Search Results

Search found 253354 results on 10135 pages for 'belongs on stack overflow'.

Page 1/10135 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • about buffer overflow

    - by Abed
    hello guys, I am new to the ethical hacking world, and one of the most important things is the stack overflow, anyway I coded a vulnerable C program which has a char name [400] statement, and when I try to run the program with 401A's it doesn't overflow, but the book which I am following says it must overflow and the logic sense says so, so what's wrong???

    Read the article

  • Java: immutability, overuse of stack -- better data structure?

    - by HH
    I overused hashSets but it was slow, then changed to Stacks, speed boost-up. Poly's reply uses Collections.emptyList() as immutable list, cutting out excess null-checkers. No Collections.emptyStack(). Combining the words stack and immutability, from the last experiences, gets "immutable stack" (probably not related to functional prog). Java Api 5 for list interface shows that Stack is an implementing class for list and arraylist, here. The java.coccurrent pkg does not have any immutable Stack data structure. The first hinted of misusing stack. The lack of immutabily in the last and poly's book recommendation leads way to list. Something very primitive, fast, no extra layers, with methods like emptyThing(). Overuse of stack and where I use it DataFile.java: public Stack<DataFile> files; FileObject.java: public Stack<String> printViews = new Stack<String>(); FileObject.java:// private static Stack<Object> getFormat(File f){return (new Format(f)).getFormat();} Format.java: private Stack<Object> getLine(File[] fs,String s){return wF;} Format.java: private Stack<Object> getFormat(){return format;} Positions.java: public static Stack<Integer[]> getPrintPoss(String s,File f,Integer maxViewPerF) Positions.java: Stack<File> possPrint = new Stack<File>(); Positions.java: Stack<Integer> positions=new Stack<Integer>(); Record.java: private String getFormatLine(Stack<Object> st) Record.java: Stack<String> lines=new Stack<String>(); SearchToUser.java: public static final Stack<File> allFiles = findf.getFs(); SearchToUser.java: public static final Stack<File> allDirs = findf.getDs(); SearchToUser.java: private Stack<Integer[]> positionsPrint=new Stack<Integer[]>(); SearchToUser.java: public Stack<String> getSearchResults(String s, Integer countPerFile, Integer resCount) SearchToUser.java: Stack<File> filesToS=Fs2Word.getFs2W(s,50); SearchToUser.java: Stack<String> rs=new Stack<String>(); View.java: public Stack<Integer[]> poss = new Stack<Integer[4]>(); View.java: public static Stack<String> getPrintViewsFileWise(String s,Object[] df,Integer maxViewsPerF) View.java: Stack<String> substrings = new Stack<String>(); View.java: private Stack<String> printViews=new Stack<String>(); View.java: MatchView(Stack<Integer> pss,File f,Integer maxViews) View.java: Stack<String> formatFile; View.java: private Stack<Search> files; View.java: private Stack<File> matchingFiles; View.java: private Stack<String> matchViews; View.java: private Stack<String> searchMatches; View.java: private Stack<String> getSearchResults(Integer numbResults) Easier with List: AllDirs and AllFs, now looping with push, but list has more pow. methods such as addAll [OLD] From Stack to some immutable data structure How to get immutable Stack data structure? Can I box it with list? Should I switch my current implementatios from stacks to Lists to get immutable? Which immutable data structure is Very fast with about similar exec time as Stack? No immutability to Stack with Final import java.io.*; import java.util.*; public class TestStack{ public static void main(String[] args) { final Stack<Integer> test = new Stack<Integer>(); Stack<Integer> test2 = new Stack<Integer>(); test.push(37707); test2.push(80437707); //WHY is there not an error to remove an elment // from FINAL stack? System.out.println(test.pop()); System.out.println(test2.pop()); } }

    Read the article

  • Which are the fundamental stack manipulation operations?

    - by Aadit M Shah
    I'm creating a stack oriented virtual machine, and so I started learning Forth for a general understanding about how it would work. Then I shortlisted the essential stack manipulation operations I would need to implement in my virtual machine: drop ( a -- ) dup ( a -- a a ) swap ( a b -- b a ) rot ( a b c -- b c a ) I believe that the following four stack manipulation operations can be used to simulate any other stack manipulation operation. For example: nip ( a b -- b ) swap drop -rot ( a b c -- c a b ) rot rot tuck ( a b -- b a b ) dup -rot over ( a b -- a b a ) swap tuck That being said however I wanted to know whether I have listed all the fundamental stack manipulation operations necessary to manipulate the stack in any possible way. Are there any more fundamental stack manipulation operations I would need to implement, without which my virtual machine wouldn't be Turing complete?

    Read the article

  • Confusion of the "stack" in Assembly-level programming

    - by Bigyellow Bastion
    What is the "stack" exactly? I've read articles, tried comprehending it through my understanding, experience, and educated guessing of programming and computers, but I'm a bit perplexed here. The "stack" is a region in RAM? Or is it some other space I'm uncertain of here? The processor pushes bits through registers on to the stack in RAM, or do I have it wrong here? Also, the processor moves the bits from the RAM to the register to "process" it, such as maybe a compare, arithmetic, etc. But what actually can help understand, in some visual or verbal description or both, of how to implement the idea of a "stack" here? Is the stack actually the same in terminology with a "machine stack" meaning it's in RAM? I'm sorry, I don't want to solicit debate or arguments, but I really could use some help here if anyone can straighten things out. TO ADD: I know what a software stack is. I know about LIFO, FIFO, etc. I just want to gain a better understanding of the Assembly-level stack, what it is, where it is, how exactly it works, etc. Thanks for reading!

    Read the article

  • Checking for underflow/overflow in C++?

    - by Legend
    Is there a general way to check for an overflow or an underflow of a given data type (uint32, int etc.)? I am doing something like this: uint32 a,b,c; ... //initialize a,b,c if(b < c) { a -= (c - b) } When I print a after some iterations, it displays a large number like: 4294963846.

    Read the article

  • The lua stack overflow,is this a bug?

    - by xiayong
    Some days ago, our program crash. I found the crash in lua code. So I check lua code, found the stack overflow. Please look this code In function luaD_precall: 1 if (!cl->isC) { /* Lua function? prepare its call */ 2 CallInfo *ci; 3 StkId st, base; 4 Proto *p = cl->p; 5 luaD_checkstack(L, p->maxstacksize); 6 func = restorestack(L, funcr); 7 if (!p->is_vararg) { /* no varargs? */ 8 base = func + 1; 9 if (L->top > base + p->numparams) 10 L->top = base + p->numparams; 11 } 12 else { /* vararg function */ 13 int nargs = cast_int(L->top - func) - 1; 14 base = adjust_varargs(L, p, nargs); 15 func = restorestack(L, funcr); /* previous call may change the stack */ 16 } 17 ci = inc_ci(L); /* now `enter' new function */ 18 ci->func = func; 19 L->base = ci->base = base; 20 ci->top = L->base + p->maxstacksize; 21 lua_assert(ci->top <= L->stack_last); 22 L->savedpc = p->code; /* starting point */ 23 ci->tailcalls = 0; 24 ci->nresults = nresults; 25 for (st = L->top; st < ci->top; st++) 26 setnilvalue(st); 27 L->top = ci->top; In my program, the p->maxstacksize is 79 before line 5, the current stacksize is 51, after call luaD_checkstack, the stacksize grow to 130. The lua function use vararg, so will run to line 14. Function adjust_varargs will be called. static StkId adjust_varargs (lua_State *L, Proto *p, int actual) { int i; int nfixargs = p->numparams; Table *htab = NULL; StkId base, fixed; for (; actual < nfixargs; ++actual) setnilvalue(L->top++); #if defined(LUA_COMPAT_VARARG) if (p->is_vararg & VARARG_NEEDSARG) { /* compat. with old-style vararg? */ int nvar = actual - nfixargs; /* number of extra arguments */ lua_assert(p->is_vararg & VARARG_HASARG); luaC_checkGC(L); htab = luaH_new(L, nvar, 1); /* create `arg' table */ In function adjust_varargs(), the lua function use “arg”, So luaC_checkGC will be called. In luaC_checkGC, the current lua stack size will be reduce to 65! The call stack like this: luaC_step() singlestep() propagatemark() traversestack() checkstacksizes() luaD_reallocstack() But the p->maxstacksize is 79, the stacksize is not enough… When the program run to line 27,the L->top is bigger than L->stack_last, in the next operation, will cause crash!

    Read the article

  • VERY strange stack overflow in C++ program

    - by mav
    Hello, I wrote a program some time ago (Mac OS X, C++, SDL, FMOD) and it perfomed rather good. But lately I wanted to extend its functionality and added some more code to it. And now, when I run it and try to test the new functionality, the program crashes with SIGABRT. Looking into debugger, on function stack I see: _kill kill$UNIX2003 raise __abort __stack_chk_fail odtworz <-- my function that was was modified As far as I know, "__stack_chk_fail" indicates a stack overflow. But that's not the weirdest thing about it. In this function "odtworz", I have some code like this: ... koniec = 0; while ( koniec == 0 ) { ... if (mode == 1) { ... } else if (mode == 2) { ... } else if (mode == 3) { ... } } mode is a global variable and is set to value "2" in a function before. And now imagine - if I delete the third if statement (mode == 3) which never gets executed in this mode, the program doesn't crash! Deleting code that doesn't even get to be executed helps the situation! Now, I don't want to delete this code because it's for other mode of my program. And it works fine there. So any hints where I can search? What could be possibly wrong with this?

    Read the article

  • Why is it 8 here,understanding buffer overflow

    - by Mask
    void function(int a, int b, int c) { char buffer1[5]; char buffer2[10]; int *ret; ret = buffer1 + 12; (*ret) += 8;//why is it 8?? } void main() { int x; x = 0; function(1,2,3); x = 1; printf("%d\n",x); } The above demo is from here: http://insecure.org/stf/smashstack.html But it's not working here: D:\test>gcc -Wall -Wextra hw.cpp && a.exe hw.cpp: In function `void function(int, int, int)': hw.cpp:6: warning: unused variable 'buffer2' hw.cpp: At global scope: hw.cpp:4: warning: unused parameter 'a' hw.cpp:4: warning: unused parameter 'b' hw.cpp:4: warning: unused parameter 'c' 1 And I don't understand why it's 8 though the author thinks: A little math tells us the distance is 8 bytes.

    Read the article

  • Assembly keep getting seg fault when working with stack [migrated]

    - by user973917
    I'm trying to learn assembly and have found that I keep getting segfaults when trying to push/pop data off of the stack. I've read a few guides and know how the stack works and how to work with the stack; but don't know why I keep getting the error. Can someone help? segment .data myvar: db "hello world", 0xA0, 0 myvarL: equ $-myvar segment .text global _start _start: push ebp mov ebp, esp push myvarL push myvar call _hworld _hworld: mov eax, 4 mov ebx, 1 mov ecx, [ebp+4] mov edx, [ebp+8] pop ebp int 0x80 ret I'm assuming that the +4 is 32 bits, then +8 is 64 bits. It isn't really clear to me why this way is being done on some of the guides I've read. I would assume that myvar is 13 bits?

    Read the article

  • Rails model belongs to model that belongs to model but i want to use another name

    - by Micke
    Hello. This may be a stupid question but im just starting to learn Rail thats why i am asking thsi question. I have one model called "User" which handles all the users in my community. Now i want to add a guestbook to every user. So i created a model called "user_guestbook" and inserted this into the new model: belongs_to :user and this into the user model: has_one :user_guestbook, :as => :guestbook The next thing i did was to add a new model to handle the posts inside the guestbook. I named it "guestbook_posts" and added this code into the new model: belongs_to :user_guestbook And this into the user_guestbook model: has_many :guestbook_posts, :as => :posts What i wanted to achive was to be able to fetch all the posts to a certain user by: @user = User.find(1) puts @user.guestbook.posts But it doesnt work for me. I dont know what i am doing wrong and if there is any easier way to do this please tell me so. Just to note, i have created some migrations for it to as follows: create_user_guestbook: t.integer :user_id create_guestbook_posts: t.integer :guestbook_id t.integer :from_user t.string :post Thanks in advance!

    Read the article

  • calculater by using reverse polish notation and using a stack

    - by programmer
    hello everyone I have a segmentation fault ,can you help please? if i have this operater "3 5 +" that mean 3+5 and like "9 8 * 5 + 4 + sin", "sin(((9*8)+5)+4)" so my idea is check if the first and second are numbers and push theem in the stack then when i have operator i pop the numbers and make the calculation then push the answer again. ` typedef struct st_node { float val; struct st_node *next; } t_node; typedef t_node t_stack; // a function to allocate memory for a stack and returns the stack t_stack* fnewCell() { t_stack* ret; ret = (t_stack*) malloc(sizeof(t_stack)); return ret; } // a function to allocate memory for a stack, fills it with value v and pointer n , and returns the stack t_stack* fnewCellFilled(float v, t_stack* n) { t_stack* ret; ret = fnewCell(); ret->val = v; ret->next =n; return ret; } //function to initialize stack void initstack(t_stack** stack) { fnewCellFilled(0,NULL); } // add new cell void insrtHead(t_stack** head,float val) { *head = fnewCellFilled(val,*head); } //function to push the value v into the stack s void push(t_stack **s, float val) { insrtHead(s,val); } //function to pop a value from the stack and returns it int pop(t_stack **s) { t_stack* tmp; int ret; tmp = (*s)->next; ret = (*s)->val; free(*s); (*s) = tmp; return ret; } int isempty (t_stack *t) { return t == NULL; } //function to transfer a string(str) to int (value) //returns -1 when success , i otherwise int str2int(char *str,int *value) { int i; *value = 0; int sign=(str[0]=='-' ? -1 : 1); for(i=(str[0]=='-' ? 1 : 0);str[i]!=0;i++) { if(!(str[i]>=48 && str[i]<=57)) // Ascii char 0 to 9 return i; *value= *value*10+(str[i]-48); } *value = *value * sign; return -1; } //a function that takes a string, transfer it into integer and make operation using a stack void function(t_stack *stack, char *str) { char x[10]=" "; int y,j,i=0,z; printf("++\n"); if(str[i] != '\0') { strcpy(x, strtok(str, " ")); z= str2int(x, &y); if(z == -1) { push(&stack,y); i=i+2; } } while(str[i] != '\0') { strcpy(x, strtok(NULL, " ")); z= str2int(x, &y); if(z == -1) { printf("yes %d",y); push(&stack,y); i=i+2; } else { y=pop(&stack); j=pop(&stack); if(x[0] == '+' ) push(&stack,y+j); else if (x[0] == '-' ) push(&stack,j-y); else if(x[0] == '*' ) push(&stack,j*y); else if(x[0] == '/') push (&stack ,j/y); } } } int main() { t_stack *s; initstack(&s); char *str="3 5 +"; function(s,str); return 0; } `

    Read the article

  • For buffer overflows, what is the stack address when using pthreads?

    - by t2k32316
    I'm taking a class in computer security and there is an extra credit assignment to insert executable code into a buffer overflow. I have the c source code for the target program I'm trying to manipulate, and I've gotten to the point where I can successfully overwrite the eip for the current function stack frame. However, I always get a Segmentation fault, because the address I supply is always wrong. The problem is that the current function is inside a pthread, and therefore, the address of the stack seems to always change between different runs of the program. Is there any method for finding the stack address within a pthread (or for estimating the stack address within a pthread)? (note: pthread_create's 2nd argument is null, so we're not manually assigning a stack address)

    Read the article

  • Java: immutable Stack?

    - by HH
    I chose to use Stacks and Tables before knowing Collections has immutable empty things only for Set, Map and List. Because the size of table does not change after its init: Integer[] table = new Intger[0] I can use the zero-witdh table as an empty table. But I cannot use final or empty Stack to get immutable Stack: No immutability to Stack with Final import java.io.*; import java.util.*; public class TestStack{ public static void main(String[] args) { final Stack<Integer> test = new Stack<Integer>(); Stack<Integer> test2 = new Stack<Integer>(); test.push(37707); test2.push(80437707); //WHY is there not an error to remove an elment // from FINAL stack? System.out.println(test.pop()); System.out.println(test2.pop()); } } Java Api 5 for list interface shows that Stack is an implementing class for list and arraylist, here. The java.coccurrent pkg does not have any immutable Stack data structure. From Stack to some immutable data structure How to get immutable Stack data structure? Can I box it with list? Should I switch my current implementatios from stacks to Lists to get immutable? Which immutable data structure is Very fast with about similar exec time as Stack?

    Read the article

  • Buffer Overflow (vs) Buffer OverRun (vs) Stack Overflow [closed]

    - by joe
    Possible Duplicate: What is the difference between a stack overflow and buffer overflow ? What is the difference between Buffer Overflow and Buffer Overrun? What is the difference between Buffer Overrun and Stack Overflow? Please include code examples. I have looked at the terms in Wikipedia, but I am unable to match with programming in C or C++ or Java.

    Read the article

  • CSS overflow: hidden; does not work

    - by kapil.israni
    Hi - I am having issues with overflow: hidden not working in my case. I have a div id=ticker which basically works like a scrolling ticker. something like this - http://www.tinymassive.com/ (whats happening section). So i am prepending dynamic content to div id=ticker The div id=ticker is contained in another div which is contained in another div, basically think of it like 4-5 level tree like structure body - div[id=wrapper] - div[class=main] - div[class=content] - div[class=frame] - div[class=bg] - div[class=primary-content] - div[id=ticker] Heres the css... #wrapper { width: 942px; margin: 0 auto; position:relative; overflow:hidden; } .main{ width:942px; margin:163px 0 0; overflow:hidden; } .content{ background:url(../images/content-bg.gif) repeat-y; overflow:hidden; width:662px; float:left; } .frame{ background:url(../images/frame-bg.gif) no-repeat 0 0; width:662px; } .bg{ background:url(../images/bg-bg.gif) no-repeat 0 100%; width:662px; overflow:hidden; } .primary-content{ padding: 12px 20px 40px 22px; width:620px; overflow:hidden; } #ticker { overflow: hidden; } Also if it helps - the ticker div contains a list of div[class=breadcrumps], which i am trying to scroll .breadcrumbs{ border-bottom:1px solid #ebebeb; padding:6px 0 6px 0; overflow:hidden; clear:both; } What i see is - when i prepend breadcrumps div to ticker, the page/ticker list keeps getting bigger :( Any help would be appreciated. Thanks.

    Read the article

  • Installing a new hardware enablement (HWE) stack in 64 bit Ubuntu

    - by Alexey
    I'd like to install 13.10 (Saucy) hardware enablement (HWE) stack to my Ubuntu 12.04 (64-bit) because I need a newer Linux kernel. This wiki page explains what "hardware enablement stacks" are. Among other things it says: Only the -generic x86 kernel flavor ... will be supported... Also, this answer says: ...This is only recommended for x86 hardware installations... Is x86 here synonymous to 32-bit/i386 architecture (but not 64-bit/AMD64), or is it i386/AMD64 (but not ARM)? Can I install this "hardware enablement stack" in a 64-bit/AMD64 Ubuntu? Will it be supported with future updates?

    Read the article

  • A lot of TCP: time wait bucket table overflow in CentOS 6

    - by divaka
    we have the following output from dmesg: __ratelimit: 33491 callbacks suppressed TCP: time wait bucket table overflow TCP: time wait bucket table overflow TCP: time wait bucket table overflow TCP: time wait bucket table overflow TCP: time wait bucket table overflow TCP: time wait bucket table overflow TCP: time wait bucket table overflow TCP: time wait bucket table overflow TCP: time wait bucket table overflow TCP: time wait bucket table overflow Also we have the following setting: cat /proc/sys/net/ipv4/tcp_max_tw_buckets 524288 We are under some kind of attack, but we could not detect what cause this problem?

    Read the article

  • Best way to detect integer overflow in C/C++

    - by Chris Johnson
    I was writing a program in C++ to find all solutions of a^b = c (a to the power of b), where a, b and c together use all the digits 0-9 exactly once. The program looped over values of a and b, and ran a digit-counting routine each time on a, b and a^b to check if the digits condition was satisfied. However, spurious solutions can be generated when a^b overflows the integer limit. I ended up checking for this using code like: unsigned long b, c, c_test; ... c_test=c*b; // Possible overflow if (c_test/b != c) {/* There has been an overflow*/} else c=c_test; // No overflow Is there a better way of testing for overflow? I know that some chips have an internal flag that is set when overflow occurs, but I've never seen it accessed through C or C++.

    Read the article

  • Status of stack based languages

    - by Andrea
    I have recently become curious about Factor, which, as far as I understand, is the most practical stack based language around. Forth seems not to be used much these days - I think it is because it was meant to be used on its own, instead of inside an operating system, although ports of course exist. It is also pretty low level. Joy is essentially dead, as the author stated that it does not make sense to mantain it in spite of adopting Factor. The fact is that Factor itself does not seem much developed today. The GitHub repo does not seem very active, and a lot of stuff languishes in unmantained. So, are there any other languages of this type that are more actively mantained? Are any in production use?

    Read the article

  • iTunes 9.0.2 hangs on launch on Mac OS X 10.6.2

    - by dlamblin
    My iTunes 9.0.2 hangs on launch in OS X 10.6.2. This doesn't happen all the time, only if I've been running for a while. Then it will recur until I restart. Similarly Safari 4.0.4 will hang in the flash player plugin when about to play a video. If I restart both these problems go away until later. Based on this crash dump I am suspecting Audio Hijack Pro. I will try to install a newer version of the driver involved, but so far I haven't had much luck. I have uninstalled the Flash Plugin (10.0.r42 and r32) but clearly I want it in the long run. This is iTunes' crash report. Date/Time: 2009-12-14 19:56:02 -0500 OS Version: 10.6.2 (Build 10C540) Architecture: x86_64 Report Version: 6 Command: iTunes Path: /Applications/iTunes.app/Contents/MacOS/iTunes Version: 9.0.2 (9.0.2) Build Version: 2 Project Name: iTunes Source Version: 9022501 Parent: launchd [120] PID: 16878 Event: hang Duration: 3.55s (sampling started after 2 seconds) Steps: 16 (100ms sampling interval) Pageins: 5 Pageouts: 0 Process: iTunes [16878] Path: /Applications/iTunes.app/Contents/MacOS/iTunes UID: 501 Thread 8f96000 User stack: 16 ??? (in iTunes + 6633) [0x29e9] 16 ??? (in iTunes + 6843) [0x2abb] 16 ??? (in iTunes + 11734) [0x3dd6] 16 ??? (in iTunes + 44960) [0xbfa0] 16 ??? (in iTunes + 45327) [0xc10f] 16 ??? (in iTunes + 2295196) [0x23159c] 16 ??? (in iTunes + 103620) [0x1a4c4] 16 ??? (in iTunes + 105607) [0x1ac87] 16 ??? (in iTunes + 106442) [0x1afca] 16 OpenAComponent + 433 (in CarbonCore) [0x972e9dd0] 16 CallComponentOpen + 43 (in CarbonCore) [0x972ebae7] 16 CallComponentDispatch + 29 (in CarbonCore) [0x972ebb06] 16 DefaultOutputAUEntry + 319 (in CoreAudio) [0x70031117] 16 AUGenericOutputEntry + 15273 (in CoreAudio) [0x7000e960] 16 AUGenericOutputEntry + 13096 (in CoreAudio) [0x7000e0df] 16 AUGenericOutputEntry + 9628 (in CoreAudio) [0x7000d353] 16 ??? [0xe0c16d] 16 ??? [0xe0fdf8] 16 ??? [0xe0e1e7] 16 ahs_hermes_CoreAudio_init + 32 (in Instant Hijack Server) [0x13fc7e9] 16 semaphore_wait_signal_trap + 10 (in libSystem.B.dylib) [0x9798e922] Kernel stack: 16 semaphore_wait_continue + 0 [0x22a0a5] Thread 9b9eb7c User stack: 16 thread_start + 34 (in libSystem.B.dylib) [0x979bbe42] 16 _pthread_start + 345 (in libSystem.B.dylib) [0x979bbfbd] 16 ??? (in iTunes + 4011870) [0x3d475e] 16 CFRunLoopRun + 84 (in CoreFoundation) [0x993497a4] 16 CFRunLoopRunSpecific + 452 (in CoreFoundation) [0x99343864] 16 __CFRunLoopRun + 2079 (in CoreFoundation) [0x9934477f] 16 mach_msg_trap + 10 (in libSystem.B.dylib) [0x9798e8da] Kernel stack: 16 ipc_mqueue_receive_continue + 0 [0x210aa3] Thread 9bc8b7c User stack: 16 start_wqthread + 30 (in libSystem.B.dylib) [0x979b4336] 16 _pthread_wqthread + 390 (in libSystem.B.dylib) [0x979b44f1] 16 _dispatch_worker_thread2 + 234 (in libSystem.B.dylib) [0x979b4a68] 16 _dispatch_queue_invoke + 163 (in libSystem.B.dylib) [0x979b4cc3] 16 kevent + 10 (in libSystem.B.dylib) [0x979b50ea] Kernel stack: 16 kevent + 97 [0x471745] Binary Images: 0x1000 - 0xbecfea com.apple.iTunes 9.0.2 (9.0.2) <1F665956-0131-39AF-F334-E29E510D42DA> /Applications/iTunes.app/Contents/MacOS/iTunes 0x13f6000 - 0x1402ff7 com.rogueamoeba.audio_hijack_server.hermes 2.2.2 (2.2.2) <9B29AE7F-6951-E63F-616A-482B62179A5C> /usr/local/hermes/modules/Instant Hijack Server.hermesmodule/Contents/MacOS/Instant Hijack Server 0x70000000 - 0x700cbffb com.apple.audio.units.Components 1.6.1 (1.6.1) <600769A2-479A-CA6E-A214-C8766F7CBD0F> /System/Library/Components/CoreAudio.component/Contents/MacOS/CoreAudio 0x97284000 - 0x975a3fe7 com.apple.CoreServices.CarbonCore 861.2 (861.2) <A9077470-3786-09F2-E0C7-F082B7F97838> /System/Library/Frameworks/CoreServices.framework/Versions/A/Frameworks/CarbonCore.framework/Versions/A/CarbonCore 0x9798e000 - 0x97b32feb libSystem.B.dylib ??? (???) <D45B91B2-2B4C-AAC0-8096-1FC48B7E9672> /usr/lib/libSystem.B.dylib 0x99308000 - 0x9947ffef com.apple.CoreFoundation 6.6.1 (550.13) <AE9FC6F7-F0B2-DE58-759E-7DB89C021A46> /System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundation Process: AirPort Base Station Agent [142] Path: /System/Library/CoreServices/AirPort Base Station Agent.app/Contents/MacOS/AirPort Base Station Agent UID: 501 Thread 8b1d3d4 DispatchQueue 1 User stack: 16 ??? (in AirPort Base Station Agent + 5344) [0x1000014e0] 16 ??? (in AirPort Base Station Agent + 70666) [0x10001140a] 16 CFRunLoopRun + 70 (in CoreFoundation) [0x7fff86e859b6] 16 CFRunLoopRunSpecific + 575 (in CoreFoundation) [0x7fff86e85c2f] 16 __CFRunLoopRun + 1698 (in CoreFoundation) [0x7fff86e867a2] 16 mach_msg_trap + 10 (in libSystem.B.dylib) [0x7fff8786ce3a] Kernel stack: 16 ipc_mqueue_receive_continue + 0 [0x210aa3] Thread 8b80000 DispatchQueue 2 User stack: 16 start_wqthread + 13 (in libSystem.B.dylib) [0x7fff87886a55] 16 _pthread_wqthread + 353 (in libSystem.B.dylib) [0x7fff87886bb8] 16 _dispatch_worker_thread2 + 244 (in libSystem.B.dylib) [0x7fff87887286] 16 _dispatch_queue_invoke + 185 (in libSystem.B.dylib) [0x7fff8788775c] 16 kevent + 10 (in libSystem.B.dylib) [0x7fff87885bba] Kernel stack: 16 kevent + 97 [0x471745] Thread 6e3c7a8 User stack: 16 start_wqthread + 13 (in libSystem.B.dylib) [0x7fff87886a55] 16 __workq_kernreturn + 10 (in libSystem.B.dylib) [0x7fff878869da] Kernel stack: 16 workqueue_thread_yielded + 562 [0x4cb6ae] Thread 8b0f3d4 User stack: 16 thread_start + 13 (in libSystem.B.dylib) [0x7fff878a5e41] 16 _pthread_start + 331 (in libSystem.B.dylib) [0x7fff878a5f8e] 16 select$DARWIN_EXTSN + 10 (in libSystem.B.dylib) [0x7fff878b09e2] Kernel stack: 16 sleep + 52 [0x487f93] Thread 8bcb000 User stack: 16 thread_start + 13 (in libSystem.B.dylib) [0x7fff878a5e41] 16 _pthread_start + 331 (in libSystem.B.dylib) [0x7fff878a5f8e] 16 ??? (in AirPort Base Station Agent + 71314) [0x100011692] 16 ??? (in AirPort Base Station Agent + 13712) [0x100003590] 16 ??? (in AirPort Base Station Agent + 71484) [0x10001173c] 16 __semwait_signal + 10 (in libSystem.B.dylib) [0x7fff878a79ee] Kernel stack: 16 semaphore_wait_continue + 0 [0x22a0a5] Binary Images: 0x100000000 - 0x100016fff com.apple.AirPortBaseStationAgent 1.5.4 (154.2) <73DF13C1-AF86-EC2C-9056-8D1946E607CF> /System/Library/CoreServices/AirPort Base Station Agent.app/Contents/MacOS/AirPort Base Station Agent 0x7fff86e3b000 - 0x7fff86faeff7 com.apple.CoreFoundation 6.6.1 (550.13) <1E952BD9-37C6-16BE-B2F0-CD92A6283D37> /System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundation 0x7fff8786c000 - 0x7fff87a2aff7 libSystem.B.dylib ??? (???) <526DD3E5-2A8B-4512-ED97-01B832369959> /usr/lib/libSystem.B.dylib Process: AppleSpell [3041] Path: /System/Library/Services/AppleSpell.service/Contents/MacOS/AppleSpell UID: 501 Thread 999a000 DispatchQueue 1 User stack: 16 ??? (in AppleSpell + 5852) [0x1000016dc] 16 ??? (in AppleSpell + 6508) [0x10000196c] 16 -[NSSpellServer run] + 72 (in Foundation) [0x7fff81d3b796] 16 CFRunLoopRun + 70 (in CoreFoundation) [0x7fff86e859b6] 16 CFRunLoopRunSpecific + 575 (in CoreFoundation) [0x7fff86e85c2f] 16 __CFRunLoopRun + 1698 (in CoreFoundation) [0x7fff86e867a2] 16 mach_msg_trap + 10 (in libSystem.B.dylib) [0x7fff8786ce3a] Kernel stack: 16 ipc_mqueue_receive_continue + 0 [0x210aa3] Thread 8a9e7a8 DispatchQueue 2 User stack: 16 start_wqthread + 13 (in libSystem.B.dylib) [0x7fff87886a55] 16 _pthread_wqthread + 353 (in libSystem.B.dylib) [0x7fff87886bb8] 16 _dispatch_worker_thread2 + 244 (in libSystem.B.dylib) [0x7fff87887286] 16 _dispatch_queue_invoke + 185 (in libSystem.B.dylib) [0x7fff8788775c] 16 kevent + 10 (in libSystem.B.dylib) [0x7fff87885bba] Kernel stack: 16 kevent + 97 [0x471745] Binary Images: 0x100000000 - 0x1000a9fef com.apple.AppleSpell 1.6.1 (61.1) <6DE57CC1-77A0-BC06-45E7-E1EACEBE1A88> /System/Library/Services/AppleSpell.service/Contents/MacOS/AppleSpell 0x7fff81cbc000 - 0x7fff81f3dfe7 com.apple.Foundation 6.6.1 (751.14) <767349DB-C486-70E8-7970-F13DB4CDAF37> /System/Library/Frameworks/Foundation.framework/Versions/C/Foundation 0x7fff86e3b000 - 0x7fff86faeff7 com.apple.CoreFoundation 6.6.1 (550.13) <1E952BD9-37C6-16BE-B2F0-CD92A6283D37> /System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundation 0x7fff8786c000 - 0x7fff87a2aff7 libSystem.B.dylib ??? (???) <526DD3E5-2A8B-4512-ED97-01B832369959> /usr/lib/libSystem.B.dylib Process: autofsd [52] Path: /usr/libexec/autofsd UID: 0 Thread 79933d4 DispatchQueue 1 User stack: 16 ??? (in autofsd + 5340) [0x1000014dc] 16 ??? (in autofsd + 6461) [0x10000193d] 16 CFRunLoopRun + 70 (in CoreFoundation) [0x7fff86e859b6] 16 CFRunLoopRunSpecific + 575 (in CoreFoundation) [0x7fff86e85c2f] 16 __CFRunLoopRun + 1698 (in CoreFoundation) [0x7fff86e867a2] 16 mach_msg_trap + 10 (in libSystem.B.dylib) [0x7fff8786ce3a] Kernel stack: 16 ipc_mqueue_receive_continue + 0 [0x210aa3] Thread 75997a8 DispatchQueue 2 User stack: 16 start_wqthread + 13 (in libSystem.B.dylib) [0x7fff87886a55] 16 _pthread_wqthread + 353 (in libSystem.B.dylib) [0x7fff87886bb8] 16 _dispatch_worker_thread2 + 244 (in libSystem.B.dylib) [0x7fff87887286] 16 _dispatch_queue_invoke + 185 (in libSystem.B.dylib) [0x7fff8788775c] 16 kevent + 10 (in libSystem.B.dylib) [0x7fff87885bba] Kernel stack: 16 kevent + 97 [0x471745] Binary Images: 0x100000000 - 0x100001ff7 autofsd ??? (???) <29276FAC-AEA8-1520-5329-C75F9D453D6C> /usr/libexec/autofsd 0x7fff86e3b000 - 0x7fff86faeff7 com.apple.CoreFoundation 6.6.1 (550.13) <1E952BD9-37C6-16BE-B2F0-CD92A6283D37> /System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundation 0x7fff8786c000 - 0x7fff87a2aff7 libSystem.B.dylib ??? (???) <526DD3E5-2A8B-4512-ED97-01B832369959> /usr/lib/libSystem.B.dylib Process: blued [51] Path: /usr/sbin/blued UID: 0 Thread 7993000 DispatchQueue 1 User stack: 16 ??? (in blued + 5016) [0x100001398] 16 ??? (in blued + 152265) [0x1000252c9] 16 -[NSRunLoop(NSRunLoop) run] + 77 (in Foundation) [0x7fff81d07903] 16 -[NSRunLoop(NSRunLoop) runMode:beforeDate:] + 270 (in Foundation) [0x7fff81d07a24] 16 CFRunLoopRunSpecific + 575 (in CoreFoundation) [0x7fff86e85c2f] 16 __CFRunLoopRun + 1698 (in CoreFoundation) [0x7fff86e867a2] 16 mach_msg_trap + 10 (in libSystem.B.dylib) [0x7fff8786ce3a] Kernel stack: 16 ipc_mqueue_receive_continue + 0 [0x210aa3] Thread 70db000 DispatchQueue 2 User stack: 16 start_wqthread + 13 (in libSystem.B.dylib) [0x7fff87886a55] 16 _pthread_wqthread + 353 (in libSystem.B.dylib) [0x7fff87886bb8] 16 _dispatch_worker_thread2 + 244 (in libSystem.B.dylib) [0x7fff87887286] 16 _dispatch_queue_invoke + 185 (in libSystem.B.dylib) [0x7fff8788775c] 16 kevent + 10 (in libSystem.B.dylib) [0x7fff87885bba] Kernel stack: 16 kevent + 97 [0x471745] Thread 84d2000 User stack: 16 thread_start + 13 (in libSystem.B.dylib) [0x7fff878a5e41] 16 _pthread_start + 331 (in libSystem.B.dylib) [0x7fff878a5f8e] 16 select$DARWIN_EXTSN + 10 (in libSystem.B.dylib) [0x7fff878b09e2] Kernel stack: 16 sleep + 52 [0x487f93] Binary Images: 0x100000000 - 0x100044fff blued ??? (???) <ECD752C9-F98E-3052-26BF-DC748281C992> /usr/sbin/blued 0x7fff81cbc000 - 0x7fff81f3dfe7 com.apple.Foundation 6.6.1 (751.14) <767349DB-C486-70E8-7970-F13DB4CDAF37> /System/Library/Frameworks/Foundation.framework/Versions/C/Foundation 0x7fff86e3b000 - 0x7fff86faeff7 com.apple.CoreFoundation 6.6.1 (550.13) <1E952BD9-37C6-16BE-B2F0-CD92A6283D37> /System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundation 0x7fff8786c000 - 0x7fff87a2aff7 libSystem.B.dylib ??? (???) <526DD3E5-2A8B-4512-ED97-01B832369959> /usr/lib/libSystem.B.dylib Process: check_afp [84504] Path: /System/Library/Filesystems/AppleShare/check_afp.app/Contents/MacOS/check_afp UID: 0 Thread 1140f000 DispatchQueue 1 User stack: 16 ??? (in check_afp + 5596) [0x1000015dc] 16 ??? (in check_afp + 12976) [0x1000032b0] 16 ??? (in check_afp + 6664) [0x100001a08] 16 ??? (in check_afp + 6520) [0x100001978] 16 CFRunLoopRun + 70 (in CoreFoundation) [0x7fff86e859b6] 16 CFRunLoopRunSpecific + 575 (in CoreFoundation) [0x7fff86e85c2f] 16 __CFRunLoopRun + 1698 (in CoreFoundation) [0x7fff86e867a2] 16 mach_msg_trap + 10 (in libSystem.B.dylib) [0x7fff8786ce3a] Kernel stack: 16 ipc_mqueue_receive_continue + 0 [0x210aa3] Thread 13ad8b7c DispatchQueue 2 User stack: 16 start_wqthread + 13 (in libSystem.B.dylib) [0x7fff87886a55] 16 _pthread_wqthread + 353 (in libSystem.B.dylib) [0x7fff87886bb8] 16 _dispatch_worker_thread2 + 244 (in libSystem.B.dylib) [0x7fff87887286] 16 _dispatch_queue_invoke + 185 (in libSystem.B.dylib) [0x7fff8788775c] 16 kevent + 10 (in libSystem.B.dylib) [0x7fff87885bba] Kernel stack: 16 kevent + 97 [0x471745] Thread 13ad6b7c User stack: 16 thread_start + 13 (in libSystem.B.dylib) [0x7fff878a5e41] 16 _pthread_start + 331 (in libSystem.B.dylib) [0x7fff878a5f8e] 16 ??? (in check_afp + 13071) [0x10000330f] 16 mach_msg_server_once + 285 (in libSystem.B.dylib) [0x7fff878b2417] 16 mach_msg_trap + 10 (in libSystem.B.dylib) [0x7fff8786ce3a] Kernel stack: 16 ipc_mqueue_receive_continue + 0 [0x210aa3] Thread 13ad87a8 User stack: 16 thread_start + 13 (in libSystem.B.dylib) [0x7fff878a5e41] 16 _pthread_start + 331 (in libSystem.B.dylib) [0x7fff878a5f8e] 16 select$DARWIN_EXTSN + 10 (in libSystem.B.dylib) [0x7fff878b09e2] Kernel stack: 16 sleep + 52 [0x487f93] Binary Images: 0x100000000 - 0x100004ff7 com.apple.check_afp 2.0 (2.0) <EE865A7B-8CDC-7649-58E1-6FE2B43F7A73> /System/Library/Filesystems/AppleShare/check_afp.app/Contents/MacOS/check_afp 0x7fff86e3b000 - 0x7fff86faeff7 com.apple.CoreFoundation 6.6.1 (550.13) <1E952BD9-37C6-16BE-B2F0-CD92A6283D37> /System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundation 0x7fff8786c000 - 0x7fff87a2aff7 libSystem.B.dylib ??? (???) <526DD3E5-2A8B-4512-ED97-01B832369959> /usr/lib/libSystem.B.dylib Process: configd [14] Path: /usr/libexec/configd UID: 0 Thread 704a3d4 DispatchQueue 1 User stack: 16 start + 52 (in configd) [0x100001488] 16 main + 2051 (in configd) [0x100001c9e] 16 server_loop + 72 (in configd) [0x1000024f4] 16 CFRunLoopRunSpecific + 575 (in CoreFoundation) [0x7fff86e85c2f] 16 __CFRunLoopRun + 1698 (in CoreFoundation) [0x7fff86e867a2] 16 mach_msg_trap + 10 (in libSystem.B.dylib) [0x7fff8786ce3a] Kernel stack: 16 ipc_mqueue_receive_continue + 0 [0x210aa3] Thread 6e70000 DispatchQueue 2 User stack: 16 start_wqthread + 13 (in libSystem.B.dylib) [0x7fff87886a55] 16 _pthread_wqthread + 353 (in libSystem.B.dylib) [0x7fff87886bb8] 16 _dispatch_worker_thread2 + 244 (in libSystem.B.dylib) [0x7fff87887286] 16 _dispatch_queue_invoke + 185 (in libSystem.B.dylib) [0x7fff8788775c] 16 kevent + 10 (in libSystem.B.dylib) [0x7fff87885bba] Kernel stack: 16 kevent + 97 [0x471745] Thread 74a7b7c User stack: 16 thread_start + 13 (in libSystem.B.dylib) [0x7fff878a5e41] 16 _pthread_start + 331 (in libSystem.B.dylib) [0x7fff878a5f8e] 16 plugin_exec + 1440 (in configd) [0x100003c5b] 16 CFRunLoopRun + 70 (in CoreFoundation) [0x7fff86e859b6] 16 CFRunLoopRunSpecific + 575 (in CoreFoundation) [0x7fff86e85c2f] 16 __CFRunLoopRun + 1698 (in CoreFoundation) [0x7fff86e867a2] 16 mach_msg_trap + 10 (in libSystem.B.dylib) [0x7fff8786ce3a] Kernel stack: 16 ipc_mqueue_receive_continue + 0 [0x210aa3] Thread 7560000 User stack: 16 thread_start + 13 (in libSystem.B.dylib) [0x7fff878a5e41] 16 _pthread_start + 331 (in libSystem.B.dylib) [0x7fff878a5f8e] 16 _io_pm_force_active_settings + 2266 (in PowerManagement) [0x10050f968] 16 CFRunLoopRun + 70 (in CoreFoundation) [0x7fff86e859b6] 16 CFRunLoopRunSpecific + 575 (in CoreFoundation) [0x7fff86e85c2f] 16 __CFRunLoopRun + 1698 (in CoreFoundation) [0x7fff86e867a2] 16 mach_msg_trap + 10 (in libSystem.B.dylib) [0x7fff8786ce3a] Kernel stack: 16 ipc_mqueue_receive_continue + 0 [0x210aa3] Thread 75817a8 User stack: 16 thread_start + 13 (in libSystem.B.dylib) [0x7fff878a5e41] 16 _pthread_start + 331 (in libSystem.B.dylib) [0x7fff878a5f8e] 16 select$DARWIN_EXTSN + 10 (in libSystem.B.dylib) [0x7fff878b09e2] Kernel stack: 16 sleep + 52 [0x487f93] Thread 8b1db7c User stack: 16 start_wqthread + 13 (in libSystem.B.dylib) [0x7fff87886a55] 16 __workq_kernreturn + 10 (in libSystem.B.dylib) [0x7fff878869da] Kernel stack: 16 workqueue_thread_yielded + 562 [0x4cb6ae] Binary Images: 0x100000000 - 0x100026ff7 configd ??? (???) <58C02CBA-5556-4CDC-2763-814C4C7175DE> /usr/libexec/configd 0x10050c000 - 0x10051dfff com.apple.SystemConfiguration.PowerManagement 160.0.0 (160.0.0) <0AC3D2ED-919E-29C7-9EEF-629FBDDA6159> /System/Library/SystemConfiguration/PowerManagement.bundle/Contents/MacOS/PowerManagement 0x7fff86e3b000 - 0x7fff86faeff7 com.apple.CoreFoundation 6.6.1 (550.13) <1E952BD9-37C6-16BE-B2F0-CD92A6283D37> /System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundation 0x7fff8786c000 - 0x7fff87a2aff7 libSystem.B.dylib ??? (???) <526DD3E5-2A8B-4512-ED97-01B832369959> /usr/lib/libSystem.B.dylib Process: coreaudiod [114] Path: /usr/sbin/coreaudiod UID: 202 Thread 83b93d4 DispatchQueue 1 User stack: 16 ??? (in coreaudiod + 3252) [0x100000cb4] 16 ??? (in coreaudiod + 26505) [0x100006789] 16 CFRunLoopRunSpecific + 575 (in CoreFoundation) [0x7fff86e85c2f] 16 __CFRunLoopRun + 1698 (in CoreFoundation) [0x7fff86e867a2] 16 mach_msg_trap + 10 (in libSystem.B.dylib) [0x7fff8786ce3a] Kernel stack: 16 ipc_mqueue_receive_continue + 0 [0x210aa3] Thread 847e3d4 DispatchQueue 2 User stack: 16 start_wqthread + 13 (in libSystem.B.dylib) [0x7fff87886a55] 16 _pthread_wqthread + 353 (in libSystem.B.dylib) [0x7fff87886bb8] 16 _dispatch_worker_thread2 + 244 (in libSystem.B.dylib) [0x7fff87887286] 16 _dispatch_queue_invoke + 185 (in libSystem.B.dylib) [0x7fff8788775c] 16 kevent + 10 (in libSystem.B.dylib) [0x7fff87885bba] Kernel stack: 16 kevent + 97 [0x471745] Thread 854c000 User stack: 3 start_wqthread + 13 (in libSystem.B.dylib) [0x7fff87886a55] 3 __workq_kernreturn + 10 (in libSystem.B.dylib) [0x7fff878869da] Kernel stack: 3 workqueue_thread_yielded + 562 [0x4cb6ae] Binary Images: 0x100000000 - 0x10001ffef coreaudiod ??? (???) <A060D20F-A6A7-A3AE-84EC-11D7D7DDEBC6> /usr/sbin/coreaudiod 0x7fff86e3b000 - 0x7fff86faeff7 com.apple.CoreFoundation 6.6.1 (550.13) <1E952BD9-37C6-16BE-B2F0-CD92A6283D37> /System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundation 0x7fff8786c000 - 0x7fff87a2aff7 libSystem.B.dylib ??? (???) <526DD3E5-2A8B-4512-ED97-01B832369959> /usr/lib/libSystem.B.dylib Process: coreservicesd [66] Path: /System/Library/CoreServices/coreservicesd UID: 0 Thread 7994000 DispatchQueue 1 User stack: 16 ??? (in coreservicesd + 3756) [0x100000eac] 16 _CoreServicesServerMain + 522 (in CarbonCore) [0x7fff8327a972] 16 CFRunLoopRun + 70 (in CoreFoundation) [0x7fff86e859b6] 16 CFRunLoopRunSpecific + 575 (in CoreFoundation) [0x7fff86e85c2f] 16 __CFRunLoopRun + 1698 (in CoreFoundation) [0x7fff86e867a2] 16 mach_msg_trap + 10 (in libSystem.B.dylib) [0x7fff8786ce3a] Kernel stack: 16 ipc_mqueue_receive_continue + 0 [0x210aa3] Thread 76227a8 User stack: 16 thread_start + 13 (in libSystem.B.dylib) [0x7fff878a5e41] 16 _pthread_start + 331 (in libSystem.B.dylib) [0x7fff878a5f8e] 16 read + 10 (in libSystem.B.dylib) [0x7fff87877426] Kernel stack: 16 lo64_unix_scall + 77 [0x29e3fd] 16 unix_syscall64 + 617 [0x4ee947] 16 read_nocancel + 158 [0x496add] 16 write + 312 [0x49634d] 16 get_pathbuff + 3054 [0x3023db] 16 tsleep + 105 [0x4881ce] 16 wakeup + 786 [0x487da7] 16 thread_block + 33 [0x226fb5] 16 thread_block_reason + 331 [0x226f27] 16 thread_dispatch + 1950 [0x226c88] 16 machine_switch_context + 753 [0x2a5a37] Thread 7622b7c User stack: 16 thread_start + 13 (in libSystem.B.dylib) [0x7fff878a5e41] 16 _pthread_start + 331 (in libSystem.B.dylib) [0x7fff878a5f8e] 16 fmodWatchConsumer + 347 (in CarbonCore) [0x7fff8322f23f] 16 __semwait_signal + 10 (in libSystem.B.dylib) [0x7fff878a79ee] Kernel stack: 16 semaphore_wait_continue + 0 [0x22a0a5] Thread 79913d4 User stack: 16 start_wqthread + 13 (in libSystem.B.dylib) [0x7fff87886a55] 16 _pthread_wqthread + 353 (in libSystem.B.dylib) [0x7fff87886bb8] 16 _dispatch_worker_thread2 + 244 (in libSystem.B.dylib) [0x7fff87887286] 16 _dispatch_queue_invoke + 185 (in libSystem.B.dylib) [0x7fff8788775c] 16 kevent + 10 (in libSystem.B.dylib) [0x7fff87885bba] Kernel stack: 16 kevent + 97 [0x471745] Thread 84d2b7c User stack: 16 start_wqthread + 13 (in libSystem.B.dylib) [0x7fff87886a55] 16 __workq_kernreturn + 10 (in libSystem.B.dylib) [0x7fff878869da] Kernel stack: 16 workqueue_thread_yielded + 562 [0x4cb6ae] Thread 9b643d4 User stack: 15 start_wqthread + 13 (in libSystem.B.dylib) [0x7fff87886a55] 15 __workq_kernreturn + 10 (in libSystem.B.dylib) [0x7fff878869da] Kernel stack: 16 workqueue_thread_yielded + 562 [0x4cb6ae] Binary Images: 0x100000000 - 0x100000fff coreservicesd ??? (???) <D804E55B-4376-998C-AA25-2ADBFDD24414> /System/Library/CoreServices/coreservicesd 0x7fff831cb000 - 0x7fff834fdfef com.apple.CoreServices.CarbonCore 861.2 (861.2) <39F3B259-AC2A-792B-ECFE-4F3E72F2D1A5> /System/Library/Frameworks/CoreServices.framework/Versions/A/Frameworks/CarbonCore.framework/Versions/A/CarbonCore 0x7fff86e3b000 - 0x7fff86faeff7 com.apple.CoreFoundation 6.6.1 (550.13) <1E952BD9-37C6-16BE-B2F0-CD92A6283D37> /System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundation 0x7fff8786c000 - 0x7fff87a2aff7 libSystem.B.dylib ??? (???) <526DD3E5-2A8B-4512-ED97-01B832369959> /usr/lib/libSystem.B.dylib Process: cron [31] Path: /usr/sbin/cron UID: 0 Thread 75acb7c DispatchQueue 1 User stack: 16 ??? (in cron + 2872) [0x100000b38] 16 ??? (in cron + 3991) [0x100000f97] 16 sleep + 61 (in libSystem.B.dylib) [0x7fff878f5090] 16 __semwait_signal + 10 (in libSystem.B.dylib) [0x7fff878a79ee] Kernel stack: 16 semaphore_wait_continue + 0 [0x22a0a5] Binary Images: 0x100000000 - 0x100006fff cron ??? (???) <3C5DCC7E-B6E8-1318-8E00-AB721270BFD4> /usr/sbin/cron 0x7fff8786c000 - 0x7fff87a2aff7 libSystem.B.dylib ??? (???) <526DD3E5-2A8B-4512-ED97-01B832369959> /usr/lib/libSystem.B.dylib Process: cvmsServ [104] Path: /System/Library/Frameworks/OpenGL.framework/Versions/A/Libraries/cvmsServ UID: 0 Thread 761f3d4 DispatchQueue 1 User stack: 16 ??? (in cvmsServ + 4100) [0x100001004] 16 ??? (in cvmsServ + 23081) [0x100005a29] 16 mach_msg_server + 597 (in libSystem.B.dylib) [0x7fff878ea1c8] 16 mach_msg_trap + 10 (in libSystem.B.dylib) [0x7fff8786ce3a] Kernel stack: 16 ipc_mqueue_receive_continue + 0 [0x210aa3] Binary Images: 0x100000000 - 0x100008fff cvmsServ ??? (???) <6200AD80-4159-5656-8736-B72B7388C461> /System/Library/Frameworks/OpenGL.framework/Versions/A/Libraries/cvmsServ 0x7fff8786c000 - 0x7fff87a2aff7 libSystem.B.dylib ??? (???) <526DD3E5-2A8B-4512-ED97-01B832369959> /usr/lib/libSystem.B.dylib Process: DirectoryService [11] Path: /usr/sbin/DirectoryService UID: 0 Thread 70db7a8 DispatchQueue 1 User stack: 16 start + 52 (in DirectoryService) [0x10000da74] 16 main + 3086 (in DirectoryService) [0x10000e68a] 16 CFRunLoopRun + 70 (in CoreFoundation) [0x7fff86e859b6] 16 CFRunLoopRunSpecific + 575 (in CoreFoundation) [0x7fff86e85c2f] 16 __CFRunLoopRun + 1698 (in CoreFoundation) [0x7fff86e867a2] 16 mach_msg_trap + 10 (in libSystem.B.dylib) [0x7fff8786ce3a] Kernel stack: 16 ipc_mqueue_receive_continue + 0 [0x210aa3] Thread <multiple> DispatchQueue 6 User stack: 17 start_wqthread + 13 (in libSystem.B.dylib) [0x7fff87886a55] 17 _pthread_wqthread + 353 (in libSystem.B.dylib) [0x7fff87886bb8] 16 _dispatch_worker_thread2 + 231 (in libSystem.B.dylib) [0x7fff87887279] 16 _dispatch_call_block_and_release + 15 (in libSystem.B.dylib) [0x7fff878a8ce8] 16 syscall + 10 (in libSystem.B.dylib) [0x7fff878a92da] 1 _disp

    Read the article

  • performing simple stack overflow on Mac os 10.6

    - by REALFREE
    I'm trying to learn about stack base overflow and write a simple code to exploit stack. But somehow it doesn't work at all but showing only Abort trap on my machine (mac os leopard) I guess Mac os treats overflow differently, it won't allow me to overwrite memory through c code. for example, strcpy(buffer, input) // lets say char buffer[6] but input is 7 bytes on Linux machine, this code successfully overwrite next stack, but prevented on mac os (Abort trap) Anyone know how to perform a simple stack-base overflow on mac machine?

    Read the article

  • performing simple buffer overflow on Mac os 10.6

    - by REALFREE
    I'm trying to learn about stack base overflow and write a simple code to exploit stack. But somehow it doesn't work at all but showing only Abort trap on my machine (mac os leopard) I guess Mac os treats overflow differently, it won't allow me to overwrite memory through c code. for example, strcpy(buffer, input) // lets say char buffer[6] but input is 7 bytes on Linux machine, this code successfully overwrite next stack, but prevented on mac os (Abort trap) Anyone know how to perform a simple stack-base overflow on mac machine?

    Read the article

  • Stack data storage order

    - by Jamie Dixon
    When talking about a stack in either computing or "real" life we usually assume a "first on, last off" type of functionality. Because the idea of a stack is based around something in the physical world, does it matter how the data in the stack is stored? I notice in a lot of examples that the storage of the stack data is quite often done using an array and the newest item added to the stack is placed at the bottom of the array. (like adding a new plate to an existing stack of plates except putting it underneath the other plates rather than on top). As a paradigm, does it matter in what order the data is stored within the stack as long as the operation of the stack acts as expected?

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >