Permutations with extra restrictions

Posted by Full Decent on Stack Overflow See other posts from Stack Overflow or by Full Decent
Published on 2010-05-07T16:15:59Z Indexed on 2010/05/07 16:18 UTC
Read the original article Hit count: 141

I have a set of items, for example: {1,1,1,2,2,3,3,3}, and a restricting set of sets, for example {{3},{1,2},{1,2,3},{1,2,3},{1,2,3},{1,2,3},{2,3},{2,3}. I am looking for permutations of items, but the first element must be 3, and the second must be 1 or 2, etc.

One such permutation that fits is: {3,1,1,1,2,2,3}

Is there an algorithm to count all permutations for this problem in general? Is there a name for this type of problem?

For illustration, I know how to solve this problem for certain types of "restricting sets". Set of items: {1,1,2,2,3}, Restrictions {{1,2},{1,2,3},{1,2,3},{1,2},{1,2}}. This is equal to 2!/(2-1)!/1! * 4!/2!/2!. Effectively permuting the 3 first, since it is the most restrictive and then permuting the remaining items where there is room.

© Stack Overflow or respective owner

Related posts about combinatorics

Related posts about math