fit a ellipse in Python given a set of points xi=(xi,yi)
Posted
by
Gianni
on Stack Overflow
See other posts from Stack Overflow
or by Gianni
Published on 2012-11-29T21:59:20Z
Indexed on
2012/11/29
23:04 UTC
Read the original article
Hit count: 341
I am computing a series of index from a 2D points (x,y). One index is the ratio between minor and major axis. To fit the ellipse i am using the following post
when i run these function the final results looks strange because the center and the axis length are not in scale with the 2D points
center = [ 560415.53298363+0.j 6368878.84576771+0.j]
angle of rotation = (-0.0528033467597-5.55111512313e-17j)
axes = [0.00000000-557.21553487j 6817.76933256 +0.j]
thanks in advance for help
import numpy as np
from numpy.linalg import eig, inv
def fitEllipse(x,y):
x = x[:,np.newaxis]
y = y[:,np.newaxis]
D = np.hstack((x*x, x*y, y*y, x, y, np.ones_like(x)))
S = np.dot(D.T,D)
C = np.zeros([6,6])
C[0,2] = C[2,0] = 2; C[1,1] = -1
E, V = eig(np.dot(inv(S), C))
n = np.argmax(np.abs(E))
a = V[:,n]
return a
def ellipse_center(a):
b,c,d,f,g,a = a[1]/2, a[2], a[3]/2, a[4]/2, a[5], a[0]
num = b*b-a*c
x0=(c*d-b*f)/num
y0=(a*f-b*d)/num
return np.array([x0,y0])
def ellipse_angle_of_rotation( a ):
b,c,d,f,g,a = a[1]/2, a[2], a[3]/2, a[4]/2, a[5], a[0]
return 0.5*np.arctan(2*b/(a-c))
def ellipse_axis_length( a ):
b,c,d,f,g,a = a[1]/2, a[2], a[3]/2, a[4]/2, a[5], a[0]
up = 2*(a*f*f+c*d*d+g*b*b-2*b*d*f-a*c*g)
down1=(b*b-a*c)*( (c-a)*np.sqrt(1+4*b*b/((a-c)*(a-c)))-(c+a))
down2=(b*b-a*c)*( (a-c)*np.sqrt(1+4*b*b/((a-c)*(a-c)))-(c+a))
res1=np.sqrt(up/down1)
res2=np.sqrt(up/down2)
return np.array([res1, res2])
if __name__ == '__main__':
points = [(560036.4495758876, 6362071.890493258),
(560036.4495758876, 6362070.890493258),
(560036.9495758876, 6362070.890493258),
(560036.9495758876, 6362070.390493258),
(560037.4495758876, 6362070.390493258),
(560037.4495758876, 6362064.890493258),
(560036.4495758876, 6362064.890493258),
(560036.4495758876, 6362063.390493258),
(560035.4495758876, 6362063.390493258),
(560035.4495758876, 6362062.390493258),
(560034.9495758876, 6362062.390493258),
(560034.9495758876, 6362061.390493258),
(560032.9495758876, 6362061.390493258),
(560032.9495758876, 6362061.890493258),
(560030.4495758876, 6362061.890493258),
(560030.4495758876, 6362061.390493258),
(560029.9495758876, 6362061.390493258),
(560029.9495758876, 6362060.390493258),
(560029.4495758876, 6362060.390493258),
(560029.4495758876, 6362059.890493258),
(560028.9495758876, 6362059.890493258),
(560028.9495758876, 6362059.390493258),
(560028.4495758876, 6362059.390493258),
(560028.4495758876, 6362058.890493258),
(560027.4495758876, 6362058.890493258),
(560027.4495758876, 6362058.390493258),
(560026.9495758876, 6362058.390493258),
(560026.9495758876, 6362057.890493258),
(560025.4495758876, 6362057.890493258),
(560025.4495758876, 6362057.390493258),
(560023.4495758876, 6362057.390493258),
(560023.4495758876, 6362060.390493258),
(560023.9495758876, 6362060.390493258),
(560023.9495758876, 6362061.890493258),
(560024.4495758876, 6362061.890493258),
(560024.4495758876, 6362063.390493258),
(560024.9495758876, 6362063.390493258),
(560024.9495758876, 6362064.390493258),
(560025.4495758876, 6362064.390493258),
(560025.4495758876, 6362065.390493258),
(560025.9495758876, 6362065.390493258),
(560025.9495758876, 6362065.890493258),
(560026.4495758876, 6362065.890493258),
(560026.4495758876, 6362066.890493258),
(560026.9495758876, 6362066.890493258),
(560026.9495758876, 6362068.390493258),
(560027.4495758876, 6362068.390493258),
(560027.4495758876, 6362068.890493258),
(560027.9495758876, 6362068.890493258),
(560027.9495758876, 6362069.390493258),
(560028.4495758876, 6362069.390493258),
(560028.4495758876, 6362069.890493258),
(560033.4495758876, 6362069.890493258),
(560033.4495758876, 6362070.390493258),
(560033.9495758876, 6362070.390493258),
(560033.9495758876, 6362070.890493258),
(560034.4495758876, 6362070.890493258),
(560034.4495758876, 6362071.390493258),
(560034.9495758876, 6362071.390493258),
(560034.9495758876, 6362071.890493258),
(560036.4495758876, 6362071.890493258)]
a_points = np.array(points)
x = a_points[:, 0]
y = a_points[:, 1]
from pylab import *
plot(x,y)
show()
a = fitEllipse(x,y)
center = ellipse_center(a)
phi = ellipse_angle_of_rotation(a)
axes = ellipse_axis_length(a)
print "center = ", center
print "angle of rotation = ", phi
print "axes = ", axes
from pylab import *
plot(x,y)
plot(center[0:1],center[1:], color = 'red')
show()
each vertex is a xi,y,i point
plot of 2D point and center of fit ellipse
© Stack Overflow or respective owner