rotating bitmaps. In code.

Posted by Marco van de Voort on Stack Overflow See other posts from Stack Overflow or by Marco van de Voort
Published on 2009-05-11T13:06:51Z Indexed on 2010/06/05 13:52 UTC
Read the original article Hit count: 383

Is there a faster way to rotate a large bitmap by 90 or 270 degrees than simply doing a nested loop with inverted coordinates?

The bitmaps are 8bpp and typically 2048*2400*8bpp

Currently I do this by simply copying with argument inversion, roughly (pseudo code:

for x = 0 to 2048-1
  for y = 0 to 2048-1
    dest[x][y]=src[y][x];

(In reality I do it with pointers, for a bit more speed, but that is roughly the same magnitude)

GDI is quite slow with large images, and GPU load/store times for textures (GF7 cards) are in the same magnitude as the current CPU time.

Any tips, pointers? An in-place algorithm would even be better, but speed is more important than being in-place.

Target is Delphi, but it is more an algorithmic question. SSE(2) vectorization no problem, it is a big enough problem for me to code it in assembler


Duplicates How do you rotate a two dimensional array?.

Follow up to Nils' answer

  • Image 2048x2700 -> 2700x2048
  • Compiler Turbo Explorer 2006 with optimization on.
  • Windows: Power scheme set to "Always on". (important!!!!)
  • Machine: Core2 6600 (2.4 GHz)

time with old routine: 32ms (step 1)

time with stepsize 8 : 12ms

time with stepsize 16 : 10ms

time with stepsize 32+ : 9ms

Meanwhile I also tested on a Athlon 64 X2 (5200+ iirc), and the speed up there was slightly more than a factor four (80 to 19 ms).

The speed up is well worth it, thanks. Maybe that during the summer months I'll torture myself with a SSE(2) version. However I already thought about how to tackle that, and I think I'll run out of SSE2 registers for an straight implementation:

for n:=0 to 7 do
  begin
    load r0, <source+n*rowsize> 
    shift byte from r0 into r1
    shift byte from r0 into r2
    ..
    shift byte from r0 into r8
  end; 
store r1, <target>   
store r2, <target+1*<rowsize>
..
store r8, <target+7*<rowsize>   

So 8x8 needs 9 registers, but 32-bits SSE only has 8. Anyway that is something for the summer months :-)

Note that the pointer thing is something that I do out of instinct, but it could be there is actually something to it, if your dimensions are not hardcoded, the compiler can't turn the mul into a shift. While muls an sich are cheap nowadays, they also generate more register pressure afaik.

The code (validated by subtracting result from the "naieve" rotate1 implementation):

const stepsize = 32;
procedure rotatealign(Source: tbw8image; Target:tbw8image);

var stepsx,stepsy,restx,resty : Integer;
   RowPitchSource, RowPitchTarget : Integer;
   pSource, pTarget,ps1,ps2 : pchar;
   x,y,i,j: integer;
   rpstep : integer;
begin
  RowPitchSource := source.RowPitch;          // bytes to jump to next line. Can be negative (includes alignment)
  RowPitchTarget := target.RowPitch;        rpstep:=RowPitchTarget*stepsize;
  stepsx:=source.ImageWidth div stepsize;
  stepsy:=source.ImageHeight div stepsize;
  // check if mod 16=0 here for both dimensions, if so -> SSE2.
  for y := 0 to stepsy - 1 do
    begin
      psource:=source.GetImagePointer(0,y*stepsize);    // gets pointer to pixel x,y
      ptarget:=Target.GetImagePointer(target.imagewidth-(y+1)*stepsize,0);
      for x := 0 to stepsx - 1 do
        begin
          for i := 0 to stepsize - 1 do
            begin
              ps1:=@psource[rowpitchsource*i];   // ( 0,i)
              ps2:=@ptarget[stepsize-1-i];       //  (maxx-i,0);
              for j := 0 to stepsize - 1 do
               begin
                 ps2[0]:=ps1[j];
                 inc(ps2,RowPitchTarget);
               end;
            end;
          inc(psource,stepsize);
          inc(ptarget,rpstep);
        end;
    end;
  // 3 more areas to do, with dimensions
  // - stepsy*stepsize * restx        // right most column of restx width
  // - stepsx*stepsize * resty        // bottom row with resty height
  // - restx*resty                    // bottom-right rectangle.
  restx:=source.ImageWidth mod stepsize;   // typically zero because width is 
                                          // typically 1024 or 2048
  resty:=source.Imageheight mod stepsize;
  if restx>0 then
    begin
      // one loop less, since we know this fits in one line of  "blocks"
      psource:=source.GetImagePointer(source.ImageWidth-restx,0);    // gets pointer to pixel x,y
      ptarget:=Target.GetImagePointer(Target.imagewidth-stepsize,Target.imageheight-restx);
      for y := 0 to stepsy - 1 do
        begin
          for i := 0 to stepsize - 1 do
            begin
              ps1:=@psource[rowpitchsource*i];   // ( 0,i)
              ps2:=@ptarget[stepsize-1-i];       //  (maxx-i,0);
              for j := 0 to restx - 1 do
               begin
                 ps2[0]:=ps1[j];
                 inc(ps2,RowPitchTarget);
               end;
            end;
         inc(psource,stepsize*RowPitchSource);
         dec(ptarget,stepsize);
       end;
    end;
  if resty>0 then
    begin
      // one loop less, since we know this fits in one line of  "blocks"
      psource:=source.GetImagePointer(0,source.ImageHeight-resty);    // gets pointer to pixel x,y
      ptarget:=Target.GetImagePointer(0,0);
      for x := 0 to stepsx - 1 do
        begin
          for i := 0 to resty- 1 do
            begin
              ps1:=@psource[rowpitchsource*i];   // ( 0,i)
              ps2:=@ptarget[resty-1-i];       //  (maxx-i,0);
              for j := 0 to stepsize - 1 do
               begin
                 ps2[0]:=ps1[j];
                 inc(ps2,RowPitchTarget);
               end;
            end;
         inc(psource,stepsize);
         inc(ptarget,rpstep);
       end;
    end;
 if (resty>0) and (restx>0) then
    begin
      // another loop less, since only one block
      psource:=source.GetImagePointer(source.ImageWidth-restx,source.ImageHeight-resty);    // gets pointer to pixel x,y
      ptarget:=Target.GetImagePointer(0,target.ImageHeight-restx);
      for i := 0 to resty- 1 do
        begin
          ps1:=@psource[rowpitchsource*i];   // ( 0,i)
          ps2:=@ptarget[resty-1-i];       //  (maxx-i,0);
          for j := 0 to restx - 1 do
            begin
              ps2[0]:=ps1[j];
              inc(ps2,RowPitchTarget);
            end;
       end;
    end;
end;

© Stack Overflow or respective owner

Related posts about image-processing

Related posts about image-manipulation