Search Results

Search found 5995 results on 240 pages for 'compiler flags'.

Page 1/240 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • TCP packets larger than 4 KB don't get a reply from Linux

    - by pts
    I'm running Linux 3.2.51 in a virtual machine (192.168.33.15). I'm sending Ethernet frames to it. I'm writing custom software trying to emulate a TCP peer, the other peer is Linux running in the virtual machine guest. I've noticed that TCP packets larger than about 4 KB are ignored (i.e. dropped without an ACK) by the Linux guest. If I decrease the packet size by 50 bytes, I get an ACK. I'm not sending new payload data until the Linux guest fully ACKs the previous one. I've increased ifconfig eth0 mtu 51000, and ping -c 1 -s 50000 goes through (from guest to my emulator) and the Linux guest gets a reply of the same size. I've also increased sysctl -w net.ipv4.tcp_rmem='70000 87380 87380 and tried with sysctl -w net.ipv4.tcp_mtu_probing=1 (and also =0). There is no IPv3 packet fragmentation, all packets have the DF flag set. It works the other way round: the Linux guest can send TCP packets of 6900 bytes of payload and my emulator understands them. This is very strange to me, because only TCP packets seem to be affected (large ICMP packets go through). Any idea what can be imposing this limit? Any idea how to do debug it in the Linux kernel? See the tcpdump -n -vv output below. tcpdump was run on the Linux guest. The last line is interesting: 4060 bytes of TCP payload is sent to the guest, and it doesn't get any reply packet from the Linux guest for half a minute. 14:59:32.000057 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto TCP (6), length 40) 192.168.33.1.36522 > 192.168.33.15.22: Flags [S], cksum 0x8da0 (correct), seq 10000000, win 14600, length 0 14:59:32.000086 IP (tos 0x10, ttl 64, id 0, offset 0, flags [DF], proto TCP (6), length 44) 192.168.33.15.22 > 192.168.33.1.36522: Flags [S.], cksum 0xc37f (incorrect -> 0x5999), seq 1415680476, ack 10000001, win 19920, options [mss 9960], length 0 14:59:32.000218 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto TCP (6), length 40) 192.168.33.1.36522 > 192.168.33.15.22: Flags [.], cksum 0xa752 (correct), ack 1, win 14600, length 0 14:59:32.000948 IP (tos 0x10, ttl 64, id 53777, offset 0, flags [DF], proto TCP (6), length 66) 192.168.33.15.22 > 192.168.33.1.36522: Flags [P.], cksum 0xc395 (incorrect -> 0xfa01), seq 1:27, ack 1, win 19920, length 26 14:59:32.001575 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto TCP (6), length 40) 192.168.33.1.36522 > 192.168.33.15.22: Flags [.], cksum 0xa738 (correct), ack 27, win 14600, length 0 14:59:32.001585 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto TCP (6), length 65) 192.168.33.1.36522 > 192.168.33.15.22: Flags [P.], cksum 0x48d6 (correct), seq 1:26, ack 27, win 14600, length 25 14:59:32.001589 IP (tos 0x10, ttl 64, id 53778, offset 0, flags [DF], proto TCP (6), length 40) 192.168.33.15.22 > 192.168.33.1.36522: Flags [.], cksum 0xc37b (incorrect -> 0x9257), ack 26, win 19920, length 0 14:59:32.001680 IP (tos 0x10, ttl 64, id 53779, offset 0, flags [DF], proto TCP (6), length 496) 192.168.33.15.22 > 192.168.33.1.36522: Flags [P.], seq 27:483, ack 26, win 19920, length 456 14:59:32.001784 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto TCP (6), length 40) 192.168.33.1.36522 > 192.168.33.15.22: Flags [.], cksum 0xa557 (correct), ack 483, win 14600, length 0 14:59:32.006367 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto TCP (6), length 1136) 192.168.33.1.36522 > 192.168.33.15.22: Flags [P.], seq 26:1122, ack 483, win 14600, length 1096 14:59:32.044150 IP (tos 0x10, ttl 64, id 53780, offset 0, flags [DF], proto TCP (6), length 40) 192.168.33.15.22 > 192.168.33.1.36522: Flags [.], cksum 0xc37b (incorrect -> 0x8c47), ack 1122, win 19920, length 0 14:59:32.045310 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto TCP (6), length 312) 192.168.33.1.36522 > 192.168.33.15.22: Flags [P.], seq 1122:1394, ack 483, win 14600, length 272 14:59:32.045322 IP (tos 0x10, ttl 64, id 53781, offset 0, flags [DF], proto TCP (6), length 40) 192.168.33.15.22 > 192.168.33.1.36522: Flags [.], cksum 0xc37b (incorrect -> 0x8b37), ack 1394, win 19920, length 0 14:59:32.925726 IP (tos 0x10, ttl 64, id 53782, offset 0, flags [DF], proto TCP (6), length 1112) 192.168.33.15.22 > 192.168.33.1.36522: Flags [.], seq 483:1555, ack 1394, win 19920, length 1072 14:59:32.925750 IP (tos 0x10, ttl 64, id 53784, offset 0, flags [DF], proto TCP (6), length 312) 192.168.33.15.22 > 192.168.33.1.36522: Flags [P.], seq 1555:1827, ack 1394, win 19920, length 272 14:59:32.927131 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto TCP (6), length 40) 192.168.33.1.36522 > 192.168.33.15.22: Flags [.], cksum 0x9bcf (correct), ack 1555, win 14600, length 0 14:59:32.927148 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto TCP (6), length 40) 192.168.33.1.36522 > 192.168.33.15.22: Flags [.], cksum 0x9abf (correct), ack 1827, win 14600, length 0 14:59:32.932248 IP (tos 0x10, ttl 64, id 53785, offset 0, flags [DF], proto TCP (6), length 56) 192.168.33.15.22 > 192.168.33.1.36522: Flags [P.], cksum 0xc38b (incorrect -> 0xd247), seq 1827:1843, ack 1394, win 19920, length 16 14:59:32.932366 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto TCP (6), length 40) 192.168.33.1.36522 > 192.168.33.15.22: Flags [.], cksum 0x9aaf (correct), ack 1843, win 14600, length 0 14:59:32.964295 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto TCP (6), length 104) 192.168.33.1.36522 > 192.168.33.15.22: Flags [P.], seq 1394:1458, ack 1843, win 14600, length 64 14:59:32.964310 IP (tos 0x10, ttl 64, id 53786, offset 0, flags [DF], proto TCP (6), length 40) 192.168.33.15.22 > 192.168.33.1.36522: Flags [.], cksum 0xc37b (incorrect -> 0x85a7), ack 1458, win 19920, length 0 14:59:32.964561 IP (tos 0x10, ttl 64, id 53787, offset 0, flags [DF], proto TCP (6), length 88) 192.168.33.15.22 > 192.168.33.1.36522: Flags [P.], seq 1843:1891, ack 1458, win 19920, length 48 14:59:32.965185 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto TCP (6), length 40) 192.168.33.1.36522 > 192.168.33.15.22: Flags [.], cksum 0x9a3f (correct), ack 1891, win 14600, length 0 14:59:32.965196 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto TCP (6), length 104) 192.168.33.1.36522 > 192.168.33.15.22: Flags [P.], seq 1458:1522, ack 1891, win 14600, length 64 14:59:32.965233 IP (tos 0x10, ttl 64, id 53788, offset 0, flags [DF], proto TCP (6), length 88) 192.168.33.15.22 > 192.168.33.1.36522: Flags [P.], seq 1891:1939, ack 1522, win 19920, length 48 14:59:32.965970 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto TCP (6), length 40) 192.168.33.1.36522 > 192.168.33.15.22: Flags [.], cksum 0x99cf (correct), ack 1939, win 14600, length 0 14:59:32.965979 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto TCP (6), length 568) 192.168.33.1.36522 > 192.168.33.15.22: Flags [P.], seq 1522:2050, ack 1939, win 14600, length 528 14:59:32.966112 IP (tos 0x10, ttl 64, id 53789, offset 0, flags [DF], proto TCP (6), length 520) 192.168.33.15.22 > 192.168.33.1.36522: Flags [P.], seq 1939:2419, ack 2050, win 19920, length 480 14:59:32.970059 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto TCP (6), length 40) 192.168.33.1.36522 > 192.168.33.15.22: Flags [.], cksum 0x95df (correct), ack 2419, win 14600, length 0 14:59:32.970089 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto TCP (6), length 616) 192.168.33.1.36522 > 192.168.33.15.22: Flags [P.], seq 2050:2626, ack 2419, win 14600, length 576 14:59:32.981159 IP (tos 0x10, ttl 64, id 53790, offset 0, flags [DF], proto TCP (6), length 72) 192.168.33.15.22 > 192.168.33.1.36522: Flags [P.], cksum 0xc39b (incorrect -> 0xa84f), seq 2419:2451, ack 2626, win 19920, length 32 14:59:32.982347 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto TCP (6), length 40) 192.168.33.1.36522 > 192.168.33.15.22: Flags [.], cksum 0x937f (correct), ack 2451, win 14600, length 0 14:59:32.982357 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto TCP (6), length 104) 192.168.33.1.36522 > 192.168.33.15.22: Flags [P.], seq 2626:2690, ack 2451, win 14600, length 64 14:59:32.982401 IP (tos 0x10, ttl 64, id 53791, offset 0, flags [DF], proto TCP (6), length 88) 192.168.33.15.22 > 192.168.33.1.36522: Flags [P.], seq 2451:2499, ack 2690, win 19920, length 48 14:59:32.982570 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto TCP (6), length 40) 192.168.33.1.36522 > 192.168.33.15.22: Flags [.], cksum 0x930f (correct), ack 2499, win 14600, length 0 14:59:32.982702 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto TCP (6), length 104) 192.168.33.1.36522 > 192.168.33.15.22: Flags [P.], seq 2690:2754, ack 2499, win 14600, length 64 14:59:33.020066 IP (tos 0x10, ttl 64, id 53792, offset 0, flags [DF], proto TCP (6), length 40) 192.168.33.15.22 > 192.168.33.1.36522: Flags [.], cksum 0xc37b (incorrect -> 0x7e07), ack 2754, win 19920, length 0 14:59:33.983503 IP (tos 0x10, ttl 64, id 53793, offset 0, flags [DF], proto TCP (6), length 72) 192.168.33.15.22 > 192.168.33.1.36522: Flags [P.], cksum 0xc39b (incorrect -> 0x2aa7), seq 2499:2531, ack 2754, win 19920, length 32 14:59:33.983810 IP (tos 0x10, ttl 64, id 53794, offset 0, flags [DF], proto TCP (6), length 88) 192.168.33.15.22 > 192.168.33.1.36522: Flags [P.], seq 2531:2579, ack 2754, win 19920, length 48 14:59:33.984100 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto TCP (6), length 40) 192.168.33.1.36522 > 192.168.33.15.22: Flags [.], cksum 0x92af (correct), ack 2531, win 14600, length 0 14:59:33.984139 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto TCP (6), length 40) 192.168.33.1.36522 > 192.168.33.15.22: Flags [.], cksum 0x927f (correct), ack 2579, win 14600, length 0 14:59:34.022914 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto TCP (6), length 104) 192.168.33.1.36522 > 192.168.33.15.22: Flags [P.], seq 2754:2818, ack 2579, win 14600, length 64 14:59:34.022939 IP (tos 0x10, ttl 64, id 53795, offset 0, flags [DF], proto TCP (6), length 40) 192.168.33.15.22 > 192.168.33.1.36522: Flags [.], cksum 0xc37b (incorrect -> 0x7d77), ack 2818, win 19920, length 0 14:59:34.023554 IP (tos 0x10, ttl 64, id 53796, offset 0, flags [DF], proto TCP (6), length 88) 192.168.33.15.22 > 192.168.33.1.36522: Flags [P.], seq 2579:2627, ack 2818, win 19920, length 48 14:59:34.027571 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto TCP (6), length 40) 192.168.33.1.36522 > 192.168.33.15.22: Flags [.], cksum 0x920f (correct), ack 2627, win 14600, length 0 14:59:34.027603 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto TCP (6), length 4100) 192.168.33.1.36522 > 192.168.33.15.22: Flags [P.], seq 2818:6878, ack 2627, win 14600, length 4060

    Read the article

  • Write a compiler for a language that looks ahead and multiple files?

    - by acidzombie24
    In my language I can use a class variable in my method when the definition appears below the method. It can also call methods below my method and etc. There are no 'headers'. Take this C# example. class A { public void callMethods() { print(); B b; b.notYetSeen(); public void print() { Console.Write("v = {0}", v); } int v=9; } class B { public void notYetSeen() { Console.Write("notYetSeen()\n"); } } How should I compile that? what i was thinking is: pass1: convert everything to an AST pass2: go through all classes and build a list of define classes/variable/etc pass3: go through code and check if there's any errors such as undefined variable, wrong use etc and create my output But it seems like for this to work I have to do pass 1 and 2 for ALL files before doing pass3. Also it feels like a lot of work to do until I find a syntax error (other than the obvious that can be done at parse time such as forgetting to close a brace or writing 0xLETTERS instead of a hex value). My gut says there is some other way. Note: I am using bison/flex to generate my compiler.

    Read the article

  • How to write a very basic compiler [closed]

    - by Ali
    Possible Duplicate: Best Online resources to learn about Compilers? What would be the best way to learn about compilers, and executable formats? Advanced compilers like gcc compile codes into machine readable files according to the language in which the code has been written (e.g. C, C++, etc). In fact, they interpret the meaning of each codes according to library and functions of the corresponding languages. Correct me if I'm wrong. I wish to better understand compilers by writing a very basic compiler (probably in C) to compile a static file (e.g. Hello World in a text file). I tried some tutorials and books, but all of them are for practical cases. They deal with compiling dynamic codes with meanings connected with the corresponding language. How can I write a basic compiler to convert a static text into a machine readable file? The next step will be introducing variables into the compiler; imagine that we want to write a compiler which compile only some functions of a language. Introducing practical tutorials and resources is highly appreciated :-)

    Read the article

  • Can compiler optimization introduce bugs ?

    - by ereOn
    Hi, Today I had a discussion with a friend of mine and we debated for a couple of hours about "compiler optimization". I defended the point that sometimes, a compiler optimization might introduce bugs or at least, undesired behavior. My friend totally disagreed, saying that "compiler are built by smart people and do smart things" and thus, can never go wrong. He didn't convinced my at all, but I have to admit I lack of real-life examples to strengthen my point. Who is right here ? If I am, do you have any real-life example where a compiler optimization produced a bug in the resulting software ? If I'm mistaking, should I stop programming and learn fishing instead ? Thank you !

    Read the article

  • Learning to implement dynamic language compiler

    - by TriArc
    I'm interested in learning how to create a compiler for a dynamic language. Most compiler books, college courses and articles/tutorials I've come across are specifically for statically typed languages. I've thought of a few ways to do it, but I'd like to know how it's usually done. I know type inferencing is a pretty common strategy, but what about others? Where can I find out more about how to create a dynamically typed language?

    Read the article

  • Learning to implement dynamically typed language compiler

    - by TriArc
    I'm interested in learning how to create a compiler for a dynamically typed language. Most compiler books, college courses and articles/tutorials I've come across are specifically for statically typed languages. I've thought of a few ways to do it, but I'd like to know how it's usually done. I know type inferencing is a pretty common strategy, but what about others? Where can I find out more about how to create a dynamically typed language? Edit 1: I meant dynamically typed. Sorry about the confusion. I've written toy compilers for statically typed languages and written some interpreters for dynamically typed languages. Now, I'm interested in learning more about creating compilers for a dynamically typed language. I'm specifically experimenting with LLVM and since I need to specify the type of every method and argument, I'm thinking of ways to implement a dynamically typed language on something like LLVM.

    Read the article

  • Netstat flags on OS/2

    - by Cian
    On an OS/2 box, what do the flags UGDP mean in the output of netstat -r. Google seems to point to them meaning Up, Gateway (i.e. an indirect root), and Dynamic (learned from a redirect), but that leaves me mystified as to the meaning of P. The only suggestion I've had is permanent but that doesn't make any sense with dynamic. Any ideas?

    Read the article

  • TCP RST right after FIN/ACK

    - by Nitzan Shaked
    I am having the weirdest issue: I have a web server which sometimes, only on very specific requests, will send a RST to the client after having sent the FIN datagram. First, a description of the setup: The server runs on an Ubuntu 12.04.1 LTS, which itself is a VM guest inside a Win7 x64 host, in bridged mode. ufw is disabled on the host The client runs on a iOS simulator, which runs on OS X Mountain Lion, which is a VM guest (hackintosh) inside a Win7 x64 host, in bridged mode. Both client and server are on the same LAN, one is connected to the home router via an Ethernet cable, and then other thru WiFi. I happened to glimpse over the server's http logs and found that the client sometimes issuing multiple subsequent identical requests. Further investigation led me to discover that this happens when the server sends a RST, and that the client is simply re-trying. I am attaching several tcpdump's: Good1 is the server-side tcpdump of a good session ("good" meaning no RST was generated). Good3 is another sever-side tcpdump of a good session. (The difference between Good1 and Good3 is the order in which ACK's were sent from the server to the client, ACK'ing the client's request. The client's request arives in 2 segements (specifically: one for the http headers, and another for a body containing an empty json object, "{}"). In Good1, the server ACK's both request segments, using 2 ACK segments, after the second request has arrived. In Good3, the server ACK's each request segment with an ACK segment as soon as the request segment arrives. Not that it should make a difference.) Bad1 is a dump, both client- and server-side, of a bad session. Bad2 is another bad session, this time server-side only. Note that in all "bad" sessions, the server ACK's each request segments immediately after having received it. I've looked at a few other bad sessions, and the situation is the same in all of them. But this is also the behavior in "Good3", so I don't see how that observation helps me, of for that matter why it should matter. I can't find any difference between good and bad sessions, or at least one that I think should matter. My question is: why are those RST's being generated? Or at least: how do I go about debugging this, or providing more info here that'll help? Edit 2 new facts that I have learned: Section 4.2.2.13 of the RFC (1122) (and Wikipedia, in the article "TCP", under "Connection Termination") says that a TCP application on one host may close the connection before it has read all of the data in its socket buffer, and in such a case the TCP on the host will sent a RST to the other side, to let it know that not all the data it has sent has been read. I'm not sure I completely understand this, since closing my side of the connection still allows me to read, no? It also means that I can't write any more. I am not sure this is relevant, though, since I see a RST after FIN. There are multiple complaints of this happening with wsgiref (Python's dev-mode HTTP server), which is exactly what I'm using. I'll keep updating as I find out more. Thanks! ~~~~~~~~~~~~~~~~~~~~ Good1 -- Server Side ~~~~~~~~~~~~~~~~~~~~ 13:28:02.308319 IP 192.168.1.51.51479 > 192.168.1.132.5000: Flags [S], seq 94268074, win 65535, options [mss 1460,nop,wscale 4,nop,nop,TS val 943308864 ecr 0,sackOK,eol], length 0 13:28:02.308336 IP 192.168.1.132.5000 > 192.168.1.51.51479: Flags [S.], seq 1726304574, ack 94268075, win 14480, options [mss 1460,sackOK,TS val 326480982 ecr 943308864,nop,wscale 3], length 0 13:28:02.309750 IP 192.168.1.51.51479 > 192.168.1.132.5000: Flags [.], ack 1, win 8235, options [nop,nop,TS val 943308865 ecr 326480982], length 0 13:28:02.310744 IP 192.168.1.51.51479 > 192.168.1.132.5000: Flags [P.], seq 1:351, ack 1, win 8235, options [nop,nop,TS val 943308865 ecr 326480982], length 350 13:28:02.310766 IP 192.168.1.51.51479 > 192.168.1.132.5000: Flags [P.], seq 351:353, ack 1, win 8235, options [nop,nop,TS val 943308865 ecr 326480982], length 2 13:28:02.310841 IP 192.168.1.132.5000 > 192.168.1.51.51479: Flags [.], ack 351, win 1944, options [nop,nop,TS val 326480983 ecr 943308865], length 0 13:28:02.310918 IP 192.168.1.132.5000 > 192.168.1.51.51479: Flags [.], ack 353, win 1944, options [nop,nop,TS val 326480983 ecr 943308865], length 0 13:28:02.315931 IP 192.168.1.132.5000 > 192.168.1.51.51479: Flags [P.], seq 1:18, ack 353, win 1944, options [nop,nop,TS val 326480984 ecr 943308865], length 17 13:28:02.316107 IP 192.168.1.132.5000 > 192.168.1.51.51479: Flags [FP.], seq 18:684, ack 353, win 1944, options [nop,nop,TS val 326480984 ecr 943308865], length 666 13:28:02.317651 IP 192.168.1.51.51479 > 192.168.1.132.5000: Flags [.], ack 18, win 8234, options [nop,nop,TS val 943308872 ecr 326480984], length 0 13:28:02.318288 IP 192.168.1.51.51479 > 192.168.1.132.5000: Flags [.], ack 685, win 8192, options [nop,nop,TS val 943308872 ecr 326480984], length 0 13:28:02.318640 IP 192.168.1.51.51479 > 192.168.1.132.5000: Flags [F.], seq 353, ack 685, win 8192, options [nop,nop,TS val 943308872 ecr 326480984], length 0 13:28:02.318651 IP 192.168.1.132.5000 > 192.168.1.51.51479: Flags [.], ack 354, win 1944, options [nop,nop,TS val 326480985 ecr 943308872], length 0 ~~~~~~~~~~~~~~~~~~~~ Good3 -- Server Side ~~~~~~~~~~~~~~~~~~~~ 13:28:03.311143 IP 192.168.1.51.51486 > 192.168.1.132.5000: Flags [S], seq 1982901126, win 65535, options [mss 1460,nop,wscale 4,nop,nop,TS val 943309853 ecr 0,sackOK,eol], length 0 13:28:03.311155 IP 192.168.1.132.5000 > 192.168.1.51.51486: Flags [S.], seq 2245063571, ack 1982901127, win 14480, options [mss 1460,sackOK,TS val 326481233 ecr 943309853,nop,wscale 3], length 0 13:28:03.312671 IP 192.168.1.51.51486 > 192.168.1.132.5000: Flags [.], ack 1, win 8235, options [nop,nop,TS val 943309854 ecr 326481233], length 0 13:28:03.313330 IP 192.168.1.51.51486 > 192.168.1.132.5000: Flags [P.], seq 1:351, ack 1, win 8235, options [nop,nop,TS val 943309855 ecr 326481233], length 350 13:28:03.313337 IP 192.168.1.132.5000 > 192.168.1.51.51486: Flags [.], ack 351, win 1944, options [nop,nop,TS val 326481234 ecr 943309855], length 0 13:28:03.313342 IP 192.168.1.51.51486 > 192.168.1.132.5000: Flags [P.], seq 351:353, ack 1, win 8235, options [nop,nop,TS val 943309855 ecr 326481233], length 2 13:28:03.313346 IP 192.168.1.132.5000 > 192.168.1.51.51486: Flags [.], ack 353, win 1944, options [nop,nop,TS val 326481234 ecr 943309855], length 0 13:28:03.327942 IP 192.168.1.132.5000 > 192.168.1.51.51486: Flags [P.], seq 1:18, ack 353, win 1944, options [nop,nop,TS val 326481237 ecr 943309855], length 17 13:28:03.328253 IP 192.168.1.132.5000 > 192.168.1.51.51486: Flags [FP.], seq 18:684, ack 353, win 1944, options [nop,nop,TS val 326481237 ecr 943309855], length 666 13:28:03.329076 IP 192.168.1.51.51486 > 192.168.1.132.5000: Flags [.], ack 18, win 8234, options [nop,nop,TS val 943309868 ecr 326481237], length 0 13:28:03.329688 IP 192.168.1.51.51486 > 192.168.1.132.5000: Flags [.], ack 685, win 8192, options [nop,nop,TS val 943309868 ecr 326481237], length 0 13:28:03.330361 IP 192.168.1.51.51486 > 192.168.1.132.5000: Flags [F.], seq 353, ack 685, win 8192, options [nop,nop,TS val 943309869 ecr 326481237], length 0 13:28:03.330370 IP 192.168.1.132.5000 > 192.168.1.51.51486: Flags [.], ack 354, win 1944, options [nop,nop,TS val 326481238 ecr 943309869], length 0 ~~~~~~~~~~~~~~~~~~~~ Bad1 -- Server Side ~~~~~~~~~~~~~~~~~~~~ 13:28:01.311876 IP 192.168.1.51.51472 > 192.168.1.132.5000: Flags [S], seq 920400580, win 65535, options [mss 1460,nop,wscale 4,nop,nop,TS val 943307883 ecr 0,sackOK,eol], length 0 13:28:01.311896 IP 192.168.1.132.5000 > 192.168.1.51.51472: Flags [S.], seq 3103085782, ack 920400581, win 14480, options [mss 1460,sackOK,TS val 326480733 ecr 943307883,nop,wscale 3], length 0 13:28:01.313509 IP 192.168.1.51.51472 > 192.168.1.132.5000: Flags [.], ack 1, win 8235, options [nop,nop,TS val 943307884 ecr 326480733], length 0 13:28:01.315614 IP 192.168.1.51.51472 > 192.168.1.132.5000: Flags [P.], seq 1:351, ack 1, win 8235, options [nop,nop,TS val 943307886 ecr 326480733], length 350 13:28:01.315727 IP 192.168.1.132.5000 > 192.168.1.51.51472: Flags [.], ack 351, win 1944, options [nop,nop,TS val 326480734 ecr 943307886], length 0 13:28:01.316229 IP 192.168.1.51.51472 > 192.168.1.132.5000: Flags [P.], seq 351:353, ack 1, win 8235, options [nop,nop,TS val 943307886 ecr 326480733], length 2 13:28:01.316242 IP 192.168.1.132.5000 > 192.168.1.51.51472: Flags [.], ack 353, win 1944, options [nop,nop,TS val 326480734 ecr 943307886], length 0 13:28:01.321019 IP 192.168.1.132.5000 > 192.168.1.51.51472: Flags [P.], seq 1:18, ack 353, win 1944, options [nop,nop,TS val 326480735 ecr 943307886], length 17 13:28:01.321294 IP 192.168.1.132.5000 > 192.168.1.51.51472: Flags [FP.], seq 18:684, ack 353, win 1944, options [nop,nop,TS val 326480736 ecr 943307886], length 666 13:28:01.321386 IP 192.168.1.132.5000 > 192.168.1.51.51472: Flags [R.], seq 685, ack 353, win 1944, options [nop,nop,TS val 326480736 ecr 943307886], length 0 13:28:01.322727 IP 192.168.1.51.51472 > 192.168.1.132.5000: Flags [.], ack 18, win 8234, options [nop,nop,TS val 943307891 ecr 326480735], length 0 13:28:01.322733 IP 192.168.1.132.5000 > 192.168.1.51.51472: Flags [R], seq 3103085800, win 0, length 0 13:28:01.323221 IP 192.168.1.51.51472 > 192.168.1.132.5000: Flags [.], ack 685, win 8192, options [nop,nop,TS val 943307892 ecr 326480736], length 0 13:28:01.323231 IP 192.168.1.132.5000 > 192.168.1.51.51472: Flags [R], seq 3103086467, win 0, length 0 ~~~~~~~~~~~~~~~~~~~~ Bad1 -- Client Side ~~~~~~~~~~~~~~~~~~~~ 13:28:11.374654 IP 192.168.1.51.51472 > 192.168.1.132.5000: Flags [S], seq 920400580, win 65535, options [mss 1460,nop,wscale 4,nop,nop,TS val 943307883 ecr 0,sackOK,eol], length 0 13:28:11.375764 IP 192.168.1.132.5000 > 192.168.1.51.51472: Flags [S.], seq 3103085782, ack 920400581, win 14480, options [mss 1460,sackOK,TS val 326480733 ecr 943307883,nop,wscale 3], length 0 13:28:11.376352 IP 192.168.1.51.51472 > 192.168.1.132.5000: Flags [.], ack 1, win 8235, options [nop,nop,TS val 943307884 ecr 326480733], length 0 13:28:11.378252 IP 192.168.1.51.51472 > 192.168.1.132.5000: Flags [P.], seq 1:351, ack 1, win 8235, options [nop,nop,TS val 943307886 ecr 326480733], length 350 13:28:11.379027 IP 192.168.1.51.51472 > 192.168.1.132.5000: Flags [P.], seq 351:353, ack 1, win 8235, options [nop,nop,TS val 943307886 ecr 326480733], length 2 13:28:11.379732 IP 192.168.1.132.5000 > 192.168.1.51.51472: Flags [.], ack 351, win 1944, options [nop,nop,TS val 326480734 ecr 943307886], length 0 13:28:11.380592 IP 192.168.1.132.5000 > 192.168.1.51.51472: Flags [.], ack 353, win 1944, options [nop,nop,TS val 326480734 ecr 943307886], length 0 13:28:11.384968 IP 192.168.1.132.5000 > 192.168.1.51.51472: Flags [P.], seq 1:18, ack 353, win 1944, options [nop,nop,TS val 326480735 ecr 943307886], length 17 13:28:11.385044 IP 192.168.1.51.51472 > 192.168.1.132.5000: Flags [.], ack 18, win 8234, options [nop,nop,TS val 943307891 ecr 326480735], length 0 13:28:11.385586 IP 192.168.1.132.5000 > 192.168.1.51.51472: Flags [FP.], seq 18:684, ack 353, win 1944, options [nop,nop,TS val 326480736 ecr 943307886], length 666 13:28:11.385743 IP 192.168.1.51.51472 > 192.168.1.132.5000: Flags [.], ack 685, win 8192, options [nop,nop,TS val 943307892 ecr 326480736], length 0 13:28:11.385966 IP 192.168.1.132.5000 > 192.168.1.51.51472: Flags [R.], seq 685, ack 353, win 1944, options [nop,nop,TS val 326480736 ecr 943307886], length 0 13:28:11.387343 IP 192.168.1.132.5000 > 192.168.1.51.51472: Flags [R], seq 3103085800, win 0, length 0 13:28:11.387344 IP 192.168.1.132.5000 > 192.168.1.51.51472: Flags [R], seq 3103086467, win 0, length 0 ~~~~~~~~~~~~~~~~~~~~ Bad2 -- Server Side ~~~~~~~~~~~~~~~~~~~~ 13:28:01.319185 IP 192.168.1.51.51473 > 192.168.1.132.5000: Flags [S], seq 1631526992, win 65535, options [mss 1460,nop,wscale 4,nop,nop,TS val 943307889 ecr 0,sackOK,eol], length 0 13:28:01.319197 IP 192.168.1.132.5000 > 192.168.1.51.51473: Flags [S.], seq 2524685719, ack 1631526993, win 14480, options [mss 1460,sackOK,TS val 326480735 ecr 943307889,nop,wscale 3], length 0 13:28:01.320692 IP 192.168.1.51.51473 > 192.168.1.132.5000: Flags [.], ack 1, win 8235, options [nop,nop,TS val 943307890 ecr 326480735], length 0 13:28:01.322219 IP 192.168.1.51.51473 > 192.168.1.132.5000: Flags [P.], seq 1:351, ack 1, win 8235, options [nop,nop,TS val 943307890 ecr 326480735], length 350 13:28:01.322336 IP 192.168.1.132.5000 > 192.168.1.51.51473: Flags [.], ack 351, win 1944, options [nop,nop,TS val 326480736 ecr 943307890], length 0 13:28:01.322689 IP 192.168.1.51.51473 > 192.168.1.132.5000: Flags [P.], seq 351:353, ack 1, win 8235, options [nop,nop,TS val 943307890 ecr 326480735], length 2 13:28:01.322700 IP 192.168.1.132.5000 > 192.168.1.51.51473: Flags [.], ack 353, win 1944, options [nop,nop,TS val 326480736 ecr 943307890], length 0 13:28:01.326307 IP 192.168.1.132.5000 > 192.168.1.51.51473: Flags [P.], seq 1:18, ack 353, win 1944, options [nop,nop,TS val 326480737 ecr 943307890], length 17 13:28:01.326614 IP 192.168.1.132.5000 > 192.168.1.51.51473: Flags [FP.], seq 18:684, ack 353, win 1944, options [nop,nop,TS val 326480737 ecr 943307890], length 666 13:28:01.326710 IP 192.168.1.132.5000 > 192.168.1.51.51473: Flags [R.], seq 685, ack 353, win 1944, options [nop,nop,TS val 326480737 ecr 943307890], length 0 13:28:01.328499 IP 192.168.1.51.51473 > 192.168.1.132.5000: Flags [.], ack 18, win 8234, options [nop,nop,TS val 943307896 ecr 326480737], length 0 13:28:01.328509 IP 192.168.1.132.5000 > 192.168.1.51.51473: Flags [R], seq 2524685737, win 0, length 0 13:28:01.328514 IP 192.168.1.51.51473 > 192.168.1.132.5000: Flags [.], ack 685, win 8192, options [nop,nop,TS val 943307896 ecr 326480737], length 0 13:28:01.328517 IP 192.168.1.132.5000 > 192.168.1.51.51473: Flags [R], seq 2524686404, win 0, length 0

    Read the article

  • Compiler warning when passing NSError ** as a method parameter

    - by splicer
    I've been scratching my head about this for the last 4 hours, trying out all kinds of little experiments, but I can't seem to figure out what's going wrong. Could this be a compiler bug? Test.m: - (id)initWithContentsOfURL:(NSURL *)aURL error:(NSError **)error { if (!(self = [super init])) { return nil; } return self; } main.m: NSError *error; Test *t = [[Test alloc] initWithContentsOfURL:[NSURL fileURLWithPath:@"/"] error:&error]; Here's the compiler warning (from main.m): warning: incompatible Objective-C types 'struct NSError **', expected 'struct NSDictionary **' when passing argument 2 of 'initWithContentsOfURL:error:' from distinct Objective-C type I'm using the latest versions of Xcode and Snow Leopard.

    Read the article

  • Automatically find compiler options for fastest exe on given machine?

    - by dehmann
    Is there a method to automatically find the best compiler options (on a given machine), which result in the fastest possible executable? Naturally, I use g++ -O3, but there are additional flags that may make the code run faster, e.g. -ffast-math and others, some of which are hardware-dependent. Does anyone know some code I can put in my configure.ac file (GNU autotools), so that the flags will be added to the Makefile automatically by the ./configure command? In addition to automatically determining the best flags, I would be interested in some useful compiler flags that are good to use as a default for most optimized executables.

    Read the article

  • Can I get a C++ Compiler to instantiate objects at compile time

    - by gam3
    I am writing some code that has a very large number of reasonably simple objects and I would like them the be created at compile time. I would think that a compiler would be able to do this, but I have not been able to figure out how. In C I could do the the following: #include <stdio.h> typedef struct data_s { int a; int b; char *c; } info; info list[] = { 1, 2, "a", 3, 4, "b", }; main() { int i; for (i = 0; i < sizeof(list)/sizeof(*list); i++) { printf("%d %s\n", i, list[i].c); } } Using #C++* each object has it constructor called rather than just being layed out in memory. #include <iostream> using std::cout; using std::endl; class Info { const int a; const int b; const char *c; public: Info(const int, const int, const char *); const int get_a() { return a; }; const int get_b() { return b; }; const char *get_c() const { return c; }; }; Info::Info(const int a, const int b, const char *c) : a(a), b(b), c(c) {}; Info list[] = { Info(1, 2, "a"), Info(3, 4, "b"), }; main() { for (int i = 0; i < sizeof(list)/sizeof(*list); i++) { cout << i << " " << list[i].get_c() << endl; } } I just don't see what information is not available for the compiler to completely instantiate these objects at compile time, so I assume I am missing something.

    Read the article

  • C# compiler error CS0006: metadata file is not found

    - by Rob
    I've built a c# compiler using the tutorial on MSDN and a few other resources including here, and I've gotten it to work until I add additional reference assemblies. My errors stem from adding "System.dll" and "System.Windows.Forms.dll" to the ReferenceAssemblies list. here's my code: private void SetUpCompilingParameters() { string ver = string.Format("{0}.{1}.{2}", Environment.Version.Major, Environment.Version.MajorRevision, Environment.Version.Build); string libDir = string.Format(@"{0}", Environment.CurrentDirectory); string raDir = @"C:\Program Files (x86)\Reference Assemblies\Microsoft\Framework\.NETFramework\v4.0"; string exWpfDir = string.Format(@"C:\WINDOWS\Microsoft.NET\Framework\v{0}\WPF", ver); string exDir = string.Format(@"C:\WINDOWS\Microsoft.NET\Framework\v{0}", ver); MyCompiler = new CSharpCodeProvider(); CompilingParam = new CompilerParameters(); CompilingParam.GenerateExecutable = false; CompilingParam.GenerateInMemory = true; CompilingParam.IncludeDebugInformation = false; CompilingParam.TreatWarningsAsErrors = false; CompilingParam.CompilerOptions = string.Format("/lib:{0}", libDir); CompilingParam.CompilerOptions = string.Format("/lib:{0}", raDir); CompilingParam.CompilerOptions = string.Format("/lib:{0}", exDir); //CompilingParam.CompilerOptions = string.Format("/lib:{0}", exWpfDir); CompilingParam.ReferencedAssemblies.Add("System.dll"); CompilingParam.ReferencedAssemblies.Add("System.Windows.Forms.dll"); } As you can see, I've explicitly referenced directories in CompilerOptions but its not helping. I'd like to test the solution on here on stackoverflow that utilizes: CompilingParam.ReferencedAssemblies.Add(typeof(System.Xml.Linq.Extensions).Assembly.Location); but I'm having trouble using it for the general System.dll etc...

    Read the article

  • How to query flags stored as enum in NHibernate

    - by SztupY
    How to do either a HQL or a Criteria search (the latter is preferred) involving an enum that is used as flags. In other words, I have a persisted enum property that stores some kind of flags. I want to query all the records that have one of these flags set. Using Eq won't work of course because that will only be true, if that is the only flag set. Solving this using the Criteria API would be the best, but if this is only doable using HQL that is good too.

    Read the article

  • Php error in closure compiler execution

    - by Mohammad
    When I run php-closure i get a PHP error Undefined index: HTTP_IF_NONE_MATCH in <b>/php-closure.php</b> on line <b>183</b> Line 184 of php-closure is trim($_SERVER['HTTP_IF_NONE_MATCH']) == $etag) { This error only happens when closure has already written the compressed javascript file to the directory once, if the directory is emptied the error does not appear. What does this error mean and how can I avoid it? Thank You So Much!

    Read the article

  • C Problem with Compiler?

    - by Solomon081
    I just started learning C, and wrote my hello world program: #include <stdio.h> main() { printf("Hello World"); return 0; } When I run the code, I get a really long error: Apple Mach-O Linker (id) Error Ld /Users/Solomon/Library/Developer/Xcode/DerivedData/CProj-cwosspupvengheeaapmkrhxbxjvk/Build/Products/Debug/CProj normal x86_64 cd /Users/Solomon/Desktop/C/CProj setenv MACOSX_DEPLOYMENT_TARGET 10.7 /Developer/usr/bin/clang -arch x86_64 -isysroot /Developer/SDKs/MacOSX10.7.sdk -L/Users/Solomon/Library/Developer/Xcode/DerivedData/CProj-cwosspupvengheeaapmkrhxbxjvk/Build/Products/Debug -F/Users/Solomon/Library/Developer/Xcode/DerivedData/CProj-cwosspupvengheeaapmkrhxbxjvk/Build/Products/Debug -filelist /Users/Solomon/Library/Developer/Xcode/DerivedData/CProj-cwosspupvengheeaapmkrhxbxjvk/Build/Intermediates/CProj.build/Debug/CProj.build/Objects-normal/x86_64/CProj.LinkFileList -mmacosx-version-min=10.7 -o /Users/Solomon/Library/Developer/Xcode/DerivedData/CProj-cwosspupvengheeaapmkrhxbxjvk/Build/Products/Debug/CProj ld: duplicate symbol _main in /Users/Solomon/Library/Developer/Xcode/DerivedData/CProj-cwosspupvengheeaapmkrhxbxjvk/Build/Intermediates/CProj.build/Debug/CProj.build/Objects-normal/x86_64/helloworld.o and /Users/Solomon/Library/Developer/Xcode/DerivedData/CProj-cwosspupvengheeaapmkrhxbxjvk/Build/Intermediates/CProj.build/Debug/CProj.build/Objects-normal/x86_64/main.o for architecture x86_64 Command /Developer/usr/bin/clang failed with exit code 1 I am running xCode Should I reinstall DevTools?

    Read the article

  • What are the tools required to build a compiler?

    - by kevin
    What are the various tools that are required to build a compiler for a particular programming language, say C? I want to know how each part of the compiler works. So, I am trying to use all the existing tools like loader, linker, etc, and combine them together to build one compiler (or can just say "compiling a compiler"). Can any one list out all such tools that are required to build a fully functional one?

    Read the article

  • Random value from Flags enum

    - by Chris Porter
    Say I have a function that accepts an enum decorated with the Flags attribute. If the value of the enum is a combination of more than one of the enum elements how can I extract one of those elements at random? I have the following but it seems there must be a better way. [Flags] enum Colours { Blue = 1, Red = 2, Green = 4 } public static void Main() { var options = Colours.Blue | Colours.Red | Colours.Green; var opts = options.ToString().Split(','); var rand = new Random(); var selected = opts[rand.Next(opts.Length)].Trim(); var myEnum = Enum.Parse(typeof(Colours), selected); Console.WriteLine(myEnum); Console.ReadLine(); }

    Read the article

  • When to use certain optimizations such as -fwhole-program and -fprofile-generate with several shared libraries

    - by James
    Probably a simple answer; I get quite confused with the language used in the GCC documentation for some of these flags! Anyway, I have three libraries and a programme which uses all these three. I compile each of my libraries seperately with individual (potentially) different sets of warning flags. However, I compile all three libraries with the same set of optimisation flags. I then compile my main programme linking in these three libraries with its own set of warning flags and the same optimisation flags used during the libraries' compilation. 1) Do I have to compile the libraries with optimisation flags present or can I just use these flags when compiling the final programme and linking to the libraries? If the latter, will it then optimise all or just some (presumably that which is called) of the code in these libraries? 2) I would like to use -fwhole-program -flto -fuse-linker-plugin and the linker plugin gold. At which stage do I compile with these on ... just the final compilation or do these flags need to be present during the compilation of the libraries? 3) Pretty much the same as 2) however with, -fprofile-generate -fprofile-arcs and -fprofile-use. I understand one first runs a programme with generate, and then with use. However, do I have to compile each of the libraries with generate/use etc. or just the final programme? And if it is just the last programme, when I then compeil with -fprofile-use will it also optimise the libraries functionality? Many thanks, James

    Read the article

  • Needs clarification on C# Flags

    - by Jojo
    Hi guys, i have this code: [Flags] public enum MyUriType { ForParse, ForDownload, Unknown } and then: MyUriType uriType = MyUriType.ForDownload; but, I was wondering why this returns true: if ((uriType & MyUriType.ForParse) == MyUriType.ForParse) When it is not set in the second code group. Please advise.

    Read the article

  • Integrating a Custom Compiler with the Visual Studio IDE

    - by M.A. Hanin
    Background: I want to create a custom VB compiler, extending the "original" compiler, to handle my custom compile-time attributes. Question: after I've created my custom compiler and I've got an executable file capable of compiling VB code via the standard command-line interface, how do I integrate this compiler with the Visual Studio IDE? (such that pressing "compile" or "build" will make use of my compiler instead of the default compiler). EDIT: (Correct me if i'm wrong) From the reactions here, I see this question is a bit shocking, so I shall further explain my needs and background: .NET provides us with a great mechanism called Attributes. As far as I understand, making attributes apply their intended behavior upon the attributed element (assembly, module, class, method, etc.) - attributes must be reflected upon. So the real trick here is reflecting and applying behavior at the right spot. Lets take Serialization for example: We decorate a class with the Serializable attribute. We then pass an instance of the class to the formatter's Serialize method. The formatter reflects upon the instance, checking if it has the Serializable attribute, and acting accordingly. Now, if we examine the Synchronization, Flags, Obsolete and CLSCompliant attributes, then the real question is: who reflects upon them? At least in some cases, it has to be the compiler (and/or IDE). Therefore, it seems that if I wish to create custom attributes that change an element's behavior regardless of any specific consumer, i must extend the compiler to reflect upon them at compilation. Of course, these are not my personal insights: the book "Applied .NET Attributes" provides a complete example of creating a custom attribute and a custom C# compiler to reflect upon that attribute at compilation (the example is used to implement "java-style checked exceptions").

    Read the article

  • IDEA modular problem (jsp)

    - by Jeriho
    I have project in with 2 separate modules(frontend and backend, first depends on second). When I'm trying to access backend code from frontend code, things going fine. Things turn for the worse when I do the same from jsp. This is stacktrase for simple accessign bean <jsp:useBean id="mybean" class="backend.main.MyBean" scope="request"></jsp:useBean> org.apache.jasper.JasperException: /results.jsp(9,0) The value for the useBean class attribute backend.main.MyBean is invalid. org.apache.jasper.compiler.DefaultErrorHandler.jspError(DefaultErrorHandler.java:40) org.apache.jasper.compiler.ErrorDispatcher.dispatch(ErrorDispatcher.java:407) org.apache.jasper.compiler.ErrorDispatcher.jspError(ErrorDispatcher.java:148) org.apache.jasper.compiler.Generator$GenerateVisitor.visit(Generator.java:1220) org.apache.jasper.compiler.Node$UseBean.accept(Node.java:1178) org.apache.jasper.compiler.Node$Nodes.visit(Node.java:2361) org.apache.jasper.compiler.Node$Visitor.visitBody(Node.java:2411) org.apache.jasper.compiler.Node$Visitor.visit(Node.java:2417) org.apache.jasper.compiler.Node$Root.accept(Node.java:495) org.apache.jasper.compiler.Node$Nodes.visit(Node.java:2361) org.apache.jasper.compiler.Generator.generate(Generator.java:3416) org.apache.jasper.compiler.Compiler.generateJava(Compiler.java:231) org.apache.jasper.compiler.Compiler.compile(Compiler.java:347) org.apache.jasper.compiler.Compiler.compile(Compiler.java:327) org.apache.jasper.compiler.Compiler.compile(Compiler.java:314) org.apache.jasper.JspCompilationContext.compile(JspCompilationContext.java:589) org.apache.jasper.servlet.JspServletWrapper.service(JspServletWrapper.java:317) org.apache.jasper.servlet.JspServlet.serviceJspFile(JspServlet.java:313) org.apache.jasper.servlet.JspServlet.service(JspServlet.java:260) javax.servlet.http.HttpServlet.service(HttpServlet.java:717) And this error will appear if I try to access regular class: An error occurred at line: 12 in the jsp file: /results.jsp backend.main.RegularClass cannot be resolved to a type Stacktrace: org.apache.jasper.compiler.DefaultErrorHandler.javacError(DefaultErrorHandler.java:92) org.apache.jasper.compiler.ErrorDispatcher.javacError(ErrorDispatcher.java:330) org.apache.jasper.compiler.JDTCompiler.generateClass(JDTCompiler.java:439) org.apache.jasper.compiler.Compiler.compile(Compiler.java:349) org.apache.jasper.compiler.Compiler.compile(Compiler.java:327) org.apache.jasper.compiler.Compiler.compile(Compiler.java:314) org.apache.jasper.JspCompilationContext.compile(JspCompilationContext.java:589) org.apache.jasper.servlet.JspServletWrapper.service(JspServletWrapper.java:317) org.apache.jasper.servlet.JspServlet.serviceJspFile(JspServlet.java:313) org.apache.jasper.servlet.JspServlet.service(JspServlet.java:260) javax.servlet.http.HttpServlet.service(HttpServlet.java:717) Sorry for so many stacktraces.

    Read the article

  • How to add flags to RC.EXE through QMake .pro makefiles

    - by Hernán
    I've the following definition in my .pro file: RC_FILE = app.rc This RC file contains a global include at the top: #include "version_info.h" The version_info.h header is on a common header files directory. Since RC.EXE takes INCLUDE environment variable in consideration, according to MS documentation, my build process batch sets up that accordingly: SET INCLUDE=%PROJECTDIR%\version;%INCLUDE% ... QMAKE project.pro -spec win32-msvc2008 -r CONFIG += release This works perfect as RC seems to read that INCLUDE var so the "version_info.h" file is including on every RC file properly. The problem is when I generate a VS solution (or Import it through the VS Addin). The RC invocation does not contain any /I flag (as I expect) but does not read any INCLUDE variable, even when I've setup through system 'environment variables' dialog in XP. So I'm stuck with this problem, with two alternatives I could not get to work: Make VS RC.exe invocation honour the INCLUDE variable (didn't work either as user or system variable). Force QMAKE to pass /I flag to RC invocation, and get that /I flag imported into the project settings (Resource Compiler properties). Thanks in advance.

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >