Search Results

Search found 14736 results on 590 pages for 'common controls'.

Page 1/590 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • scheme vs common lisp: war stories

    - by SuperElectric
    There are no shortage of vague "Scheme vs Common Lisp" questions on StackOverflow, so I want to make this one more focused. The question is for people who have coded in both languages: While coding in Scheme, what specific elements of your Common Lisp coding experience did you miss most? Or, inversely, while coding in Common Lisp, what did you miss from coding in Scheme? I don't necessarily mean just language features. The following are all valid things to miss, as far as the question is concerned: Specific libraries. Specific features of development environments like SLIME, DrRacket, etc. Features of particular implementations, like Gambit's ability to write blocks of C code directly into your Scheme source. And of course, language features. Examples of the sort of answers I'm hoping for: "I was trying to implement X in Common Lisp, and if I had Scheme's first-class continuations, I totally would've just done Y, but instead I had to do Z, which was more of a pain." "Scripting the build process in Scheme project, got increasingly painful as my source tree grew and I linked in more and more C libraries. For my next project, I moved back to Common Lisp." "I have a large existing C++ codebase, and for me, being able to embed C++ calls directly in my Gambit Scheme code was totally worth any shortcomings that Scheme may have vs Common Lisp, even including lack of SWIG support." So, I'm hoping for war stories, rather than general sentiments like "Scheme is a simpler language" etc.

    Read the article

  • Reset the controls within asp placeholder

    - by alaa9jo
    I use placeholders very much in many projects,but in one of the projects I was asked to reset the controls within a specific placeholder to their original state after the user has finished from inserting his/her data. As everyone of us know,to keep the controls within a placeholder from disappearing after postbacks you have to recreate them,we add such a code in i.e. page_load,the controls will be recreated and their values will be loaded from viewstate (for some of them like textbox,checkboxs,..etc) automatically,that placeholder contains only textboxs so what I need is to block/ loading/clear that viewstate after inserting the data. First thought: Customizing placeholder I thought about it and tried overriding many methods but no success at all...maybe I'm missing something not sure. Second thought: recreate the controls 2 times: In page_load,I recreate the controls within that placeholder then in button click (the button that saves user's data) I recreate them once more and it worked! I just thought of sharing my experience in that case with everyone in case anyone needed it,any better suggestion(s) is welcomed.

    Read the article

  • foreach Control ctrl in SomePanel.Controls does not get all controls

    - by aron
    Hello, I have a panel with a bunch of labeles and textboxes inside of it. The code: foreach (Control ctrl in this.pnlSolutions.Controls) Seems to only be finding html table inside the panel and 2 liternals. But it does not get the textboxes that are in the html table. Is there a simple way to get all the controls inside of a panel regardless of the nesting? thanks!

    Read the article

  • ASP.Net validation controls

    - by nikolaosk
    In this post I would like to continue talking about validation in ASP.Net applications. I will look into the validation controls that ASP.Net provides. You can have a look at the first post in my blog regarding validation. You will show you that we can perform all our main validation tasks without almost writing any code. We will add validation to our form by adding one or more controls.We can also display messages to the user. The controls I am going to look into are: CompareValidator CustomValidator...(read more)

    Read the article

  • Error in running script [closed]

    - by SWEngineer
    I'm trying to run heathusf_v1.1.0.tar.gz found here I installed tcsh to make build_heathusf work. But, when I run ./build_heathusf, I get the following (I'm running that on a Fedora Linux system from Terminal): $ ./build_heathusf Compiling programs to build a library of image processing functions. convexpolyscan.c: In function ‘cdelete’: convexpolyscan.c:346:5: warning: incompatible implicit declaration of built-in function ‘bcopy’ [enabled by default] myalloc.c: In function ‘mycalloc’: myalloc.c:68:16: error: invalid storage class for function ‘store_link’ myalloc.c: In function ‘mymalloc’: myalloc.c:101:16: error: invalid storage class for function ‘store_link’ myalloc.c: In function ‘myfree’: myalloc.c:129:27: error: invalid storage class for function ‘find_link’ myalloc.c:131:12: warning: assignment makes pointer from integer without a cast [enabled by default] myalloc.c: At top level: myalloc.c:150:13: warning: conflicting types for ‘store_link’ [enabled by default] myalloc.c:150:13: error: static declaration of ‘store_link’ follows non-static declaration myalloc.c:91:4: note: previous implicit declaration of ‘store_link’ was here myalloc.c:164:24: error: conflicting types for ‘find_link’ myalloc.c:131:14: note: previous implicit declaration of ‘find_link’ was here Building the mammogram resizing program. gcc -O2 -I. -I../common mkimage.o -o mkimage -L../common -lmammo -lm ../common/libmammo.a(aggregate.o): In function `aggregate': aggregate.c:(.text+0x7fa): undefined reference to `mycalloc' aggregate.c:(.text+0x81c): undefined reference to `mycalloc' aggregate.c:(.text+0x868): undefined reference to `mycalloc' ../common/libmammo.a(aggregate.o): In function `aggregate_median': aggregate.c:(.text+0xbc5): undefined reference to `mymalloc' aggregate.c:(.text+0xbfb): undefined reference to `mycalloc' aggregate.c:(.text+0xc3c): undefined reference to `mycalloc' ../common/libmammo.a(aggregate.o): In function `aggregate': aggregate.c:(.text+0x9b5): undefined reference to `myfree' ../common/libmammo.a(aggregate.o): In function `aggregate_median': aggregate.c:(.text+0xd85): undefined reference to `myfree' ../common/libmammo.a(optical_density.o): In function `linear_optical_density': optical_density.c:(.text+0x29e): undefined reference to `mymalloc' optical_density.c:(.text+0x342): undefined reference to `mycalloc' optical_density.c:(.text+0x383): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `log10_optical_density': optical_density.c:(.text+0x693): undefined reference to `mymalloc' optical_density.c:(.text+0x74f): undefined reference to `mycalloc' optical_density.c:(.text+0x790): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `map_with_ushort_lut': optical_density.c:(.text+0xb2e): undefined reference to `mymalloc' optical_density.c:(.text+0xb87): undefined reference to `mycalloc' optical_density.c:(.text+0xbc6): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `linear_optical_density': optical_density.c:(.text+0x4d9): undefined reference to `myfree' ../common/libmammo.a(optical_density.o): In function `log10_optical_density': optical_density.c:(.text+0x8f1): undefined reference to `myfree' ../common/libmammo.a(optical_density.o): In function `map_with_ushort_lut': optical_density.c:(.text+0xd0d): undefined reference to `myfree' ../common/libmammo.a(virtual_image.o): In function `deallocate_cached_image': virtual_image.c:(.text+0x3dc6): undefined reference to `myfree' virtual_image.c:(.text+0x3dd7): undefined reference to `myfree' ../common/libmammo.a(virtual_image.o):virtual_image.c:(.text+0x3de5): more undefined references to `myfree' follow ../common/libmammo.a(virtual_image.o): In function `allocate_cached_image': virtual_image.c:(.text+0x4233): undefined reference to `mycalloc' virtual_image.c:(.text+0x4253): undefined reference to `mymalloc' virtual_image.c:(.text+0x4275): undefined reference to `mycalloc' virtual_image.c:(.text+0x42e7): undefined reference to `mycalloc' virtual_image.c:(.text+0x44f9): undefined reference to `mycalloc' virtual_image.c:(.text+0x47a9): undefined reference to `mycalloc' virtual_image.c:(.text+0x4a45): undefined reference to `mycalloc' virtual_image.c:(.text+0x4af4): undefined reference to `myfree' collect2: error: ld returned 1 exit status make: *** [mkimage] Error 1 Building the breast segmentation program. gcc -O2 -I. -I../common breastsegment.o segment.o -o breastsegment -L../common -lmammo -lm breastsegment.o: In function `render_segmentation_sketch': breastsegment.c:(.text+0x43): undefined reference to `mycalloc' breastsegment.c:(.text+0x58): undefined reference to `mycalloc' breastsegment.c:(.text+0x12f): undefined reference to `mycalloc' breastsegment.c:(.text+0x1b9): undefined reference to `myfree' breastsegment.c:(.text+0x1c6): undefined reference to `myfree' breastsegment.c:(.text+0x1e1): undefined reference to `myfree' segment.o: In function `find_center': segment.c:(.text+0x53): undefined reference to `mycalloc' segment.c:(.text+0x71): undefined reference to `mycalloc' segment.c:(.text+0x387): undefined reference to `myfree' segment.o: In function `bordercode': segment.c:(.text+0x4ac): undefined reference to `mycalloc' segment.c:(.text+0x546): undefined reference to `mycalloc' segment.c:(.text+0x651): undefined reference to `mycalloc' segment.c:(.text+0x691): undefined reference to `myfree' segment.o: In function `estimate_tissue_image': segment.c:(.text+0x10d4): undefined reference to `mycalloc' segment.c:(.text+0x14da): undefined reference to `mycalloc' segment.c:(.text+0x1698): undefined reference to `mycalloc' segment.c:(.text+0x1834): undefined reference to `mycalloc' segment.c:(.text+0x1850): undefined reference to `mycalloc' segment.o:segment.c:(.text+0x186a): more undefined references to `mycalloc' follow segment.o: In function `estimate_tissue_image': segment.c:(.text+0x1bbc): undefined reference to `myfree' segment.c:(.text+0x1c4a): undefined reference to `mycalloc' segment.c:(.text+0x1c7c): undefined reference to `mycalloc' segment.c:(.text+0x1d8e): undefined reference to `myfree' segment.c:(.text+0x1d9b): undefined reference to `myfree' segment.c:(.text+0x1da8): undefined reference to `myfree' segment.c:(.text+0x1dba): undefined reference to `myfree' segment.c:(.text+0x1dc9): undefined reference to `myfree' segment.o:segment.c:(.text+0x1dd8): more undefined references to `myfree' follow segment.o: In function `estimate_tissue_image': segment.c:(.text+0x20bf): undefined reference to `mycalloc' segment.o: In function `segment_breast': segment.c:(.text+0x24cd): undefined reference to `mycalloc' segment.o: In function `find_center': segment.c:(.text+0x3a4): undefined reference to `myfree' segment.o: In function `bordercode': segment.c:(.text+0x6ac): undefined reference to `myfree' ../common/libmammo.a(aggregate.o): In function `aggregate': aggregate.c:(.text+0x7fa): undefined reference to `mycalloc' aggregate.c:(.text+0x81c): undefined reference to `mycalloc' aggregate.c:(.text+0x868): undefined reference to `mycalloc' ../common/libmammo.a(aggregate.o): In function `aggregate_median': aggregate.c:(.text+0xbc5): undefined reference to `mymalloc' aggregate.c:(.text+0xbfb): undefined reference to `mycalloc' aggregate.c:(.text+0xc3c): undefined reference to `mycalloc' ../common/libmammo.a(aggregate.o): In function `aggregate': aggregate.c:(.text+0x9b5): undefined reference to `myfree' ../common/libmammo.a(aggregate.o): In function `aggregate_median': aggregate.c:(.text+0xd85): undefined reference to `myfree' ../common/libmammo.a(cc_label.o): In function `cc_label': cc_label.c:(.text+0x20c): undefined reference to `mycalloc' cc_label.c:(.text+0x6c2): undefined reference to `mycalloc' cc_label.c:(.text+0xbaa): undefined reference to `myfree' ../common/libmammo.a(cc_label.o): In function `cc_label_0bkgd': cc_label.c:(.text+0xe17): undefined reference to `mycalloc' cc_label.c:(.text+0x12d7): undefined reference to `mycalloc' cc_label.c:(.text+0x17e7): undefined reference to `myfree' ../common/libmammo.a(cc_label.o): In function `cc_relabel_by_intensity': cc_label.c:(.text+0x18c5): undefined reference to `mycalloc' ../common/libmammo.a(cc_label.o): In function `cc_label_4connect': cc_label.c:(.text+0x1cf0): undefined reference to `mycalloc' cc_label.c:(.text+0x2195): undefined reference to `mycalloc' cc_label.c:(.text+0x26a4): undefined reference to `myfree' ../common/libmammo.a(cc_label.o): In function `cc_relabel_by_intensity': cc_label.c:(.text+0x1b06): undefined reference to `myfree' ../common/libmammo.a(convexpolyscan.o): In function `polyscan_coords': convexpolyscan.c:(.text+0x6f0): undefined reference to `mycalloc' convexpolyscan.c:(.text+0x75f): undefined reference to `mycalloc' convexpolyscan.c:(.text+0x7ab): undefined reference to `myfree' convexpolyscan.c:(.text+0x7b8): undefined reference to `myfree' ../common/libmammo.a(convexpolyscan.o): In function `polyscan_poly_cacheim': convexpolyscan.c:(.text+0x805): undefined reference to `mycalloc' convexpolyscan.c:(.text+0x894): undefined reference to `myfree' ../common/libmammo.a(mikesfileio.o): In function `read_segmentation_file': mikesfileio.c:(.text+0x1e9): undefined reference to `mycalloc' mikesfileio.c:(.text+0x205): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `linear_optical_density': optical_density.c:(.text+0x29e): undefined reference to `mymalloc' optical_density.c:(.text+0x342): undefined reference to `mycalloc' optical_density.c:(.text+0x383): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `log10_optical_density': optical_density.c:(.text+0x693): undefined reference to `mymalloc' optical_density.c:(.text+0x74f): undefined reference to `mycalloc' optical_density.c:(.text+0x790): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `map_with_ushort_lut': optical_density.c:(.text+0xb2e): undefined reference to `mymalloc' optical_density.c:(.text+0xb87): undefined reference to `mycalloc' optical_density.c:(.text+0xbc6): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `linear_optical_density': optical_density.c:(.text+0x4d9): undefined reference to `myfree' ../common/libmammo.a(optical_density.o): In function `log10_optical_density': optical_density.c:(.text+0x8f1): undefined reference to `myfree' ../common/libmammo.a(optical_density.o): In function `map_with_ushort_lut': optical_density.c:(.text+0xd0d): undefined reference to `myfree' ../common/libmammo.a(virtual_image.o): In function `deallocate_cached_image': virtual_image.c:(.text+0x3dc6): undefined reference to `myfree' virtual_image.c:(.text+0x3dd7): undefined reference to `myfree' ../common/libmammo.a(virtual_image.o):virtual_image.c:(.text+0x3de5): more undefined references to `myfree' follow ../common/libmammo.a(virtual_image.o): In function `allocate_cached_image': virtual_image.c:(.text+0x4233): undefined reference to `mycalloc' virtual_image.c:(.text+0x4253): undefined reference to `mymalloc' virtual_image.c:(.text+0x4275): undefined reference to `mycalloc' virtual_image.c:(.text+0x42e7): undefined reference to `mycalloc' virtual_image.c:(.text+0x44f9): undefined reference to `mycalloc' virtual_image.c:(.text+0x47a9): undefined reference to `mycalloc' virtual_image.c:(.text+0x4a45): undefined reference to `mycalloc' virtual_image.c:(.text+0x4af4): undefined reference to `myfree' collect2: error: ld returned 1 exit status make: *** [breastsegment] Error 1 Building the mass feature generation program. gcc -O2 -I. -I../common afumfeature.o -o afumfeature -L../common -lmammo -lm afumfeature.o: In function `afum_process': afumfeature.c:(.text+0xd80): undefined reference to `mycalloc' afumfeature.c:(.text+0xd9c): undefined reference to `mycalloc' afumfeature.c:(.text+0xe80): undefined reference to `mycalloc' afumfeature.c:(.text+0x11f8): undefined reference to `myfree' afumfeature.c:(.text+0x1207): undefined reference to `myfree' afumfeature.c:(.text+0x1214): undefined reference to `myfree' ../common/libmammo.a(aggregate.o): In function `aggregate': aggregate.c:(.text+0x7fa): undefined reference to `mycalloc' aggregate.c:(.text+0x81c): undefined reference to `mycalloc' aggregate.c:(.text+0x868): undefined reference to `mycalloc' ../common/libmammo.a(aggregate.o): In function `aggregate_median': aggregate.c:(.text+0xbc5): undefined reference to `mymalloc' aggregate.c:(.text+0xbfb): undefined reference to `mycalloc' aggregate.c:(.text+0xc3c): undefined reference to `mycalloc' ../common/libmammo.a(aggregate.o): In function `aggregate': aggregate.c:(.text+0x9b5): undefined reference to `myfree' ../common/libmammo.a(aggregate.o): In function `aggregate_median': aggregate.c:(.text+0xd85): undefined reference to `myfree' ../common/libmammo.a(convexpolyscan.o): In function `polyscan_coords': convexpolyscan.c:(.text+0x6f0): undefined reference to `mycalloc' convexpolyscan.c:(.text+0x75f): undefined reference to `mycalloc' convexpolyscan.c:(.text+0x7ab): undefined reference to `myfree' convexpolyscan.c:(.text+0x7b8): undefined reference to `myfree' ../common/libmammo.a(convexpolyscan.o): In function `polyscan_poly_cacheim': convexpolyscan.c:(.text+0x805): undefined reference to `mycalloc' convexpolyscan.c:(.text+0x894): undefined reference to `myfree' ../common/libmammo.a(mikesfileio.o): In function `read_segmentation_file': mikesfileio.c:(.text+0x1e9): undefined reference to `mycalloc' mikesfileio.c:(.text+0x205): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `linear_optical_density': optical_density.c:(.text+0x29e): undefined reference to `mymalloc' optical_density.c:(.text+0x342): undefined reference to `mycalloc' optical_density.c:(.text+0x383): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `log10_optical_density': optical_density.c:(.text+0x693): undefined reference to `mymalloc' optical_density.c:(.text+0x74f): undefined reference to `mycalloc' optical_density.c:(.text+0x790): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `map_with_ushort_lut': optical_density.c:(.text+0xb2e): undefined reference to `mymalloc' optical_density.c:(.text+0xb87): undefined reference to `mycalloc' optical_density.c:(.text+0xbc6): undefined reference to `mycalloc' ../common/libmammo.a(optical_density.o): In function `linear_optical_density': optical_density.c:(.text+0x4d9): undefined reference to `myfree' ../common/libmammo.a(optical_density.o): In function `log10_optical_density': optical_density.c:(.text+0x8f1): undefined reference to `myfree' ../common/libmammo.a(optical_density.o): In function `map_with_ushort_lut': optical_density.c:(.text+0xd0d): undefined reference to `myfree' ../common/libmammo.a(virtual_image.o): In function `deallocate_cached_image': virtual_image.c:(.text+0x3dc6): undefined reference to `myfree' virtual_image.c:(.text+0x3dd7): undefined reference to `myfree' ../common/libmammo.a(virtual_image.o):virtual_image.c:(.text+0x3de5): more undefined references to `myfree' follow ../common/libmammo.a(virtual_image.o): In function `allocate_cached_image': virtual_image.c:(.text+0x4233): undefined reference to `mycalloc' virtual_image.c:(.text+0x4253): undefined reference to `mymalloc' virtual_image.c:(.text+0x4275): undefined reference to `mycalloc' virtual_image.c:(.text+0x42e7): undefined reference to `mycalloc' virtual_image.c:(.text+0x44f9): undefined reference to `mycalloc' virtual_image.c:(.text+0x47a9): undefined reference to `mycalloc' virtual_image.c:(.text+0x4a45): undefined reference to `mycalloc' virtual_image.c:(.text+0x4af4): undefined reference to `myfree' collect2: error: ld returned 1 exit status make: *** [afumfeature] Error 1 Building the mass detection program. make: Nothing to be done for `all'. Building the performance evaluation program. gcc -O2 -I. -I../common DDSMeval.o polyscan.o -o DDSMeval -L../common -lmammo -lm ../common/libmammo.a(mikesfileio.o): In function `read_segmentation_file': mikesfileio.c:(.text+0x1e9): undefined reference to `mycalloc' mikesfileio.c:(.text+0x205): undefined reference to `mycalloc' collect2: error: ld returned 1 exit status make: *** [DDSMeval] Error 1 Building the template creation program. gcc -O2 -I. -I../common mktemplate.o polyscan.o -o mktemplate -L../common -lmammo -lm Building the drawimage program. gcc -O2 -I. -I../common drawimage.o -o drawimage -L../common -lmammo -lm ../common/libmammo.a(mikesfileio.o): In function `read_segmentation_file': mikesfileio.c:(.text+0x1e9): undefined reference to `mycalloc' mikesfileio.c:(.text+0x205): undefined reference to `mycalloc' collect2: error: ld returned 1 exit status make: *** [drawimage] Error 1 Building the compression/decompression program jpeg. gcc -O2 -DSYSV -DNOTRUNCATE -c lexer.c lexer.c:41:1: error: initializer element is not constant lexer.c:41:1: error: (near initialization for ‘yyin’) lexer.c:41:1: error: initializer element is not constant lexer.c:41:1: error: (near initialization for ‘yyout’) lexer.c: In function ‘initparser’: lexer.c:387:21: warning: incompatible implicit declaration of built-in function ‘strlen’ [enabled by default] lexer.c: In function ‘MakeLink’: lexer.c:443:16: warning: incompatible implicit declaration of built-in function ‘malloc’ [enabled by default] lexer.c:447:7: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:452:7: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:455:34: warning: incompatible implicit declaration of built-in function ‘calloc’ [enabled by default] lexer.c:458:7: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:460:3: warning: incompatible implicit declaration of built-in function ‘strcpy’ [enabled by default] lexer.c: In function ‘getstr’: lexer.c:548:26: warning: incompatible implicit declaration of built-in function ‘malloc’ [enabled by default] lexer.c:552:4: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:557:21: warning: incompatible implicit declaration of built-in function ‘calloc’ [enabled by default] lexer.c:557:28: warning: incompatible implicit declaration of built-in function ‘strlen’ [enabled by default] lexer.c:561:7: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c: In function ‘parser’: lexer.c:794:21: warning: incompatible implicit declaration of built-in function ‘calloc’ [enabled by default] lexer.c:798:8: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:1074:21: warning: incompatible implicit declaration of built-in function ‘calloc’ [enabled by default] lexer.c:1078:8: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:1116:21: warning: incompatible implicit declaration of built-in function ‘calloc’ [enabled by default] lexer.c:1120:8: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:1154:25: warning: incompatible implicit declaration of built-in function ‘calloc’ [enabled by default] lexer.c:1158:5: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:1190:5: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:1247:25: warning: incompatible implicit declaration of built-in function ‘calloc’ [enabled by default] lexer.c:1251:5: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c:1283:5: warning: incompatible implicit declaration of built-in function ‘exit’ [enabled by default] lexer.c: In function ‘yylook’: lexer.c:1867:9: warning: cast from pointer to integer of different size [-Wpointer-to-int-cast] lexer.c:1867:20: warning: cast from pointer to integer of different size [-Wpointer-to-int-cast] lexer.c:1877:12: warning: cast from pointer to integer of different size [-Wpointer-to-int-cast] lexer.c:1877:23: warning: cast from pointer to integer of different size [-Wpointer-to-int-cast] make: *** [lexer.o] Error 1

    Read the article

  • How to solve CUDA crash when run CUDA example fluidsGL?

    - by sam
    I use ubuntu 12.04 64 bits with GTX560Ti. I install CUDA by following instruction: wget http: //developer.download.nvidia.com/compute/cuda/4_2/rel/toolkit/cudatoolkit_4.2.9_lin ux_64_ubuntu11.04.run wget http: //developer.download.nvidia.com/compute/cuda/4_2/rel/drivers/devdriver_4.2_linux _64_295.41.run wget http: //developer.download.nvidia.com/compute/cuda/4_2/rel/sdk/gpucomputingsdk_4.2.9 _linux.run chmod +x cudatoolkit_4.2.9_linux_64_ubuntu11.04.run sudo ./cudatoolkit_4.2.9_linux_64_ubuntu11.04.run echo "/usr/local/cuda/lib64" > ~/cuda.conf echo "/usr/local/cuda/lib" >> ~/cuda.conf sudo mv ~/cuda.conf /etc/ld.so.conf.d/cuda.conf sudo ldconfig echo 'export PATH=$PATH:/usr/local/cuda/bin' >> ~/.bashrc chmod +x gpucomputingsdk_4.2.9_linux.run ./gpucomputingsdk_4.2.9_linux.run sudo apt-get install build-essential libx11-dev libglu1-mesa-dev freeg lut3-dev libxi-dev libxmu-dev gcc-4.4 g++-4.4 sed 's/g++ -fPIC/g++-4.4 -fPIC/g' ~/NV IDIA_GPU_Computing_SDK/C/common/common.mk > ~/NVIDIA_GPU_Computing_SDK/C/common/common.mk.bak; mv ~/NVIDIA_GPU_Computing_SDK/C/common/common.mk.bak ~/NVIDIA_GPU_Computing_SDK/C/common/common.mk sed 's/gcc -fPIC/gcc-4.4 -fPIC/g' ~/NV IDIA_GPU_Computing_SDK/C/common/common.mk > ~/NVIDIA_GPU_Computing_SDK/C/common/common.mk.bak; mv ~/NVIDIA_GPU_Computing_SDK/C/common/common.mk.bak ~/NVIDIA_GPU_Computing_SDK/C/common/common.mk sed 's/-L$(SHAREDDIR)\/lib/-L$(SHAREDDIR)\/lib -L\/u sr\/lib\/nvidia-current/g' ~/NVIDIA_GPU_Computing_SDK/C/common/common.mk > ~/NVIDIA_GPU_Computing_SDK/C/common/common.mk.bak; mv ~/NVIDIA_GPU_Computing_SDK/C/common/common.mk.bak ~/NVIDIA_GPU_Computing_SDK/C/common/common.mk sed 's/-L$(SHAREDDIR)\/lib -L\/usr\/lib\/nvidia-current $(NV CUVIDLIB)/-L$(SHAREDDIR)\/lib $(NVCUVIDLIB)/g' ~/NVIDIA_GPU_Computing_SDK/C/common/common.mk > ~/NVIDIA_GPU_Computing_SDK/C/common/common.mk.bak; mv ~/NVIDIA_GPU_Computing_SDK/C/common/common.mk.bak ~/NVIDIA_GPU_Computing_SDK/C/common/common.mk After I run ~/NVIDIA_GPU_Computing_SDK/C/bin/linux/release/./fluidsGL It got stuck even mouse or keyboard couldn't move. How to solve it? Thank you~

    Read the article

  • Oracle BI Server Modeling, Part 1- Designing a Query Factory

    - by bob.ertl(at)oracle.com
      Welcome to Oracle BI Development's BI Foundation blog, focused on helping you get the most value from your Oracle Business Intelligence Enterprise Edition (BI EE) platform deployments.  In my first series of posts, I plan to show developers the concepts and best practices for modeling in the Common Enterprise Information Model (CEIM), the semantic layer of Oracle BI EE.  In this segment, I will lay the groundwork for the modeling concepts.  First, I will cover the big picture of how the BI Server fits into the system, and how the CEIM controls the query processing. Oracle BI EE Query Cycle The purpose of the Oracle BI Server is to bridge the gap between the presentation services and the data sources.  There are typically a variety of data sources in a variety of technologies: relational, normalized transaction systems; relational star-schema data warehouses and marts; multidimensional analytic cubes and financial applications; flat files, Excel files, XML files, and so on. Business datasets can reside in a single type of source, or, most of the time, are spread across various types of sources. Presentation services users are generally business people who need to be able to query that set of sources without any knowledge of technologies, schemas, or how sources are organized in their company. They think of business analysis in terms of measures with specific calculations, hierarchical dimensions for breaking those measures down, and detailed reports of the business transactions themselves.  Most of them create queries without knowing it, by picking a dashboard page and some filters.  Others create their own analysis by selecting metrics and dimensional attributes, and possibly creating additional calculations. The BI Server bridges that gap from simple business terms to technical physical queries by exposing just the business focused measures and dimensional attributes that business people can use in their analyses and dashboards.   After they make their selections and start the analysis, the BI Server plans the best way to query the data sources, writes the optimized sequence of physical queries to those sources, post-processes the results, and presents them to the client as a single result set suitable for tables, pivots and charts. The CEIM is a model that controls the processing of the BI Server.  It provides the subject areas that presentation services exposes for business users to select simplified metrics and dimensional attributes for their analysis.  It models the mappings to the physical data access, the calculations and logical transformations, and the data access security rules.  The CEIM consists of metadata stored in the repository, authored by developers using the Administration Tool client.     Presentation services and other query clients create their queries in BI EE's SQL-92 language, called Logical SQL or LSQL.  The API simply uses ODBC or JDBC to pass the query to the BI Server.  Presentation services writes the LSQL query in terms of the simplified objects presented to the users.  The BI Server creates a query plan, and rewrites the LSQL into fully-detailed SQL or other languages suitable for querying the physical sources.  For example, the LSQL on the left below was rewritten into the physical SQL for an Oracle 11g database on the right. Logical SQL   Physical SQL SELECT "D0 Time"."T02 Per Name Month" saw_0, "D4 Product"."P01  Product" saw_1, "F2 Units"."2-01  Billed Qty  (Sum All)" saw_2 FROM "Sample Sales" ORDER BY saw_0, saw_1       WITH SAWITH0 AS ( select T986.Per_Name_Month as c1, T879.Prod_Dsc as c2,      sum(T835.Units) as c3, T879.Prod_Key as c4 from      Product T879 /* A05 Product */ ,      Time_Mth T986 /* A08 Time Mth */ ,      FactsRev T835 /* A11 Revenue (Billed Time Join) */ where ( T835.Prod_Key = T879.Prod_Key and T835.Bill_Mth = T986.Row_Wid) group by T879.Prod_Dsc, T879.Prod_Key, T986.Per_Name_Month ) select SAWITH0.c1 as c1, SAWITH0.c2 as c2, SAWITH0.c3 as c3 from SAWITH0 order by c1, c2   Probably everybody reading this blog can write SQL or MDX.  However, the trick in designing the CEIM is that you are modeling a query-generation factory.  Rather than hand-crafting individual queries, you model behavior and relationships, thus configuring the BI Server machinery to manufacture millions of different queries in response to random user requests.  This mass production requires a different mindset and approach than when you are designing individual SQL statements in tools such as Oracle SQL Developer, Oracle Hyperion Interactive Reporting (formerly Brio), or Oracle BI Publisher.   The Structure of the Common Enterprise Information Model (CEIM) The CEIM has a unique structure specifically for modeling the relationships and behaviors that fill the gap from logical user requests to physical data source queries and back to the result.  The model divides the functionality into three specialized layers, called Presentation, Business Model and Mapping, and Physical, as shown below. Presentation services clients can generally only see the presentation layer, and the objects in the presentation layer are normally the only ones used in the LSQL request.  When a request comes into the BI Server from presentation services or another client, the relationships and objects in the model allow the BI Server to select the appropriate data sources, create a query plan, and generate the physical queries.  That's the left to right flow in the diagram below.  When the results come back from the data source queries, the right to left relationships in the model show how to transform the results and perform any final calculations and functions that could not be pushed down to the databases.   Business Model Think of the business model as the heart of the CEIM you are designing.  This is where you define the analytic behavior seen by the users, and the superset library of metric and dimension objects available to the user community as a whole.  It also provides the baseline business-friendly names and user-readable dictionary.  For these reasons, it is often called the "logical" model--it is a virtual database schema that persists no data, but can be queried as if it is a database. The business model always has a dimensional shape (more on this in future posts), and its simple shape and terminology hides the complexity of the source data models. Besides hiding complexity and normalizing terminology, this layer adds most of the analytic value, as well.  This is where you define the rich, dimensional behavior of the metrics and complex business calculations, as well as the conformed dimensions and hierarchies.  It contributes to the ease of use for business users, since the dimensional metric definitions apply in any context of filters and drill-downs, and the conformed dimensions enable dashboard-wide filters and guided analysis links that bring context along from one page to the next.  The conformed dimensions also provide a key to hiding the complexity of many sources, including federation of different databases, behind the simple business model. Note that the expression language in this layer is LSQL, so that any expression can be rewritten into any data source's query language at run time.  This is important for federation, where a given logical object can map to several different physical objects in different databases.  It is also important to portability of the CEIM to different database brands, which is a key requirement for Oracle's BI Applications products. Your requirements process with your user community will mostly affect the business model.  This is where you will define most of the things they specifically ask for, such as metric definitions.  For this reason, many of the best-practice methodologies of our consulting partners start with the high-level definition of this layer. Physical Model The physical model connects the business model that meets your users' requirements to the reality of the data sources you have available. In the query factory analogy, think of the physical layer as the bill of materials for generating physical queries.  Every schema, table, column, join, cube, hierarchy, etc., that will appear in any physical query manufactured at run time must be modeled here at design time. Each physical data source will have its own physical model, or "database" object in the CEIM.  The shape of each physical model matches the shape of its physical source.  In other words, if the source is normalized relational, the physical model will mimic that normalized shape.  If it is a hypercube, the physical model will have a hypercube shape.  If it is a flat file, it will have a denormalized tabular shape. To aid in query optimization, the physical layer also tracks the specifics of the database brand and release.  This allows the BI Server to make the most of each physical source's distinct capabilities, writing queries in its syntax, and using its specific functions. This allows the BI Server to push processing work as deep as possible into the physical source, which minimizes data movement and takes full advantage of the database's own optimizer.  For most data sources, native APIs are used to further optimize performance and functionality. The value of having a distinct separation between the logical (business) and physical models is encapsulation of the physical characteristics.  This encapsulation is another enabler of packaged BI applications and federation.  It is also key to hiding the complex shapes and relationships in the physical sources from the end users.  Consider a routine drill-down in the business model: physically, it can require a drill-through where the first query is MDX to a multidimensional cube, followed by the drill-down query in SQL to a normalized relational database.  The only difference from the user's point of view is that the 2nd query added a more detailed dimension level column - everything else was the same. Mappings Within the Business Model and Mapping Layer, the mappings provide the binding from each logical column and join in the dimensional business model, to each of the objects that can provide its data in the physical layer.  When there is more than one option for a physical source, rules in the mappings are applied to the query context to determine which of the data sources should be hit, and how to combine their results if more than one is used.  These rules specify aggregate navigation, vertical partitioning (fragmentation), and horizontal partitioning, any of which can be federated across multiple, heterogeneous sources.  These mappings are usually the most sophisticated part of the CEIM. Presentation You might think of the presentation layer as a set of very simple relational-like views into the business model.  Over ODBC/JDBC, they present a relational catalog consisting of databases, tables and columns.  For business users, presentation services interprets these as subject areas, folders and columns, respectively.  (Note that in 10g, subject areas were called presentation catalogs in the CEIM.  In this blog, I will stick to 11g terminology.)  Generally speaking, presentation services and other clients can query only these objects (there are exceptions for certain clients such as BI Publisher and Essbase Studio). The purpose of the presentation layer is to specialize the business model for different categories of users.  Based on a user's role, they will be restricted to specific subject areas, tables and columns for security.  The breakdown of the model into multiple subject areas organizes the content for users, and subjects superfluous to a particular business role can be hidden from that set of users.  Customized names and descriptions can be used to override the business model names for a specific audience.  Variables in the object names can be used for localization. For these reasons, you are better off thinking of the tables in the presentation layer as folders than as strict relational tables.  The real semantics of tables and how they function is in the business model, and any grouping of columns can be included in any table in the presentation layer.  In 11g, an LSQL query can also span multiple presentation subject areas, as long as they map to the same business model. Other Model Objects There are some objects that apply to multiple layers.  These include security-related objects, such as application roles, users, data filters, and query limits (governors).  There are also variables you can use in parameters and expressions, and initialization blocks for loading their initial values on a static or user session basis.  Finally, there are Multi-User Development (MUD) projects for developers to check out units of work, and objects for the marketing feature used by our packaged customer relationship management (CRM) software.   The Query Factory At this point, you should have a grasp on the query factory concept.  When developing the CEIM model, you are configuring the BI Server to automatically manufacture millions of queries in response to random user requests. You do this by defining the analytic behavior in the business model, mapping that to the physical data sources, and exposing it through the presentation layer's role-based subject areas. While configuring mass production requires a different mindset than when you hand-craft individual SQL or MDX statements, it builds on the modeling and query concepts you already understand. The following posts in this series will walk through the CEIM modeling concepts and best practices in detail.  We will initially review dimensional concepts so you can understand the business model, and then present a pattern-based approach to learning the mappings from a variety of physical schema shapes and deployments to the dimensional model.  Along the way, we will also present the dimensional calculation template, and learn how to configure the many additivity patterns.

    Read the article

  • User controls & Composite web server controls

    - by Shekhar_Pro
    Well Its both a poll and a question. Which approach should i prefer when it comes to writing a custom control in ASP.Net. Should i create a custom User control or should I create a Composite Web Server control. And how about adding a Designer support to the composite control. How are they different from each other and their Pros and Cons. Differentiating with an example of each will be preferable.

    Read the article

  • Common programming mistakes for Scala developers to avoid

    - by jelovirt
    In the spirit of Common programming mistakes for Java developers to avoid? Common programming mistakes for JavaScript developers to avoid? Common programming mistakes for .NET developers to avoid? Common programming mistakes for Haskell developers to avoid? Common programming mistakes for Python developers to avoid? Common Programming Mistakes for Ruby Developers to Avoid Common programming mistakes for PHP developers to avoid? what are some common mistakes made by Scala developers, and how can we avoid them? Also, as the biggest group of new Scala developers come from Java, what specific pitfalls they have to be aware of? For example, one often cited problem Java programmers moving to Scala make is use a procedural approach when a functional one would be more suitable in Scala. What other mistakes e.g. in API design newcomers should try to avoid.

    Read the article

  • Adding & Removing Dynamic Controls in C# WinForms.

    - by gsvirdi
    I have three Tabs in my WinForm; depending on the selected RaioButton in the TabPages[0] I added few dynamic controls on the relevant TabPage. On Button_Click event the controls are added, but the prob is the I'm not able to remove the Dynamically added controls from the other (irrelevant) TabPage. Here's my code: Label label235 = new Label(); TextBox tbMax = new TextBox(); label235.Name = "label235"; tbMax.Name = "txtBoxNoiseMax"; label235.Text = "Noise"; tbMax.ReadOnly = true; label235.ForeColor = System.Drawing.Color.Blue; tbMax.BackColor = System.Drawing.Color.White; label235.Size = new Size(74, 13); tbMax.Size = new Size(85, 20); if (radioButton1.Checked) { label235.Location = new Point(8, 476); tbMax.Location = new Point(138, 473); tabControl.TabPages[1].Controls.Add(label235); tabControl.TabPages[1].Controls.Add(tbMax); tabControl.TabPages[2].Controls.RemoveByKey("label235"); tabControl.TabPages[2].Controls.RemoveByKey("tbMax"); } else { label235.Location = new Point(8, 538); tbMax.Location = new Point(138, 535); tabControl.TabPages[1].Controls.RemoveByKey("label235"); tabControl.TabPages[1].Controls.RemoveByKey("tbMax"); tabControl.TabPages[2].Controls.Add(label235); tabControl.TabPages[2].Controls.Add(tbMax); } Where am I making that mistake?????

    Read the article

  • Oracle Sun Solaris 11.1 Completes EAL4+ Common Criteria Evaluation

    - by Joshua Brickman-Oracle
    Oracle is pleased to announce that the Oracle Solaris 11.1 operating system has achieved a Common Criteria certification at Evaluation Assurance Level (EAL) 4 augmented by Flaw Remediation under the Canadian Communications Security Establishment’s (CSEC) Canadian Common Criteria  Scheme (CCCS).  EAL4 is the highest level achievable for commercial software, and is the highest level mutually recognized by 26 countries under the current Common Criteria Recognition Arrangement (CCRA).  Oracle Solaris 11.1 is conformant to the BSI Operating System Protection Profile v2.0 with the following four extended packages. (1) Advanced Management, (2) Extended Identification and Authentication, (3) Labeled Security, and (4) Virtualization. Common Criteria is an international framework (ISO/IEC 15408) which defines a common approach for evaluating security features and capabilities of Information Technology security products. A certified product is one that a recognized Certification Body asserts as having been evaluated by a qualified, accredited, and independent evaluation laboratory competent in the field of IT security evaluation to the requirements of the Common Criteria and Common Methodology for Information Technology Security Evaluation. Oracle Solaris is the industry’s most widely deployed UNIXtm operating system, delivers mission critical cloud infrastructure with built-in virtualization, simplified software lifecycle management, cloud scale data management, and advanced protection for public, private, and hybrid cloud environments. It provides a suite of technologies and applications that create an operating system with optimal performance. Oracle Solaris 11.1 includes key technologies such as Trusted Extensions, the Oracle Solaris Cryptographic Framework, Zones, the ZFS File System, Image Packaging System (IPS), and multiple boot environments. The Oracle Solaris 11.1 Certification Report and Security Target can be viewed on the Communications Security Establishment Canada (CSEC) site and on the Common Criteria Portal. For more information on Oracle’s participation in the Common Criteria program, please visit the main Common Criteria information page here: (http://www.oracle.com/technetwork/topics/security/oracle-common-criteria-095703.html) For a complete list of Oracle products with Common Criteria certifications and FIPS 140-2 validations, please see the Security Evaluations website here: (http://www.oracle.com/technetwork/topics/security/security-evaluations-099357.html).

    Read the article

  • Web 2.0 Extension for ASP.NET

    - by Visual WebGui
    ASP.NET is now much extended to support line of business and data centric applications, providing Web 2.0 rich user interfaces within a native web environment. New capabilities allowed by the Visual WebGui extension turn Visual Studio into a rapid development tool for the web, leveraging the wide set of ASP.NET web infrastructures runtime and extending its paradigms to support highly interactive applications. Taking advantage of the ASP.NET infrastructures Using the native ASP.NET ISAPI filter: aspnet_isapi...(read more)

    Read the article

  • Is there any practical use for the empty type in Common Lisp?

    - by Pedro Rodrigues
    The Common Lisp spec states that nil is the name of the empty type, but I've never found any situation in Common Lisp where I felt like the empty type was useful/necessary. Is it there just for completeness sake (and removing it wouldn't cause any harm to anyone)? Or is there really some practical use for the empty type in Common Lisp? If yes, then I would prefer an answer with code example. For example, in Haskell the empty type can be used when binding foreign data structures, to make sure that no one tries to create values of that type without using the data structure's foreign interface (although in this case, the type is not really empty).

    Read the article

  • Need to replace 3rd party WinForm controls, what's the closet WPF equivalent?

    - by Refracted Paladin
    I am tired of Windows Forms...I just am. I am not trying to start a debate on it I am just bored with it. Unfortunately we have become dependent on 4 controls in DevExpress XtraEditors. I have had nothing but difficulties with them and I want to move on. What I need now is what the closet replacement would be for the 4 controls I am using. Here they are: LookUpEdit - this is a dropdown that filters the dropdown list as you type. MemoExEdit - this is a textbox that 'pops up' a bigger area when it has focus CheckedComboBoxEdit - this is a dropdown of checkboxes. CheckedListBoxControl - this is a nicely columned list box of checkboxes This is a LOB app that has tons of data entry. In reality, the first two are nice but not essential. The second two are essential in that I would either need to replicate the functionality or change the way the users are interacting with that particular data. I am looking for help in replicating these in a WPF environment with existing controls(codeplex etc) or in straight XAML. Any code or direction would be greatly appreciated but mostly I am hoping to avoid any commercial 3rd party WPF and would instead like to focus on building them myself(but I need direction) or using Codeplex

    Read the article

  • How to setup a webserver in common lisp?

    - by Serpico
    Several months ago, I was inspired by the magnificent book ANSI Common Lisp written by Paul Graham, and the statement that Lisp could be used as a secret weapon in your web development, published by the same author on his blog. Wow, that is amazing. That is something that I have been looking for long time. The author really developed a successful web applcation and sold it to Yahoo. With those encouraging images, I determined to spend some time (1 year or 2 year, who knows) on learning Common Lisp. Maybe someday I will development my web application and turn into a great Lisp expert. In fact, this is the second time for me to get to study Lisp. The first time was a couple of years ago when I was fascinated by the famous book SICP but found later Scheme was so unbelievably immature for real life application. After reading some chapters of ANSI Common Lisp, I was pretty sure that is a great book full of detailed exploration of Common Lisp. Then I began to set up a web server in Common Lisp. After all, this should be the best way if you want to learn something. Demonstrations are always better than definations. As suggested by the book Practical Common Lisp (by the way, this is also a great book), I chose to install AllegroServe on some Common Lisp implementation. Then, from somewhere else, I learned that Hunchentoot seems to be better than AllegroServe. (I don't remember where and whom this word is from. So don't argue with me.) Ironically, you know what, I never could installed the two packages on any Common Lisp implementation. More annoyingly, I even don't know why. The machine always spit up a lot of jargon and lead me into a chaos. I've tried searching the internet and have not found anything. Could anybody who has successfully installed these packages in Linux tell me how you did it? Have you run into any trouble? How did you figured out what is wrong and fixed it? The more detailed, the more helpful.

    Read the article

  • Parental Controls in Ubuntu - per user

    - by Hamish Downer
    I would like to set up parental controls on Ubuntu for a friend of mine. I want it so that the child user has the controls set, but the parent user is not restricted. To be clear, they are sharing one computer, so a router based solution won't help. And I would like a set of step by step instructions to do this. Just one way of doing it. I'm an experienced Ubuntu user, happy at the command line. I've spent quite some time googling for this along the way. I hope that the GChildCare project will eventually make this easy, but it is not ready yet. In the meantime, the WebContentControl GUI provides a way of managing parental controls, but apply them to every user on the computer (easy WebContentContol install instructions and detailed instructions, discussion and related links on ubuntuforums). The ubuntuforums post has a FAQ that states that user-specific configuration is not possible with WebContentControl, and then provides 3 links he used to help him do it. But they are far from step by step instructions. There is this thread which is notes along the way and linking to this article about squid and dansguardian. And then to these two dansguardian articles which are somewhat in depth ... So does anyone know of an existing guide to how to set up parental controls on ubuntu with some users not affected? If no one has come up with an answer after a little bit, I'll set up a community wiki answer so we can come up with a guide.

    Read the article

  • Retrieving Page Controls Programmatically

    Home » ASP.net » Retrieving Page Controls Programmatically Retrieving Page Controls Programmatically ? There might be situations where you want to retrieve controls that are present in a web page and process them. In that case this article can be very use. Basically a web page is a container for all controls and for retrieving all controls we need to traverse the control tree. So for this this program can be used to disable all form controls at runtime

    Read the article

  • How can I use Databound variables in conditional statements within Custom Databound controls?

    - by William Calleja
    I'm developing my custom DataBound Controls that make use of an '<ItemTemplate>' tag and '<%# %>' server tags to generate some data however I need to make a conditional statement within one of my Databound controls as shown below. <custom:DataboundControl runat="server"> <ItemTemplate> <% if(((Dictionary<string, string>)Container.DataItem)["MyVariable"]=="" { %> <!-- Conditional Code Happens Here --> <% } %> </ItemTemplate> </custom:DataboundControl> Right now my code isn't working because the compiler cannot recognize my Container.DataItem variable within a <% %> tag and a <%# %> tag doesn't support conditional statements. What can I use?

    Read the article

  • Iterating through controls on a Windows Form

    - by icemanind
    I seem to have some weird issue going on that I am sure will turn out to be a simple thing. I have a Windows Form and on the form I have 1 panel called MainPanel and inside MainPanel, I got another panel with a button inside and a label that is inside MainPanel, but not in the second panel. 2 controls. What I am trying to do is copy all the controls inside MainPanel over to another panel object. I am using the following C# code to do this: GUIPanel gp = new GUIPanel(); foreach (System.Windows.Forms.Control ctrl in gp.Controls["MainPanel"].Controls) { m_OptionsControl.Controls.Add(ctrl); } When I run this code, it copies over the panel with the button, but not the label. What's even more odd is when I set a breakpoint and run it through the debugger, and I type "?gp.Controls["MainPanel"].Controls.Count" in the immediate window, it returns 2, just like it should. However, when stepping through the code, it only executes the foreach loop once. What am I missing here?

    Read the article

  • How can I loop thru all controls (including ToolStripItems) C#

    - by Murray
    I need to save and restore settings for specific controls on a form. I loop thru all controls and return the one whose name matches the one I want, like so: private static Control GetControlByName(string name, Control.ControlCollection Controls) { Control thisControl = null; foreach (Control c in Controls) { if (c.Name == name) { thisControl = c; break; } if (c.Controls.Count > 0) { thisControl = GetControlByName(name, c.Controls); if (thisControl != null) { break; } } } return thisControl; } From this I can determine the type of control and therefore the property that should be / has been stored. This works well unless the control is one of the ToolStrip family which has been added to a toolstrip. e.g. this.toolStrip.Items.AddRange(new System.Windows.Forms.ToolStripItem[] { this.lblUsername, // ToolStripLabel this.toolStripSeparator1, this.cbxCompany}); // ToolStripComboBox In this case I can see the control I'm interested in (cbxCompany) when debugging, but the name property has no value so the code does not match to it. Any suggestions on how I can get to these controls too? Cheers, Murray

    Read the article

  • Controls resize based on screen resolution

    - by user337173
    I have panel control. More controls are in panel.I set the dock property for panel as 'fill' .The panel are resized based on screen resolution. but the controls remains same.The controls in the panel are not resized based on screen solution. i have more labels and panels and text-boxs and button in the same page. How to set the dock property to resize all controls in page based on screen resolution? Thanks for any help

    Read the article

  • Is QtQuick.Controls available on Ubuntu 13.10

    - by javascript is future
    I was looking to do UI development in QML, and I really want it to look native. I found the QtQuick.Controls (http://qt-project.org/doc/qt-5.1/qtquickcontrols/qtquickcontrols-index.html), but when I try make a simple application, it tells me that QtQuick.Controls isn't installed. main.qml: import QtQuick 2.1 import QtQuick.Controls 1.0 Rectangle { height: 200 width: 200 } terminal: $ qmlscene main.qml file:///tmp/main.qml:2 module "QtQuick.Controls" is not installed Also, I downloaded the source from https://qt.gitorious.org/qt/qtquickcontrols/source/stable, ran qmake && make, but this returned the following output: cd src/ && ( test -e Makefile || /usr/lib/i386-linux-gnu/qt5/bin/qmake /tmp/qtquickcontrols/src/src.pro -o Makefile ) && make -f Makefile make[1]: Går til katalog '/tmp/qtquickcontrols/src' cd controls/ && ( test -e Makefile || /usr/lib/i386-linux-gnu/qt5/bin/qmake /tmp/qtquickcontrols/src/controls/controls.pro -o Makefile ) && make -f Makefile make[2]: Går til katalog '/tmp/qtquickcontrols/src/controls' g++ -c -g -O2 -fstack-protector --param=ssp-buffer-size=4 -Wformat -Werror=format-security -D_FORTIFY_SOURCE=2 -O2 -fvisibility=hidden -fvisibility-inlines-hidden -std=c++0x -fno-exceptions -Wall -W -D_REENTRANT -fPIC -DQT_NO_XKB -DQT_NO_EXCEPTIONS -D_LARGEFILE64_SOURCE -D_LARGEFILE_SOURCE -DQT_NO_DEBUG -DQT_PLUGIN -DQT_QUICK_LIB -DQT_QML_LIB -DQT_WIDGETS_LIB -DQT_NETWORK_LIB -DQT_GUI_LIB -DQT_CORE_LIB -I/usr/share/qt5/mkspecs/linux-g++ -I. -I/usr/include/qt5 -I/usr/include/qt5/QtQuick -I/usr/include/qt5/QtQml -I/usr/include/qt5/QtWidgets -I/usr/include/qt5/QtNetwork -I/usr/include/qt5/QtGui -I/usr/include/qt5/QtGui/5.1.1 -I/usr/include/qt5/QtGui/5.1.1/QtGui -I/usr/include/qt5/QtCore -I/usr/include/qt5/QtCore/5.1.1 -I/usr/include/qt5/QtCore/5.1.1/QtCore -I.moc/release-shared -o .obj/release-shared/qquickaction.o qquickaction.cpp qquickaction.cpp:49:39: fatal error: private/qguiapplication_p.h: No such file or directory #include <private/qguiapplication_p.h> ^ Is there some PPA I could use, or do I have to wait for Trusty to get out, before I can use native controls from Qt? Regards

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >