restore feature that lets you create backups manually or on a schedule. You’ll find it under Backup and Restore in the Control Panel. The original version of Windows 8 still contained this tool, and named it Windows 7 File Recovery. This allowed former Windows 7 users to restore files from those old Windows 7 backups or keep using the familiar backup tool for a little while. Windows 7 File Recovery was removed in Windows 8.1. System Restore System Restore on both Windows 7 and 8 functions as a sort of automatic system backup feature. It creates backup copies of important system and program files on a schedule or when you perform certain tasks, such as installing a hardware driver. If system files become corrupted or your computer’s software becomes unstable, you can use System Restore to restore your system and program files from a System Restore point. This isn’t a way to back up your personal files. It’s more of a troubleshooting feature that uses backups to restore your system to its previous working state. Previous Versions on Windows 7 Windows 7′s Previous Versions feature allows you to restore older versions of files — or deleted files. These files can come from backups created with Windows 7′s Backup and Restore feature, but they can also come from System Restore points. When Windows 7 creates a System Restore point, it will sometimes contain your personal files. Previous Versions allows you to extract these personal files from restore points. This only applies to Windows 7. On Windows 8, System Restore won’t create backup copies of your personal files. The Previous Versions feature was removed on Windows 8. File History Windows 8 replaced Windows 7′s backup tools with File History, although this feature isn’t enabled by default. File History is designed to be a simple, easy way to create backups of your data files on an external drive or network location. File History replaces both Windows 7′s Backup and Previous Versions features. Windows System Restore won’t create copies of personal files on Windows 8. This means you can’t actually recover older versions of files until you enable File History yourself — it isn’t enabled by default. System Image Backups Windows also allows you to create system image backups. These are backup images of your entire operating system, including your system files, installed programs, and personal files. This feature was included in both Windows 7 and Windows 8, but it was hidden in the preview versions of Windows 8.1. After many user complaints, it was restored and is still available in the final version of Windows 8.1 — click System Image Backup on the File History Control Panel. Storage Space Mirroring Windows 8′s Storage Spaces feature allows you to set up RAID-like features in software. For example, you can use Storage Space to set up two hard disks of the same size in a mirroring configuration. They’ll appear as a single drive in Windows. When you write to this virtual drive, the files will be saved to both physical drives. If one drive fails, your files will still be available on the other drive. This isn’t a good long-term backup solution, but it is a way of ensuring you won’t lose important files if a single drive fails. Microsoft Account Settings Backup Windows 8 and 8.1 allow you to back up a variety of system settings — including personalization, desktop, and input settings. If you’re signing in with a Microsoft account, OneDrive settings backup is enabled automatically. This feature can be controlled under OneDrive > Sync settings in the PC settings app. This feature only backs up a few settings. It’s really more of a way to sync settings between devices. OneDrive Cloud Storage Microsoft hasn’t been talking much about File History since Windows 8 was released. That’s because they want people to use OneDrive instead. OneDrive — formerly known as SkyDrive — was added to the Windows desktop in Windows 8.1. Save your files here and they’ll be stored online tied to your Microsoft account. You can then sign in on any other computer, smartphone, tablet, or even via the web and access your files. Microsoft wants typical PC users “backing up” their files with OneDrive so they’ll be available on any device. You don’t have to worry about all these features. Just choose a backup strategy to ensure your files are safe if your computer’s hard disk fails you. Whether it’s an integrated backup tool or a third-party backup application, be sure to back up your files.

    Read the article

  • Hosting WCF service in Windows Service

    - by DigiMortal
    When building Windows services we often need a way to communicate with them. The natural way to communicate to service is to send signals to it. But this is very limited communication. Usually we need more powerful communication mechanisms with services. In this posting I will show you how to use service-hosted WCF web service to communicate with Windows service. Create Windows service Suppose you have Windows service created and service class is named as MyWindowsService. This is new service and all we have is default code that Visual Studio generates. Create WCF service Add reference to System.ServiceModel assembly to Windows service project and add new interface called IMyService. This interface defines our service contracts. [ServiceContract] public interface IMyService {     [OperationContract]     string SayHello(int value); } We keep this service simple so it is easy for you to follow the code. Now let’s add service implementation: [ServiceBehavior(InstanceContextMode=InstanceContextMode.Single)] public class MyService : IMyService {     public string SayHello(int value)     {         return string.Format("Hello, : {0}", value);     } } With ServiceBehavior attribute we say that we need only one instance of WCF service to serve all requests. Usually this is more than enough for us. Hosting WCF service in Windows Service Now it’s time to host our WCF service and make it available in Windows service. Here is the code in my Windows service: public partial class MyWindowsService : ServiceBase {     private ServiceHost _host;     private MyService _server;       public MyWindowsService()     {         InitializeComponent();     }       protected override void OnStart(string[] args)     {         _server = new MyService();         _host = new ServiceHost(_server);         _host.Open();     }       protected override void OnStop()     {         _host.Close();     } } Our Windows service now hosts our WCF service. WCF service will be available when Windows service is started and it is taken down when Windows service stops. Configuring WCF service To make WCF service usable we need to configure it. Add app.config file to your Windows service project and paste the following XML there: <system.serviceModel>   <serviceHostingEnvironment aspNetCompatibilityEnabled="true" />   <services>     <service name="MyWindowsService.MyService" behaviorConfiguration="def">       <host>         <baseAddresses>           <add baseAddress="http://localhost:8732/MyService/"/>         </baseAddresses>       </host>       <endpoint address="" binding="wsHttpBinding" contract="MyWindowsService.IMyService">       </endpoint>       <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange"/>     </service>   </services>   <behaviors>     <serviceBehaviors>       <behavior name="def">         <serviceMetadata httpGetEnabled="True"/>         <serviceDebug includeExceptionDetailInFaults="True"/>       </behavior>     </serviceBehaviors>   </behaviors> </system.serviceModel> Now you are ready to test your service. Install Windows service and start it. Open your browser and open the following address: http://localhost:8732/MyService/ You should see your WCF service page now. Conclusion WCF is not only web applications fun. You can use WCF also as self-hosted service. Windows services that lack good communication possibilities can be saved by using WCF self-hosted service as it is the best way to talk to service. We can also revert the context and say that Windows service is good host for our WCF service.

    Read the article

  • How to Reduce the Size of Your WinSXS Folder on Windows 7 or 8

    - by Chris Hoffman
    The WinSXS folder at C:\Windows\WinSXS is massive and continues to grow the longer you have Windows installed. This folder builds up unnecessary files over time, such as old versions of system components. This folder also contains files for uninstalled, disabled Windows components. Even if you don’t have a Windows component installed, it will be present in your WinSXS folder, taking up space. Why the WinSXS Folder Gets to Big The WinSXS folder contains all Windows system components. In fact, component files elsewhere in Windows are just links to files contained in the WinSXS folder. The WinSXS folder contains every operating system file. When Windows installs updates, it drops the new Windows component in the WinSXS folder and keeps the old component in the WinSXS folder. This means that every Windows Update you install increases the size of your WinSXS folder. This allows you to uninstall operating system updates from the Control Panel, which can be useful in the case of a buggy update — but it’s a feature that’s rarely used. Windows 7 dealt with this by including a feature that allows Windows to clean up old Windows update files after you install a new Windows service pack. The idea was that the system could be cleaned up regularly along with service packs. However, Windows 7 only saw one service pack — Service Pack 1 — released in 2010. Microsoft has no intention of launching another. This means that, for more than three years, Windows update uninstallation files have been building up on Windows 7 systems and couldn’t be easily removed. Clean Up Update Files To fix this problem, Microsoft recently backported a feature from Windows 8 to Windows 7. They did this without much fanfare — it was rolled out in a typical minor operating system update, the kind that don’t generally add new features. To clean up such update files, open the Disk Cleanup wizard (tap the Windows key, type “disk cleanup” into the Start menu, and press Enter). Click the Clean up System Files button, enable the Windows Update Cleanup option and click OK. If you’ve been using your Windows 7 system for a few years, you’ll likely be able to free several gigabytes of space. The next time you reboot after doing this, Windows will take a few minutes to clean up system files before you can log in and use your desktop. If you don’t see this feature in the Disk Cleanup window, you’re likely behind on your updates — install the latest updates from Windows Update. Windows 8 and 8.1 include built-in features that do this automatically. In fact, there’s a StartComponentCleanup scheduled task included with Windows that will automatically run in the background, cleaning up components 30 days after you’ve installed them. This 30-day period gives you time to uninstall an update if it causes problems. If you’d like to manually clean up updates, you can also use the Windows Update Cleanup option in the Disk Usage window, just as you can on Windows 7. (To open it, tap the Windows key, type “disk cleanup” to perform a search, and click the “Free up disk space by removing unnecessary files” shortcut that appears.) Windows 8.1 gives you more options, allowing you to forcibly remove all previous versions of uninstalled components, even ones that haven’t been around for more than 30 days. These commands must be run in an elevated Command Prompt — in other words, start the Command Prompt window as Administrator. For example, the following command will uninstall all previous versions of components without the scheduled task’s 30-day grace period: DISM.exe /online /Cleanup-Image /StartComponentCleanup The following command will remove files needed for uninstallation of service packs. You won’t be able to uninstall any currently installed service packs after running this command: DISM.exe /online /Cleanup-Image /SPSuperseded The following command will remove all old versions of every component. You won’t be able to uninstall any currently installed service packs or updates after this completes: DISM.exe /online /Cleanup-Image /StartComponentCleanup /ResetBase Remove Features on Demand Modern versions of Windows allow you to enable or disable Windows features on demand. You’ll find a list of these features in the Windows Features window you can access from the Control Panel. Even features you don’t have installed — that is, the features you see unchecked in this window — are stored on your hard drive in your WinSXS folder. If you choose to install them, they’ll be made available from your WinSXS folder. This means you won’t have to download anything or provide Windows installation media to install these features. However, these features take up space. While this shouldn’t matter on typical computers, users with extremely low amounts of storage or Windows server administrators who want to slim their Windows installs down to the smallest possible set of system files may want to get these files off their hard drives. For this reason, Windows 8 added a new option that allows you to remove these uninstalled components from the WinSXS folder entirely, freeing up space. If you choose to install the removed components later, Windows will prompt you to download the component files from Microsoft. To do this, open a Command Prompt window as Administrator. Use the following command to see the features available to you: DISM.exe /Online /English /Get-Features /Format:Table You’ll see a table of feature names and their states. To remove a feature from your system, you’d use the following command, replacing NAME with the name of the feature you want to remove. You can get the feature name you need from the table above. DISM.exe /Online /Disable-Feature /featurename:NAME /Remove If you run the /GetFeatures command again, you’ll now see that the feature has a status of “Disabled with Payload Removed” instead of just “Disabled.” That’s how you know it’s not taking up space on your computer’s hard drive. If you’re trying to slim down a Windows system as much as possible, be sure to check out our lists of ways to free up disk space on Windows and reduce the space used by system files.     

    Read the article

  • Use a Windows 8-Like Task Manager in Windows 7, Vista, and XP

    - by Lori Kaufman
    One of the new features in Windows 8 is the improved Task Manager, which provides access to more information and settings. If you don’t want to upgrade, there is a way you can use a simple Windows 8-like Task Manager in Windows 7, Vista, or XP. The Windows 8 Metro Task Manager does not need to be installed. Simply download the .zip file (see the download link at the end of this article), extract the files, and double-click the Windows 8 Task Manager.exe file. A window displays a list of tasks currently running with the status of each task listed. To end a task, select the task in the list and click End Task. Why Does 64-Bit Windows Need a Separate “Program Files (x86)” Folder? Why Your Android Phone Isn’t Getting Operating System Updates and What You Can Do About It How To Delete, Move, or Rename Locked Files in Windows

    Read the article

  • The Best Tools for Enhancing and Expanding the Features of the Windows Clipboard

    - by Lori Kaufman
    The Windows clipboard is like a scratch pad used by the operating system and all running applications. When you copy or cut some text or a graphic, it is temporarily stored in the clipboard and then retrieved later when you paste the data. We’ve previously showed you how to store multiple items to the clipboard (using Clipboard Manager) in Windows, how to copy a file path to the clipboard, how to create a shortcut to clear the clipboard, and how to copy a list of files to the clipboard. There are some limitations of the Windows clipboard. Only one item can be stored at a time. Each time you copy something, the current item in the clipboard is replaced. The data on the clipboard also cannot be viewed without pasting it into an application. In addition, the data on the clipboard is cleared when you log out of your Windows session. NOTE: The above image shows the clipboard viewer from Windows XP (clipbrd.exe), which is not available in Windows 7 or Vista. However, you can download the file from deviantART and run it to view the current entry in the clipboard in Windows 7. Here are some additional useful tools that help enhance or expand the features of the Windows clipboard and make it more useful. Can Dust Actually Damage My Computer? What To Do If You Get a Virus on Your Computer Why Enabling “Do Not Track” Doesn’t Stop You From Being Tracked

    Read the article

  • Server 2012 DFS New Member Issue

    - by David
    I am trying to add a new member to our DFS topology. We have 3 DCs (VMs - VMware) running Windows server 2012, two servers are located in or Primary site and the third at our DR site. Currently the two servers at our primary site are currently replicating DFS (full mesh) and are working fine. I have tried several times to add the third DC to our DFS topology, every time i configure the replication path e.g E:\MSI and click ok the MMC snap in crashes. Below is the crash info, any idea what is causing this? What i am doing is fairly straight forward and don't see why this would be happening. Windows Crash Error: gnature: Problem Event Name: CLR20r3 Problem Signature 01: mmc.exe Problem Signature 02: 6.2.9200.16496 Problem Signature 03: 50ece2e8 Problem Signature 04: System.Windows.Forms Problem Signature 05: 4.0.30319.18046 Problem Signature 06: 51552cda Problem Signature 07: 6291 Problem Signature 08: 25 Problem Signature 09: RML5K4UDBMA5NI04CIYRWVDHKEWFDHCV OS Version: 6.2.9200.2.0.0.272.7 Locale ID: 3081 Additional Information 1: b979 Additional Information 2: b97911c958b3d076b53a1d80c1c56088 Additional Information 3: 4fee Additional Information 4: 4fee5b9baabd694859b15dfc5e1863b7      Crash Report Version=1 EventType=CLR20r3 EventTime=130165974300817209 ReportType=2 Consent=1 ReportIdentifier=d15d0d38-dd36-11e2-93fb-005056af764c IntegratorReportIdentifier=d15d0d37-dd36-11e2-93fb-005056af764c NsAppName=mmc.exe Response.type=4 Sig[0].Name=Problem Signature 01 Sig[0].Value=mmc.exe Sig[1].Name=Problem Signature 02 Sig[1].Value=6.2.9200.16496 Sig[2].Name=Problem Signature 03 Sig[2].Value=50ece2e8 Sig[3].Name=Problem Signature 04 Sig[3].Value=System.Windows.Forms Sig[4].Name=Problem Signature 05 Sig[4].Value=4.0.30319.18046 Sig[5].Name=Problem Signature 06 Sig[5].Value=51552cda Sig[6].Name=Problem Signature 07 Sig[6].Value=6291 Sig[7].Name=Problem Signature 08 Sig[7].Value=25 Sig[8].Name=Problem Signature 09 Sig[8].Value=RML5K4UDBMA5NI04CIYRWVDHKEWFDHCV DynamicSig[1].Name=OS Version DynamicSig[1].Value=6.2.9200.2.0.0.272.7 DynamicSig[2].Name=Locale ID DynamicSig[2].Value=3081 DynamicSig[22].Name=Additional Information 1 DynamicSig[22].Value=b979 DynamicSig[23].Name=Additional Information 2 DynamicSig[23].Value=b97911c958b3d076b53a1d80c1c56088 DynamicSig[24].Name=Additional Information 3 DynamicSig[24].Value=4fee DynamicSig[25].Name=Additional Information 4 DynamicSig[25].Value=4fee5b9baabd694859b15dfc5e1863b7 UI[2]=C:\Windows\system32\mmc.exe UI[3]=Microsoft Management Console has stopped working UI[4]=Windows can check online for a solution to the problem. UI[5]=Check online for a solution and close the program UI[6]=Check online for a solution later and close the program UI[7]=Close the program LoadedModule[0]=C:\Windows\system32\mmc.exe LoadedModule[1]=C:\Windows\SYSTEM32\ntdll.dll LoadedModule[2]=C:\Windows\system32\KERNEL32.DLL LoadedModule[3]=C:\Windows\system32\KERNELBASE.dll LoadedModule[4]=C:\Windows\system32\GDI32.dll LoadedModule[5]=C:\Windows\system32\USER32.dll LoadedModule[6]=C:\Windows\system32\MFC42u.dll LoadedModule[7]=C:\Windows\system32\msvcrt.dll LoadedModule[8]=C:\Windows\system32\mmcbase.DLL LoadedModule[9]=C:\Windows\system32\ole32.dll LoadedModule[10]=C:\Windows\system32\SHLWAPI.dll LoadedModule[11]=C:\Windows\system32\UxTheme.dll LoadedModule[12]=C:\Windows\system32\DUser.dll LoadedModule[13]=C:\Windows\system32\OLEAUT32.dll LoadedModule[14]=C:\Windows\system32\ODBC32.dll LoadedModule[15]=C:\Windows\SYSTEM32\combase.dll LoadedModule[16]=C:\Windows\system32\RPCRT4.dll LoadedModule[17]=C:\Windows\SYSTEM32\sechost.dll LoadedModule[18]=C:\Windows\system32\ADVAPI32.dll LoadedModule[19]=C:\Windows\system32\SHCORE.DLL LoadedModule[20]=C:\Windows\system32\IMM32.DLL LoadedModule[21]=C:\Windows\system32\MSCTF.dll LoadedModule[22]=C:\Windows\system32\DUI70.dll LoadedModule[23]=C:\Windows\WinSxS\amd64_microsoft.windows.common-controls_6595b64144ccf1df_6.0.9200.16579_none_418ab7ef718b27ef\Comctl32.dll LoadedModule[24]=C:\Windows\system32\SHELL32.dll LoadedModule[25]=C:\Windows\system32\CRYPTBASE.dll LoadedModule[26]=C:\Windows\system32\bcryptPrimitives.dll LoadedModule[27]=C:\Windows\system32\urlmon.dll LoadedModule[28]=C:\Windows\system32\iertutil.dll LoadedModule[29]=C:\Windows\system32\WININET.dll LoadedModule[30]=C:\Windows\SYSTEM32\clbcatq.dll LoadedModule[31]=C:\Windows\system32\mmcndmgr.dll LoadedModule[32]=C:\Windows\System32\msxml6.dll LoadedModule[33]=C:\Windows\system32\profapi.dll LoadedModule[34]=C:\Windows\system32\apphelp.dll LoadedModule[35]=C:\Windows\system32\dwmapi.dll LoadedModule[36]=C:\Windows\System32\oleacc.dll LoadedModule[37]=C:\Windows\system32\CRYPTSP.dll LoadedModule[38]=C:\Windows\system32\rsaenh.dll LoadedModule[39]=C:\Windows\system32\NetworkExplorer.dll LoadedModule[40]=C:\Windows\system32\PROPSYS.dll LoadedModule[41]=C:\Windows\system32\SETUPAPI.dll LoadedModule[42]=C:\Windows\system32\CFGMGR32.dll LoadedModule[43]=C:\Windows\system32\DEVOBJ.dll LoadedModule[44]=C:\Windows\system32\mlang.dll LoadedModule[45]=C:\Windows\system32\xmllite.dll LoadedModule[46]=C:\Windows\system32\VERSION.dll LoadedModule[47]=C:\Windows\SYSTEM32\mscoree.dll LoadedModule[48]=C:\Windows\Microsoft.NET\Framework64\v4.0.30319\mscoreei.dll LoadedModule[49]=C:\Windows\Microsoft.NET\Framework64\v4.0.30319\clr.dll LoadedModule[50]=C:\Windows\SYSTEM32\MSVCR110_CLR0400.dll LoadedModule[51]=C:\Windows\assembly\NativeImages_v4.0.30319_64\mscorlib\fa44d07a6b592198dfeae841489f295b\mscorlib.ni.dll LoadedModule[52]=C:\Windows\system32\sxs.dll LoadedModule[53]=C:\Windows\assembly\NativeImages_v4.0.30319_64\System\577825eedb03a45fd7327050e85d0c44\System.ni.dll LoadedModule[54]=C:\Windows\assembly\NativeImages_v4.0.30319_64\MMCEx\9b714b187bfb304526df6d4e6160e15c\MMCEx.ni.dll LoadedModule[55]=C:\Windows\assembly\NativeImages_v4.0.30319_64\MMCFxCommon\3804721e3998fdf29b06e86bcfe92eb8\MMCFxCommon.ni.dll LoadedModule[56]=C:\Windows\assembly\NativeImages_v4.0.30319_64\System.Configuration\e3873005e8829578178618d41d012849\System.Configuration.ni.dll LoadedModule[57]=C:\Windows\assembly\NativeImages_v4.0.30319_64\System.Xml\aea95442f7e98cffc3c849fe3b0658d6\System.Xml.ni.dll LoadedModule[58]=C:\Windows\assembly\NativeImages_v4.0.30319_64\System.Drawing\f28da0d8140095c5c86e9f2443878807\System.Drawing.ni.dll LoadedModule[59]=C:\Windows\assembly\NativeImages_v4.0.30319_64\System.Windows.Forms\c2f5f2174cecd9faaf74a0cdeebfdd49\System.Windows.Forms.ni.dll LoadedModule[60]=C:\Windows\Microsoft.NET\Framework64\v4.0.30319\diasymreader.dll LoadedModule[61]=C:\Windows\assembly\NativeImages_v4.0.30319_64\Microsoft.Mff1be75b#\3c16df28b2935a005a7fd0da96e0ff6c\Microsoft.ManagementConsole.ni.dll LoadedModule[62]=C:\Windows\Microsoft.NET\Framework64\v4.0.30319\clrjit.dll LoadedModule[63]=C:\Windows\assembly\NativeImages_v4.0.30319_64\DfsMgmt\ed2ebd5dc4469285040f2e21c5e990dc\DfsMgmt.ni.dll LoadedModule[64]=C:\Windows\assembly\NativeImages_v4.0.30319_64\DfsObjectModel\43ed7ca19e7c26cbf27c5c8a2e0fec93\DfsObjectModel.ni.dll LoadedModule[65]=C:\Windows\assembly\NativeImages_v4.0.30319_64\CfsCommonUIFx\aea54a98ed63ebeaa6703e9f0a724ac8\CfsCommonUIFx.ni.dll LoadedModule[66]=C:\Windows\assembly\NativeImages_v4.0.30319_64\Interop.DFSRHelper\3780b83ee96c137664d8807e7042768f\Interop.DFSRHelper.ni.dll LoadedModule[67]=C:\Windows\system32\WindowsCodecs.dll LoadedModule[68]=C:\Windows\WinSxS\amd64_microsoft.windows.common-controls_6595b64144ccf1df_5.82.9200.16384_none_7762d5fd3178b04e\comctl32.dll LoadedModule[69]=C:\Windows\WinSxS\amd64_microsoft.windows.gdiplus_6595b64144ccf1df_1.1.9200.16518_none_726fbfe0cc22f012\gdiplus.dll LoadedModule[70]=C:\Windows\system32\DWrite.dll LoadedModule[71]=C:\Windows\system32\COMDLG32.dll LoadedModule[72]=C:\Windows\system32\Netapi32.dll LoadedModule[73]=C:\Windows\system32\netutils.dll LoadedModule[74]=C:\Windows\system32\srvcli.dll LoadedModule[75]=C:\Windows\system32\wkscli.dll LoadedModule[76]=C:\Windows\system32\clusapi.dll LoadedModule[77]=C:\Windows\system32\cryptdll.dll LoadedModule[78]=C:\Windows\system32\WS2_32.dll LoadedModule[79]=C:\Windows\system32\NSI.dll LoadedModule[80]=C:\Windows\system32\mswsock.dll LoadedModule[81]=C:\Windows\system32\DNSAPI.dll LoadedModule[82]=C:\Windows\System32\rasadhlp.dll LoadedModule[83]=C:\Windows\system32\IPHLPAPI.DLL LoadedModule[84]=C:\Windows\system32\WINNSI.DLL LoadedModule[85]=C:\Windows\System32\fwpuclnt.dll LoadedModule[86]=C:\Windows\system32\DFSCLI.DLL LoadedModule[87]=C:\Windows\assembly\NativeImages_v4.0.30319_64\System.Dired13b18a9#\0acd265b442254788d2d1429c296558c\System.DirectoryServices.ni.dll LoadedModule[88]=C:\Windows\system32\ntdsapi.dll LoadedModule[89]=C:\Windows\system32\LOGONCLI.DLL LoadedModule[90]=C:\Windows\system32\activeds.dll LoadedModule[91]=C:\Windows\system32\adsldpc.dll LoadedModule[92]=C:\Windows\system32\WLDAP32.dll LoadedModule[93]=C:\Windows\system32\adsldp.dll LoadedModule[94]=C:\Windows\system32\SspiCli.dll LoadedModule[95]=C:\Windows\system32\DSPARSE.dll LoadedModule[96]=C:\Windows\system32\msv1_0.DLL LoadedModule[97]=C:\Windows\system32\cscapi.dll LoadedModule[98]=C:\Windows\system32\DSROLE.DLL LoadedModule[99]=C:\Windows\assembly\NativeImages_v4.0.30319_64\System.Dire5d62f0a2#\819205bfacb57978948171e414993369\System.DirectoryServices.Protocols.ni.dll LoadedModule[100]=C:\Windows\System32\objsel.dll LoadedModule[101]=C:\Windows\System32\Secur32.dll LoadedModule[102]=C:\Windows\System32\credui.dll LoadedModule[103]=C:\Windows\system32\CRYPT32.dll LoadedModule[104]=C:\Windows\system32\MSASN1.dll LoadedModule[105]=C:\Windows\System32\DPAPI.DLL LoadedModule[106]=C:\Windows\system32\riched32.dll LoadedModule[107]=C:\Windows\system32\RICHED20.dll LoadedModule[108]=C:\Windows\system32\USP10.dll LoadedModule[109]=C:\Windows\system32\msls31.dll LoadedModule[110]=C:\Windows\System32\Windows.Globalization.dll LoadedModule[111]=C:\Windows\System32\Bcp47Langs.dll LoadedModule[112]=C:\Windows\assembly\NativeImages_v4.0.30319_64\System.Serv759bfb78#\e44b9230fcc7dc263820eff07cfc6353\System.ServiceProcess.ni.dll LoadedModule[113]=C:\Windows\system32\kerberos.DLL LoadedModule[114]=C:\Windows\system32\bcrypt.dll LoadedModule[115]=C:\Windows\assembly\NativeImages_v4.0.30319_64\Accessibility\e69795104b16b74fe9c1e7dff4f3f510\Accessibility.ni.dll LoadedModule[116]=C:\Windows\system32\MPR.dll LoadedModule[117]=C:\Windows\System32\drprov.dll LoadedModule[118]=C:\Windows\System32\WINSTA.dll LoadedModule[119]=C:\Windows\System32\ntlanman.dll LoadedModule[120]=C:\Windows\system32\explorerframe.dll FriendlyEventName=Stopped working ConsentKey=CLR20r3 AppName=Microsoft Management Console AppPath=C:\Windows\system32\mmc.exe NsPartner=windows NsGroup=windows8 Application Log Event ID: 1000 Faulting application name: mmc.exe, version: 6.2.9200.16496, time stamp: 0x50ece2e8 Faulting module name: KERNELBASE.dll, version: 6.2.9200.16451, time stamp: 0x50988aa6 Exception code: 0xe0434352 Fault offset: 0x000000000003811c Faulting process id: 0xd30 Faulting application start time: 0x01ce71411a7b775b Faulting application path: C:\Windows\system32\mmc.exe Faulting module path: C:\Windows\system32\KERNELBASE.dll Report Id: d15d0d37-dd36-11e2-93fb-005056af764c Faulting package full name: Faulting package-relative application ID: Application Log Event ID: 1026 Application: mmc.exe Framework Version: v4.0.30319 Description: The process was terminated due to an unhandled exception. Exception Info: System.Runtime.InteropServices.SEHException Stack: at System.Windows.Forms.UnsafeNativeMethods.ThemingScope.DeactivateActCtx(Int32 dwFlags, IntPtr lpCookie) at System.Windows.Forms.Application.ThreadContext.RunMessageLoop(Int32 reason, ApplicationContext context) at Microsoft.ManagementConsole.Internal.SnapInMessagePumpProxy.Microsoft.ManagementConsole.Internal.ISnapInMessagePumpProxy.Run() at Microsoft.ManagementConsole.Executive.SnapInThread.OnThreadStart() at System.Threading.ExecutionContext.RunInternal(System.Threading.ExecutionContext, System.Threading.ContextCallback, System.Object, Boolean) at System.Threading.ExecutionContext.Run(System.Threading.ExecutionContext, System.Threading.ContextCallback, System.Object, Boolean) at System.Threading.ExecutionContext.Run(System.Threading.ExecutionContext, System.Threading.ContextCallback, System.Object) at System.Threading.ThreadHelper.ThreadStart()

    Read the article

  • Windows 8 RTM ‘Keyboard Shortcuts’ Super List

    - by Asian Angel
    Now that Windows 8 RTM has been out for a bit you may be wondering about all of the new keyboard shortcuts associated with the system. Yash Tolia from the MSDN blog has put together a super list of all the keyboard shortcuts you could ever want into one awesome post. A quick copy, paste, and save/print using your favorite word processing program will help keep this terrific list on hand for easy reference whenever you need it! List of Windows 8 Shortcuts [Nirmal TV] HTG Explains: What The Windows Event Viewer Is and How You Can Use It HTG Explains: How Windows Uses The Task Scheduler for System Tasks HTG Explains: Why Do Hard Drives Show the Wrong Capacity in Windows?

    Read the article

  • The Best Free Alternatives to the Windows Task Manager

    - by Lori Kaufman
    The Windows Task Manager is a built-in tool that allows you to check which services are running in the background, how much resources are being used by which software programs, and the all-to-common task of killing programs that are not responding. Even though the Windows Task Manager has several useful tools, there are many free alternatives available that provide additional or expanded features, allowing you to more closely monitor and tweak your system. How To Play DVDs on Windows 8 6 Start Menu Replacements for Windows 8 What Is the Purpose of the “Do Not Cover This Hole” Hole on Hard Drives?

    Read the article

  • The Best Free Tools for Creating a Bootable Windows or Linux USB Drive

    - by Lori Kaufman
    If you need to install Windows or Linux and you don’t have access to a CD/DVD drive, a bootable USB drive is the solution. You can boot to the USB drive, using it to run the OS setup program, just like a CD or DVD. We have collected some links to free programs that allow you to easily setup a USB drive to install Windows or Linux on a computer. NOTE: If you have problems getting the BIOS on your computer to let you boot from a USB drive, see our article about booting from a USB drive even if your BIOS won’t let you. What Is the Purpose of the “Do Not Cover This Hole” Hole on Hard Drives? How To Log Into The Desktop, Add a Start Menu, and Disable Hot Corners in Windows 8 HTG Explains: Why You Shouldn’t Use a Task Killer On Android

    Read the article

  • What You Need to Know About Windows 8.1

    - by Chris Hoffman
    Windows 8.1 is available to everyone starting today, October 19. The latest version of Windows improves on Windows 8 in every way. It’s a big upgrade, whether you use the desktop or new touch-optimized interface. The latest version of Windows has been dubbed “an apology” by some — it’s definitely more at home on a desktop PC than Windows 8 was. However, it also offers a more fleshed out and mature tablet experience. How to Get Windows 8.1 For Windows 8 users, Windows 8.1 is completely free. It will be available as a download from the Windows Store — that’s the “Store” app in the Modern, tiled interface. Assuming upgrading to the final version will be just like upgrading to the preview version, you’ll likely see a “Get Windows 8.1″ pop-up that will take you to the Windows Store and guide you through the download process. You’ll also be able to download ISO images of Windows 8.1, so can perform a clean install to upgrade. On any new computer, you can just install Windows 8.1 without going through Windows 8. New computers will start to ship with Windows 8.1 and boxed copies of Windows 8 will be replaced by boxed copies of Windows 8.1. If you’re using Windows 7 or a previous version of Windows, the update won’t be free. Getting Windows 8.1 will cost you the same amount as a full copy of Windows 8 — $120 for the standard version. If you’re an average Windows 7 user, you’re likely better off waiting until you buy a new PC with Windows 8.1 included rather than spend this amount of money to upgrade. Improvements for Desktop Users Some have dubbed Windows 8.1 “an apology” from Microsoft, although you certainly won’t see Microsoft referring to it this way. Either way, Steven Sinofsky, who presided over Windows 8′s development, left the company shortly after Windows 8 was released. Coincidentally, Windows 8.1 contains many features that Steven Sinofsky and Microsoft refused to implement. Windows 8.1 offers the following big improvements for desktop users: Boot to Desktop: You can now log in directly to the desktop, skipping the tiled interface entirely. Disable Top-Left and Top-Right Hot Corners: The app switcher and charms bar won’t appear when you move your mouse to the top-left or top-right corners of the screen if you enable this option. No more intrusions into the desktop. The Start Button Returns: Windows 8.1 brings back an always-present Start button on the desktop taskbar, dramatically improving discoverability for new Windows 8 users and providing a bigger mouse target for remote desktops and virtual machines. Crucially, the Start menu isn’t back — clicking this button will open the full-screen Modern interface. Start menu replacements will continue to function on Windows 8.1, offering more traditional Start menus. Show All Apps By Default: Luckily, you can hide the Start screen and its tiles almost entirely. Windows 8.1 can be configured to show a full-screen list of all your installed apps when you click the Start button, with desktop apps prioritized. The only real difference is that the Start menu is now a full-screen interface. Shut Down or Restart From Start Button: You can now right-click the Start button to access Shut down, Restart, and other power options in just as many clicks as you could on Windows 7. Shared Start Screen and Desktop Backgrounds; Windows 8 limited you to just a few Steven Sinofsky-approved background images for your Start screen, but Windows 8.1 allows you to use your desktop background on the Start screen. This can make the transition between the Start screen and desktop much less jarring. The tiles or shortcuts appear to be floating above the desktop rather than off in their own separate universe. Unified Search: Unified search is back, so you can start typing and search your programs, settings, and files all at once — no more awkwardly clicking between different categories when trying to open a Control Panel screen or search for a file. These all add up to a big improvement when using Windows 8.1 on the desktop. Microsoft is being much more flexible — the Start menu is full screen, but Microsoft has relented on so many other things and you’d never have to see a tile if you didn’t want to. For more information, read our guide to optimizing Windows 8.1 for a desktop PC. These are just the improvements specifically for desktop users. Windows 8.1 includes other useful features for everyone, such as deep SkyDrive integration that allows you to store your files in the cloud without installing any additional sync programs. Improvements for Touch Users If you have a Windows 8 or Windows RT tablet or another touch-based device you use the interface formerly known as Metro on, you’ll see many other noticeable improvements. Windows 8′s new interface was half-baked when it launched, but it’s now much more capable and mature. App Updates: Windows 8′s included apps were extremely limited in many cases. For example, Internet Explorer 10 could only display ten tabs at a time and the Mail app was a barren experience devoid of features. In Windows 8.1, some apps — like Xbox Music — have been redesigned from scratch, Internet Explorer allows you to display a tab bar on-screen all the time, while apps like Mail have accumulated quite a few useful features. The Windows Store app has been entirely redesigned and is less awkward to browse. Snap Improvements: Windows 8′s Snap feature was a toy, allowing you to snap one app to a small sidebar at one side of your screen while another app consumed most of your screen. Windows 8.1 allows you to snap two apps side-by-side, seeing each app’s full interface at once. On larger displays, you can even snap three or four apps at once. Windows 8′s ability to use multiple apps at once on a tablet is compelling and unmatched by iPads and Android tablets. You can also snap two of the same apps side-by-side — to view two web pages at once, for example. More Comprehensive PC Settings: Windows 8.1 offers a more comprehensive PC settings app, allowing you to change most system settings in a touch-optimized interface. You shouldn’t have to use the desktop Control Panel on a tablet anymore — or at least not as often. Touch-Optimized File Browsing: Microsoft’s SkyDrive app allows you to browse files on your local PC, finally offering a built-in, touch-optimized way to manage files without using the desktop. Help & Tips: Windows 8.1 includes a Help+Tips app that will help guide new users through its new interface, something Microsoft stubbornly refused to add during development. There’s still no “Modern” version of Microsoft Office apps (aside from OneNote), so you’ll still have to head to use desktop Office apps on tablets. It’s not perfect, but the Modern interface doesn’t feel anywhere near as immature anymore. Read our in-depth look at the ways Microsoft’s Modern interface, formerly known as Metro, is improved in Windows 8.1 for more information. In summary, Windows 8.1 is what Windows 8 should have been. All of these improvements are on top of the many great desktop features, security improvements, and all-around battery life and performance optimizations that appeared in Windows 8. If you’re still using Windows 7 and are happy with it, there’s probably no reason to race out and buy a copy of Windows 8.1 at the rather high price of $120. But, if you’re using Windows 8, it’s a big upgrade no matter what you’re doing. If you buy a new PC and it comes with Windows 8.1, you’re getting a much more flexible and comfortable experience. If you’re holding off on buying a new computer because you don’t want Windows 8, give Windows 8.1 a try — yes, it’s different, but Microsoft has compromised on the desktop while making a lot of improvements to the new interface. You just might find that Windows 8.1 is now a worthwhile upgrade, even if you only want to use the desktop.     

    Read the article

  • Quickly and Easily Create Folders in Windows By Dragging and Dropping Files

    - by Lori Kaufman
    If you use iOS or Android devices, you’re familiar with the drag-and-drop method of creating folders. If you like that method of grouping files, you can get the same functionality on your Windows PC using a free utility, called Smart Folders. Smart Folders helps you quickly organize your files, such as images, documents, and audio files, without having to create separate folders before you move the files. Simply drag one file on top of another file to create a new folder. To use Smart Folders to easily create folders, double-click on the .exe file you downloaded (see the link at the end of this article). Why Does 64-Bit Windows Need a Separate “Program Files (x86)” Folder? Why Your Android Phone Isn’t Getting Operating System Updates and What You Can Do About It How To Delete, Move, or Rename Locked Files in Windows

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >