Search Results

Search found 96916 results on 3877 pages for 'code model'.

Page 1/3877 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Deploying Data Mining Models using Model Export and Import, Part 2

    - by [email protected]
    In my last post, Deploying Data Mining Models using Model Export and Import, we explored using DBMS_DATA_MINING.EXPORT_MODEL and DBMS_DATA_MINING.IMPORT_MODEL to enable moving a model from one system to another. In this post, we'll look at two distributed scenarios that make use of this capability and a tip for easily moving models from one machine to another using only Oracle Database, not an external file transport mechanism, such as FTP. The first scenario, consider a company with geographically distributed business units, each collecting and managing their data locally for the products they sell. Each business unit has in-house data analysts that build models to predict which products to recommend to customers in their space. A central telemarketing business unit also uses these models to score new customers locally using data collected over the phone. Since the models recommend different products, each customer is scored using each model. This is depicted in Figure 1.Figure 1: Target instance importing multiple remote models for local scoring In the second scenario, consider multiple hospitals that collect data on patients with certain types of cancer. The data collection is standardized, so each hospital collects the same patient demographic and other health / tumor data, along with the clinical diagnosis. Instead of each hospital building it's own models, the data is pooled at a central data analysis lab where a predictive model is built. Once completed, the model is distributed to hospitals, clinics, and doctor offices who can score patient data locally.Figure 2: Multiple target instances importing the same model from a source instance for local scoring Since this blog focuses on model export and import, we'll only discuss what is necessary to move a model from one database to another. Here, we use the package DBMS_FILE_TRANSFER, which can move files between Oracle databases. The script is fairly straightforward, but requires setting up a database link and directory objects. We saw how to create directory objects in the previous post. To create a database link to the source database from the target, we can use, for example: create database link SOURCE1_LINK connect to <schema> identified by <password> using 'SOURCE1'; Note that 'SOURCE1' refers to the service name of the remote database entry in your tnsnames.ora file. From SQL*Plus, first connect to the remote database and export the model. Note that the model_file_name does not include the .dmp extension. This is because export_model appends "01" to this name.  Next, connect to the local database and invoke DBMS_FILE_TRANSFER.GET_FILE and import the model. Note that "01" is eliminated in the target system file name.  connect <source_schema>/<password>@SOURCE1_LINK; BEGIN  DBMS_DATA_MINING.EXPORT_MODEL ('EXPORT_FILE_NAME' || '.dmp',                                 'MY_SOURCE_DIR_OBJECT',                                 'name =''MY_MINING_MODEL'''); END; connect <target_schema>/<password>; BEGIN  DBMS_FILE_TRANSFER.GET_FILE ('MY_SOURCE_DIR_OBJECT',                               'EXPORT_FILE_NAME' || '01.dmp',                               'SOURCE1_LINK',                               'MY_TARGET_DIR_OBJECT',                               'EXPORT_FILE_NAME' || '.dmp' );  DBMS_DATA_MINING.IMPORT_MODEL ('EXPORT_FILE_NAME' || '.dmp',                                 'MY_TARGET_DIR_OBJECT'); END; To clean up afterward, you may want to drop the exported .dmp file at the source and the transferred file at the target. For example, utl_file.fremove('&directory_name', '&model_file_name' || '.dmp');

    Read the article

  • Deploying Data Mining Models using Model Export and Import

    - by [email protected]
    In this post, we'll take a look at how Oracle Data Mining facilitates model deployment. After building and testing models, a next step is often putting your data mining model into a production system -- referred to as model deployment. The ability to move data mining model(s) easily into a production system can greatly speed model deployment, and reduce the overall cost. Since Oracle Data Mining provides models as first class database objects, models can be manipulated using familiar database techniques and technology. For example, one or more models can be exported to a flat file, similar to a database table dump file (.dmp). This file can be moved to a different instance of Oracle Database EE, and then imported. All methods for exporting and importing models are based on Oracle Data Pump technology and found in the DBMS_DATA_MINING package. Before performing the actual export or import, a directory object must be created. A directory object is a logical name in the database for a physical directory on the host computer. Read/write access to a directory object is necessary to access the host computer file system from within Oracle Database. For our example, we'll work in the DMUSER schema. First, DMUSER requires the privilege to create any directory. This is often granted through the sysdba account. grant create any directory to dmuser; Now, DMUSER can create the directory object specifying the path where the exported model file (.dmp) should be placed. In this case, on a linux machine, we have the directory /scratch/oracle. CREATE OR REPLACE DIRECTORY dmdir AS '/scratch/oracle'; If you aren't sure of the exact name of the model or models to export, you can find the list of models using the following query: select model_name from user_mining_models; There are several options when exporting models. We can export a single model, multiple models, or all models in a schema using the following procedure calls: BEGIN   DBMS_DATA_MINING.EXPORT_MODEL ('MY_MODEL.dmp','dmdir','name =''MY_DT_MODEL'''); END; BEGIN   DBMS_DATA_MINING.EXPORT_MODEL ('MY_MODELS.dmp','dmdir',              'name IN (''MY_DT_MODEL'',''MY_KM_MODEL'')'); END; BEGIN   DBMS_DATA_MINING.EXPORT_MODEL ('ALL_DMUSER_MODELS.dmp','dmdir'); END; A .dmp file can be imported into another schema or database using the following procedure call, for example: BEGIN   DBMS_DATA_MINING.IMPORT_MODEL('MY_MODELS.dmp', 'dmdir'); END; As with models from any data mining tool, when moving a model from one environment to another, care needs to be taken to ensure the transformations that prepare the data for model building are matched (with appropriate parameters and statistics) in the system where the model is deployed. Oracle Data Mining provides automatic data preparation (ADP) and embedded data preparation (EDP) to reduce, or possibly eliminate, the need to explicitly transport transformations with the model. In the case of ADP, ODM automatically prepares the data and includes the necessary transformations in the model itself. In the case of EDP, users can associate their own transformations with attributes of a model. These transformations are automatically applied when applying the model to data, i.e., scoring. Exporting and importing a model with ADP or EDP results in these transformations being immediately available with the model in the production system.

    Read the article

  • Reusable VS clean code - where's the balance?

    - by Radek Šimko
    Let's say I have a data model for a blog posts and have two use-cases of that model - getting all blogposts and getting only blogposts which were written by specific author. There are basically two ways how I can realize that. 1st model class Articles { public function getPosts() { return $this->connection->find() ->sort(array('creation_time' => -1)); } public function getPostsByAuthor( $authorUid ) { return $this->connection->find(array('author_uid' => $authorUid)) ->sort(array('creation_time' => -1)); } } 1st usage (presenter/controller) if ( $GET['author_uid'] ) { $posts = $articles->getPostsByAuthor($GET['author_uid']); } else { $posts = $articles->getPosts(); } 2nd one class Articles { public function getPosts( $authorUid = NULL ) { $query = array(); if( $authorUid !== NULL ) { $query = array('author_uid' => $authorUid); } return $this->connection->find($query) ->sort(array('creation_time' => -1)); } } 2nd usage (presenter/controller) $posts = $articles->getPosts( $_GET['author_uid'] ); To sum up (dis)advantages: 1) cleaner code 2) more reusable code Which one do you think is better and why? Is there any kind of compromise between those two?

    Read the article

  • PHP: Aggregate Model Classes or Uber Model Classes?

    - by sunwukung
    In many of the discussions regarding the M in MVC, (sidestepping ORM controversies for a moment), I commonly see Model classes described as object representations of table data (be that an Active Record, Table Gateway, Row Gateway or Domain Model/Mapper). Martin Fowler warns against the development of an anemic domain model, i.e. a class that is nothing more than a wrapper for CRUD functionality. I've been working on an MVC application for a couple of months now. The DBAL in the application I'm working on started out simple (on account of my understanding - oh the benefits of hindsight), and is organised so that Controllers invoke Business Logic classes, that in turn access the database via DAO/Transaction Scripts pertinent to the task at hand. There are a few "Entity" classes that aggregate these DAO objects to provide a convenient CRUD wrapper, but also embody some of the "behaviour" of that Domain concept (for example, a user - since it's easy to isolate). Taking a look at some of the code, and thinking along refactoring some of the code into a Rich Domain Model, it occurred to me that were I to try and wrap the CRUD routines and behaviour of say, a Company into a single "Model" class, that would be a sizeable class. So, my question is this: do Models represent domain objects, business logic, service layers, all of the above combined? How do you go about defining the responsibilities for these components?

    Read the article

  • code metrics for .net code

    - by user20358
    While the code metrics tool gives a pretty good analysis of the code being analyzed, I was wondering if there was any such benchmark on acceptable standards for the following as well: Maximum number of types per assembly Maximum number of such types that can be accessible Maximum number of parameters per method Acceptable RFC count Acceptable Afferent coupling count Acceptable Efferent coupling count Any other metrics to judge the quality of .Net code by? Thanks for your time.

    Read the article

  • What code smell best describes this code?

    - by Paul Stovell
    Suppose you have this code in a class: private DataContext _context; public Customer[] GetCustomers() { GetContext(); return _context.Customers.ToArray(); } public Order[] GetOrders() { GetContext(); return _context.Customers.ToArray(); } // For the sake of this example, a new DataContext is *required* // for every public method call private void GetContext() { if (_context != null) { _context.Dispose(); } _context = new DataContext(); } This code isn't thread-safe - if two calls to GetOrders/GetCustomers are made at the same time from different threads, they may end up using the same context, or the context could be disposed while being used. Even if this bug didn't exist, however, it still "smells" like bad code. A much better design would be for GetContext to always return a new instance of DataContext and to get rid of the private field, and to dispose of the instance when done. Changing from an inappropriate private field to a local variable feels like a better solution. I've looked over the code smell lists and can't find one that describes this. In the past I've thought of it as temporal coupling, but the Wikipedia description suggests that's not the term: Temporal coupling When two actions are bundled together into one module just because they happen to occur at the same time. This page discusses temporal coupling, but the example is the public API of a class, while my question is about the internal design. Does this smell have a name? Or is it simply "buggy code"?

    Read the article

  • Rails model belongs to model that belongs to model but i want to use another name

    - by Micke
    Hello. This may be a stupid question but im just starting to learn Rail thats why i am asking thsi question. I have one model called "User" which handles all the users in my community. Now i want to add a guestbook to every user. So i created a model called "user_guestbook" and inserted this into the new model: belongs_to :user and this into the user model: has_one :user_guestbook, :as => :guestbook The next thing i did was to add a new model to handle the posts inside the guestbook. I named it "guestbook_posts" and added this code into the new model: belongs_to :user_guestbook And this into the user_guestbook model: has_many :guestbook_posts, :as => :posts What i wanted to achive was to be able to fetch all the posts to a certain user by: @user = User.find(1) puts @user.guestbook.posts But it doesnt work for me. I dont know what i am doing wrong and if there is any easier way to do this please tell me so. Just to note, i have created some migrations for it to as follows: create_user_guestbook: t.integer :user_id create_guestbook_posts: t.integer :guestbook_id t.integer :from_user t.string :post Thanks in advance!

    Read the article

  • Java code critique request [closed]

    - by davidk01
    Can you make sense of the following bit of java code and do you have any suggestions for improving it? Instead of writing four almost identical setOnClickListener method calls I opted to iterate over an array but I'm wondering if this was the best way to do it. Here's the code: /* Set up the radio button click listeners so two categories are not selected at the same time. When one of them is clicked it clears the others. */ final RadioButton[] buttons = {radio_books,radio_games,radio_dvds,radio_electronics}; for (int i = 0; i < 4; i++) { final int k = i; buttons[i].setOnClickListener(new OnClickListener() { @Override public void onClick(View v) { for (int j = 0; j < 4; j++) { if (buttons[j] != buttons[k]) { buttons[j].setChecked(false); } } } }); }

    Read the article

  • Oracle BI Server Modeling, Part 1- Designing a Query Factory

    - by bob.ertl(at)oracle.com
      Welcome to Oracle BI Development's BI Foundation blog, focused on helping you get the most value from your Oracle Business Intelligence Enterprise Edition (BI EE) platform deployments.  In my first series of posts, I plan to show developers the concepts and best practices for modeling in the Common Enterprise Information Model (CEIM), the semantic layer of Oracle BI EE.  In this segment, I will lay the groundwork for the modeling concepts.  First, I will cover the big picture of how the BI Server fits into the system, and how the CEIM controls the query processing. Oracle BI EE Query Cycle The purpose of the Oracle BI Server is to bridge the gap between the presentation services and the data sources.  There are typically a variety of data sources in a variety of technologies: relational, normalized transaction systems; relational star-schema data warehouses and marts; multidimensional analytic cubes and financial applications; flat files, Excel files, XML files, and so on. Business datasets can reside in a single type of source, or, most of the time, are spread across various types of sources. Presentation services users are generally business people who need to be able to query that set of sources without any knowledge of technologies, schemas, or how sources are organized in their company. They think of business analysis in terms of measures with specific calculations, hierarchical dimensions for breaking those measures down, and detailed reports of the business transactions themselves.  Most of them create queries without knowing it, by picking a dashboard page and some filters.  Others create their own analysis by selecting metrics and dimensional attributes, and possibly creating additional calculations. The BI Server bridges that gap from simple business terms to technical physical queries by exposing just the business focused measures and dimensional attributes that business people can use in their analyses and dashboards.   After they make their selections and start the analysis, the BI Server plans the best way to query the data sources, writes the optimized sequence of physical queries to those sources, post-processes the results, and presents them to the client as a single result set suitable for tables, pivots and charts. The CEIM is a model that controls the processing of the BI Server.  It provides the subject areas that presentation services exposes for business users to select simplified metrics and dimensional attributes for their analysis.  It models the mappings to the physical data access, the calculations and logical transformations, and the data access security rules.  The CEIM consists of metadata stored in the repository, authored by developers using the Administration Tool client.     Presentation services and other query clients create their queries in BI EE's SQL-92 language, called Logical SQL or LSQL.  The API simply uses ODBC or JDBC to pass the query to the BI Server.  Presentation services writes the LSQL query in terms of the simplified objects presented to the users.  The BI Server creates a query plan, and rewrites the LSQL into fully-detailed SQL or other languages suitable for querying the physical sources.  For example, the LSQL on the left below was rewritten into the physical SQL for an Oracle 11g database on the right. Logical SQL   Physical SQL SELECT "D0 Time"."T02 Per Name Month" saw_0, "D4 Product"."P01  Product" saw_1, "F2 Units"."2-01  Billed Qty  (Sum All)" saw_2 FROM "Sample Sales" ORDER BY saw_0, saw_1       WITH SAWITH0 AS ( select T986.Per_Name_Month as c1, T879.Prod_Dsc as c2,      sum(T835.Units) as c3, T879.Prod_Key as c4 from      Product T879 /* A05 Product */ ,      Time_Mth T986 /* A08 Time Mth */ ,      FactsRev T835 /* A11 Revenue (Billed Time Join) */ where ( T835.Prod_Key = T879.Prod_Key and T835.Bill_Mth = T986.Row_Wid) group by T879.Prod_Dsc, T879.Prod_Key, T986.Per_Name_Month ) select SAWITH0.c1 as c1, SAWITH0.c2 as c2, SAWITH0.c3 as c3 from SAWITH0 order by c1, c2   Probably everybody reading this blog can write SQL or MDX.  However, the trick in designing the CEIM is that you are modeling a query-generation factory.  Rather than hand-crafting individual queries, you model behavior and relationships, thus configuring the BI Server machinery to manufacture millions of different queries in response to random user requests.  This mass production requires a different mindset and approach than when you are designing individual SQL statements in tools such as Oracle SQL Developer, Oracle Hyperion Interactive Reporting (formerly Brio), or Oracle BI Publisher.   The Structure of the Common Enterprise Information Model (CEIM) The CEIM has a unique structure specifically for modeling the relationships and behaviors that fill the gap from logical user requests to physical data source queries and back to the result.  The model divides the functionality into three specialized layers, called Presentation, Business Model and Mapping, and Physical, as shown below. Presentation services clients can generally only see the presentation layer, and the objects in the presentation layer are normally the only ones used in the LSQL request.  When a request comes into the BI Server from presentation services or another client, the relationships and objects in the model allow the BI Server to select the appropriate data sources, create a query plan, and generate the physical queries.  That's the left to right flow in the diagram below.  When the results come back from the data source queries, the right to left relationships in the model show how to transform the results and perform any final calculations and functions that could not be pushed down to the databases.   Business Model Think of the business model as the heart of the CEIM you are designing.  This is where you define the analytic behavior seen by the users, and the superset library of metric and dimension objects available to the user community as a whole.  It also provides the baseline business-friendly names and user-readable dictionary.  For these reasons, it is often called the "logical" model--it is a virtual database schema that persists no data, but can be queried as if it is a database. The business model always has a dimensional shape (more on this in future posts), and its simple shape and terminology hides the complexity of the source data models. Besides hiding complexity and normalizing terminology, this layer adds most of the analytic value, as well.  This is where you define the rich, dimensional behavior of the metrics and complex business calculations, as well as the conformed dimensions and hierarchies.  It contributes to the ease of use for business users, since the dimensional metric definitions apply in any context of filters and drill-downs, and the conformed dimensions enable dashboard-wide filters and guided analysis links that bring context along from one page to the next.  The conformed dimensions also provide a key to hiding the complexity of many sources, including federation of different databases, behind the simple business model. Note that the expression language in this layer is LSQL, so that any expression can be rewritten into any data source's query language at run time.  This is important for federation, where a given logical object can map to several different physical objects in different databases.  It is also important to portability of the CEIM to different database brands, which is a key requirement for Oracle's BI Applications products. Your requirements process with your user community will mostly affect the business model.  This is where you will define most of the things they specifically ask for, such as metric definitions.  For this reason, many of the best-practice methodologies of our consulting partners start with the high-level definition of this layer. Physical Model The physical model connects the business model that meets your users' requirements to the reality of the data sources you have available. In the query factory analogy, think of the physical layer as the bill of materials for generating physical queries.  Every schema, table, column, join, cube, hierarchy, etc., that will appear in any physical query manufactured at run time must be modeled here at design time. Each physical data source will have its own physical model, or "database" object in the CEIM.  The shape of each physical model matches the shape of its physical source.  In other words, if the source is normalized relational, the physical model will mimic that normalized shape.  If it is a hypercube, the physical model will have a hypercube shape.  If it is a flat file, it will have a denormalized tabular shape. To aid in query optimization, the physical layer also tracks the specifics of the database brand and release.  This allows the BI Server to make the most of each physical source's distinct capabilities, writing queries in its syntax, and using its specific functions. This allows the BI Server to push processing work as deep as possible into the physical source, which minimizes data movement and takes full advantage of the database's own optimizer.  For most data sources, native APIs are used to further optimize performance and functionality. The value of having a distinct separation between the logical (business) and physical models is encapsulation of the physical characteristics.  This encapsulation is another enabler of packaged BI applications and federation.  It is also key to hiding the complex shapes and relationships in the physical sources from the end users.  Consider a routine drill-down in the business model: physically, it can require a drill-through where the first query is MDX to a multidimensional cube, followed by the drill-down query in SQL to a normalized relational database.  The only difference from the user's point of view is that the 2nd query added a more detailed dimension level column - everything else was the same. Mappings Within the Business Model and Mapping Layer, the mappings provide the binding from each logical column and join in the dimensional business model, to each of the objects that can provide its data in the physical layer.  When there is more than one option for a physical source, rules in the mappings are applied to the query context to determine which of the data sources should be hit, and how to combine their results if more than one is used.  These rules specify aggregate navigation, vertical partitioning (fragmentation), and horizontal partitioning, any of which can be federated across multiple, heterogeneous sources.  These mappings are usually the most sophisticated part of the CEIM. Presentation You might think of the presentation layer as a set of very simple relational-like views into the business model.  Over ODBC/JDBC, they present a relational catalog consisting of databases, tables and columns.  For business users, presentation services interprets these as subject areas, folders and columns, respectively.  (Note that in 10g, subject areas were called presentation catalogs in the CEIM.  In this blog, I will stick to 11g terminology.)  Generally speaking, presentation services and other clients can query only these objects (there are exceptions for certain clients such as BI Publisher and Essbase Studio). The purpose of the presentation layer is to specialize the business model for different categories of users.  Based on a user's role, they will be restricted to specific subject areas, tables and columns for security.  The breakdown of the model into multiple subject areas organizes the content for users, and subjects superfluous to a particular business role can be hidden from that set of users.  Customized names and descriptions can be used to override the business model names for a specific audience.  Variables in the object names can be used for localization. For these reasons, you are better off thinking of the tables in the presentation layer as folders than as strict relational tables.  The real semantics of tables and how they function is in the business model, and any grouping of columns can be included in any table in the presentation layer.  In 11g, an LSQL query can also span multiple presentation subject areas, as long as they map to the same business model. Other Model Objects There are some objects that apply to multiple layers.  These include security-related objects, such as application roles, users, data filters, and query limits (governors).  There are also variables you can use in parameters and expressions, and initialization blocks for loading their initial values on a static or user session basis.  Finally, there are Multi-User Development (MUD) projects for developers to check out units of work, and objects for the marketing feature used by our packaged customer relationship management (CRM) software.   The Query Factory At this point, you should have a grasp on the query factory concept.  When developing the CEIM model, you are configuring the BI Server to automatically manufacture millions of queries in response to random user requests. You do this by defining the analytic behavior in the business model, mapping that to the physical data sources, and exposing it through the presentation layer's role-based subject areas. While configuring mass production requires a different mindset than when you hand-craft individual SQL or MDX statements, it builds on the modeling and query concepts you already understand. The following posts in this series will walk through the CEIM modeling concepts and best practices in detail.  We will initially review dimensional concepts so you can understand the business model, and then present a pattern-based approach to learning the mappings from a variety of physical schema shapes and deployments to the dimensional model.  Along the way, we will also present the dimensional calculation template, and learn how to configure the many additivity patterns.

    Read the article

  • Why model => model.Reason_ID turns to model =>Convert(model.Reason_ID)

    - by er-v
    I have my own html helper extension, wich I use this way <%=Html.LocalizableLabelFor(model => model.Reason_ID, Register.PurchaseReason) %> which declared like this. public static MvcHtmlString LocalizableLabelFor<T>(this HtmlHelper<T> helper, Expression<Func<T, object>> expr, string captionValue) where T : class { return helper.LocalizableLabelFor(ExpressionHelper.GetExpressionText(expr), captionValue); } but when I open it in debugger expr.Body.ToString() will show me Convert(model.Reason_ID). But should model.Reason_ID. That's a big problem, becouse ExpressionHelper.GetExpressionText(expr) returns empty string. What a strange magic is that? How can I get rid of it?

    Read the article

  • SQL SERVER – Log File Growing for Model Database – model Database Log File Grew Too Big

    - by pinaldave
    After reading my earlier article SQL SERVER – master Database Log File Grew Too Big, I received an email recently from another reader asking why does the log file of model database grow every day when he is not carrying out any operation in the model database. As per the email, he is absolutely sure that he is doing nothing on his model database; he had used policy management to catch any T-SQL operation in the model database and there were none. This was indeed surprising to me. I sent a request to access to his server, which he happily agreed for and within a min, we figured out the issue. He was taking the backup of the model database every day taking the database backup every night. When I explained the same to him, he did not believe it; so I quickly wrote down the following script. The results before and after the usage of the script were very clear. What is a model database? The model database is used as the template for all databases created on an instance of SQL Server. Any object you create in the model database will be automatically created in subsequent user database created on the server. NOTE: Do not run this in production environment. During the demo, the model database was in full recovery mode and only full backup operation was performed (no log backup). Before Backup Script Backup Script in loop DECLARE @FLAG INT SET @FLAG = 1 WHILE(@FLAG < 1000) BEGIN BACKUP DATABASE [model] TO  DISK = N'D:\model.bak' SET @FLAG = @FLAG + 1 END GO After Backup Script Why did this happen? The model database was in full recovery mode and taking full backup is logged operation. As there was no log backup and only full backup was performed on the model database, the size of the log file kept growing. Resolution: Change the backup mode of model database from “Full Recovery” to “Simple Recovery.”. Take full backup of the model database “only” when you change something in the model database. Let me know if you have encountered a situation like this? If so, how did you resolve it? It will be interesting to know about your experience. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Backup and Restore, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Should we enforce code style in our large codebase?

    - by eighttrackmind
    By "code style" I mean 2 things: Style, eg. // bad if(foo){ ... } // good if (foo) { ... } Conventions and idiomaticity, where two ways of writing the same thing are functionally equivalent, but one is more idiomatic. eg. // bad if (fooLib.equals(a, b)) { ... } // good if (a == b) { ... } I think it makes sense to use an auto-formatter to enforce #1 automatically. So my question is specifically about #2. I like to break things down into pros and cons, here's what I've come up with so far: Pros: Used by many large codebases (eg. Google, jQuery) Helps make it a bit easier to work on new areas of the codebase Helps make code more portable (this is not necessarily true) Code style is automatic once you get used to it Makes it easier to fast-decline pull requests Cons: Takes engineers’ and code reviewers’ time away from more important things (like developing features) Code should ideally be rewritten every 2-3 years anyway, so it’s more important to focus on getting the architecture right, and achieving high test coverage Adds strain to code reviews (eg. “don’t do it this way, I like this other way better”) Even if I’ve been using a code style for a while, I still sometime have to pause and think about how to write a line better Having an enforced, uniform code style makes it hard to experiment with potentially better styles Maintaining a style guide takes a lot of incremental effort Engineers rarely read through the style guide. More often, it's cited in code reviews And as a secondary question: we also have many smaller repositories - should the same code style be enforced there?

    Read the article

  • Data Modeling Resources

    - by Dejan Sarka
    You can find many different data modeling resources. It is impossible to list all of them. I selected only the most valuable ones for me, and, of course, the ones I contributed to. Books Chris J. Date: An Introduction to Database Systems – IMO a “must” to understand the relational model correctly. Terry Halpin, Tony Morgan: Information Modeling and Relational Databases – meet the object-role modeling leaders. Chris J. Date, Nikos Lorentzos and Hugh Darwen: Time and Relational Theory, Second Edition: Temporal Databases in the Relational Model and SQL – all theory needed to manage temporal data. Louis Davidson, Jessica M. Moss: Pro SQL Server 2012 Relational Database Design and Implementation – the best SQL Server focused data modeling book I know by two of my friends. Dejan Sarka, et al.: MCITP Self-Paced Training Kit (Exam 70-441): Designing Database Solutions by Using Microsoft® SQL Server™ 2005 – SQL Server 2005 data modeling training kit. Most of the text is still valid for SQL Server 2008, 2008 R2, 2012 and 2014. Itzik Ben-Gan, Lubor Kollar, Dejan Sarka, Steve Kass: Inside Microsoft SQL Server 2008 T-SQL Querying – Steve wrote a chapter with mathematical background, and I added a chapter with theoretical introduction to the relational model. Itzik Ben-Gan, Dejan Sarka, Roger Wolter, Greg Low, Ed Katibah, Isaac Kunen: Inside Microsoft SQL Server 2008 T-SQL Programming – I added three chapters with theoretical introduction and practical solutions for the user-defined data types, dynamic schema and temporal data. Dejan Sarka, Matija Lah, Grega Jerkic: Training Kit (Exam 70-463): Implementing a Data Warehouse with Microsoft SQL Server 2012 – my first two chapters are about data warehouse design and implementation. Courses Data Modeling Essentials – I wrote a 3-day course for SolidQ. If you are interested in this course, which I could also deliver in a shorter seminar way, you can contact your closes SolidQ subsidiary, or, of course, me directly on addresses [email protected] or [email protected]. This course could also complement the existing courseware portfolio of training providers, which are welcome to contact me as well. Logical and Physical Modeling for Analytical Applications – online course I wrote for Pluralsight. Working with Temporal data in SQL Server – my latest Pluralsight course, where besides theory and implementation I introduce many original ways how to optimize temporal queries. Forthcoming presentations SQL Bits 12, July 17th – 19th, Telford, UK – I have a full-day pre-conference seminar Advanced Data Modeling Topics there.

    Read the article

  • How to use the client object model with SharePoint2010

    - by ybbest
    In SharePoint2010, you can use client object model to communicate with SharePoint server. Today, I’d like to show you how to achieve this by using the c# console application. You can download the solution here. 1. Create a Console application in visual studio and add the following references to the project. 2. Insert your code as below ClientContext context = new ClientContext("http://demo2010a"); Web currentWeb = context.Web; context.Load(currentWeb, web =&gt; web.Title); context.ExecuteQuery(); Console.WriteLine(currentWeb.Title); Console.ReadLine(); 3. Run your code then you will get the web title displayed as shown below Note: If you got the following errors, you need to change your target framework from .Net Framework 4 client profile to .Net Framework 4 as shown below: Change from TO

    Read the article

  • Creating an Entity Data Model using the Model First approach

    - by nikolaosk
    This is going to be the second post of a series of posts regarding Entity Framework and how we can use Entity Framework version 4.0 new features. You can read the first post here . In order to follow along you must have some knowledge of C# and know what an ORM system is and what kind of problems Entity Framework addresses.It will be handy to know how to work inside the Visual Studio 2010 IDE . I have a post regarding ASP.Net and EntityDataSource . You can read it here .I have 3 more posts on Profiling...(read more)

    Read the article

  • Given the presentation model pattern, is the view, presentation model, or model responsible for adding child views to an existing view at runtime?

    - by Ryan Taylor
    I am building a Flex 4 based application using the presentation model design pattern. This application will have several different components to it as shown in the image below. The MainView and DashboardView will always be visible and they each have corresponding presentation models and models as necessary. These views are easily created by declaring their MXML in the application root. <s:HGroup width="100%" height="100%"> <MainView width="75% height="100%"/> <DashboardView width="25%" height="100%"/> </s:HGroup> There will also be many WidgetViewN views that can be added to the DashboardView by the user at runtime through a simple drop down list. This will need to be accomplished via ActionScript. The drop down list should always show what WidgetViewN has already been added to the DashboardView. Therefore some state about which WidgetViewN's have been created needs to be stored. Since the list of available WidgetViewN and which ones are added to the DashboardView also need to be accessible from other components in the system I think this needs to be stored in a Model object. My understanding of the presentation model design pattern is that the view is very lean. It contains as close to zero logic as is practical. The view communicates/binds to the presentation model which contains all the necessary view logic. The presentation model is effectively an abstract representation of the view which supports low coupling and eases testability. The presentation model may have one or more models injected in in order to display the necessary information. The models themselves contain no view logic whatsoever. So I have a several questions around this design. Who should be responsible for creating the WidgetViewN components and adding these to the DashboardView? Is this the responsibility of the DashboardView, DashboardPresentationModel, DashboardModel or something else entirely? It seems like the DashboardPresentationModel would be responsible for creating/adding/removing any child views from it's display but how do you do this without passing in the DashboardView to the DashboardPresentationModel? The list of available and visible WidgetViewN components needs to be accessible to a few other components as well. Is it okay for a reference to a WidgetViewN to be stored/referenced in a model? Are there any good examples of the presentation model pattern online in Flex that also include creating child views at runtime?

    Read the article

  • Is code maintenance typically a special project, or is it considered part of daily work?

    - by blueberryfields
    Earlier, I asked to find out which tools are commonly used to monitor methods and code bases, to find out whether the methods have been getting too long. Most of the responses there suggested that, beyond maintenance on the method currently being edited, programmers don't, in general, keep an eye on the rest of the code base. So I thought I'd ask the question in general: Is code maintenance, in general, considered part of your daily work? Do you find that you're spending at least some of your time cleaning up, refactoring, rewriting code in the code base, to improve it, as part of your other assigned work? Is it expected of you/do you expect it of your teammates? Or is it more common to find that cleanup, refactoring, and general maintenance on the codebase as a whole, occurs in bursts (for example, mostly as part of code reviews, or as part of refactoring/cleaning up projects)?

    Read the article

  • MVP, WinForms - how to avoid bloated view, presenter and presentation model

    - by MatteS
    When implementing MVP pattern in winforms I often find bloated view interfaces with too many properties, setters and getters. An easy example with be a view with 3 buttons and 7 textboxes, all having value, enabled and visible properties exposed from the view. Adding validation results for this, and you could easily end up with an interface with 40ish properties. Using the Presentation Model, there'll be a model with the same number of properties aswell. How do you easily sync the view and the presentation model without having bloated presenter logic that pass all the values back and forth? (With that 80ish line presenter code, imagine with the presenter test that mocks the model and view will look like..160ish lines of code just to mock that transfer.) Is there any framework to handle this without resorting to winforms databinding? (you might want to use different views than a winforms view. According to some, this sync should be the presenters job..) Would you use AutoMapper? Maybe im asking the wrong questions, but it seems to me MVP easily gets bloated without some good solution here..

    Read the article

  • Copyrights concerning code snippets and larger amounts of code

    - by JustcallmeDrago
    I am designing a public code repository. Users will be allowed to post and edit whatever amount of code they want, from code snippets to entire multi-file projects. I have a few major legal concerns about this: Not getting sued/shut down - I feel the site would be a much easier target than tracking down an individual user to sue. I have looked around a bit and see links to legal info in the footer of each page is common. What specific things should I do--and what does does a site such as YouTube (which I see copyrighted material on all the time) do--for protection? Citing sources and editing sourced code - If a user wants to post code that isn't theirs, what concerns/safeguards should I have? Will a link suffice, and what do I need further to allow the code to be edited (to improve it for example)? What can happen if a user posts copyrighted code without citing it? Large chunks of code - What legal differences should I look out for as the amount grows? Not having a mess of licenses for the site - I would like to have a single license (like RosettaCode) that keeps things simple for interaction on the site. I want the code to be postable and editable. I have looked into StackOverflow's CreativeCommons license a little and it says that If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one. And on RosettaCode: All software found on Rosetta Code should be considered potentially hazardous. Use at your own risk. Be aware that all code on Rosetta Code is under the GNU Free Documentation License, as are any edits made by contributors. See Rosetta Code:Copyrights for details. What other licenses are like this? Commercializing the site - In what ways can I and can't I make money off of a site that contains code like this? All code will be publicly visible. Initial thoughts are having ads or making money by charging for advanced features.

    Read the article

  • New Communications Industry Data Model with "Factory Installed" Predictive Analytics using Oracle Da

    - by charlie.berger
    Oracle Introduces Oracle Communications Data Model to Provide Actionable Insight for Communications Service Providers   We've integrated pre-installed analytical methodologies with the new Oracle Communications Data Model to deliver automated, simple, yet powerful predictive analytics solutions for customers.  Churn, sentiment analysis, identifying customer segments - all things that can be anticipated and hence, preconcieved and implemented inside an applications.  Read on for more information! TM Forum Management World, Nice, France - 18 May 2010 News Facts To help communications service providers (CSPs) manage and analyze rapidly growing data volumes cost effectively, Oracle today introduced the Oracle Communications Data Model. With the Oracle Communications Data Model, CSPs can achieve rapid time to value by quickly implementing a standards-based enterprise data warehouse that features communications industry-specific reporting, analytics and data mining. The combination of the Oracle Communications Data Model, Oracle Exadata and the Oracle Business Intelligence (BI) Foundation represents the most comprehensive data warehouse and BI solution for the communications industry. Also announced today, Hong Kong Broadband Network enhanced their data warehouse system, going live on Oracle Communications Data Model in three months. The leading provider increased its subscriber base by 37 percent in six months and reduced customer churn to less than one percent. Product Details Oracle Communications Data Model provides industry-specific schema and embedded analytics that address key areas such as customer management, marketing segmentation, product development and network health. CSPs can efficiently capture and monitor critical data and transform it into actionable information to support development and delivery of next-generation services using: More than 1,300 industry-specific measurements and key performance indicators (KPIs) such as network reliability statistics, provisioning metrics and customer churn propensity. Embedded OLAP cubes for extremely fast dimensional analysis of business information. Embedded data mining models for sophisticated trending and predictive analysis. Support for multiple lines of business, such as cable, mobile, wireline and Internet, which can be easily extended to support future requirements. With Oracle Communications Data Model, CSPs can jump start the implementation of a communications data warehouse in line with communications-industry standards including the TM Forum Information Framework (SID), formerly known as the Shared Information Model. Oracle Communications Data Model is optimized for any Oracle Database 11g platform, including Oracle Exadata, which can improve call data record query performance by 10x or more. Supporting Quotes "Oracle Communications Data Model covers a wide range of business areas that are relevant to modern communications service providers and is a comprehensive solution - with its data model and pre-packaged templates including BI dashboards, KPIs, OLAP cubes and mining models. It helps us save a great deal of time in building and implementing a customized data warehouse and enables us to leverage the advanced analytics quickly and more effectively," said Yasuki Hayashi, executive manager, NTT Comware Corporation. "Data volumes will only continue to grow as communications service providers expand next-generation networks, deploy new services and adopt new business models. They will increasingly need efficient, reliable data warehouses to capture key insights on data such as customer value, network value and churn probability. With the Oracle Communications Data Model, Oracle has demonstrated its commitment to meeting these needs by delivering data warehouse tools designed to fill communications industry-specific needs," said Elisabeth Rainge, program director, Network Software, IDC. "The TM Forum Conformance Mark provides reassurance to customers seeking standards-based, and therefore, cost-effective and flexible solutions. TM Forum is extremely pleased to work with Oracle to certify its Oracle Communications Data Model solution. Upon successful completion, this certification will represent the broadest and most complete implementation of the TM Forum Information Framework to date, with more than 130 aggregate business entities," said Keith Willetts, chairman and chief executive officer, TM Forum. Supporting Resources Oracle Communications Oracle Communications Data Model Data Sheet Oracle Communications Data Model Podcast Oracle Data Warehousing Oracle Communications on YouTube Oracle Communications on Delicious Oracle Communications on Facebook Oracle Communications on Twitter Oracle Communications on LinkedIn Oracle Database on Twitter The Data Warehouse Insider Blog

    Read the article

  • Design by Contract with Microsoft .Net Code Contract

    - by Fredrik N
    I have done some talks on different events and summits about Defensive Programming and Design by Contract, last time was at Cornerstone’s Developer Summit 2010. Next time will be at SweNug (Sweden .Net User Group). I decided to write a blog post about of some stuffs I was talking about. Users are a terrible thing! Protect your self from them ”Human users have a gift for doing the worst possible thing at the worst possible time.” – Michael T. Nygard, Release It! The kind of users Michael T. Nygard are talking about is the users of a system. We also have users that uses our code, the users I’m going to focus on is the users of our code. Me and you and another developers. “Any fool can write code that a computer can understand. Good programmers write code that humans can understand.” – Martin Fowler Good programmers also writes code that humans know how to use, good programmers also make sure software behave in a predictable manner despise inputs or user actions. Design by Contract   Design by Contract (DbC) is a way for us to make a contract between us (the code writer) and the users of our code. It’s about “If you give me this, I promise to give you this”. It’s not about business validations, that is something completely different that should be part of the domain model. DbC is to make sure the users of our code uses it in a correct way, and that we can rely on the contract and write code in a way where we know that the users will follow the contract. It will make it much easier for us to write code with a contract specified. Something like the following code is something we may see often: public void DoSomething(Object value) { value.DoIKnowThatICanDoThis(); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Where “value” can be uses directly or passed to other methods and later be used. What some of us can easily forget here is that the “value” can be “null”. We will probably not passing a null value, but someone else that uses our code maybe will do it. I think most of you (including me) have passed “null” into a method because you don’t know if the argument need to be specified to a valid value etc. I bet most of you also have got the “Null reference exception”. Sometimes this “Null reference exception” can be hard and take time to fix, because we need to search among our code to see where the “null” value was passed in etc. Wouldn’t it be much better if we can as early as possible specify that the value can’t not be null, so the users of our code also know it when the users starts to use our code, and before run time execution of the code? This is where DbC comes into the picture. We can use DbC to specify what we need, and by doing so we can rely on the contract when we write our code. So the code above can actually use the DoIKnowThatICanDoThis() method on the value object without being worried that the “value” can be null. The contract between the users of the code and us writing the code, says that the “value” can’t be null.   Pre- and Postconditions   When working with DbC we are specifying pre- and postconditions.  Precondition is a condition that should be met before a query or command is executed. An example of a precondition is: “The Value argument of the method can’t be null”, and we make sure the “value” isn’t null before the method is called. Postcondition is a condition that should be met when a command or query is completed, a postcondition will make sure the result is correct. An example of a postconditon is “The method will return a list with at least 1 item”. Commands an Quires When using DbC, we need to know what a Command and a Query is, because some principles that can be good to follow are based on commands and queries. A Command is something that will not return anything, like the SQL’s CREATE, UPDATE and DELETE. There are two kinds of Commands when using DbC, the Creation commands (for example a Constructor), and Others. Others can for example be a Command to add a value to a list, remove or update a value etc. //Creation commands public Stack(int size) //Other commands public void Push(object value); public void Remove(); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   A Query, is something that will return something, for example an Attribute, Property or a Function, like the SQL’s SELECT.   There are two kinds of Queries, the Basic Queries  (Quires that aren’t based on another queries), and the Derived Queries, queries that is based on another queries. Here is an example of queries of a Stack: //Basic Queries public int Count; public object this[int index] { get; } //Derived Queries //Is related to Count Query public bool IsEmpty() { return Count == 0; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } To understand about some principles that are good to follow when using DbC, we need to know about the Commands and different Queries. The 6 Principles When working with DbC, it’s advisable to follow some principles to make it easier to define and use contracts. The following DbC principles are: Separate commands and queries. Separate basic queries from derived queries. For each derived query, write a postcondition that specifies what result will be returned, in terms of one or more basic queries. For each command, write a postcondition that specifies the value of every basic query. For every query and command, decide on a suitable precondition. Write invariants to define unchanging properties of objects. Before I will write about each of them I want you to now that I’m going to use .Net 4.0 Code Contract. I will in the rest of the post uses a simple Stack (Yes I know, .Net already have a Stack class) to give you the basic understanding about using DbC. A Stack is a data structure where the first item in, will be the first item out. Here is a basic implementation of a Stack where not contract is specified yet: public class Stack { private object[] _array; //Basic Queries public uint Count; public object this[uint index] { get { return _array[index]; } set { _array[index] = value; } } //Derived Queries //Is related to Count Query public bool IsEmpty() { return Count == 0; } //Is related to Count and this[] Query public object Top() { return this[Count]; } //Creation commands public Stack(uint size) { Count = 0; _array = new object[size]; } //Other commands public void Push(object value) { this[++Count] = value; } public void Remove() { this[Count] = null; Count--; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Note: The Stack is implemented in a way to demonstrate the use of Code Contract in a simple way, the implementation may not look like how you would implement it, so don’t think this is the perfect Stack implementation, only used for demonstration.   Before I will go deeper into the principles I will simply mention how we can use the .Net Code Contract. I mention before about pre- and postcondition, is about “Require” something and to “Ensure” something. When using Code Contract, we will use a static class called “Contract” and is located in he “System.Diagnostics.Contracts” namespace. The contract must be specified at the top or our member statement block. To specify a precondition with Code Contract we uses the Contract.Requires method, and to specify a postcondition, we uses the Contract.Ensure method. Here is an example where both a pre- and postcondition are used: public object Top() { Contract.Requires(Count > 0, "Stack is empty"); Contract.Ensures(Contract.Result<object>() == this[Count]); return this[Count]; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   The contract above requires that the Count is greater than 0, if not we can’t get the item at the Top of a Stack. We also Ensures that the results (By using the Contract.Result method, we can specify a postcondition that will check if the value returned from a method is correct) of the Top query is equal to this[Count].   1. Separate Commands and Queries   When working with DbC, it’s important to separate Command and Quires. A method should either be a command that performs an Action, or returning information to the caller, not both. By asking a question the answer shouldn’t be changed. The following is an example of a Command and a Query of a Stack: public void Push(object value) public object Top() .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   The Push is a command and will not return anything, just add a value to the Stack, the Top is a query to get the item at the top of the stack.   2. Separate basic queries from derived queries There are two different kinds of queries,  the basic queries that doesn’t rely on another queries, and derived queries that uses a basic query. The “Separate basic queries from derived queries” principle is about about that derived queries can be specified in terms of basic queries. So this principles is more about recognizing that a query is a derived query or a basic query. It will then make is much easier to follow the other principles. The following code shows a basic query and a derived query: //Basic Queries public uint Count; //Derived Queries //Is related to Count Query public bool IsEmpty() { return Count == 0; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   We can see that IsEmpty will use the Count query, and that makes the IsEmpty a Derived query.   3. For each derived query, write a postcondition that specifies what result will be returned, in terms of one or more basic queries.   When the derived query is recognize we can follow the 3ed principle. For each derived query, we can create a postcondition that specifies what result our derived query will return in terms of one or more basic queries. Remember that DbC is about contracts between the users of the code and us writing the code. So we can’t use demand that the users will pass in a valid value, we must also ensure that we will give the users what the users wants, when the user is following our contract. The IsEmpty query of the Stack will use a Count query and that will make the IsEmpty a Derived query, so we should now write a postcondition that specified what results will be returned, in terms of using a basic query and in this case the Count query, //Basic Queries public uint Count; //Derived Queries public bool IsEmpty() { Contract.Ensures(Contract.Result<bool>() == (Count == 0)); return Count == 0; } The Contract.Ensures is used to create a postcondition. The above code will make sure that the results of the IsEmpty (by using the Contract.Result to get the result of the IsEmpty method) is correct, that will say that the IsEmpty will be either true or false based on Count is equal to 0 or not. The postcondition are using a basic query, so the IsEmpty is now following the 3ed principle. We also have another Derived Query, the Top query, it will also need a postcondition and it uses all basic queries. The Result of the Top method must be the same value as the this[] query returns. //Basic Queries public uint Count; public object this[uint index] { get { return _array[index]; } set { _array[index] = value; } } //Derived Queries //Is related to Count and this[] Query public object Top() { Contract.Ensures(Contract.Result<object>() == this[Count]); return this[Count]; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   4. For each command, write a postcondition that specifies the value of every basic query.   For each command we will create a postconditon that specifies the value of basic queries. If we look at the Stack implementation we will have three Commands, one Creation command, the Constructor, and two others commands, Push and Remove. Those commands need a postcondition and they should include basic query to follow the 4th principle. //Creation commands public Stack(uint size) { Contract.Ensures(Count == 0); Count = 0; _array = new object[size]; } //Other commands public void Push(object value) { Contract.Ensures(Count == Contract.OldValue<uint>(Count) + 1); Contract.Ensures(this[Count] == value); this[++Count] = value; } public void Remove() { Contract.Ensures(Count == Contract.OldValue<uint>(Count) - 1); this[Count] = null; Count--; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   As you can see the Create command will Ensures that Count will be 0 when the Stack is created, when a Stack is created there shouldn’t be any items in the stack. The Push command will take a value and put it into the Stack, when an item is pushed into the Stack, the Count need to be increased to know the number of items added to the Stack, and we must also make sure the item is really added to the Stack. The postconditon of the Push method will make sure the that old value of the Count (by using the Contract.OldValue we can get the value a Query has before the method is called)  plus 1 will be equal to the Count query, this is the way we can ensure that the Push will increase the Count with one. We also make sure the this[] query will now contain the item we pushed into the Stack. The Remove method must make sure the Count is decreased by one when the top item is removed from the Stack. The Commands is now following the 4th principle, where each command now have a postcondition that used the value of basic queries. Note: The principle says every basic Query, the Remove only used one Query the Count, it’s because this command can’t use the this[] query because an item is removed, so the only way to make sure an item is removed is to just use the Count query, so the Remove will still follow the principle.   5. For every query and command, decide on a suitable precondition.   We have now focused only on postcondition, now time for some preconditons. The 5th principle is about deciding a suitable preconditon for every query and command. If we starts to look at one of our basic queries (will not go through all Queries and commands here, just some of them) the this[] query, we can’t pass an index that is lower then 1 (.Net arrays and list are zero based, but not the stack in this blog post ;)) and the index can’t be lesser than the number of items in the stack. So here we will need a preconditon. public object this[uint index] { get { Contract.Requires(index >= 1); Contract.Requires(index <= Count); return _array[index]; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Think about the Contract as an documentation about how to use the code in a correct way, so if the contract could be specified elsewhere (not part of the method body), we could simply write “return _array[index]” and there is no need to check if index is greater or lesser than Count, because that is specified in a “contract”. The implementation of Code Contract, requires that the contract is specified in the code. As a developer I would rather have this contract elsewhere (Like Spec#) or implemented in a way Eiffel uses it as part of the language. Now when we have looked at one Query, we can also look at one command, the Remove command (You can see the whole implementation of the Stack at the end of this blog post, where precondition is added to more queries and commands then what I’m going to show in this section). We can only Remove an item if the Count is greater than 0. So we can write a precondition that will require that Count must be greater than 0. public void Remove() { Contract.Requires(Count > 0); Contract.Ensures(Count == Contract.OldValue<uint>(Count) - 1); this[Count] = null; Count--; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   6. Write invariants to define unchanging properties of objects.   The last principle is about making sure the object are feeling great! This is done by using invariants. When using Code Contract we can specify invariants by adding a method with the attribute ContractInvariantMethod, the method must be private or public and can only contains calls to Contract.Invariant. To make sure the Stack feels great, the Stack must have 0 or more items, the Count can’t never be a negative value to make sure each command and queries can be used of the Stack. Here is our invariant for the Stack object: [ContractInvariantMethod] private void ObjectInvariant() { Contract.Invariant(Count >= 0); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Note: The ObjectInvariant method will be called every time after a Query or Commands is called. Here is the full example using Code Contract:   public class Stack { private object[] _array; //Basic Queries public uint Count; public object this[uint index] { get { Contract.Requires(index >= 1); Contract.Requires(index <= Count); return _array[index]; } set { Contract.Requires(index >= 1); Contract.Requires(index <= Count); _array[index] = value; } } //Derived Queries //Is related to Count Query public bool IsEmpty() { Contract.Ensures(Contract.Result<bool>() == (Count == 0)); return Count == 0; } //Is related to Count and this[] Query public object Top() { Contract.Requires(Count > 0, "Stack is empty"); Contract.Ensures(Contract.Result<object>() == this[Count]); return this[Count]; } //Creation commands public Stack(uint size) { Contract.Requires(size > 0); Contract.Ensures(Count == 0); Count = 0; _array = new object[size]; } //Other commands public void Push(object value) { Contract.Requires(value != null); Contract.Ensures(Count == Contract.OldValue<uint>(Count) + 1); Contract.Ensures(this[Count] == value); this[++Count] = value; } public void Remove() { Contract.Requires(Count > 0); Contract.Ensures(Count == Contract.OldValue<uint>(Count) - 1); this[Count] = null; Count--; } [ContractInvariantMethod] private void ObjectInvariant() { Contract.Invariant(Count >= 0); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Summary By using Design By Contract we can make sure the users are using our code in a correct way, and we must also make sure the users will get the expected results when they uses our code. This can be done by specifying contracts. To make it easy to use Design By Contract, some principles may be good to follow like the separation of commands an queries. With .Net 4.0 we can use the Code Contract feature to specify contracts.

    Read the article

  • Model Driven Architecture Approach in programming / modelling

    - by yak
    I know the basics of the model driven architecture: it is all about model the system which I want to create and create the core code afterwards. I used CORBA a while ago. First thing that I needed to do was to create an abstract interface (some kind of model of the system I want to build) and generate core code later. But I have a different question: is model driven architecture a broad approach or not? I mean, let's say, that I have the language (modelling language) in which I want to model EXISTING system (opposite to the system I want to CREATE), and then analyze the model of the created system and different facts about that modeled abstraction. In this case, can the process I described above be considered the model driven architecture approach? I mean, I have the model, but this is the model of the existing system, not the system to be created.

    Read the article

  • LLBLGen Pro feature highlights: model views

    - by FransBouma
    (This post is part of a series of posts about features of the LLBLGen Pro system) To be able to work with large(r) models, it's key you can view subsets of these models so you can have a better, more focused look at them. For example because you want to display how a subset of entities relate to one another in a different way than the list of entities. LLBLGen Pro offers this in the form of Model Views. Model Views are views on parts of the entity model of a project, and the subsets are displayed in a graphical way. Additionally, one can add documentation to a Model View. As Model Views are displaying parts of the model in a graphical way, they're easier to explain to people who aren't familiar with entity models, e.g. the stakeholders you're interviewing for your project. The documentation can then be used to communicate specifics of the elements on the model view to the developers who have to write the actual code. Below I've included an example. It's a model view on a subset of the entities of AdventureWorks. It displays several entities, their relationships (both relational and inheritance relationships) and also some specifics gathered from the interview with the stakeholder. As the information is inside the actual project the developer will work with, the information doesn't have to be converted back/from e.g .word documents or other intermediate formats, it's the same project. This makes sure there are less errors / misunderstandings. (of course you can hide the docked documentation pane or dock it to another corner). The Model View can contain entities which are placed in different groups. This makes it ideal to group entities together for close examination even though they're stored in different groups. The Model View is a first-class citizen of the code-generator. This means you can write templates which consume Model Views and generate code accordingly. E.g. you can write a template which generates a service per Model View and exposes the entities in the Model View as a single entity graph, fetched through a method. (This template isn't included in the LLBLGen Pro package, but it's easy to write it up yourself with the built-in template editor). Viewing an entity model in different ways is key to fully understand the entity model and Model Views help with that.

    Read the article

  • Can notes/to-dos in code comments sent to code-reviews result in an effective refactoring process?

    - by dukeofgaming
    I want to start/improve a culture of collective code ownership at my company but at a geographically distributed level... I'd say there is some current collective code-ownership mentality, but only at single geographical sites. This is a follow-up to this question: What is the politically correct way of refactoring other's code? I'm just wondering if submitting *just code comments* for code reviews (we have ReviewBoard, possibly upgrading to Crucible) could actually be an effective mechanism to get the conversation started on improving code, without having others feel territorial about their code. For example, if I add: //ToDo: Refactor this code and that code because of reasons X and Y Then, submit it for code review, and it gets accepted... it could be considered as an agreement (which I think is sometimes harder to get with new code up front). At the same time, the author (and others) might have an easier time digesting and accepting the proposal; rejecting a proposal because it might break things will not longer be a valid reason and therefore the fear of making a change is lost... and at the same time, do not invest 10 hours optimizing something that no one thinks it is worth it and opposes to it just out of fear. This is all conjecture, but I'm feeling something like this (submitting refactoring notes in code comments at the code-review process) would work. Has anyone done something like this in practice?, if so, what have been the results?

    Read the article

  • What is New in ASP.NET 4.0 Code Access Security

    - by Xiaohong
    ASP.NET Code Access Security (CAS) is a feature that helps protect server applications on hosting multiple Web sites, ASP.NET lets you assign a configurable trust level that corresponds to a predefined set of permissions. ASP.NET has predefined ASP.NET Trust Levels and Policy Files that you can assign to applications, you also can assign custom trust level and policy files. Most web hosting companies run ASP.NET applications in Medium Trust to prevent that one website affect or harm another site etc. As .NET Framework's Code Access Security model has evolved, ASP.NET 4.0 Code Access Security also has introduced several changes and improvements. The main change in ASP.NET 4.0 CAS In ASP.NET v4.0 partial trust applications, application domain can have a default partial trust permission set as opposed to being full-trust, the permission set name is defined in the <trust /> new attribute permissionSetName that is used to initialize the application domain . By default, the PermissionSetName attribute value is "ASP.Net" which is the name of the permission set you can find in all predefined partial trust configuration files. <trust level="Something" permissionSetName="ASP.Net" /> This is ASP.NET 4.0 new CAS model. For compatibility ASP.NET 4.0 also support legacy CAS model where application domain still has full trust permission set. You can specify new legacyCasModel attribute on the <trust /> element to indicate whether the legacy CAS model is enabled. By default legacyCasModel is false which means that new 4.0 CAS model is the default. <trust level="Something" legacyCasModel="true|false" /> In .Net FX 4.0 Config directory, there are two set of predefined partial trust config files for each new CAS model and legacy CAS model, trust config files with name legacy.XYZ.config are for legacy CAS model: New CAS model: Legacy CAS model: web_hightrust.config legacy.web_hightrust.config web_mediumtrust.config legacy.web_mediumtrust.config web_lowtrust.config legacy.web_lowtrust.config web_minimaltrust.config legacy.web_minimaltrust.config   The figure below shows in ASP.NET 4.0 new CAS model what permission set to grant to code for partial trust application using predefined partial trust levels and policy files:    There also some benefits that comes with the new CAS model: You can lock down a machine by making all managed code no-execute by default (e.g. setting the MyComputer zone to have no managed execution code permissions), it should still be possible to configure ASP.NET web applications to run as either full-trust or partial trust. UNC share doesn’t require full trust with CASPOL at machine-level CAS policy. Side effect that comes with the new CAS model: processRequestInApplicationTrust attribute is deprecated  in new CAS model since application domain always has partial trust permission set in new CAS model.   In ASP.NET 4.0 legacy CAS model or ASP.NET 2.0 CAS model, even though you assign partial trust level to a application but the application domain still has full trust permission set. The figure below shows in ASP.NET 4.0 legacy CAS model (or ASP.NET 2.0 CAS model) what permission set to grant to code for partial trust application using predefined partial trust levels and policy files:     What $AppDirUrl$, $CodeGen$, $Gac$ represents: $AppDirUrl$ The application's virtual root directory. This allows permissions to be applied to code that is located in the application's bin directory. For example, if a virtual directory is mapped to C:\YourWebApp, then $AppDirUrl$ would equate to C:\YourWebApp. $CodeGen$ The directory that contains dynamically generated assemblies (for example, the result of .aspx page compiles). This can be configured on a per application basis and defaults to %windir%\Microsoft.NET\Framework\{version}\Temporary ASP.NET Files. $CodeGen$ allows permissions to be applied to dynamically generated assemblies. $Gac$ Any assembly that is installed in the computer's global assembly cache (GAC). This allows permissions to be granted to strong named assemblies loaded from the GAC by the Web application.   The new customization of CAS Policy in ASP.NET 4.0 new CAS model 1. Define which named permission set in partial trust configuration files By default the permission set that will be assigned at application domain initialization time is the named "ASP.Net" permission set found in all predefined partial trust configuration files. However ASP.NET 4.0 allows you set PermissionSetName attribute to define which named permission set in a partial trust configuration file should be the one used to initialize an application domain. Example: add "ASP.Net_2" named permission set in partial trust configuration file: <PermissionSet class="NamedPermissionSet" version="1" Name="ASP.Net_2"> <IPermission class="FileIOPermission" version="1" Read="$AppDir$" PathDiscovery="$AppDir$" /> <IPermission class="ReflectionPermission" version="1" Flags ="RestrictedMemberAccess" /> <IPermission class="SecurityPermission " version="1" Flags ="Execution, ControlThread, ControlPrincipal, RemotingConfiguration" /></PermissionSet> Then you can use "ASP.Net_2" named permission set for the application domain permission set: <trust level="Something" legacyCasModel="false" permissionSetName="ASP.Net_2" /> 2. Define a custom set of Full Trust Assemblies for an application By using the new fullTrustAssemblies element to configure a set of Full Trust Assemblies for an application, you can modify set of partial trust assemblies to full trust at the machine, site or application level. The configuration definition is shown below: <fullTrustAssemblies> <add assemblyName="MyAssembly" version="1.1.2.3" publicKey="hex_char_representation_of_key_blob" /></fullTrustAssemblies> 3. Define <CodeGroup /> policy in partial trust configuration files ASP.NET 4.0 new CAS model will retain the ability for developers to optionally define <CodeGroup />with membership conditions and assigned permission sets. The specific restriction in ASP.NET 4.0 new CAS model though will be that the results of evaluating custom policies can only result in one of two outcomes: either an assembly is granted full trust, or an assembly is granted the partial trust permission set currently associated with the running application domain. It will not be possible to use custom policies to create additional custom partial trust permission sets. When parsing the partial trust configuration file: Any assemblies that match to code groups associated with "PermissionSet='FullTrust'" will run at full trust. Any assemblies that match to code groups associated with "PermissionSet='Nothing'" will result in a PolicyError being thrown from the CLR. This is acceptable since it provides administrators with a way to do a blanket-deny of managed code followed by selectively defining policy in a <CodeGroup /> that re-adds assemblies that would be allowed to run. Any assemblies that match to code groups associated with other permissions sets will be interpreted to mean the assembly should run at the permission set of the appdomain. This means that even though syntactically a developer could define additional "flavors" of partial trust in an ASP.NET partial trust configuration file, those "flavors" will always be ignored. Example: defines full trust in <CodeGroup /> for my strong named assemblies in partial trust config files: <CodeGroup class="FirstMatchCodeGroup" version="1" PermissionSetName="Nothing"> <IMembershipCondition    class="AllMembershipCondition"    version="1" /> <CodeGroup    class="UnionCodeGroup"    version="1"    PermissionSetName="FullTrust"    Name="My_Strong_Name"    Description="This code group grants code signed full trust. "> <IMembershipCondition      class="StrongNameMembershipCondition" version="1"       PublicKeyBlob="hex_char_representation_of_key_blob" /> </CodeGroup> <CodeGroup   class="UnionCodeGroup" version="1" PermissionSetName="ASP.Net">   <IMembershipCondition class="UrlMembershipCondition" version="1" Url="$AppDirUrl$/*" /> </CodeGroup> <CodeGroup class="UnionCodeGroup" version="1" PermissionSetName="ASP.Net">   <IMembershipCondition class="UrlMembershipCondition" version="1" Url="$CodeGen$/*"   /> </CodeGroup></CodeGroup>   4. Customize CAS policy at runtime in ASP.NET 4.0 new CAS model ASP.NET 4.0 new CAS model allows to customize CAS policy at runtime by using custom HostSecurityPolicyResolver that overrides the ASP.NET code access security policy. Example: use custom host security policy resolver to resolve partial trust web application bin folder MyTrustedAssembly.dll to full trust at runtime: You can create a custom host security policy resolver and compile it to assembly MyCustomResolver.dll with strong name enabled and deploy in GAC: public class MyCustomResolver : HostSecurityPolicyResolver{ public override HostSecurityPolicyResults ResolvePolicy(Evidence evidence) { IEnumerator hostEvidence = evidence.GetHostEnumerator(); while (hostEvidence.MoveNext()) { object hostEvidenceObject = hostEvidence.Current; if (hostEvidenceObject is System.Security.Policy.Url) { string assemblyName = hostEvidenceObject.ToString(); if (assemblyName.Contains(“MyTrustedAssembly.dll”) return HostSecurityPolicyResult.FullTrust; } } //default fall-through return HostSecurityPolicyResult.DefaultPolicy; }} Because ASP.NET accesses the custom HostSecurityPolicyResolver during application domain initialization, and a custom policy resolver requires full trust, you also can add a custom policy resolver in <fullTrustAssemblies /> , or deploy in the GAC. You also need configure a custom HostSecurityPolicyResolver instance by adding the HostSecurityPolicyResolverType attribute in the <trust /> element: <trust level="Something" legacyCasModel="false" hostSecurityPolicyResolverType="MyCustomResolver, MyCustomResolver" permissionSetName="ASP.Net" />   Note: If an assembly policy define in <CodeGroup/> and also in hostSecurityPolicyResolverType, hostSecurityPolicyResolverType will win. If an assembly added in <fullTrustAssemblies/> then the assembly has full trust no matter what policy in <CodeGroup/> or in hostSecurityPolicyResolverType.   Other changes in ASP.NET 4.0 CAS Use the new transparency model introduced in .Net Framework 4.0 Change in dynamically compiled code generated assemblies by ASP.NET: In new CAS model they will be marked as security transparent level2 to use Framework 4.0 security transparent rule that means partial trust code is treated as completely Transparent and it is more strict enforcement. In legacy CAS model they will be marked as security transparent level1 to use Framework 2.0 security transparent rule for compatibility. Most of ASP.NET products runtime assemblies are also changed to be marked as security transparent level2 to switch to SecurityTransparent code by default unless SecurityCritical or SecuritySafeCritical attribute specified. You also can look at Security Changes in the .NET Framework 4 for more information about these security attributes. Support conditional APTCA If an assembly is marked with the Conditional APTCA attribute to allow partially trusted callers, and if you want to make the assembly both visible and accessible to partial-trust code in your web application, you must add a reference to the assembly in the partialTrustVisibleAssemblies section: <partialTrustVisibleAssemblies> <add assemblyName="MyAssembly" publicKey="hex_char_representation_of_key_blob" />/partialTrustVisibleAssemblies>   Most of ASP.NET products runtime assemblies are also changed to be marked as conditional APTCA to prevent use of ASP.NET APIs in partial trust environments such as Winforms or WPF UI controls hosted in Internet Explorer.   Differences between ASP.NET new CAS model and legacy CAS model: Here list some differences between ASP.NET new CAS model and legacy CAS model ASP.NET 4.0 legacy CAS model  : Asp.net partial trust appdomains have full trust permission Multiple different permission sets in a single appdomain are allowed in ASP.NET partial trust configuration files Code groups Machine CAS policy is honored processRequestInApplicationTrust attribute is still honored    New configuration setting for legacy model: <trust level="Something" legacyCASModel="true" ></trust><partialTrustVisibleAssemblies> <add assemblyName="MyAssembly" publicKey="hex_char_representation_of_key_blob" /></partialTrustVisibleAssemblies>   ASP.NET 4.0 new CAS model: ASP.NET will now run in homogeneous application domains. Only full trust or the app-domain's partial trust grant set, are allowable permission sets. It is no longer possible to define arbitrary permission sets that get assigned to different assemblies. If an application currently depends on fine-tuning the partial trust permission set using the ASP.NET partial trust configuration file, this will no longer be possible. processRequestInApplicationTrust attribute is deprecated Dynamically compiled assemblies output by ASP.NET build providers will be updated to explicitly mark assemblies as transparent. ASP.NET partial trust grant sets will be independent from any enterprise, machine, or user CAS policy levels. A simplified model for locking down web servers that only allows trusted managed web applications to run. Machine policy used to always grant full-trust to managed code (based on membership conditions) can instead be configured using the new ASP.NET 4.0 full-trust assembly configuration section. The full-trust assembly configuration section requires explicitly listing each assembly as opposed to using membership conditions. Alternatively, the membership condition(s) used in machine policy can instead be re-defined in a <CodeGroup /> within ASP.NET's partial trust configuration file to grant full-trust.   New configuration setting for new model: <trust level="Something" legacyCASModel="false" permissionSetName="ASP.Net" hostSecurityPolicyResolverType=".NET type string" ></trust><fullTrustAssemblies> <add assemblyName=”MyAssembly” version=”1.0.0.0” publicKey="hex_char_representation_of_key_blob" /></fullTrustAssemblies><partialTrustVisibleAssemblies> <add assemblyName="MyAssembly" publicKey="hex_char_representation_of_key_blob" /></partialTrustVisibleAssemblies>     Hope this post is helpful to better understand the ASP.Net 4.0 CAS. Xiaohong Tang ASP.NET QA Team

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >