Search Results

Search found 112 results on 5 pages for 'dbcontext'.

Page 1/5 | 1 2 3 4 5  | Next Page >

  • Entity Framework 4.1 auto generate with DbContext when creating ADO.NET Entity Data Model

    - by smudgedlens
    I would like to work with DbContext instead of ObjectContext. I updated EF so now I have the DbContext, but I want to generate my strongly-typed context based on the DbContext and not the ObjectContext. When I add new ADO.NET Entity Data Model, it is still based on the ObjectContext. Is it not possible to have it base off of DbContext in Visual Studio 2010 with EF 4.1? UPDATE: Okay, I followed the directions in this link and was able to generate the DbContext template objects. However, now it is saying there is ambiguity between the template entities and the entities in my .edmx file. How do I resovle this? Do I blow away the ones in the .edmx file?

    Read the article

  • Different setter behavior between DbContext and ObjectContext

    - by Paul
    (This is using EntityFramework 4.2 CTP) I haven't found any references to this on the web yet, although it's likely I'm using the wrong terminology while searching. There's also a very likely scenario where this is 100% expected behavior, just looking for confirmation and would rather not dig through the tt template (still new to this). Assuming I have a class with a boolean field called Active and I have one row that already has this value set to true. I have code that executes to set said field to True regardless of it's existing value. If I use DbContext to update the value to True no update is made. If I use ObjectContext to update the value an update is made regardless of the existing value. This is happening in the exact same EDMX, all I did was change the code generation template from DbContext to EntityObject. Update: Ok, found the confirmation I was looking for...consider this a dupe...next time I'll do MOAR SEARCHING! Entity Framework: Cancel a property change if no change in value ** Update 2: ** Problem: the default tt template wraps the "if (this != value)" in the setter with "if (iskey), so only primarykey fields receive this logic. Solution: it's not the most graceful thing, but I removed this check...we'll see how it pans out in real usage. I included the entire tt template, my changes are denoted with "**"... //////// //////// Write SimpleType Properties. //////// private void WriteSimpleTypeProperty(EdmProperty simpleProperty, CodeGenerationTools code) { MetadataTools ef = new MetadataTools(this); #> /// <summary> /// <#=SummaryComment(simpleProperty)#> /// </summary><#=LongDescriptionCommentElement(simpleProperty, 1)#> [EdmScalarPropertyAttribute(EntityKeyProperty= <#=code.CreateLiteral(ef.IsKey(simpleProperty))#>, IsNullable=<#=code.CreateLiteral(ef.IsNullable(simpleProperty))#>)] [DataMemberAttribute()] <#=code.SpaceAfter(NewModifier(simpleProperty))#><#=Accessibility.ForProperty(simpleProperty)#> <#=MultiSchemaEscape(simpleProperty.TypeUsage, code)#> <#=code.Escape(simpleProperty)#> { <#=code.SpaceAfter(Accessibility.ForGetter(simpleProperty))#>get { <#+ if (ef.ClrType(simpleProperty.TypeUsage) == typeof(byte[])) { #> return StructuralObject.GetValidValue(<#=code.FieldName(simpleProperty)#>); <#+ } else { #> return <#=code.FieldName(simpleProperty)#>; <#+ } #> } <#=code.SpaceAfter(Accessibility.ForSetter((simpleProperty)))#>set { <#+ **//if (ef.IsKey(simpleProperty)) **//{ if (ef.ClrType(simpleProperty.TypeUsage) == typeof(byte[])) { #> if (!StructuralObject.BinaryEquals(<#=code.FieldName(simpleProperty)#>, value)) <#+ } else { #> if (<#=code.FieldName(simpleProperty)#> != value) <#+ } #> { <#+ PushIndent(CodeRegion.GetIndent(1)); **//} #> <#=ChangingMethodName(simpleProperty)#>(value); ReportPropertyChanging("<#=simpleProperty.Name#>"); <#=code.FieldName(simpleProperty)#> = <#=CastToEnumType(simpleProperty.TypeUsage, code)#>StructuralObject.SetValidValue(<#=CastToUnderlyingType(simpleProperty.TypeUsage, code)#>value<#=OptionalNullableParameterForSetValidValue(simpleProperty, code)#>, "<#=simpleProperty.Name#>"); ReportPropertyChanged("<#=simpleProperty.Name#>"); <#=ChangedMethodName(simpleProperty)#>(); <#+ //if (ef.IsKey(simpleProperty)) //{ PopIndent(); #> } <#+ //} #> } }

    Read the article

  • Entity Framework RC1 DbContext query issue

    - by Steve
    I'm trying to implement the repository pattern using entity framework code first rc 1. The problem I am running into is with creating the DbContext. I have an ioc container resolving the IRepository and it has a contextprovider which just news up a new DbContext with a connection string in a windsor.config file. With linq2sql this part was no problem but EF seems to be choking. I'll describe the problem below with an example. I've pulled out the code to simplify things a bit so that is why you don't see any repository pattern stuff here. just sorta what is happening without all the extra code and classes. using (var context = new PlssContext()) { var x = context.Set<User>(); var y = x.Where(u => u.UserName == LogOnModel.UserName).FirstOrDefault(); } using (var context2 = new DbContext(@"Data Source=.\SQLEXPRESS;Initial Catalog=PLSS.Models.PlssContext;Integrated Security=True;MultipleActiveResultSets=True")) { var x = context2.Set<User>(); var y = x.Where(u => u.UserName == LogOnModel.UserName).FirstOrDefault(); } PlssContext is where I am creating my DbContext class. The repository pattern doesn't know anything about PlssContext. The best I thought I could do was create a DbContext with the connection string to the sqlexpress database and query the data that way. The connection string in the var context2 was grabbed from the context after newing up the PlssContext object. So they are pointing at the same sqlexpress database. The first query works. The second query fails miserably with this error: The model backing the 'DbContext' context has changed since the database was created. Either manually delete/update the database, or call Database.SetInitializer with an IDatabaseInitializer instance. For example, the DropCreateDatabaseIfModelChanges strategy will automatically delete and recreate the database, and optionally seed it with new data. on this line var y = x.Where(u => u.UserName == LogOnModel.UserName).FirstOrDefault(); Here is my DbContext namespace PLSS.Models { public class PlssContext : DbContext { public DbSet<User> Users { get; set; } public DbSet<Corner> Corners { get; set; } public DbSet<Lookup_County> Lookup_County { get; set; } public DbSet<Lookup_Accuracy> Lookup_Accuracy { get; set; } public DbSet<Lookup_MonumentStatus> Lookup_MonumentStatus { get; set; } public DbSet<Lookup_CoordinateSystem> Lookup_CoordinateSystem { get; set; } public class Initializer : DropCreateDatabaseAlways<PlssContext> { protected override void Seed(PlssContext context) { I've tried all of the Initializer strategies with the same errors. I don't think the database is changing. If I remove the modelBuilder.Conventions.Remove<IncludeMetadataConvention>(); Then the error returns is The entity type User is not part of the model for the current context. Which sort of makes sense. But how do you bring this all together?

    Read the article

  • Why DbContext object shouldn't be referred in Service Layer?

    - by nazmoonnoor
    I've been looking for some implementations of Service Layer and Controller interaction in blogs and in some open source projects. All of them seem to refer DbContext object in repository classes but avoided to use in service classes. Service classes essentially using a IQueryable<T> references of DbSet<T>. I want to know why this practice is good and why DbContext shouldn't have a reference in Service Layer.

    Read the article

  • Using json as database with EF, how can I link EF and the json file during DbContext initialization?

    - by blacai
    For a personal testing-project I am considering to create a SPA with the following technologies: ASP.NET MVC + EF + WebAPI + AngularJS. The project will make use of small amount of data, so I was thinking I could use just a .json file as storage. But I am not sure about how to proceed with the link between EF and the json file in the initialization of the DbContext. I found a stackoverflow related question: http://stackoverflow.com/questions/13899342/can-we-use-json-as-a-database I know the basics of edit files and store data inside. What I tried is to get the data from the json file in the initilizer method and create the objects one by one. This is more a doubt about how this works if I save/update an object in the dbcontext, do I need to go through all the elements and add/update it manually? Is it better to rewrite the complete file? According to this http://stackoverflow.com/questions/7895335/append-data-to-a-json-file-with-php it is not a good practice to use json/XML for data wich will be manipulated. Anyone has experience with anything similar? Is this a really bad idea and I should use another kind of data-storage?

    Read the article

  • Pluggable Rules for Entity Framework Code First

    - by Ricardo Peres
    Suppose you want a system that lets you plug custom validation rules on your Entity Framework context. The rules would control whether an entity can be saved, updated or deleted, and would be implemented in plain .NET. Yes, I know I already talked about plugable validation in Entity Framework Code First, but this is a different approach. An example API is in order, first, a ruleset, which will hold the collection of rules: 1: public interface IRuleset : IDisposable 2: { 3: void AddRule<T>(IRule<T> rule); 4: IEnumerable<IRule<T>> GetRules<T>(); 5: } Next, a rule: 1: public interface IRule<T> 2: { 3: Boolean CanSave(T entity, DbContext ctx); 4: Boolean CanUpdate(T entity, DbContext ctx); 5: Boolean CanDelete(T entity, DbContext ctx); 6: String Name 7: { 8: get; 9: } 10: } Let’s analyze what we have, starting with the ruleset: Only has methods for adding a rule, specific to an entity type, and to list all rules of this entity type; By implementing IDisposable, we allow it to be cancelled, by disposing of it when we no longer want its rules to be applied. A rule, on the other hand: Has discrete methods for checking if a given entity can be saved, updated or deleted, which receive as parameters the entity itself and a pointer to the DbContext to which the ruleset was applied; Has a name property for helping us identifying what failed. A ruleset really doesn’t need a public implementation, all we need is its interface. The private (internal) implementation might look like this: 1: sealed class Ruleset : IRuleset 2: { 3: private readonly IDictionary<Type, HashSet<Object>> rules = new Dictionary<Type, HashSet<Object>>(); 4: private ObjectContext octx = null; 5:  6: internal Ruleset(ObjectContext octx) 7: { 8: this.octx = octx; 9: } 10:  11: public void AddRule<T>(IRule<T> rule) 12: { 13: if (this.rules.ContainsKey(typeof(T)) == false) 14: { 15: this.rules[typeof(T)] = new HashSet<Object>(); 16: } 17:  18: this.rules[typeof(T)].Add(rule); 19: } 20:  21: public IEnumerable<IRule<T>> GetRules<T>() 22: { 23: if (this.rules.ContainsKey(typeof(T)) == true) 24: { 25: foreach (IRule<T> rule in this.rules[typeof(T)]) 26: { 27: yield return (rule); 28: } 29: } 30: } 31:  32: public void Dispose() 33: { 34: this.octx.SavingChanges -= RulesExtensions.OnSaving; 35: RulesExtensions.rulesets.Remove(this.octx); 36: this.octx = null; 37:  38: this.rules.Clear(); 39: } 40: } Basically, this implementation: Stores the ObjectContext of the DbContext to which it was created for, this is so that later we can remove the association; Has a collection - a set, actually, which does not allow duplication - of rules indexed by the real Type of an entity (because of proxying, an entity may be of a type that inherits from the class that we declared); Has generic methods for adding and enumerating rules of a given type; Has a Dispose method for cancelling the enforcement of the rules. A (really dumb) rule applied to Product might look like this: 1: class ProductRule : IRule<Product> 2: { 3: #region IRule<Product> Members 4:  5: public String Name 6: { 7: get 8: { 9: return ("Rule 1"); 10: } 11: } 12:  13: public Boolean CanSave(Product entity, DbContext ctx) 14: { 15: return (entity.Price > 10000); 16: } 17:  18: public Boolean CanUpdate(Product entity, DbContext ctx) 19: { 20: return (true); 21: } 22:  23: public Boolean CanDelete(Product entity, DbContext ctx) 24: { 25: return (true); 26: } 27:  28: #endregion 29: } The DbContext is there because we may need to check something else in the database before deciding whether to allow an operation or not. And here’s how to apply this mechanism to any DbContext, without requiring the usage of a subclass, by means of an extension method: 1: public static class RulesExtensions 2: { 3: private static readonly MethodInfo getRulesMethod = typeof(IRuleset).GetMethod("GetRules"); 4: internal static readonly IDictionary<ObjectContext, Tuple<IRuleset, DbContext>> rulesets = new Dictionary<ObjectContext, Tuple<IRuleset, DbContext>>(); 5:  6: private static Type GetRealType(Object entity) 7: { 8: return (entity.GetType().Assembly.IsDynamic == true ? entity.GetType().BaseType : entity.GetType()); 9: } 10:  11: internal static void OnSaving(Object sender, EventArgs e) 12: { 13: ObjectContext octx = sender as ObjectContext; 14: IRuleset ruleset = rulesets[octx].Item1; 15: DbContext ctx = rulesets[octx].Item2; 16:  17: foreach (ObjectStateEntry entry in octx.ObjectStateManager.GetObjectStateEntries(EntityState.Added)) 18: { 19: Object entity = entry.Entity; 20: Type realType = GetRealType(entity); 21:  22: foreach (dynamic rule in (getRulesMethod.MakeGenericMethod(realType).Invoke(ruleset, null) as IEnumerable)) 23: { 24: if (rule.CanSave(entity, ctx) == false) 25: { 26: throw (new Exception(String.Format("Cannot save entity {0} due to rule {1}", entity, rule.Name))); 27: } 28: } 29: } 30:  31: foreach (ObjectStateEntry entry in octx.ObjectStateManager.GetObjectStateEntries(EntityState.Deleted)) 32: { 33: Object entity = entry.Entity; 34: Type realType = GetRealType(entity); 35:  36: foreach (dynamic rule in (getRulesMethod.MakeGenericMethod(realType).Invoke(ruleset, null) as IEnumerable)) 37: { 38: if (rule.CanDelete(entity, ctx) == false) 39: { 40: throw (new Exception(String.Format("Cannot delete entity {0} due to rule {1}", entity, rule.Name))); 41: } 42: } 43: } 44:  45: foreach (ObjectStateEntry entry in octx.ObjectStateManager.GetObjectStateEntries(EntityState.Modified)) 46: { 47: Object entity = entry.Entity; 48: Type realType = GetRealType(entity); 49:  50: foreach (dynamic rule in (getRulesMethod.MakeGenericMethod(realType).Invoke(ruleset, null) as IEnumerable)) 51: { 52: if (rule.CanUpdate(entity, ctx) == false) 53: { 54: throw (new Exception(String.Format("Cannot update entity {0} due to rule {1}", entity, rule.Name))); 55: } 56: } 57: } 58: } 59:  60: public static IRuleset CreateRuleset(this DbContext context) 61: { 62: Tuple<IRuleset, DbContext> ruleset = null; 63: ObjectContext octx = (context as IObjectContextAdapter).ObjectContext; 64:  65: if (rulesets.TryGetValue(octx, out ruleset) == false) 66: { 67: ruleset = rulesets[octx] = new Tuple<IRuleset, DbContext>(new Ruleset(octx), context); 68: 69: octx.SavingChanges += OnSaving; 70: } 71:  72: return (ruleset.Item1); 73: } 74: } It relies on the SavingChanges event of the ObjectContext to intercept the saving operations before they are actually issued. Yes, it uses a bit of dynamic magic! Very handy, by the way! So, let’s put it all together: 1: using (MyContext ctx = new MyContext()) 2: { 3: IRuleset rules = ctx.CreateRuleset(); 4: rules.AddRule(new ProductRule()); 5:  6: ctx.Products.Add(new Product() { Name = "xyz", Price = 50000 }); 7:  8: ctx.SaveChanges(); //an exception is fired here 9:  10: //when we no longer need to apply the rules 11: rules.Dispose(); 12: } Feel free to use it and extend it any way you like, and do give me your feedback! As a final note, this can be easily changed to support plain old Entity Framework (not Code First, that is), if that is what you are using.

    Read the article

  • A generic Find method to search by Guid type for class implementing IDbSet interface

    - by imak
    I am implementing a FakeDataSet class by implementing IDbSet interface. As part of implementing this interface, I have to implement Find method. All my entity classes has an Guid type Id column. I am trying to implement Find method for this FakeDbSet class but having hard time to write it in a generic way. Below is my attempts for writing this method but since it does not know about Id been Guid type, I am getting compilation error on m.Id call. Any ideas on how this could be accomplished? public class FakeDataSet<T> : IDbSet<T> where T: class, new() { // Other methods for implementing IDbSet interface public T Find(params object[] keyValues) { var keyValue = (Guid)keyValues.FirstOrDefault(); return this.SingleOrDefault(m => m.Id == keyValue); // How can I write this } }

    Read the article

  • How to mass insert/update in linq to sql?

    - by chobo2
    Hi How can I do these 2 scenarios. Currently I am doing something like this public class Repository { private LinqtoSqlContext dbcontext = new LinqtoSqlContext(); public void Update() { // find record // update record // save record ( dbcontext.submitChanges() } public void Insert() { // make a database table object ( ie ProductTable t = new ProductTable() { productname ="something"} // insert record ( dbcontext.ProductTable.insertOnSubmit()) // dbcontext.submitChanges(); } } So now I am trying to load an XML file what has tons of records. First I validate the records one at a time. I then want to insert them into the database but instead of doing submitChanges() after each record I want to do a mass submit at the end. So I have something like this public class Repository { private LinqtoSqlContext dbcontext = new LinqtoSqlContext(); public void Update() { // find record // update record } public void Insert() { // make a database table object ( ie ProductTable t = new ProductTable() { productname ="something"} // insert record ( dbcontext.ProductTable.insertOnSubmit()) } public void SaveToDb() { dbcontext.submitChanges(); } } Then in my service layer I would do like for(int i = 0; i < 100; i++) { validate(); if(valid == true) { update(); insert() } } SaveToDb(); So pretend my for loop is has a count for all the record found in the xml file. I first validate it. If valid then I have to update a table before I insert the record. I then insert the record. After that I want to save everything in one go. I am not sure if I can do a mass save when updating of if that has to be after every time or what. But I thought it would work for sure for the insert one. Nothing seems to crash and I am not sure how to check if the records are being added to the dbcontext.

    Read the article

  • Generic Repository with SQLite and SQL Compact Databases

    - by Andrew Petersen
    I am creating a project that has a mobile app (Xamarin.Android) using a SQLite database and a WPF application (Code First Entity Framework 5) using a SQL Compact database. This project will even eventually have a SQL Server database as well. Because of this I am trying to create a generic repository, so that I can pass in the correct context depending on which application is making the request. The issue I ran into is my DataContext for the SQL Compact database inherits from DbContext and the SQLite database inherits from SQLiteConnection. What is the best way to make this generic, so that it doesn't matter what kind of database is on the back end? This is what I have tried so far on the SQL Compact side: public interface IRepository<TEntity> { TEntity Add(TEntity entity); } public class Repository<TEntity, TContext> : IRepository<TEntity>, IDisposable where TEntity : class where TContext : DbContext { private readonly TContext _context; public Repository(DbContext dbContext) { _context = dbContext as TContext; } public virtual TEntity Add(TEntity entity) { return _context.Set<TEntity>().Add(entity); } } And on the SQLite side: public class ElverDatabase : SQLiteConnection { static readonly object Locker = new object(); public ElverDatabase(string path) : base(path) { CreateTable<Ticket>(); } public int Add<T>(T item) where T : IBusinessEntity { lock (Locker) { return Insert(item); } } }

    Read the article

  • Generic Repositories with DI & Data Intensive Controllers

    - by James
    Usually, I consider a large number of parameters as an alarm bell that there may be a design problem somewhere. I am using a Generic Repository for an ASP.NET application and have a Controller with a growing number of parameters. public class GenericRepository<T> : IRepository<T> where T : class { protected DbContext Context { get; set; } protected DbSet<T> DbSet { get; set; } public GenericRepository(DbContext context) { Context = context; DbSet = context.Set<T>(); } ...//methods excluded to keep the question readable } I am using a DI container to pass in the DbContext to the generic repository. So far, this has met my needs and there are no other concrete implmentations of IRepository<T>. However, I had to create a dashboard which uses data from many Entities. There was also a form containing a couple of dropdown lists. Now using the generic repository this makes the parameter requirments grow quickly. The Controller will end up being something like public HomeController(IRepository<EntityOne> entityOneRepository, IRepository<EntityTwo> entityTwoRepository, IRepository<EntityThree> entityThreeRepository, IRepository<EntityFour> entityFourRepository, ILogError logError, ICurrentUser currentUser) { } It has about 6 IRepositories plus a few others to include the required data and the dropdown list options. In my mind this is too many parameters. From a performance point of view, there is only 1 DBContext per request and the DI container will serve the same DbContext to all of the Repositories. From a code standards/readability point of view it's ugly. Is there a better way to handle this situation? Its a real world project with real world time constraints so I will not dwell on it too long, but from a learning perspective it would be good to see how such situations are handled by others.

    Read the article

  • Linq To Sql - DataContext.SubmitChanges() problem

    - by Ahmet Altun
    I have a code like this. DBContext is Datacontext instance. try { TBLORGANISM org = new TBLORGANISM(); org.OrganismDesc = p.Subject; DBContext.TBLORGANISMs.InsertOnSubmit(org); DBContext.SubmitChanges(); } catch (Exception) { } At this point, I want to IGNORE the error and want to be skipped. Not to be retried. But when I try another insert like TBLACTION act = new TBLACTION(); act.ActionDesc = p.ActionName; DBContext.TBLACTIONs.InsertOnSubmit(act); DBContext.SubmitChanges(); SubmitChanges firstly retries previous attempt. How can I tell "skip errors, don't try again"?

    Read the article

  • Announcing Entity Framework Code-First (CTP5 release)

    - by ScottGu
    This week the data team released the CTP5 build of the new Entity Framework Code-First library.  EF Code-First enables a pretty sweet code-centric development workflow for working with data.  It enables you to: Develop without ever having to open a designer or define an XML mapping file Define model objects by simply writing “plain old classes” with no base classes required Use a “convention over configuration” approach that enables database persistence without explicitly configuring anything Optionally override the convention-based persistence and use a fluent code API to fully customize the persistence mapping I’m a big fan of the EF Code-First approach, and wrote several blog posts about it this summer: Code-First Development with Entity Framework 4 (July 16th) EF Code-First: Custom Database Schema Mapping (July 23rd) Using EF Code-First with an Existing Database (August 3rd) Today’s new CTP5 release delivers several nice improvements over the CTP4 build, and will be the last preview build of Code First before the final release of it.  We will ship the final EF Code First release in the first quarter of next year (Q1 of 2011).  It works with all .NET application types (including both ASP.NET Web Forms and ASP.NET MVC projects). Installing EF Code First You can install and use EF Code First CTP5 using one of two ways: Approach 1) By downloading and running a setup program.  Once installed you can reference the EntityFramework.dll assembly it provides within your projects.      or: Approach 2) By using the NuGet Package Manager within Visual Studio to download and install EF Code First within a project.  To do this, simply bring up the NuGet Package Manager Console within Visual Studio (View->Other Windows->Package Manager Console) and type “Install-Package EFCodeFirst”: Typing “Install-Package EFCodeFirst” within the Package Manager Console will cause NuGet to download the EF Code First package, and add it to your current project: Doing this will automatically add a reference to the EntityFramework.dll assembly to your project:   NuGet enables you to have EF Code First setup and ready to use within seconds.  When the final release of EF Code First ships you’ll also be able to just type “Update-Package EFCodeFirst” to update your existing projects to use the final release. EF Code First Assembly and Namespace The CTP5 release of EF Code First has an updated assembly name, and new .NET namespace: Assembly Name: EntityFramework.dll Namespace: System.Data.Entity These names match what we plan to use for the final release of the library. Nice New CTP5 Improvements The new CTP5 release of EF Code First contains a bunch of nice improvements and refinements. Some of the highlights include: Better support for Existing Databases Built-in Model-Level Validation and DataAnnotation Support Fluent API Improvements Pluggable Conventions Support New Change Tracking API Improved Concurrency Conflict Resolution Raw SQL Query/Command Support The rest of this blog post contains some more details about a few of the above changes. Better Support for Existing Databases EF Code First makes it really easy to create model layers that work against existing databases.  CTP5 includes some refinements that further streamline the developer workflow for this scenario. Below are the steps to use EF Code First to create a model layer for the Northwind sample database: Step 1: Create Model Classes and a DbContext class Below is all of the code necessary to implement a simple model layer using EF Code First that goes against the Northwind database: EF Code First enables you to use “POCO” – Plain Old CLR Objects – to represent entities within a database.  This means that you do not need to derive model classes from a base class, nor implement any interfaces or data persistence attributes on them.  This enables the model classes to be kept clean, easily testable, and “persistence ignorant”.  The Product and Category classes above are examples of POCO model classes. EF Code First enables you to easily connect your POCO model classes to a database by creating a “DbContext” class that exposes public properties that map to the tables within a database.  The Northwind class above illustrates how this can be done.  It is mapping our Product and Category classes to the “Products” and “Categories” tables within the database.  The properties within the Product and Category classes in turn map to the columns within the Products and Categories tables – and each instance of a Product/Category object maps to a row within the tables. The above code is all of the code required to create our model and data access layer!  Previous CTPs of EF Code First required an additional step to work against existing databases (a call to Database.Initializer<Northwind>(null) to tell EF Code First to not create the database) – this step is no longer required with the CTP5 release.  Step 2: Configure the Database Connection String We’ve written all of the code we need to write to define our model layer.  Our last step before we use it will be to setup a connection-string that connects it with our database.  To do this we’ll add a “Northwind” connection-string to our web.config file (or App.Config for client apps) like so:   <connectionStrings>          <add name="Northwind"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;AttachDBFilename=|DataDirectory|\northwind.mdf;User Instance=true"          providerName="System.Data.SqlClient" />   </connectionStrings> EF “code first” uses a convention where DbContext classes by default look for a connection-string that has the same name as the context class.  Because our DbContext class is called “Northwind” it by default looks for a “Northwind” connection-string to use.  Above our Northwind connection-string is configured to use a local SQL Express database (stored within the \App_Data directory of our project).  You can alternatively point it at a remote SQL Server. Step 3: Using our Northwind Model Layer We can now easily query and update our database using the strongly-typed model layer we just built with EF Code First. The code example below demonstrates how to use LINQ to query for products within a specific product category.  This query returns back a sequence of strongly-typed Product objects that match the search criteria: The code example below demonstrates how we can retrieve a specific Product object, update two of its properties, and then save the changes back to the database: EF Code First handles all of the change-tracking and data persistence work for us, and allows us to focus on our application and business logic as opposed to having to worry about data access plumbing. Built-in Model Validation EF Code First allows you to use any validation approach you want when implementing business rules with your model layer.  This enables a great deal of flexibility and power. Starting with this week’s CTP5 release, EF Code First also now includes built-in support for both the DataAnnotation and IValidatorObject validation support built-into .NET 4.  This enables you to easily implement validation rules on your models, and have these rules automatically be enforced by EF Code First whenever you save your model layer.  It provides a very convenient “out of the box” way to enable validation within your applications. Applying DataAnnotations to our Northwind Model The code example below demonstrates how we could add some declarative validation rules to two of the properties of our “Product” model: We are using the [Required] and [Range] attributes above.  These validation attributes live within the System.ComponentModel.DataAnnotations namespace that is built-into .NET 4, and can be used independently of EF.  The error messages specified on them can either be explicitly defined (like above) – or retrieved from resource files (which makes localizing applications easy). Validation Enforcement on SaveChanges() EF Code-First (starting with CTP5) now automatically applies and enforces DataAnnotation rules when a model object is updated or saved.  You do not need to write any code to enforce this – this support is now enabled by default.  This new support means that the below code – which violates our above rules – will automatically throw an exception when we call the “SaveChanges()” method on our Northwind DbContext: The DbEntityValidationException that is raised when the SaveChanges() method is invoked contains a “EntityValidationErrors” property that you can use to retrieve the list of all validation errors that occurred when the model was trying to save.  This enables you to easily guide the user on how to fix them.  Note that EF Code-First will abort the entire transaction of changes if a validation rule is violated – ensuring that our database is always kept in a valid, consistent state. EF Code First’s validation enforcement works both for the built-in .NET DataAnnotation attributes (like Required, Range, RegularExpression, StringLength, etc), as well as for any custom validation rule you create by sub-classing the System.ComponentModel.DataAnnotations.ValidationAttribute base class. UI Validation Support A lot of our UI frameworks in .NET also provide support for DataAnnotation-based validation rules. For example, ASP.NET MVC, ASP.NET Dynamic Data, and Silverlight (via WCF RIA Services) all provide support for displaying client-side validation UI that honor the DataAnnotation rules applied to model objects. The screen-shot below demonstrates how using the default “Add-View” scaffold template within an ASP.NET MVC 3 application will cause appropriate validation error messages to be displayed if appropriate values are not provided: ASP.NET MVC 3 supports both client-side and server-side enforcement of these validation rules.  The error messages displayed are automatically picked up from the declarative validation attributes – eliminating the need for you to write any custom code to display them. Keeping things DRY The “DRY Principle” stands for “Do Not Repeat Yourself”, and is a best practice that recommends that you avoid duplicating logic/configuration/code in multiple places across your application, and instead specify it only once and have it apply everywhere. EF Code First CTP5 now enables you to apply declarative DataAnnotation validations on your model classes (and specify them only once) and then have the validation logic be enforced (and corresponding error messages displayed) across all applications scenarios – including within controllers, views, client-side scripts, and for any custom code that updates and manipulates model classes. This makes it much easier to build good applications with clean code, and to build applications that can rapidly iterate and evolve. Other EF Code First Improvements New to CTP5 EF Code First CTP5 includes a bunch of other improvements as well.  Below are a few short descriptions of some of them: Fluent API Improvements EF Code First allows you to override an “OnModelCreating()” method on the DbContext class to further refine/override the schema mapping rules used to map model classes to underlying database schema.  CTP5 includes some refinements to the ModelBuilder class that is passed to this method which can make defining mapping rules cleaner and more concise.  The ADO.NET Team blogged some samples of how to do this here. Pluggable Conventions Support EF Code First CTP5 provides new support that allows you to override the “default conventions” that EF Code First honors, and optionally replace them with your own set of conventions. New Change Tracking API EF Code First CTP5 exposes a new set of change tracking information that enables you to access Original, Current & Stored values, and State (e.g. Added, Unchanged, Modified, Deleted).  This support is useful in a variety of scenarios. Improved Concurrency Conflict Resolution EF Code First CTP5 provides better exception messages that allow access to the affected object instance and the ability to resolve conflicts using current, original and database values.  Raw SQL Query/Command Support EF Code First CTP5 now allows raw SQL queries and commands (including SPROCs) to be executed via the SqlQuery and SqlCommand methods exposed off of the DbContext.Database property.  The results of these method calls can be materialized into object instances that can be optionally change-tracked by the DbContext.  This is useful for a variety of advanced scenarios. Full Data Annotations Support EF Code First CTP5 now supports all standard DataAnnotations within .NET, and can use them both to perform validation as well as to automatically create the appropriate database schema when EF Code First is used in a database creation scenario.  Summary EF Code First provides an elegant and powerful way to work with data.  I really like it because it is extremely clean and supports best practices, while also enabling solutions to be implemented very, very rapidly.  The code-only approach of the library means that model layers end up being flexible and easy to customize. This week’s CTP5 release further refines EF Code First and helps ensure that it will be really sweet when it ships early next year.  I recommend using NuGet to install and give it a try today.  I think you’ll be pleasantly surprised by how awesome it is. Hope this helps, Scott

    Read the article

  • ASP.NET MVC 3 Hosting :: How to Deploy Web Apps Using ASP.NET MVC 3, Razor and EF Code First - Part I

    - by mbridge
    First, you can download the source code from http://efmvc.codeplex.com. The following frameworks will be used for this step by step tutorial. public class Category {     public int CategoryId { get; set; }     [Required(ErrorMessage = "Name Required")]     [StringLength(25, ErrorMessage = "Must be less than 25 characters")]     public string Name { get; set;}     public string Description { get; set; }     public virtual ICollection<Expense> Expenses { get; set; } } Expense Class public class Expense {             public int ExpenseId { get; set; }            public string  Transaction { get; set; }     public DateTime Date { get; set; }     public double Amount { get; set; }     public int CategoryId { get; set; }     public virtual Category Category { get; set; } }    Define Domain Model Let’s create domain model for our simple web application Category Class We have two domain entities - Category and Expense. A single category contains a list of expense transactions and every expense transaction should have a Category. In this post, we will be focusing on CRUD operations for the entity Category and will be working on the Expense entity with a View Model object in the later post. And the source code for this application will be refactored over time. The above entities are very simple POCO (Plain Old CLR Object) classes and the entity Category is decorated with validation attributes in the System.ComponentModel.DataAnnotations namespace. Now we want to use these entities for defining model objects for the Entity Framework 4. Using the Code First approach of Entity Framework, we can first define the entities by simply writing POCO classes without any coupling with any API or database library. This approach lets you focus on domain model which will enable Domain-Driven Development for applications. EF code first support is currently enabled with a separate API that is runs on top of the Entity Framework 4. EF Code First is reached CTP 5 when I am writing this article. Creating Context Class for Entity Framework We have created our domain model and let’s create a class in order to working with Entity Framework Code First. For this, you have to download EF Code First CTP 5 and add reference to the assembly EntitFramework.dll. You can also use NuGet to download add reference to EEF Code First. public class MyFinanceContext : DbContext {     public MyFinanceContext() : base("MyFinance") { }     public DbSet<Category> Categories { get; set; }     public DbSet<Expense> Expenses { get; set; }         }   The above class MyFinanceContext is derived from DbContext that can connect your model classes to a database. The MyFinanceContext class is mapping our Category and Expense class into database tables Categories and Expenses using DbSet<TEntity> where TEntity is any POCO class. When we are running the application at first time, it will automatically create the database. EF code-first look for a connection string in web.config or app.config that has the same name as the dbcontext class. If it is not find any connection string with the convention, it will automatically create database in local SQL Express database by default and the name of the database will be same name as the dbcontext class. You can also define the name of database in constructor of the the dbcontext class. Unlike NHibernate, we don’t have to use any XML based mapping files or Fluent interface for mapping between our model and database. The model classes of Code First are working on the basis of conventions and we can also use a fluent API to refine our model. The convention for primary key is ‘Id’ or ‘<class name>Id’.  If primary key properties are detected with type ‘int’, ‘long’ or ‘short’, they will automatically registered as identity columns in the database by default. Primary key detection is not case sensitive. We can define our model classes with validation attributes in the System.ComponentModel.DataAnnotations namespace and it automatically enforces validation rules when a model object is updated or saved. Generic Repository for EF Code First We have created model classes and dbcontext class. Now we have to create generic repository pattern for data persistence with EF code first. If you don’t know about the repository pattern, checkout Martin Fowler’s article on Repository Let’s create a generic repository to working with DbContext and DbSet generics. public interface IRepository<T> where T : class     {         void Add(T entity);         void Delete(T entity);         T GetById(long Id);         IEnumerable<T> All();     } RepositoryBasse – Generic Repository class protected MyFinanceContext Database {     get { return database ?? (database = DatabaseFactory.Get()); } } public virtual void Add(T entity) {     dbset.Add(entity);            }        public virtual void Delete(T entity) {     dbset.Remove(entity); }   public virtual T GetById(long id) {     return dbset.Find(id); }   public virtual IEnumerable<T> All() {     return dbset.ToList(); } } DatabaseFactory class public class DatabaseFactory : Disposable, IDatabaseFactory {     private MyFinanceContext database;     public MyFinanceContext Get()     {         return database ?? (database = new MyFinanceContext());     }     protected override void DisposeCore()     {         if (database != null)             database.Dispose();     } } Unit of Work If you are new to Unit of Work pattern, checkout Fowler’s article on Unit of Work . According to Martin Fowler, the Unit of Work pattern "maintains a list of objects affected by a business transaction and coordinates the writing out of changes and the resolution of concurrency problems." Let’s create a class for handling Unit of Work public interface IUnitOfWork {     void Commit(); } UniOfWork class public class UnitOfWork : IUnitOfWork {     private readonly IDatabaseFactory databaseFactory;     private MyFinanceContext dataContext;       public UnitOfWork(IDatabaseFactory databaseFactory)     {         this.databaseFactory = databaseFactory;     }       protected MyFinanceContext DataContext     {         get { return dataContext ?? (dataContext = databaseFactory.Get()); }     }       public void Commit()     {         DataContext.Commit();     } } The Commit method of the UnitOfWork will call the commit method of MyFinanceContext class and it will execute the SaveChanges method of DbContext class.   Repository class for Category In this post, we will be focusing on the persistence against Category entity and will working on other entities in later post. Let’s create a repository for handling CRUD operations for Category using derive from a generic Repository RepositoryBase<T>. public class CategoryRepository: RepositoryBase<Category>, ICategoryRepository     {     public CategoryRepository(IDatabaseFactory databaseFactory)         : base(databaseFactory)         {         }                } public interface ICategoryRepository : IRepository<Category> { } If we need additional methods than generic repository for the Category, we can define in the CategoryRepository. Dependency Injection using Unity 2.0 If you are new to Inversion of Control/ Dependency Injection or Unity, please have a look on my articles at http://weblogs.asp.net/shijuvarghese/archive/tags/IoC/default.aspx. I want to create a custom lifetime manager for Unity to store container in the current HttpContext. public class HttpContextLifetimeManager<T> : LifetimeManager, IDisposable {     public override object GetValue()     {         return HttpContext.Current.Items[typeof(T).AssemblyQualifiedName];     }     public override void RemoveValue()     {         HttpContext.Current.Items.Remove(typeof(T).AssemblyQualifiedName);     }     public override void SetValue(object newValue)     {         HttpContext.Current.Items[typeof(T).AssemblyQualifiedName] = newValue;     }     public void Dispose()     {         RemoveValue();     } } Let’s create controller factory for Unity in the ASP.NET MVC 3 application.                 404, String.Format(                     "The controller for path '{0}' could not be found" +     "or it does not implement IController.",                 reqContext.HttpContext.Request.Path));       if (!typeof(IController).IsAssignableFrom(controllerType))         throw new ArgumentException(                 string.Format(                     "Type requested is not a controller: {0}",                     controllerType.Name),                     "controllerType");     try     {         controller= container.Resolve(controllerType) as IController;     }     catch (Exception ex)     {         throw new InvalidOperationException(String.Format(                                 "Error resolving controller {0}",                                 controllerType.Name), ex);     }     return controller; }   } Configure contract and concrete types in Unity Let’s configure our contract and concrete types in Unity for resolving our dependencies. private void ConfigureUnity() {     //Create UnityContainer               IUnityContainer container = new UnityContainer()                 .RegisterType<IDatabaseFactory, DatabaseFactory>(new HttpContextLifetimeManager<IDatabaseFactory>())     .RegisterType<IUnitOfWork, UnitOfWork>(new HttpContextLifetimeManager<IUnitOfWork>())     .RegisterType<ICategoryRepository, CategoryRepository>(new HttpContextLifetimeManager<ICategoryRepository>());                 //Set container for Controller Factory                ControllerBuilder.Current.SetControllerFactory(             new UnityControllerFactory(container)); } In the above ConfigureUnity method, we are registering our types onto Unity container with custom lifetime manager HttpContextLifetimeManager. Let’s call ConfigureUnity method in the Global.asax.cs for set controller factory for Unity and configuring the types with Unity. protected void Application_Start() {     AreaRegistration.RegisterAllAreas();     RegisterGlobalFilters(GlobalFilters.Filters);     RegisterRoutes(RouteTable.Routes);     ConfigureUnity(); } Developing web application using ASP.NET MVC 3 We have created our domain model for our web application and also have created repositories and configured dependencies with Unity container. Now we have to create controller classes and views for doing CRUD operations against the Category entity. Let’s create controller class for Category Category Controller public class CategoryController : Controller {     private readonly ICategoryRepository categoryRepository;     private readonly IUnitOfWork unitOfWork;           public CategoryController(ICategoryRepository categoryRepository, IUnitOfWork unitOfWork)     {         this.categoryRepository = categoryRepository;         this.unitOfWork = unitOfWork;     }       public ActionResult Index()     {         var categories = categoryRepository.All();         return View(categories);     }     [HttpGet]     public ActionResult Edit(int id)     {         var category = categoryRepository.GetById(id);         return View(category);     }       [HttpPost]     public ActionResult Edit(int id, FormCollection collection)     {         var category = categoryRepository.GetById(id);         if (TryUpdateModel(category))         {             unitOfWork.Commit();             return RedirectToAction("Index");         }         else return View(category);                 }       [HttpGet]     public ActionResult Create()     {         var category = new Category();         return View(category);     }           [HttpPost]     public ActionResult Create(Category category)     {         if (!ModelState.IsValid)         {             return View("Create", category);         }                     categoryRepository.Add(category);         unitOfWork.Commit();         return RedirectToAction("Index");     }       [HttpPost]     public ActionResult Delete(int  id)     {         var category = categoryRepository.GetById(id);         categoryRepository.Delete(category);         unitOfWork.Commit();         var categories = categoryRepository.All();         return PartialView("CategoryList", categories);       }        } Creating Views in Razor Now we are going to create views in Razor for our ASP.NET MVC 3 application.  Let’s create a partial view CategoryList.cshtml for listing category information and providing link for Edit and Delete operations. CategoryList.cshtml @using MyFinance.Helpers; @using MyFinance.Domain; @model IEnumerable<Category>      <table>         <tr>         <th>Actions</th>         <th>Name</th>          <th>Description</th>         </tr>     @foreach (var item in Model) {             <tr>             <td>                 @Html.ActionLink("Edit", "Edit",new { id = item.CategoryId })                 @Ajax.ActionLink("Delete", "Delete", new { id = item.CategoryId }, new AjaxOptions { Confirm = "Delete Expense?", HttpMethod = "Post", UpdateTargetId = "divCategoryList" })                           </td>             <td>                 @item.Name             </td>             <td>                 @item.Description             </td>         </tr>         }       </table>     <p>         @Html.ActionLink("Create New", "Create")     </p> The delete link is providing Ajax functionality using the Ajax.ActionLink. This will call an Ajax request for Delete action method in the CategoryCotroller class. In the Delete action method, it will return Partial View CategoryList after deleting the record. We are using CategoryList view for the Ajax functionality and also for Index view using for displaying list of category information. Let’s create Index view using partial view CategoryList  Index.chtml @model IEnumerable<MyFinance.Domain.Category> @{     ViewBag.Title = "Index"; }    <h2>Category List</h2>    <script src="@Url.Content("~/Scripts/jquery.unobtrusive-ajax.min.js")" type="text/javascript"></script>    <div id="divCategoryList">               @Html.Partial("CategoryList", Model) </div> We can call the partial views using Html.Partial helper method. Now we are going to create View pages for insert and update functionality for the Category. Both view pages are sharing common user interface for entering the category information. So I want to create an EditorTemplate for the Category information. We have to create the EditorTemplate with the same name of entity object so that we can refer it on view pages using @Html.EditorFor(model => model) . So let’s create template with name Category. Category.cshtml @model MyFinance.Domain.Category <div class="editor-label"> @Html.LabelFor(model => model.Name) </div> <div class="editor-field"> @Html.EditorFor(model => model.Name) @Html.ValidationMessageFor(model => model.Name) </div> <div class="editor-label"> @Html.LabelFor(model => model.Description) </div> <div class="editor-field"> @Html.EditorFor(model => model.Description) @Html.ValidationMessageFor(model => model.Description) </div> Let’s create view page for insert Category information @model MyFinance.Domain.Category   @{     ViewBag.Title = "Save"; }   <h2>Create</h2>   <script src="@Url.Content("~/Scripts/jquery.validate.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")" type="text/javascript"></script>   @using (Html.BeginForm()) {     @Html.ValidationSummary(true)     <fieldset>         <legend>Category</legend>                @Html.EditorFor(model => model)               <p>             <input type="submit" value="Create" />         </p>     </fieldset> }   <div>     @Html.ActionLink("Back to List", "Index") </div> ViewStart file In Razor views, we can add a file named _viewstart.cshtml in the views directory  and this will be shared among the all views with in the Views directory. The below code in the _viewstart.cshtml, sets the Layout page for every Views in the Views folder.     @{     Layout = "~/Views/Shared/_Layout.cshtml"; } Tomorrow, we will cotinue the second part of this article. :)

    Read the article

  • Generating EF Code First model classes from an existing database

    - by Jon Galloway
    Entity Framework Code First is a lightweight way to "turn on" data access for a simple CLR class. As the name implies, the intended use is that you're writing the code first and thinking about the database later. However, I really like the Entity Framework Code First works, and I want to use it in existing projects and projects with pre-existing databases. For example, MVC Music Store comes with a SQL Express database that's pre-loaded with a catalog of music (including genres, artists, and songs), and while it may eventually make sense to load that seed data from a different source, for the MVC 3 release we wanted to keep using the existing database. While I'm not getting the full benefit of Code First - writing code which drives the database schema - I can still benefit from the simplicity of the lightweight code approach. Scott Guthrie blogged about how to use entity framework with an existing database, looking at how you can override the Entity Framework Code First conventions so that it can work with a database which was created following other conventions. That gives you the information you need to create the model classes manually. However, it turns out that with Entity Framework 4 CTP 5, there's a way to generate the model classes from the database schema. Once the grunt work is done, of course, you can go in and modify the model classes as you'd like, but you can save the time and frustration of figuring out things like mapping SQL database types to .NET types. Note that this template requires Entity Framework 4 CTP 5 or later. You can install EF 4 CTP 5 here. Step One: Generate an EF Model from your existing database The code generation system in Entity Framework works from a model. You can add a model to your existing project and delete it when you're done, but I think it's simpler to just spin up a separate project to generate the model classes. When you're done, you can delete the project without affecting your application, or you may choose to keep it around in case you have other database schema updates which require model changes. I chose to add the Model classes to the Models folder of a new MVC 3 application. Right-click the folder and select "Add / New Item..."   Next, select ADO.NET Entity Data Model from the Data Templates list, and name it whatever you want (the name is unimportant).   Next, select "Generate from database." This is important - it's what kicks off the next few steps, which read your database's schema.   Now it's time to point the Entity Data Model Wizard at your existing database. I'll assume you know how to find your database - if not, I covered that a bit in the MVC Music Store tutorial section on Models and Data. Select your database, uncheck the "Save entity connection settings in Web.config" (since we won't be using them within the application), and click Next.   Now you can select the database objects you'd like modeled. I just selected all tables and clicked Finish.   And there's your model. If you want, you can make additional changes here before going on to generate the code.   Step Two: Add the DbContext Generator Like most code generation systems in Visual Studio lately, Entity Framework uses T4 templates which allow for some control over how the code is generated. K Scott Allen wrote a detailed article on T4 Templates and the Entity Framework on MSDN recently, if you'd like to know more. Fortunately for us, there's already a template that does just what we need without any customization. Right-click a blank space in the Entity Framework model surface and select "Add Code Generation Item..." Select the Code groupt in the Installed Templates section and pick the ADO.NET DbContext Generator. If you don't see this listed, make sure you've got EF 4 CTP 5 installed and that you're looking at the Code templates group. Note that the DbContext Generator template is similar to the EF POCO template which came out last year, but with "fix up" code (unnecessary in EF Code First) removed.   As soon as you do this, you'll two terrifying Security Warnings - unless you click the "Do not show this message again" checkbox the first time. It will also be displayed (twice) every time you rebuild the project, so I checked the box and no immediate harm befell my computer (fingers crossed!).   Here's the payoff: two templates (filenames ending with .tt) have been added to the project, and they've generated the code I needed.   The "MusicStoreEntities.Context.tt" template built a DbContext class which holds the entity collections, and the "MusicStoreEntities.tt" template build a separate class for each table I selected earlier. We'll customize them in the next step. I recommend copying all the generated .cs files into your application at this point, since accidentally rebuilding the generation project will overwrite your changes if you leave them there. Step Three: Modify and use your POCO entity classes Note: I made a bunch of tweaks to my POCO classes after they were generated. You don't have to do any of this, but I think it's important that you can - they're your classes, and EF Code First respects that. Modify them as you need for your application, or don't. The Context class derives from DbContext, which is what turns on the EF Code First features. It holds a DbSet for each entity. Think of DbSet as a simple List, but with Entity Framework features turned on.   //------------------------------------------------------------------------------ // <auto-generated> // This code was generated from a template. // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace EF_CodeFirst_From_Existing_Database.Models { using System; using System.Data.Entity; public partial class Entities : DbContext { public Entities() : base("name=Entities") { } public DbSet<Album> Albums { get; set; } public DbSet<Artist> Artists { get; set; } public DbSet<Cart> Carts { get; set; } public DbSet<Genre> Genres { get; set; } public DbSet<OrderDetail> OrderDetails { get; set; } public DbSet<Order> Orders { get; set; } } } It's a pretty lightweight class as generated, so I just took out the comments, set the namespace, removed the constructor, and formatted it a bit. Done. If I wanted, though, I could have added or removed DbSets, overridden conventions, etc. using System.Data.Entity; namespace MvcMusicStore.Models { public class MusicStoreEntities : DbContext { public DbSet Albums { get; set; } public DbSet Genres { get; set; } public DbSet Artists { get; set; } public DbSet Carts { get; set; } public DbSet Orders { get; set; } public DbSet OrderDetails { get; set; } } } Next, it's time to look at the individual classes. Some of mine were pretty simple - for the Cart class, I just need to remove the header and clean up the namespace. //------------------------------------------------------------------------------ // // This code was generated from a template. // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // //------------------------------------------------------------------------------ namespace EF_CodeFirst_From_Existing_Database.Models { using System; using System.Collections.Generic; public partial class Cart { // Primitive properties public int RecordId { get; set; } public string CartId { get; set; } public int AlbumId { get; set; } public int Count { get; set; } public System.DateTime DateCreated { get; set; } // Navigation properties public virtual Album Album { get; set; } } } I did a bit more customization on the Album class. Here's what was generated: //------------------------------------------------------------------------------ // // This code was generated from a template. // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // //------------------------------------------------------------------------------ namespace EF_CodeFirst_From_Existing_Database.Models { using System; using System.Collections.Generic; public partial class Album { public Album() { this.Carts = new HashSet(); this.OrderDetails = new HashSet(); } // Primitive properties public int AlbumId { get; set; } public int GenreId { get; set; } public int ArtistId { get; set; } public string Title { get; set; } public decimal Price { get; set; } public string AlbumArtUrl { get; set; } // Navigation properties public virtual Artist Artist { get; set; } public virtual Genre Genre { get; set; } public virtual ICollection Carts { get; set; } public virtual ICollection OrderDetails { get; set; } } } I removed the header, changed the namespace, and removed some of the navigation properties. One nice thing about EF Code First is that you don't have to have a property for each database column or foreign key. In the Music Store sample, for instance, we build the app up using code first and start with just a few columns, adding in fields and navigation properties as the application needs them. EF Code First handles the columsn we've told it about and doesn't complain about the others. Here's the basic class: using System.ComponentModel; using System.ComponentModel.DataAnnotations; using System.Web.Mvc; using System.Collections.Generic; namespace MvcMusicStore.Models { public class Album { public int AlbumId { get; set; } public int GenreId { get; set; } public int ArtistId { get; set; } public string Title { get; set; } public decimal Price { get; set; } public string AlbumArtUrl { get; set; } public virtual Genre Genre { get; set; } public virtual Artist Artist { get; set; } public virtual List OrderDetails { get; set; } } } It's my class, not Entity Framework's, so I'm free to do what I want with it. I added a bunch of MVC 3 annotations for scaffolding and validation support, as shown below: using System.ComponentModel; using System.ComponentModel.DataAnnotations; using System.Web.Mvc; using System.Collections.Generic; namespace MvcMusicStore.Models { [Bind(Exclude = "AlbumId")] public class Album { [ScaffoldColumn(false)] public int AlbumId { get; set; } [DisplayName("Genre")] public int GenreId { get; set; } [DisplayName("Artist")] public int ArtistId { get; set; } [Required(ErrorMessage = "An Album Title is required")] [StringLength(160)] public string Title { get; set; } [Required(ErrorMessage = "Price is required")] [Range(0.01, 100.00, ErrorMessage = "Price must be between 0.01 and 100.00")] public decimal Price { get; set; } [DisplayName("Album Art URL")] [StringLength(1024)] public string AlbumArtUrl { get; set; } public virtual Genre Genre { get; set; } public virtual Artist Artist { get; set; } public virtual List<OrderDetail> OrderDetails { get; set; } } } The end result was that I had working EF Code First model code for the finished application. You can follow along through the tutorial to see how I built up to the finished model classes, starting with simple 2-3 property classes and building up to the full working schema. Thanks to Diego Vega (on the Entity Framework team) for pointing me to the DbContext template.

    Read the article

  • Parallel EntityFramework

    - by mehanik
    Is it possible to make some work in parallel with entity framework for following example? using (var dbContext = new DB()) { var res = (from c in dbContext.Customers orderby c.Name select new { c.Id, c.Name, c.Role } ).ToDictionary(c => c.Id, c => new Dictionary<string, object> { { "Name",c.Name }, { "Role", c.Role } }); } For exampe what will be changed if I add AsParrallel? using (var dbContext = new DB()) { var res = (from c in dbContext.Customers orderby c.Name select new { c.Id, c.Name, c.Role } ).AsParallel().ToDictionary(c => c.Id, c => new Dictionary<string, object> { { "Name",c.Name }, { "Role", c.Role } }); }

    Read the article

  • not use "using" statement for TransactionScope

    - by hotyi
    i always using the following format to use transactionscope. using(TransactionScope scope = new TransactionScope()){ .... } sometimes i want to wrap the transactionscope to a new class, for example DbContext class, i want to using the statement like dbContext.Begin(); ... dbContext.Submit(); it seems the transactioncope class need use "using"statement to do dispose, i want to know if there is anyway not use "using".

    Read the article

  • Looking into Entity Framework Code First Migrations

    - by nikolaosk
    In this post I will introduce you to Code First Migrations, an Entity Framework feature introduced in version 4.3 back in February of 2012.I have extensively covered Entity Framework in this blog. Please find my other Entity Framework posts here .   Before the addition of Code First Migrations (4.1,4.2 versions), Code First database initialisation meant that Code First would create the database if it does not exist (the default behaviour - CreateDatabaseIfNotExists). The other pattern we could use is DropCreateDatabaseIfModelChanges which means that Entity Framework, will drop the database if it realises that model has changes since the last time it created the database.The final pattern is DropCreateDatabaseAlways which means that Code First will recreate the database every time one runs the application.That is of course fine for the development database but totally unacceptable and catastrophic when you have a production database. We cannot lose our data because of the work that Code First works.Migrations solve this problem.With migrations we can modify the database without completely dropping it.We can modify the database schema to reflect the changes to the model without losing data.In version EF 5.0 migrations are fully included and supported. I will demonstrate migrations with a hands-on example.Let me say a few words first about Entity Framework first. The .Net framework provides support for Object Relational Mappingthrough EF. So EF is a an ORM tool and it is now the main data access technology that microsoft works on. I use it quite extensively in my projects. Through EF we have many things out of the box provided for us. We have the automatic generation of SQL code.It maps relational data to strongly types objects.All the changes made to the objects in the memory are persisted in a transactional way back to the data store. You can find in this post an example on how to use the Entity Framework to retrieve data from an SQL Server Database using the "Database/Schema First" approach.In this approach we make all the changes at the database level and then we update the model with those changes. In this post you can see an example on how to use the "Model First" approach when working with ASP.Net and the Entity Framework.This model was firstly introduced in EF version 4.0 and we could start with a blank model and then create a database from that model.When we made changes to the model , we could recreate the database from the new model. The Code First approach is the more code-centric than the other two. Basically we write POCO classes and then we persist to a database using something called DBContext.Code First relies on DbContext. We create 2,3 classes (e.g Person,Product) with properties and then these classes interact with the DbContext class we can create a new database based upon our POCOS classes and have tables generated from those classes.We do not have an .edmx file in this approach.By using this approach we can write much easier unit tests.DbContext is a new context class and is smaller,lightweight wrapper for the main context class which is ObjectContext (Schema First and Model First).Let's move on to our hands-on example.I have installed VS 2012 Ultimate edition in my Windows 8 machine. 1)  Create an empty asp.net web application. Give your application a suitable name. Choose C# as the development language2) Add a new web form item in your application. Leave the default name.3) Create a new folder. Name it CodeFirst .4) Add a new item in your application, a class file. Name it Footballer.cs. This is going to be a simple POCO class.Place this class file in the CodeFirst folder.The code follows    public class Footballer     {         public int FootballerID { get; set; }         public string FirstName { get; set; }         public string LastName { get; set; }         public double Weight { get; set; }         public double Height { get; set; }              }5) We will have to add EF 5.0 to our project. Right-click on the project in the Solution Explorer and select Manage NuGet Packages... for it.In the window that will pop up search for Entity Framework and install it.Have a look at the picture below   If you want to find out if indeed EF version is 5.0 version is installed have a look at the References. Have a look at the picture below to see what you will see if you have installed everything correctly.Have a look at the picture below 6) Then we need to create a context class that inherits from DbContext.Add a new class to the CodeFirst folder.Name it FootballerDBContext.Now that we have the entity classes created, we must let the model know.I will have to use the DbSet<T> property.The code for this class follows     public class FootballerDBContext:DbContext     {         public DbSet<Footballer> Footballers { get; set; }             }    Do not forget to add  (using System.Data.Entity;) in the beginning of the class file 7) We must take care of the connection string. It is very easy to create one in the web.config.It does not matter that we do not have a database yet.When we run the DbContext and query against it , it will use a connection string in the web.config and will create the database based on the classes.I will use the name "FootballTraining" for the database.In my case the connection string inside the web.config, looks like this    <connectionStrings>    <add name="CodeFirstDBContext" connectionString="server=.;integrated security=true; database=FootballTraining" providerName="System.Data.SqlClient"/>                       </connectionStrings>8) Now it is time to create Linq to Entities queries to retrieve data from the database . Add a new class to your application in the CodeFirst folder.Name the file DALfootballer.csWe will create a simple public method to retrieve the footballers. The code for the class followspublic class DALfootballer     {         FootballerDBContext ctx = new FootballerDBContext();         public List<Footballer> GetFootballers()         {             var query = from player in ctx.Footballers select player;             return query.ToList();         }     } 9) Place a GridView control on the Default.aspx page and leave the default name.Add an ObjectDataSource control on the Default.aspx page and leave the default name. Set the DatasourceID property of the GridView control to the ID of the ObjectDataSource control.(DataSourceID="ObjectDataSource1" ). Let's configure the ObjectDataSource control. Click on the smart tag item of the ObjectDataSource control and select Configure Data Source. In the Wizzard that pops up select the DALFootballer class and then in the next step choose the GetFootballers() method.Click Finish to complete the steps of the wizzard.Build and Run your application.  10) Obviously you will not see any records coming back from your database, because we have not inserted anything. The database is created, though.Have a look at the picture below.  11) Now let's change the POCO class. Let's add a new property to the Footballer.cs class.        public int Age { get; set; } Build and run your application again. You will receive an error. Have a look at the picture below 12) That was to be expected.EF Code First Migrations is not activated by default. We have to activate them manually and configure them according to your needs. We will open the Package Manager Console from the Tools menu within Visual Studio 2012.Then we will activate the EF Code First Migration Features by writing the command “Enable-Migrations”.  Have a look at the picture below. This adds a new folder Migrations in our project. A new auto-generated class Configuration.cs is created.Another class is also created [CURRENTDATE]_InitialCreate.cs and added to our project.The Configuration.cs  is shown in the picture below. The [CURRENTDATE]_InitialCreate.cs is shown in the picture below  13) ??w we are ready to migrate the changes in the database. We need to run the Add-Migration Age command in Package Manager ConsoleAdd-Migration will scaffold the next migration based on changes you have made to your model since the last migration was created.In the Migrations folder, the file 201211201231066_Age.cs is created.Have a look at the picture below to see the newly generated file and its contents. Now we can run the Update-Database command in Package Manager Console .See the picture above.Code First Migrations will compare the migrations in our Migrations folder with the ones that have been applied to the database. It will see that the Age migration needs to be applied, and run it.The EFMigrations.CodeFirst.FootballeDBContext database is now updated to include the Age column in the Footballers table.Build and run your application.Everything will work fine now.Have a look at the picture below to see the migrations applied to our table. 14) We may want it to automatically upgrade the database (by applying any pending migrations) when the application launches.Let's add another property to our Poco class.          public string TShirtNo { get; set; }We want this change to migrate automatically to the database.We go to the Configuration.cs we enable automatic migrations.     public Configuration()        {            AutomaticMigrationsEnabled = true;        } In the Page_Load event handling routine we have to register the MigrateDatabaseToLatestVersion database initializer. A database initializer simply contains some logic that is used to make sure the database is setup correctly.   protected void Page_Load(object sender, EventArgs e)        {            Database.SetInitializer(new MigrateDatabaseToLatestVersion<FootballerDBContext, Configuration>());        } Build and run your application. It will work fine. Have a look at the picture below to see the migrations applied to our table in the database. Hope it helps!!!  

    Read the article

  • Developing web apps using ASP.NET MVC 3, Razor and EF Code First - Part 1

    - by shiju
    In this post, I will demonstrate web application development using ASP. NET MVC 3, Razor and EF code First. This post will also cover Dependency Injection using Unity 2.0 and generic Repository and Unit of Work for EF Code First. The following frameworks will be used for this step by step tutorial. ASP.NET MVC 3 EF Code First CTP 5 Unity 2.0 Define Domain Model Let’s create domain model for our simple web application Category class public class Category {     public int CategoryId { get; set; }     [Required(ErrorMessage = "Name Required")]     [StringLength(25, ErrorMessage = "Must be less than 25 characters")]     public string Name { get; set;}     public string Description { get; set; }     public virtual ICollection<Expense> Expenses { get; set; } }   Expense class public class Expense {             public int ExpenseId { get; set; }            public string  Transaction { get; set; }     public DateTime Date { get; set; }     public double Amount { get; set; }     public int CategoryId { get; set; }     public virtual Category Category { get; set; } } We have two domain entities - Category and Expense. A single category contains a list of expense transactions and every expense transaction should have a Category. In this post, we will be focusing on CRUD operations for the entity Category and will be working on the Expense entity with a View Model object in the later post. And the source code for this application will be refactored over time. The above entities are very simple POCO (Plain Old CLR Object) classes and the entity Category is decorated with validation attributes in the System.ComponentModel.DataAnnotations namespace. Now we want to use these entities for defining model objects for the Entity Framework 4. Using the Code First approach of Entity Framework, we can first define the entities by simply writing POCO classes without any coupling with any API or database library. This approach lets you focus on domain model which will enable Domain-Driven Development for applications. EF code first support is currently enabled with a separate API that is runs on top of the Entity Framework 4. EF Code First is reached CTP 5 when I am writing this article. Creating Context Class for Entity Framework We have created our domain model and let’s create a class in order to working with Entity Framework Code First. For this, you have to download EF Code First CTP 5 and add reference to the assembly EntitFramework.dll. You can also use NuGet to download add reference to EEF Code First.    public class MyFinanceContext : DbContext {     public MyFinanceContext() : base("MyFinance") { }     public DbSet<Category> Categories { get; set; }     public DbSet<Expense> Expenses { get; set; }         }   The above class MyFinanceContext is derived from DbContext that can connect your model classes to a database. The MyFinanceContext class is mapping our Category and Expense class into database tables Categories and Expenses using DbSet<TEntity> where TEntity is any POCO class. When we are running the application at first time, it will automatically create the database. EF code-first look for a connection string in web.config or app.config that has the same name as the dbcontext class. If it is not find any connection string with the convention, it will automatically create database in local SQL Express database by default and the name of the database will be same name as the dbcontext class. You can also define the name of database in constructor of the the dbcontext class. Unlike NHibernate, we don’t have to use any XML based mapping files or Fluent interface for mapping between our model and database. The model classes of Code First are working on the basis of conventions and we can also use a fluent API to refine our model. The convention for primary key is ‘Id’ or ‘<class name>Id’.  If primary key properties are detected with type ‘int’, ‘long’ or ‘short’, they will automatically registered as identity columns in the database by default. Primary key detection is not case sensitive. We can define our model classes with validation attributes in the System.ComponentModel.DataAnnotations namespace and it automatically enforces validation rules when a model object is updated or saved. Generic Repository for EF Code First We have created model classes and dbcontext class. Now we have to create generic repository pattern for data persistence with EF code first. If you don’t know about the repository pattern, checkout Martin Fowler’s article on Repository Let’s create a generic repository to working with DbContext and DbSet generics. public interface IRepository<T> where T : class     {         void Add(T entity);         void Delete(T entity);         T GetById(long Id);         IEnumerable<T> All();     }   RepositoryBasse – Generic Repository class public abstract class RepositoryBase<T> where T : class { private MyFinanceContext database; private readonly IDbSet<T> dbset; protected RepositoryBase(IDatabaseFactory databaseFactory) {     DatabaseFactory = databaseFactory;     dbset = Database.Set<T>(); }   protected IDatabaseFactory DatabaseFactory {     get; private set; }   protected MyFinanceContext Database {     get { return database ?? (database = DatabaseFactory.Get()); } } public virtual void Add(T entity) {     dbset.Add(entity);            }        public virtual void Delete(T entity) {     dbset.Remove(entity); }   public virtual T GetById(long id) {     return dbset.Find(id); }   public virtual IEnumerable<T> All() {     return dbset.ToList(); } }   DatabaseFactory class public class DatabaseFactory : Disposable, IDatabaseFactory {     private MyFinanceContext database;     public MyFinanceContext Get()     {         return database ?? (database = new MyFinanceContext());     }     protected override void DisposeCore()     {         if (database != null)             database.Dispose();     } } Unit of Work If you are new to Unit of Work pattern, checkout Fowler’s article on Unit of Work . According to Martin Fowler, the Unit of Work pattern "maintains a list of objects affected by a business transaction and coordinates the writing out of changes and the resolution of concurrency problems." Let’s create a class for handling Unit of Work   public interface IUnitOfWork {     void Commit(); }   UniOfWork class public class UnitOfWork : IUnitOfWork {     private readonly IDatabaseFactory databaseFactory;     private MyFinanceContext dataContext;       public UnitOfWork(IDatabaseFactory databaseFactory)     {         this.databaseFactory = databaseFactory;     }       protected MyFinanceContext DataContext     {         get { return dataContext ?? (dataContext = databaseFactory.Get()); }     }       public void Commit()     {         DataContext.Commit();     } }   The Commit method of the UnitOfWork will call the commit method of MyFinanceContext class and it will execute the SaveChanges method of DbContext class.   Repository class for Category In this post, we will be focusing on the persistence against Category entity and will working on other entities in later post. Let’s create a repository for handling CRUD operations for Category using derive from a generic Repository RepositoryBase<T>.   public class CategoryRepository: RepositoryBase<Category>, ICategoryRepository     {     public CategoryRepository(IDatabaseFactory databaseFactory)         : base(databaseFactory)         {         }                } public interface ICategoryRepository : IRepository<Category> { } If we need additional methods than generic repository for the Category, we can define in the CategoryRepository. Dependency Injection using Unity 2.0 If you are new to Inversion of Control/ Dependency Injection or Unity, please have a look on my articles at http://weblogs.asp.net/shijuvarghese/archive/tags/IoC/default.aspx. I want to create a custom lifetime manager for Unity to store container in the current HttpContext.   public class HttpContextLifetimeManager<T> : LifetimeManager, IDisposable {     public override object GetValue()     {         return HttpContext.Current.Items[typeof(T).AssemblyQualifiedName];     }     public override void RemoveValue()     {         HttpContext.Current.Items.Remove(typeof(T).AssemblyQualifiedName);     }     public override void SetValue(object newValue)     {         HttpContext.Current.Items[typeof(T).AssemblyQualifiedName] = newValue;     }     public void Dispose()     {         RemoveValue();     } }   Let’s create controller factory for Unity in the ASP.NET MVC 3 application. public class UnityControllerFactory : DefaultControllerFactory { IUnityContainer container; public UnityControllerFactory(IUnityContainer container) {     this.container = container; } protected override IController GetControllerInstance(RequestContext reqContext, Type controllerType) {     IController controller;     if (controllerType == null)         throw new HttpException(                 404, String.Format(                     "The controller for path '{0}' could not be found" +     "or it does not implement IController.",                 reqContext.HttpContext.Request.Path));       if (!typeof(IController).IsAssignableFrom(controllerType))         throw new ArgumentException(                 string.Format(                     "Type requested is not a controller: {0}",                     controllerType.Name),                     "controllerType");     try     {         controller= container.Resolve(controllerType) as IController;     }     catch (Exception ex)     {         throw new InvalidOperationException(String.Format(                                 "Error resolving controller {0}",                                 controllerType.Name), ex);     }     return controller; }   }   Configure contract and concrete types in Unity Let’s configure our contract and concrete types in Unity for resolving our dependencies.   private void ConfigureUnity() {     //Create UnityContainer               IUnityContainer container = new UnityContainer()                 .RegisterType<IDatabaseFactory, DatabaseFactory>(new HttpContextLifetimeManager<IDatabaseFactory>())     .RegisterType<IUnitOfWork, UnitOfWork>(new HttpContextLifetimeManager<IUnitOfWork>())     .RegisterType<ICategoryRepository, CategoryRepository>(new HttpContextLifetimeManager<ICategoryRepository>());                 //Set container for Controller Factory                ControllerBuilder.Current.SetControllerFactory(             new UnityControllerFactory(container)); }   In the above ConfigureUnity method, we are registering our types onto Unity container with custom lifetime manager HttpContextLifetimeManager. Let’s call ConfigureUnity method in the Global.asax.cs for set controller factory for Unity and configuring the types with Unity.   protected void Application_Start() {     AreaRegistration.RegisterAllAreas();     RegisterGlobalFilters(GlobalFilters.Filters);     RegisterRoutes(RouteTable.Routes);     ConfigureUnity(); }   Developing web application using ASP.NET MVC 3 We have created our domain model for our web application and also have created repositories and configured dependencies with Unity container. Now we have to create controller classes and views for doing CRUD operations against the Category entity. Let’s create controller class for Category Category Controller   public class CategoryController : Controller {     private readonly ICategoryRepository categoryRepository;     private readonly IUnitOfWork unitOfWork;           public CategoryController(ICategoryRepository categoryRepository, IUnitOfWork unitOfWork)     {         this.categoryRepository = categoryRepository;         this.unitOfWork = unitOfWork;     }       public ActionResult Index()     {         var categories = categoryRepository.All();         return View(categories);     }     [HttpGet]     public ActionResult Edit(int id)     {         var category = categoryRepository.GetById(id);         return View(category);     }       [HttpPost]     public ActionResult Edit(int id, FormCollection collection)     {         var category = categoryRepository.GetById(id);         if (TryUpdateModel(category))         {             unitOfWork.Commit();             return RedirectToAction("Index");         }         else return View(category);                 }       [HttpGet]     public ActionResult Create()     {         var category = new Category();         return View(category);     }           [HttpPost]     public ActionResult Create(Category category)     {         if (!ModelState.IsValid)         {             return View("Create", category);         }                     categoryRepository.Add(category);         unitOfWork.Commit();         return RedirectToAction("Index");     }       [HttpPost]     public ActionResult Delete(int  id)     {         var category = categoryRepository.GetById(id);         categoryRepository.Delete(category);         unitOfWork.Commit();         var categories = categoryRepository.All();         return PartialView("CategoryList", categories);       }        }   Creating Views in Razor Now we are going to create views in Razor for our ASP.NET MVC 3 application.  Let’s create a partial view CategoryList.cshtml for listing category information and providing link for Edit and Delete operations. CategoryList.cshtml @using MyFinance.Helpers; @using MyFinance.Domain; @model IEnumerable<Category>      <table>         <tr>         <th>Actions</th>         <th>Name</th>          <th>Description</th>         </tr>     @foreach (var item in Model) {             <tr>             <td>                 @Html.ActionLink("Edit", "Edit",new { id = item.CategoryId })                 @Ajax.ActionLink("Delete", "Delete", new { id = item.CategoryId }, new AjaxOptions { Confirm = "Delete Expense?", HttpMethod = "Post", UpdateTargetId = "divCategoryList" })                           </td>             <td>                 @item.Name             </td>             <td>                 @item.Description             </td>         </tr>          }       </table>     <p>         @Html.ActionLink("Create New", "Create")     </p> The delete link is providing Ajax functionality using the Ajax.ActionLink. This will call an Ajax request for Delete action method in the CategoryCotroller class. In the Delete action method, it will return Partial View CategoryList after deleting the record. We are using CategoryList view for the Ajax functionality and also for Index view using for displaying list of category information. Let’s create Index view using partial view CategoryList  Index.chtml @model IEnumerable<MyFinance.Domain.Category> @{     ViewBag.Title = "Index"; }    <h2>Category List</h2>    <script src="@Url.Content("~/Scripts/jquery.unobtrusive-ajax.min.js")" type="text/javascript"></script>    <div id="divCategoryList">               @Html.Partial("CategoryList", Model) </div>   We can call the partial views using Html.Partial helper method. Now we are going to create View pages for insert and update functionality for the Category. Both view pages are sharing common user interface for entering the category information. So I want to create an EditorTemplate for the Category information. We have to create the EditorTemplate with the same name of entity object so that we can refer it on view pages using @Html.EditorFor(model => model) . So let’s create template with name Category. Let’s create view page for insert Category information   @model MyFinance.Domain.Category   @{     ViewBag.Title = "Save"; }   <h2>Create</h2>   <script src="@Url.Content("~/Scripts/jquery.validate.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.validate.unobtrusive.min.js")" type="text/javascript"></script>   @using (Html.BeginForm()) {     @Html.ValidationSummary(true)     <fieldset>         <legend>Category</legend>                @Html.EditorFor(model => model)               <p>             <input type="submit" value="Create" />         </p>     </fieldset> }   <div>     @Html.ActionLink("Back to List", "Index") </div> ViewStart file In Razor views, we can add a file named _viewstart.cshtml in the views directory  and this will be shared among the all views with in the Views directory. The below code in the _viewstart.cshtml, sets the Layout page for every Views in the Views folder.      @{     Layout = "~/Views/Shared/_Layout.cshtml"; }   Source Code You can download the source code from http://efmvc.codeplex.com/ . The source will be refactored on over time.   Summary In this post, we have created a simple web application using ASP.NET MVC 3 and EF Code First. We have discussed on technologies and practices such as ASP.NET MVC 3, Razor, EF Code First, Unity 2, generic Repository and Unit of Work. In my later posts, I will modify the application and will be discussed on more things. Stay tuned to my blog  for more posts on step by step application building.

    Read the article

  • Looking into Enum Support in Entity Framework 5.0 Code First

    - by nikolaosk
    In this post I will show you with a hands-on demo the enum support that is available in Visual Studio 2012, .Net Framework 4.5 and Entity Framework 5.0. You can have a look at this post to learn about the support of multilple diagrams per model that exists in Entity Framework 5.0. We will demonstrate this with a step by step example. I will use Visual Studio 2012 Ultimate. You can also use Visual Studio 2012 Express Edition. Before I move on to the actual demo I must say that in EF 5.0 an enumeration can have the following types. Byte Int16 Int32 Int64 Sbyte Obviously I cannot go into much detail on what EF is and what it does. I will give again a short introduction.The .Net framework provides support for Object Relational Mapping through EF. So EF is a an ORM tool and it is now the main data access technology that microsoft works on. I use it quite extensively in my projects. Through EF we have many things out of the box provided for us. We have the automatic generation of SQL code.It maps relational data to strongly types objects.All the changes made to the objects in the memory are persisted in a transactional way back to the data store. You can find in this post an example on how to use the Entity Framework to retrieve data from an SQL Server Database using the "Database/Schema First" approach. In this approach we make all the changes at the database level and then we update the model with those changes. In this post you can see an example on how to use the "Model First" approach when working with ASP.Net and the Entity Framework. This model was firstly introduced in EF version 4.0 and we could start with a blank model and then create a database from that model.When we made changes to the model , we could recreate the database from the new model. You can search in my blog, because I have posted many posts regarding ASP.Net and EF. I assume you have a working knowledge of C# and know a few things about EF. The Code First approach is the more code-centric than the other two. Basically we write POCO classes and then we persist to a database using something called DBContext. Code First relies on DbContext. We create 2,3 classes (e.g Person,Product) with properties and then these classes interact with the DbContext class. We can create a new database based upon our POCOS classes and have tables generated from those classes.We do not have an .edmx file in this approach.By using this approach we can write much easier unit tests. DbContext is a new context class and is smaller,lightweight wrapper for the main context class which is ObjectContext (Schema First and Model First). Let's begin building our sample application. 1) Launch Visual Studio. Create an ASP.Net Empty Web application. Choose an appropriate name for your application. 2) Add a web form, default.aspx page to the application. 3) Now we need to make sure the Entity Framework is included in our project. Go to Solution Explorer, right-click on the project name.Then select Manage NuGet Packages...In the Manage NuGet Packages dialog, select the Online tab and choose the EntityFramework package.Finally click Install. Have a look at the picture below   4) Create a new folder. Name it CodeFirst . 5) Add a new item in your application, a class file. Name it Footballer.cs. This is going to be a simple POCO class.Place it in the CodeFirst folder. The code follows public class Footballer { public int FootballerID { get; set; } public string FirstName { get; set; } public string LastName { get; set; } public double Weight { get; set; } public double Height { get; set; } public DateTime JoinedTheClub { get; set; } public int Age { get; set; } public List<Training> Trainings { get; set; } public FootballPositions Positions { get; set; } }    Now I am going to define my enum values in the same class file, Footballer.cs    public enum FootballPositions    {        Defender,        Midfielder,        Striker    } 6) Now we need to create the Training class. Add a new class to your application and place it in the CodeFirst folder.The code for the class follows.     public class Training     {         public int TrainingID { get; set; }         public int TrainingDuration { get; set; }         public string TrainingLocation { get; set; }     }   7) Then we need to create a context class that inherits from DbContext.Add a new class to the CodeFirst folder.Name it FootballerDBContext.Now that we have the entity classes created, we must let the model know.I will have to use the DbSet<T> property.The code for this class follows       public class FootballerDBContext:DbContext     {         public DbSet<Footballer> Footballers { get; set; }         public DbSet<Training> Trainings { get; set; }     } Do not forget to add  (using System.Data.Entity;) in the beginning of the class file 8) We must take care of the connection string. It is very easy to create one in the web.config.It does not matter that we do not have a database yet.When we run the DbContext and query against it,it will use a connection string in the web.config and will create the database based on the classes. In my case the connection string inside the web.config, looks like this      <connectionStrings>    <add name="CodeFirstDBContext"  connectionString="server=.\SqlExpress;integrated security=true;"  providerName="System.Data.SqlClient"/>                       </connectionStrings>   9) Now it is time to create Linq to Entities queries to retrieve data from the database . Add a new class to your application in the CodeFirst folder.Name the file DALfootballer.cs We will create a simple public method to retrieve the footballers. The code for the class follows public class DALfootballer     {         FootballerDBContext ctx = new FootballerDBContext();         public List<Footballer> GetFootballers()         {             var query = from player in ctx.Footballers where player.FirstName=="Jamie" select player;             return query.ToList();         }     }   10) Place a GridView control on the Default.aspx page and leave the default name.Add an ObjectDataSource control on the Default.aspx page and leave the default name. Set the DatasourceID property of the GridView control to the ID of the ObjectDataSource control.(DataSourceID="ObjectDataSource1" ). Let's configure the ObjectDataSource control. Click on the smart tag item of the ObjectDataSource control and select Configure Data Source. In the Wizzard that pops up select the DALFootballer class and then in the next step choose the GetFootballers() method.Click Finish to complete the steps of the wizzard. Build your application.  11)  Let's create an Insert method in order to insert data into the tables. I will create an Insert() method and for simplicity reasons I will place it in the Default.aspx.cs file. private void Insert()        {            var footballers = new List<Footballer>            {                new Footballer {                                 FirstName = "Steven",LastName="Gerrard", Height=1.85, Weight=85,Age=32, JoinedTheClub=DateTime.Parse("12/12/1999"),Positions=FootballPositions.Midfielder,                Trainings = new List<Training>                             {                                     new Training {TrainingDuration = 3, TrainingLocation="MelWood"},                    new Training {TrainingDuration = 2, TrainingLocation="Anfield"},                    new Training {TrainingDuration = 2, TrainingLocation="MelWood"},                }                            },                            new Footballer {                                  FirstName = "Jamie",LastName="Garragher", Height=1.89, Weight=89,Age=34, JoinedTheClub=DateTime.Parse("12/02/2000"),Positions=FootballPositions.Defender,                Trainings = new List<Training>                                             {                                 new Training {TrainingDuration = 3, TrainingLocation="MelWood"},                new Training {TrainingDuration = 5, TrainingLocation="Anfield"},                new Training {TrainingDuration = 6, TrainingLocation="Anfield"},                }                           }                    };            footballers.ForEach(foot => ctx.Footballers.Add(foot));            ctx.SaveChanges();        }   12) In the Page_Load() event handling routine I called the Insert() method.        protected void Page_Load(object sender, EventArgs e)        {                   Insert();                }  13) Run your application and you will see that the following result,hopefully. You can see clearly that the data is returned along with the enum value.  14) You must have also a look at the database.Launch SSMS and see the database and its objects (data) created from EF Code First.Have a look at the picture below. Hopefully now you have seen the support that exists in EF 5.0 for enums.Hope it helps !!!

    Read the article

  • Working with QuickBooks using LINQPad

    - by dataintegration
    The RSSBus ADO.NET Providers can be used from many applications and development environments. In this article, we show how to use LINQPad to connect to QuickBooks using the RSSBus ADO.NET Provider for QuickBooks. Although this example uses the QuickBooks Data Provider, the same process applies to any of our ADO.NET Providers. Create the Data Model Step 1: Download and install both the Data Provider from RSSBus and LINQPad (available at www.linqpad.net Step 2: Create a new project in Visual Studio and create a data model for it using the ADO.NET Entity Data Model wizard. Step 3: Create a new connection by clicking "New Connection", specify the connection string options, and click Next. Step 4: Select the desired tables and views and click Finish to create the data model. Step 5: Right click on the entity diagram and select 'Add Code Generation Item'. Choose the 'ADO.NET DbContext Generator'. Step 6: Now build the project. The generated files can be used to create a QuickBooks connection in LINQPad. Create the connection to QuickBooks in LINQPad Step 7:Open LINQPad and click 'Add New Connection'. Step 8: Choose 'Entity Framework DbContext POCO'. Step 9: Choose the data model assembly ('.dll') created by Visual Studio as the 'Path to Custom Assembly'. Choose the name of the custom DbContext, the path to the config file, and assign a name to the connection that will allow you to recognize its purpose. Step 10: Congratulations! Now you have a connection to QuickBooks, and you can query data through LINQPad.

    Read the article

  • Cannot implicity convert type void to System.Threading.Tasks.Task<bool>

    - by sagesky36
    I have a WCF Service that contains the following method. All the methods in the service are asynchrounous and compile just fine. public async Task<Boolean> ValidateRegistrationAsync(String strUserName) { try { using (YeagerTechEntities DbContext = new YeagerTechEntities()) { DbContext.Configuration.ProxyCreationEnabled = false; DbContext.Database.Connection.Open(); var reg = await DbContext.aspnet_Users.FirstOrDefaultAsync(f => f.UserName == strUserName); if (reg != null) return true; else return false; } } catch (Exception) { throw; } } My client application was set to access the WCF service with the check box for the "Allow generation of asynchronous operations" and it generated the proxy just fine. I am receiving the above subject error when trying to call this WCF service method from my client with the following code. Mind you, I know what the error message means, but this is my first time trying to call an asynchronous task in a WCF service from a client. Task<Boolean> blnMbrShip = db.ValidateRegistrationAsync(FormsAuthentication.Decrypt(cn.Value).Name); What do I need to do to properly call the method so the design time compile error disappears? Thanks so much in advance...

    Read the article

  • Linq2Sql: query - subquery optimisation

    - by Budda
    I have the following query: IList<InfrStadium> stadiums = (from sector in DbContext.sectors where sector.Type=typeValue select new InfrStadium(sector.TeamId) ).ToList(); and InfrStadium class constructor: private InfrStadium(int teamId) { IList<Sector> teamSectors = (from sector in DbContext.sectors where sector.TeamId==teamId select sector) .ToList<>(); ... work with data } Current implementation perform 1+n queries, where n - number of records fetched the 1st time. I want to optimize that. And another one I would love to do using 'group' operator in way like this: IList<InfrStadium> stadiums = (from sector in DbContext.sectors group sector by sector.TeamId into team_sectors select new InfrStadium(team_sectors.Key, team_sectors) ).ToList(); with appropriate constructor: private InfrStadium(int iTeamId, IEnumerable<InfrStadiumSector> eSectors) { IList<Sector> teamSectors = eSectors.ToList(); ... work with data } But attempt to launch query causes the following error: Expression of type 'System.Int32' cannot be used for constructor parameter of type 'System.Collections.Generic.IEnumerable`1[InfrStadiumSector]' Question 1: Could you please explain, what is wrong here, I don't understand why 'team_sectors' is applied as 'System.Int32'? I've tried to change query a little (replace IEnumerable with IQueryeable): IList<InfrStadium> stadiums = (from sector in DbContext.sectors group sector by sector.TeamId into team_sectors select new InfrStadium(team_sectors.Key, team_sectors.AsQueryable()) ).ToList(); with appropriate constructor: private InfrStadium(int iTeamId, IQueryeable<InfrStadiumSector> eSectors) { IList<Sector> teamSectors = eSectors.ToList(); ... work with data } In this case I've received another but similar error: Expression of type 'System.Int32' cannot be used for parameter of type 'System.Collections.Generic.IEnumerable1[InfrStadiumSector]' of method 'System.Linq.IQueryable1[InfrStadiumSector] AsQueryableInfrStadiumSector' Question 2: Actually, the same question: can't understand at all what is going on here... P.S. I have another to optimize query idea (describe here: Linq2Sql: query optimisation) but I would love to find a solution with 1 request to DB).

    Read the article

  • Entity Framework Code-First, OData & Windows Phone Client

    - by Jon Galloway
    Entity Framework Code-First is the coolest thing since sliced bread, Windows  Phone is the hottest thing since Tickle-Me-Elmo and OData is just too great to ignore. As part of the Full Stack project, we wanted to put them together, which turns out to be pretty easy… once you know how.   EF Code-First CTP5 is available now and there should be very few breaking changes in the release edition, which is due early in 2011.  Note: EF Code-First evolved rapidly and many of the existing documents and blog posts which were written with earlier versions, may now be obsolete or at least misleading.   Code-First? With traditional Entity Framework you start with a database and from that you generate “entities” – classes that bridge between the relational database and your object oriented program. With Code-First (Magic-Unicorn) (see Hanselman’s write up and this later write up by Scott Guthrie) the Entity Framework looks at classes you created and says “if I had created these classes, the database would have to have looked like this…” and creates the database for you! By deriving your entity collections from DbSet and exposing them via a class that derives from DbContext, you "turn on" database backing for your POCO with a minimum of code and no hidden designer or configuration files. POCO == Plain Old CLR Objects Your entity objects can be used throughout your applications - in web applications, console applications, Silverlight and Windows Phone applications, etc. In our case, we'll want to read and update data from a Windows Phone client application, so we'll expose the entities through a DataService and hook the Windows Phone client application to that data via proxies.  Piece of Pie.  Easy as cake. The Demo Architecture To see this at work, we’ll create an ASP.NET/MVC application which will act as the host for our Data Service.  We’ll create an incredibly simple data layer using EF Code-First on top of SQLCE4 and we’ll expose the data in a WCF Data Service using the oData protocol.  Our Windows Phone 7 client will instantiate  the data context via a URI and load the data asynchronously. Setting up the Server project with MVC 3, EF Code First, and SQL CE 4 Create a new application of type ASP.NET MVC 3 and name it DeadSimpleServer.  We need to add the latest SQLCE4 and Entity Framework Code First CTP's to our project. Fortunately, NuGet makes that really easy. Open the Package Manager Console (View / Other Windows / Package Manager Console) and type in "Install-Package EFCodeFirst.SqlServerCompact" at the PM> command prompt. Since NuGet handles dependencies for you, you'll see that it installs everything you need to use Entity Framework Code First in your project. PM> install-package EFCodeFirst.SqlServerCompact 'SQLCE (= 4.0.8435.1)' not installed. Attempting to retrieve dependency from source... Done 'EFCodeFirst (= 0.8)' not installed. Attempting to retrieve dependency from source... Done 'WebActivator (= 1.0.0.0)' not installed. Attempting to retrieve dependency from source... Done You are downloading SQLCE from Microsoft, the license agreement to which is available at http://173.203.67.148/licenses/SQLCE/EULA_ENU.rtf. Check the package for additional dependencies, which may come with their own license agreement(s). Your use of the package and dependencies constitutes your acceptance of their license agreements. If you do not accept the license agreement(s), then delete the relevant components from your device. Successfully installed 'SQLCE 4.0.8435.1' You are downloading EFCodeFirst from Microsoft, the license agreement to which is available at http://go.microsoft.com/fwlink/?LinkID=206497. Check the package for additional dependencies, which may come with their own license agreement(s). Your use of the package and dependencies constitutes your acceptance of their license agreements. If you do not accept the license agreement(s), then delete the relevant components from your device. Successfully installed 'EFCodeFirst 0.8' Successfully installed 'WebActivator 1.0.0.0' You are downloading EFCodeFirst.SqlServerCompact from Microsoft, the license agreement to which is available at http://173.203.67.148/licenses/SQLCE/EULA_ENU.rtf. Check the package for additional dependencies, which may come with their own license agreement(s). Your use of the package and dependencies constitutes your acceptance of their license agreements. If you do not accept the license agreement(s), then delete the relevant components from your device. Successfully installed 'EFCodeFirst.SqlServerCompact 0.8' Successfully added 'SQLCE 4.0.8435.1' to EfCodeFirst-CTP5 Successfully added 'EFCodeFirst 0.8' to EfCodeFirst-CTP5 Successfully added 'WebActivator 1.0.0.0' to EfCodeFirst-CTP5 Successfully added 'EFCodeFirst.SqlServerCompact 0.8' to EfCodeFirst-CTP5 Note: We're using SQLCE 4 with Entity Framework here because they work really well together from a development scenario, but you can of course use Entity Framework Code First with other databases supported by Entity framework. Creating The Model using EF Code First Now we can create our model class. Right-click the Models folder and select Add/Class. Name the Class Person.cs and add the following code: using System.Data.Entity; namespace DeadSimpleServer.Models { public class Person { public int ID { get; set; } public string Name { get; set; } } public class PersonContext : DbContext { public DbSet<Person> People { get; set; } } } Notice that the entity class Person has no special interfaces or base class. There's nothing special needed to make it work - it's just a POCO. The context we'll use to access the entities in the application is called PersonContext, but you could name it anything you wanted. The important thing is that it inherits DbContext and contains one or more DbSet which holds our entity collections. Adding Seed Data We need some testing data to expose from our service. The simplest way to get that into our database is to modify the CreateCeDatabaseIfNotExists class in AppStart_SQLCEEntityFramework.cs by adding some seed data to the Seed method: protected virtual void Seed( TContext context ) { var personContext = context as PersonContext; personContext.People.Add( new Person { ID = 1, Name = "George Washington" } ); personContext.People.Add( new Person { ID = 2, Name = "John Adams" } ); personContext.People.Add( new Person { ID = 3, Name = "Thomas Jefferson" } ); personContext.SaveChanges(); } The CreateCeDatabaseIfNotExists class name is pretty self-explanatory - when our DbContext is accessed and the database isn't found, a new one will be created and populated with the data in the Seed method. There's one more step to make that work - we need to uncomment a line in the Start method at the top of of the AppStart_SQLCEEntityFramework class and set the context name, as shown here, public static class AppStart_SQLCEEntityFramework { public static void Start() { DbDatabase.DefaultConnectionFactory = new SqlCeConnectionFactory("System.Data.SqlServerCe.4.0"); // Sets the default database initialization code for working with Sql Server Compact databases // Uncomment this line and replace CONTEXT_NAME with the name of your DbContext if you are // using your DbContext to create and manage your database DbDatabase.SetInitializer(new CreateCeDatabaseIfNotExists<PersonContext>()); } } Now our database and entity framework are set up, so we can expose data via WCF Data Services. Note: This is a bare-bones implementation with no administration screens. If you'd like to see how those are added, check out The Full Stack screencast series. Creating the oData Service using WCF Data Services Add a new WCF Data Service to the project (right-click the project / Add New Item / Web / WCF Data Service). We’ll be exposing all the data as read/write.  Remember to reconfigure to control and minimize access as appropriate for your own application. Open the code behind for your service. In our case, the service was called PersonTestDataService.svc so the code behind class file is PersonTestDataService.svc.cs. using System.Data.Services; using System.Data.Services.Common; using System.ServiceModel; using DeadSimpleServer.Models; namespace DeadSimpleServer { [ServiceBehavior( IncludeExceptionDetailInFaults = true )] public class PersonTestDataService : DataService<PersonContext> { // This method is called only once to initialize service-wide policies. public static void InitializeService( DataServiceConfiguration config ) { config.SetEntitySetAccessRule( "*", EntitySetRights.All ); config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; config.UseVerboseErrors = true; } } } We're enabling a few additional settings to make it easier to debug if you run into trouble. The ServiceBehavior attribute is set to include exception details in faults, and we're using verbose errors. You can remove both of these when your service is working, as your public production service shouldn't be revealing exception information. You can view the output of the service by running the application and browsing to http://localhost:[portnumber]/PersonTestDataService.svc/: <service xml:base="http://localhost:49786/PersonTestDataService.svc/" xmlns:atom="http://www.w3.org/2005/Atom" xmlns:app="http://www.w3.org/2007/app" xmlns="http://www.w3.org/2007/app"> <workspace> <atom:title>Default</atom:title> <collection href="People"> <atom:title>People</atom:title> </collection> </workspace> </service> This indicates that the service exposes one collection, which is accessible by browsing to http://localhost:[portnumber]/PersonTestDataService.svc/People <?xml version="1.0" encoding="iso-8859-1" standalone="yes"?> <feed xml:base=http://localhost:49786/PersonTestDataService.svc/ xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices" xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata" xmlns="http://www.w3.org/2005/Atom"> <title type="text">People</title> <id>http://localhost:49786/PersonTestDataService.svc/People</id> <updated>2010-12-29T01:01:50Z</updated> <link rel="self" title="People" href="People" /> <entry> <id>http://localhost:49786/PersonTestDataService.svc/People(1)</id> <title type="text"></title> <updated>2010-12-29T01:01:50Z</updated> <author> <name /> </author> <link rel="edit" title="Person" href="People(1)" /> <category term="DeadSimpleServer.Models.Person" scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" /> <content type="application/xml"> <m:properties> <d:ID m:type="Edm.Int32">1</d:ID> <d:Name>George Washington</d:Name> </m:properties> </content> </entry> <entry> ... </entry> </feed> Let's recap what we've done so far. But enough with services and XML - let's get this into our Windows Phone client application. Creating the DataServiceContext for the Client Use the latest DataSvcUtil.exe from http://odata.codeplex.com. As of today, that's in this download: http://odata.codeplex.com/releases/view/54698 You need to run it with a few options: /uri - This will point to the service URI. In this case, it's http://localhost:59342/PersonTestDataService.svc  Pick up the port number from your running server (e.g., the server formerly known as Cassini). /out - This is the DataServiceContext class that will be generated. You can name it whatever you'd like. /Version - should be set to 2.0 /DataServiceCollection - Include this flag to generate collections derived from the DataServiceCollection base, which brings in all the ObservableCollection goodness that handles your INotifyPropertyChanged events for you. Here's the console session from when we ran it: <ListBox x:Name="MainListBox" Margin="0,0,-12,0" ItemsSource="{Binding}" SelectionChanged="MainListBox_SelectionChanged"> Next, to keep things simple, change the Binding on the two TextBlocks within the DataTemplate to Name and ID, <ListBox x:Name="MainListBox" Margin="0,0,-12,0" ItemsSource="{Binding}" SelectionChanged="MainListBox_SelectionChanged"> <ListBox.ItemTemplate> <DataTemplate> <StackPanel Margin="0,0,0,17" Width="432"> <TextBlock Text="{Binding Name}" TextWrapping="Wrap" Style="{StaticResource PhoneTextExtraLargeStyle}" /> <TextBlock Text="{Binding ID}" TextWrapping="Wrap" Margin="12,-6,12,0" Style="{StaticResource PhoneTextSubtleStyle}" /> </StackPanel> </DataTemplate> </ListBox.ItemTemplate> </ListBox> Getting The Context In the code-behind you’ll first declare a member variable to hold the context from the Entity Framework. This is named using convention over configuration. The db type is Person and the context is of type PersonContext, You initialize it by providing the URI, in this case using the URL obtained from the Cassini web server, PersonContext context = new PersonContext( new Uri( "http://localhost:49786/PersonTestDataService.svc/" ) ); Create a second member variable of type DataServiceCollection<Person> but do not initialize it, DataServiceCollection<Person> people; In the constructor you’ll initialize the DataServiceCollection using the PersonContext, public MainPage() { InitializeComponent(); people = new DataServiceCollection<Person>( context ); Finally, you’ll load the people collection using the LoadAsync method, passing in the fully specified URI for the People collection in the web service, people.LoadAsync( new Uri( "http://localhost:49786/PersonTestDataService.svc/People" ) ); Note that this method runs asynchronously and when it is finished the people  collection is already populated. Thus, since we didn’t need or want to override any of the behavior we don’t implement the LoadCompleted. You can use the LoadCompleted event if you need to do any other UI updates, but you don't need to. The final code is as shown below: using System; using System.Data.Services.Client; using System.Windows; using System.Windows.Controls; using DeadSimpleServer.Models; using Microsoft.Phone.Controls; namespace WindowsPhoneODataTest { public partial class MainPage : PhoneApplicationPage { PersonContext context = new PersonContext( new Uri( "http://localhost:49786/PersonTestDataService.svc/" ) ); DataServiceCollection<Person> people; // Constructor public MainPage() { InitializeComponent(); // Set the data context of the listbox control to the sample data // DataContext = App.ViewModel; people = new DataServiceCollection<Person>( context ); people.LoadAsync( new Uri( "http://localhost:49786/PersonTestDataService.svc/People" ) ); DataContext = people; this.Loaded += new RoutedEventHandler( MainPage_Loaded ); } // Handle selection changed on ListBox private void MainListBox_SelectionChanged( object sender, SelectionChangedEventArgs e ) { // If selected index is -1 (no selection) do nothing if ( MainListBox.SelectedIndex == -1 ) return; // Navigate to the new page NavigationService.Navigate( new Uri( "/DetailsPage.xaml?selectedItem=" + MainListBox.SelectedIndex, UriKind.Relative ) ); // Reset selected index to -1 (no selection) MainListBox.SelectedIndex = -1; } // Load data for the ViewModel Items private void MainPage_Loaded( object sender, RoutedEventArgs e ) { if ( !App.ViewModel.IsDataLoaded ) { App.ViewModel.LoadData(); } } } } With people populated we can set it as the DataContext and run the application; you’ll find that the Name and ID are displayed in the list on the Mainpage. Here's how the pieces in the client fit together: Complete source code available here

    Read the article

  • Get a new instance with StructureMap

    - by Aligned
    It took me too long to figure this out, so hopefully it will help you. StructureMap has way that will create a new instance of the object every time, instead of storing this in the container. I’m going to use this for the DBContext and for WCF Service references. Since the ObjectFactory is a static class, MVC will have these stored in memory without this. Credit goes to Joshua Flanagan for answering my question.[TestMethod] public void GetConcreteInstanceOf_ShouldReturn_DifferentInstance() { ObjectFactory.Initialize(registry => { // set it up so that it's new every time // use this for DBContext and service references registry.For<ISystemDataService>().Use(() => new SystemDataService()); }); ISystemDataService result = Resolver.GetConcreteInstanceOf<ISystemDataService>(); ISystemDataService result2 = Resolver.GetConcreteInstanceOf<ISystemDataService>(); Assert.AreNotSame(result, result2); }

    Read the article

  • The type '' was not mapped

    - by Mike
    I've been trying to fix this error for awhile now. I get this error any time my application tries to create an instance of my data context. Below is the code: using System; using System.Collections.Generic; using System.Linq; using System.Web; using RandomRentals.Models; using System.Data.Entity; namespace RandomRentals.Models { public class RentalContext : DbContext { public DbSet<Rental> Rentals { get; set; } public DbSet<Category> Categories { get; set; } public DbSet<Item> Items { get; set; } public DbSet<Billing> Billings { get; set; } public DbSet<User> Users { get; set; } public DbSet<Video> Videos { get; set; } public DbSet<Picture> Pictures { get; set; } public DbSet<ServiceType> ServiceTypes { get; set; } public DbSet<Rating> Ratings { get; set; } public DbSet<Business> Businesses { get; set; } public DbSet<BusinessHour> BusinessHours { get; set; } } } Here is the stack Trace: [InvalidOperationException: The type 'RandomRentals.Rental' was not mapped. Check that the type has not been explicitly excluded by using the Ignore method or NotMappedAttribute data annotation. Verify that the type was defined as a class, is not primitive, nested or generic, and does not inherit from EntityObject.] System.Data.Entity.Internal.DbSetDiscoveryService.GetSets() +706 System.Data.Entity.Internal.DbSetDiscoveryService.InitializeSets() +31 System.Data.Entity.DbContext.DiscoverAndInitializeSets() +56 System.Data.Entity.DbContext.InitializeLazyInternalContext(IInternalConnection internalConnection, DbCompiledModel model) +79 System.Data.Entity.DbContext..ctor() +99 RandomRentals.Models.RentalContext..ctor() +44 RandomRentals.Models.UserModel..ctor() in C:\Users\nikka\Desktop\RandomRentals\RandomRentals\Models\UserModel.cs:11 [TargetInvocationException: Exception has been thrown by the target of an invocation.] System.RuntimeTypeHandle.CreateInstance(RuntimeType type, Boolean publicOnly, Boolean noCheck, Boolean& canBeCached, RuntimeMethodHandleInternal& ctor, Boolean& bNeedSecurityCheck) +0 System.RuntimeType.CreateInstanceSlow(Boolean publicOnly, Boolean skipCheckThis, Boolean fillCache) +98 System.RuntimeType.CreateInstanceDefaultCtor(Boolean publicOnly, Boolean skipVisibilityChecks, Boolean skipCheckThis, Boolean fillCache) +241 System.Activator.CreateInstance(Type type, Boolean nonPublic) +69 System.Web.Mvc.DefaultModelBinder.CreateModel(ControllerContext controllerContext, ModelBindingContext bindingContext, Type modelType) +199 System.Web.Mvc.DefaultModelBinder.BindComplexModel(ControllerContext controllerContext, ModelBindingContext bindingContext) +572 System.Web.Mvc.DefaultModelBinder.BindModel(ControllerContext controllerContext, ModelBindingContext bindingContext) +449 System.Web.Mvc.ControllerActionInvoker.GetParameterValue(ControllerContext controllerContext, ParameterDescriptor parameterDescriptor) +317 System.Web.Mvc.ControllerActionInvoker.GetParameterValues(ControllerContext controllerContext, ActionDescriptor actionDescriptor) +117 System.Web.Mvc.ControllerActionInvoker.InvokeAction(ControllerContext controllerContext, String actionName) +343 System.Web.Mvc.Controller.ExecuteCore() +116 System.Web.Mvc.ControllerBase.Execute(RequestContext requestContext) +97 System.Web.Mvc.ControllerBase.System.Web.Mvc.IController.Execute(RequestContext requestContext) +10 System.Web.Mvc.<>c__DisplayClassb.<BeginProcessRequest>b__5() +37 System.Web.Mvc.Async.<>c__DisplayClass1.<MakeVoidDelegate>b__0() +21 System.Web.Mvc.Async.<>c__DisplayClass8`1.<BeginSynchronous>b__7(IAsyncResult _) +12 System.Web.Mvc.Async.WrappedAsyncResult`1.End() +62 System.Web.Mvc.<>c__DisplayClasse.<EndProcessRequest>b__d() +50 System.Web.Mvc.SecurityUtil.<GetCallInAppTrustThunk>b__0(Action f) +7 System.Web.Mvc.SecurityUtil.ProcessInApplicationTrust(Action action) +22 System.Web.Mvc.MvcHandler.EndProcessRequest(IAsyncResult asyncResult) +60 System.Web.Mvc.MvcHandler.System.Web.IHttpAsyncHandler.EndProcessRequest(IAsyncResult result) +9 System.Web.CallHandlerExecutionStep.System.Web.HttpApplication.IExecutionStep.Execute() +8970061 System.Web.HttpApplication.ExecuteStep(IExecutionStep step, Boolean& completedSynchronously) +184 Here is the full error text: The type 'RandomRentals.Rental' was not mapped. Check that the type has not been explicitly excluded by using the Ignore method or NotMappedAttribute data annotation. Verify that the type was defined as a class, is not primitive, nested or generic, and does not inherit from EntityObject. Any help would be greatly appreciated

    Read the article

1 2 3 4 5  | Next Page >