Search Results

Search found 7 results on 1 pages for 'durandal'.

Page 1/1 | 1 

  • Using Durandal to Create Single Page Apps

    - by Stephen.Walther
    A few days ago, I gave a talk on building Single Page Apps on the Microsoft Stack. In that talk, I recommended that people use Knockout, Sammy, and RequireJS to build their presentation layer and use the ASP.NET Web API to expose data from their server. After I gave the talk, several people contacted me and suggested that I investigate a new open-source JavaScript library named Durandal. Durandal stitches together Knockout, Sammy, and RequireJS to make it easier to use these technologies together. In this blog entry, I want to provide a brief walkthrough of using Durandal to create a simple Single Page App. I am going to demonstrate how you can create a simple Movies App which contains (virtual) pages for viewing a list of movies, adding new movies, and viewing movie details. The goal of this blog entry is to give you a sense of what it is like to build apps with Durandal. Installing Durandal First things first. How do you get Durandal? The GitHub project for Durandal is located here: https://github.com/BlueSpire/Durandal The Wiki — located at the GitHub project — contains all of the current documentation for Durandal. Currently, the documentation is a little sparse, but it is enough to get you started. Instead of downloading the Durandal source from GitHub, a better option for getting started with Durandal is to install one of the Durandal NuGet packages. I built the Movies App described in this blog entry by first creating a new ASP.NET MVC 4 Web Application with the Basic Template. Next, I executed the following command from the Package Manager Console: Install-Package Durandal.StarterKit As you can see from the screenshot of the Package Manager Console above, the Durandal Starter Kit package has several dependencies including: · jQuery · Knockout · Sammy · Twitter Bootstrap The Durandal Starter Kit package includes a sample Durandal application. You can get to the Starter Kit app by navigating to the Durandal controller. Unfortunately, when I first tried to run the Starter Kit app, I got an error because the Starter Kit is hard-coded to use a particular version of jQuery which is already out of date. You can fix this issue by modifying the App_Start\DurandalBundleConfig.cs file so it is jQuery version agnostic like this: bundles.Add( new ScriptBundle("~/scripts/vendor") .Include("~/Scripts/jquery-{version}.js") .Include("~/Scripts/knockout-{version}.js") .Include("~/Scripts/sammy-{version}.js") // .Include("~/Scripts/jquery-1.9.0.min.js") // .Include("~/Scripts/knockout-2.2.1.js") // .Include("~/Scripts/sammy-0.7.4.min.js") .Include("~/Scripts/bootstrap.min.js") ); The recommendation is that you create a Durandal app in a folder off your project root named App. The App folder in the Starter Kit contains the following subfolders and files: · durandal – This folder contains the actual durandal JavaScript library. · viewmodels – This folder contains all of your application’s view models. · views – This folder contains all of your application’s views. · main.js — This file contains all of the JavaScript startup code for your app including the client-side routing configuration. · main-built.js – This file contains an optimized version of your application. You need to build this file by using the RequireJS optimizer (unfortunately, before you can run the optimizer, you must first install NodeJS). For the purpose of this blog entry, I wanted to start from scratch when building the Movies app, so I deleted all of these files and folders except for the durandal folder which contains the durandal library. Creating the ASP.NET MVC Controller and View A Durandal app is built using a single server-side ASP.NET MVC controller and ASP.NET MVC view. A Durandal app is a Single Page App. When you navigate between pages, you are not navigating to new pages on the server. Instead, you are loading new virtual pages into the one-and-only-one server-side view. For the Movies app, I created the following ASP.NET MVC Home controller: public class HomeController : Controller { public ActionResult Index() { return View(); } } There is nothing special about the Home controller – it is as basic as it gets. Next, I created the following server-side ASP.NET view. This is the one-and-only server-side view used by the Movies app: @{ Layout = null; } <!DOCTYPE html> <html> <head> <title>Index</title> </head> <body> <div id="applicationHost"> Loading app.... </div> @Scripts.Render("~/scripts/vendor") <script type="text/javascript" src="~/App/durandal/amd/require.js" data-main="/App/main"></script> </body> </html> Notice that I set the Layout property for the view to the value null. If you neglect to do this, then the default ASP.NET MVC layout will be applied to the view and you will get the <!DOCTYPE> and opening and closing <html> tags twice. Next, notice that the view contains a DIV element with the Id applicationHost. This marks the area where virtual pages are loaded. When you navigate from page to page in a Durandal app, HTML page fragments are retrieved from the server and stuck in the applicationHost DIV element. Inside the applicationHost element, you can place any content which you want to display when a Durandal app is starting up. For example, you can create a fancy splash screen. I opted for simply displaying the text “Loading app…”: Next, notice the view above includes a call to the Scripts.Render() helper. This helper renders out all of the JavaScript files required by the Durandal library such as jQuery and Knockout. Remember to fix the App_Start\DurandalBundleConfig.cs as described above or Durandal will attempt to load an old version of jQuery and throw a JavaScript exception and stop working. Your application JavaScript code is not included in the scripts rendered by the Scripts.Render helper. Your application code is loaded dynamically by RequireJS with the help of the following SCRIPT element located at the bottom of the view: <script type="text/javascript" src="~/App/durandal/amd/require.js" data-main="/App/main"></script> The data-main attribute on the SCRIPT element causes RequireJS to load your /app/main.js JavaScript file to kick-off your Durandal app. Creating the Durandal Main.js File The Durandal Main.js JavaScript file, located in your App folder, contains all of the code required to configure the behavior of Durandal. Here’s what the Main.js file looks like in the case of the Movies app: require.config({ paths: { 'text': 'durandal/amd/text' } }); define(function (require) { var app = require('durandal/app'), viewLocator = require('durandal/viewLocator'), system = require('durandal/system'), router = require('durandal/plugins/router'); //>>excludeStart("build", true); system.debug(true); //>>excludeEnd("build"); app.start().then(function () { //Replace 'viewmodels' in the moduleId with 'views' to locate the view. //Look for partial views in a 'views' folder in the root. viewLocator.useConvention(); //configure routing router.useConvention(); router.mapNav("movies/show"); router.mapNav("movies/add"); router.mapNav("movies/details/:id"); app.adaptToDevice(); //Show the app by setting the root view model for our application with a transition. app.setRoot('viewmodels/shell', 'entrance'); }); }); There are three important things to notice about the main.js file above. First, notice that it contains a section which enables debugging which looks like this: //>>excludeStart(“build”, true); system.debug(true); //>>excludeEnd(“build”); This code enables debugging for your Durandal app which is very useful when things go wrong. When you call system.debug(true), Durandal writes out debugging information to your browser JavaScript console. For example, you can use the debugging information to diagnose issues with your client-side routes: (The funny looking //> symbols around the system.debug() call are RequireJS optimizer pragmas). The main.js file is also the place where you configure your client-side routes. In the case of the Movies app, the main.js file is used to configure routes for three page: the movies show, add, and details pages. //configure routing router.useConvention(); router.mapNav("movies/show"); router.mapNav("movies/add"); router.mapNav("movies/details/:id");   The route for movie details includes a route parameter named id. Later, we will use the id parameter to lookup and display the details for the right movie. Finally, the main.js file above contains the following line of code: //Show the app by setting the root view model for our application with a transition. app.setRoot('viewmodels/shell', 'entrance'); This line of code causes Durandal to load up a JavaScript file named shell.js and an HTML fragment named shell.html. I’ll discuss the shell in the next section. Creating the Durandal Shell You can think of the Durandal shell as the layout or master page for a Durandal app. The shell is where you put all of the content which you want to remain constant as a user navigates from virtual page to virtual page. For example, the shell is a great place to put your website logo and navigation links. The Durandal shell is composed from two parts: a JavaScript file and an HTML file. Here’s what the HTML file looks like for the Movies app: <h1>Movies App</h1> <div class="container-fluid page-host"> <!--ko compose: { model: router.activeItem, //wiring the router afterCompose: router.afterCompose, //wiring the router transition:'entrance', //use the 'entrance' transition when switching views cacheViews:true //telling composition to keep views in the dom, and reuse them (only a good idea with singleton view models) }--><!--/ko--> </div> And here is what the JavaScript file looks like: define(function (require) { var router = require('durandal/plugins/router'); return { router: router, activate: function () { return router.activate('movies/show'); } }; }); The JavaScript file contains the view model for the shell. This view model returns the Durandal router so you can access the list of configured routes from your shell. Notice that the JavaScript file includes a function named activate(). This function loads the movies/show page as the first page in the Movies app. If you want to create a different default Durandal page, then pass the name of a different age to the router.activate() method. Creating the Movies Show Page Durandal pages are created out of a view model and a view. The view model contains all of the data and view logic required for the view. The view contains all of the HTML markup for rendering the view model. Let’s start with the movies show page. The movies show page displays a list of movies. The view model for the show page looks like this: define(function (require) { var moviesRepository = require("repositories/moviesRepository"); return { movies: ko.observable(), activate: function() { this.movies(moviesRepository.listMovies()); } }; }); You create a view model by defining a new RequireJS module (see http://requirejs.org). You create a RequireJS module by placing all of your JavaScript code into an anonymous function passed to the RequireJS define() method. A RequireJS module has two parts. You retrieve all of the modules which your module requires at the top of your module. The code above depends on another RequireJS module named repositories/moviesRepository. Next, you return the implementation of your module. The code above returns a JavaScript object which contains a property named movies and a method named activate. The activate() method is a magic method which Durandal calls whenever it activates your view model. Your view model is activated whenever you navigate to a page which uses it. In the code above, the activate() method is used to get the list of movies from the movies repository and assign the list to the view model movies property. The HTML for the movies show page looks like this: <table> <thead> <tr> <th>Title</th><th>Director</th> </tr> </thead> <tbody data-bind="foreach:movies"> <tr> <td data-bind="text:title"></td> <td data-bind="text:director"></td> <td><a data-bind="attr:{href:'#/movies/details/'+id}">Details</a></td> </tr> </tbody> </table> <a href="#/movies/add">Add Movie</a> Notice that this is an HTML fragment. This fragment will be stuffed into the page-host DIV element in the shell.html file which is stuffed, in turn, into the applicationHost DIV element in the server-side MVC view. The HTML markup above contains data-bind attributes used by Knockout to display the list of movies (To learn more about Knockout, visit http://knockoutjs.com). The list of movies from the view model is displayed in an HTML table. Notice that the page includes a link to a page for adding a new movie. The link uses the following URL which starts with a hash: #/movies/add. Because the link starts with a hash, clicking the link does not cause a request back to the server. Instead, you navigate to the movies/add page virtually. Creating the Movies Add Page The movies add page also consists of a view model and view. The add page enables you to add a new movie to the movie database. Here’s the view model for the add page: define(function (require) { var app = require('durandal/app'); var router = require('durandal/plugins/router'); var moviesRepository = require("repositories/moviesRepository"); return { movieToAdd: { title: ko.observable(), director: ko.observable() }, activate: function () { this.movieToAdd.title(""); this.movieToAdd.director(""); this._movieAdded = false; }, canDeactivate: function () { if (this._movieAdded == false) { return app.showMessage('Are you sure you want to leave this page?', 'Navigate', ['Yes', 'No']); } else { return true; } }, addMovie: function () { // Add movie to db moviesRepository.addMovie(ko.toJS(this.movieToAdd)); // flag new movie this._movieAdded = true; // return to list of movies router.navigateTo("#/movies/show"); } }; }); The view model contains one property named movieToAdd which is bound to the add movie form. The view model also has the following three methods: 1. activate() – This method is called by Durandal when you navigate to the add movie page. The activate() method resets the add movie form by clearing out the movie title and director properties. 2. canDeactivate() – This method is called by Durandal when you attempt to navigate away from the add movie page. If you return false then navigation is cancelled. 3. addMovie() – This method executes when the add movie form is submitted. This code adds the new movie to the movie repository. I really like the Durandal canDeactivate() method. In the code above, I use the canDeactivate() method to show a warning to a user if they navigate away from the add movie page – either by clicking the Cancel button or by hitting the browser back button – before submitting the add movie form: The view for the add movie page looks like this: <form data-bind="submit:addMovie"> <fieldset> <legend>Add Movie</legend> <div> <label> Title: <input data-bind="value:movieToAdd.title" required /> </label> </div> <div> <label> Director: <input data-bind="value:movieToAdd.director" required /> </label> </div> <div> <input type="submit" value="Add" /> <a href="#/movies/show">Cancel</a> </div> </fieldset> </form> I am using Knockout to bind the movieToAdd property from the view model to the INPUT elements of the HTML form. Notice that the FORM element includes a data-bind attribute which invokes the addMovie() method from the view model when the HTML form is submitted. Creating the Movies Details Page You navigate to the movies details Page by clicking the Details link which appears next to each movie in the movies show page: The Details links pass the movie ids to the details page: #/movies/details/0 #/movies/details/1 #/movies/details/2 Here’s what the view model for the movies details page looks like: define(function (require) { var router = require('durandal/plugins/router'); var moviesRepository = require("repositories/moviesRepository"); return { movieToShow: { title: ko.observable(), director: ko.observable() }, activate: function (context) { // Grab movie from repository var movie = moviesRepository.getMovie(context.id); // Add to view model this.movieToShow.title(movie.title); this.movieToShow.director(movie.director); } }; }); Notice that the view model activate() method accepts a parameter named context. You can take advantage of the context parameter to retrieve route parameters such as the movie Id. In the code above, the context.id property is used to retrieve the correct movie from the movie repository and the movie is assigned to a property named movieToShow exposed by the view model. The movie details view displays the movieToShow property by taking advantage of Knockout bindings: <div> <h2 data-bind="text:movieToShow.title"></h2> directed by <span data-bind="text:movieToShow.director"></span> </div> Summary The goal of this blog entry was to walkthrough building a simple Single Page App using Durandal and to get a feel for what it is like to use this library. I really like how Durandal stitches together Knockout, Sammy, and RequireJS and establishes patterns for using these libraries to build Single Page Apps. Having a standard pattern which developers on a team can use to build new pages is super valuable. Once you get the hang of it, using Durandal to create new virtual pages is dead simple. Just define a new route, view model, and view and you are done. I also appreciate the fact that Durandal did not attempt to re-invent the wheel and that Durandal leverages existing JavaScript libraries such as Knockout, RequireJS, and Sammy. These existing libraries are powerful libraries and I have already invested a considerable amount of time in learning how to use them. Durandal makes it easier to use these libraries together without losing any of their power. Durandal has some additional interesting features which I have not had a chance to play with yet. For example, you can use the RequireJS optimizer to combine and minify all of a Durandal app’s code. Also, Durandal supports a way to create custom widgets (client-side controls) by composing widgets from a controller and view. You can download the code for the Movies app by clicking the following link (this is a Visual Studio 2012 project): Durandal Movie App

    Read the article

  • Durandal Google Maps not showing properly

    - by user1891037
    Trying to show Google Maps using the Durandal. I'm now simply working with Durandal HTML Starter Kit so the other modules and all engine works properly. The thing is when I added the Google Map it doesn't fit the div size (the big part of div is just grey). As I understand, the problem is causing because Google Maps added before page is completely loaded. But I can't figure out how can I hook on page load event. Here is the module code: define(['knockout', 'gmaps'], function (ko, gmaps) { return { displayName: 'Google Maps', myMap: ko.observable({ lat: ko.observable(32), lng: ko.observable(10)}), activate: function () { console.log('activate'); ko.bindingHandlers.map = { init: function (element, valueAccessor, allBindingsAccessor, viewModel) { console.log('init'); var mapObj = ko.utils.unwrapObservable(valueAccessor()); var latLng = new gmaps.LatLng( ko.utils.unwrapObservable(mapObj.lat), ko.utils.unwrapObservable(mapObj.lng)); var mapOptions = { center: latLng, zoom: 5, mapTypeId: gmaps.MapTypeId.ROADMAP}; mapObj.googleMap = new gmaps.Map(element, mapOptions); } } }, attached: function() { console.log('attached'); }, compositionComplete: function() { console.log('compositionComplete'); } }; }); And a very simple HTML code: <section> <div id="gmap-canvas" data-bind="map:myMap"></div> </section> I'm loading Google Maps with async plug-in in my shell.js. It works fine. Screenshot with trouble here - http://clip2net.com/s/ibswAa P.S. div size is defined in .CSS file. P.S. I tried to use getElementById approach provided here and it's work great if placed in compositionComplete block. But when I tried to move my bindings to this block nothing happens at all. Thanks!

    Read the article

  • How do I convert an AMD module from a singleton to an instance?

    - by Jamie Ide
    I'm trying to convert a working Durandal view model module from a singleton to an instance. The original working version followed this pattern: define(['knockout'], function(ko) { var vm = { activate: activate, companyId: null; company: ko.observable({}) }; return vm; function activate(companyId) { vm.companyId = companyId; //get company data then vm.company(data); } } The new version exports a function so that I get a new instance on every request... define(['knockout'], function(ko) { var vm = function() { activate = activate; companyId = null; company = ko.observable({}); }; return vm; function activate(companyId) { vm.companyId = companyId; //get company data then vm.company(data); } } The error I'm getting is "object function () [...function signature...] has no method company on the line vm.company(data);. What am I doing wrong? Why can I set the property but can't access the knockout observable? How should I refactor the original code so that I get a new instance on every request? My efforts to simplify the code for this question hid the actual problem. My real code was using Q promises and calling two methods with Q.All. Since Q is in the global namespace, it couldn't resolve my viewmodel after converting to a function. Passing the view model to the methods called by Q resolved the problem.

    Read the article

  • DurandalJS vs AngularJS?

    - by Zach
    I'm looking for a JS framework to build an SPA and found DurandalJS and AngularJS. Can anyone compare these two frameworks? I did find many articles that compares AngularJS and KnockoutJS, and they say AngularJS is more than data binding, so I think DurandalJS may be the one to compare. I did a little research on AngularJS, it is good but one thing is bad: the $ prefix does not work when minified, although there is an ugly workaround. And someone said Twitter Bootstrap does not work well with it (I didn't check). For DurandalJS, I still cannot find the samples (http://durandaljs.com/documentation/Understanding-the-Samples/), so it's hard to say. PS: are they working well with TypeScript? Best regards, Zach

    Read the article

  • Setting differing ACLs on directories and files

    - by durandal
    Quick ACL question: I want to set up default permissions for a file share so that everyone can rwx all of the directories and so that all newly created files are rw. Everyone who is accessing this share is in the same group, so this isn't a concern. I have looked at doing this via ACLs without changing all of the users' umasks and such. Here are my current invocations: setfacl -Rdm g:mygroup:rwx share_name setfacl -Rm g:mygroup:rwx share_name My problem is that while I want all of the newly created sub-directories to be rwx, I only want newly created files to be rw. Does anyone have a better method to achieve my desired end-result? Is there some way to set ACLs on directories separately from files, in a similar vein to "chmod +x" vs. "chmod +X"? Thanks

    Read the article

  • Does the Java Memory Model (JSR-133) imply that entering a monitor flushes the CPU data cache(s)?

    - by Durandal
    There is something that bugs me with the Java memory model (if i even understand everything correctly). If there are two threads A and B, there are no guarantees that B will ever see a value written by A, unless both A and B synchronize on the same monitor. For any system architecture that guarantees cache coherency between threads, there is no problem. But if the architecture does not support cache coherency in hardware, this essentially means that whenever a thread enters a monitor, all memory changes made before must be commited to main memory, and the cache must be invalidated. And it needs to be the entire data cache, not just a few lines, since the monitor has no information which variables in memory it guards. But that would surely impact performance of any application that needs to synchronize frequently (especially things like job queues with short running jobs). So can Java work reasonably well on architectures without hardware cache-coherency? If not, why doesn't the memory model make stronger guarantees about visibility? Wouldn't it be more efficient if the language would require information what is guarded by a monitor? As i see it the memory model gives us the worst of both worlds, the absolute need to synchronize, even if cache coherency is guaranteed in hardware, and on the other hand bad performance on incoherent architectures (full cache flushes). So shouldn't it be more strict (require information what is guarded by a monitor) or more lose and restrict potential platforms to cache-coherent architectures? As it is now, it doesn't make too much sense to me. Can somebody clear up why this specific memory model was choosen? EDIT: My use of strict and lose was a bad choice in retrospect. I used "strict" for the case where less guarantees are made and "lose" for the opposite. To avoid confusion, its probably better to speak in terms of stronger or weaker guarantees.

    Read the article

  • Security Issues with Single Page Apps

    - by Stephen.Walther
    Last week, I was asked to do a code review of a Single Page App built using the ASP.NET Web API, Durandal, and Knockout (good stuff!). In particular, I was asked to investigate whether there any special security issues associated with building a Single Page App which are not present in the case of a traditional server-side ASP.NET application. In this blog entry, I discuss two areas in which you need to exercise extra caution when building a Single Page App. I discuss how Single Page Apps are extra vulnerable to both Cross-Site Scripting (XSS) attacks and Cross-Site Request Forgery (CSRF) attacks. This goal of this blog post is NOT to persuade you to avoid writing Single Page Apps. I’m a big fan of Single Page Apps. Instead, the goal is to ensure that you are fully aware of some of the security issues related to Single Page Apps and ensure that you know how to guard against them. Cross-Site Scripting (XSS) Attacks According to WhiteHat Security, over 65% of public websites are open to XSS attacks. That’s bad. By taking advantage of XSS holes in a website, a hacker can steal your credit cards, passwords, or bank account information. Any website that redisplays untrusted information is open to XSS attacks. Let me give you a simple example. Imagine that you want to display the name of the current user on a page. To do this, you create the following server-side ASP.NET page located at http://MajorBank.com/SomePage.aspx: <%@Page Language="C#" %> <html> <head> <title>Some Page</title> </head> <body> Welcome <%= Request["username"] %> </body> </html> Nothing fancy here. Notice that the page displays the current username by using Request[“username”]. Using Request[“username”] displays the username regardless of whether the username is present in a cookie, a form field, or a query string variable. Unfortunately, by using Request[“username”] to redisplay untrusted information, you have now opened your website to XSS attacks. Here’s how. Imagine that an evil hacker creates the following link on another website (hackers.com): <a href="/SomePage.aspx?username=<script src=Evil.js></script>">Visit MajorBank</a> Notice that the link includes a query string variable named username and the value of the username variable is an HTML <SCRIPT> tag which points to a JavaScript file named Evil.js. When anyone clicks on the link, the <SCRIPT> tag will be injected into SomePage.aspx and the Evil.js script will be loaded and executed. What can a hacker do in the Evil.js script? Anything the hacker wants. For example, the hacker could display a popup dialog on the MajorBank.com site which asks the user to enter their password. The script could then post the password back to hackers.com and now the evil hacker has your secret password. ASP.NET Web Forms and ASP.NET MVC have two automatic safeguards against this type of attack: Request Validation and Automatic HTML Encoding. Protecting Coming In (Request Validation) In a server-side ASP.NET app, you are protected against the XSS attack described above by a feature named Request Validation. If you attempt to submit “potentially dangerous” content — such as a JavaScript <SCRIPT> tag — in a form field or query string variable then you get an exception. Unfortunately, Request Validation only applies to server-side apps. Request Validation does not help in the case of a Single Page App. In particular, the ASP.NET Web API does not pay attention to Request Validation. You can post any content you want – including <SCRIPT> tags – to an ASP.NET Web API action. For example, the following HTML page contains a form. When you submit the form, the form data is submitted to an ASP.NET Web API controller on the server using an Ajax request: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title></title> </head> <body> <form data-bind="submit:submit"> <div> <label> User Name: <input data-bind="value:user.userName" /> </label> </div> <div> <label> Email: <input data-bind="value:user.email" /> </label> </div> <div> <input type="submit" value="Submit" /> </div> </form> <script src="Scripts/jquery-1.7.1.js"></script> <script src="Scripts/knockout-2.1.0.js"></script> <script> var viewModel = { user: { userName: ko.observable(), email: ko.observable() }, submit: function () { $.post("/api/users", ko.toJS(this.user)); } }; ko.applyBindings(viewModel); </script> </body> </html> The form above is using Knockout to bind the form fields to a view model. When you submit the form, the view model is submitted to an ASP.NET Web API action on the server. Here’s the server-side ASP.NET Web API controller and model class: public class UsersController : ApiController { public HttpResponseMessage Post(UserViewModel user) { var userName = user.UserName; return Request.CreateResponse(HttpStatusCode.OK); } } public class UserViewModel { public string UserName { get; set; } public string Email { get; set; } } If you submit the HTML form, you don’t get an error. The “potentially dangerous” content is passed to the server without any exception being thrown. In the screenshot below, you can see that I was able to post a username form field with the value “<script>alert(‘boo’)</script”. So what this means is that you do not get automatic Request Validation in the case of a Single Page App. You need to be extra careful in a Single Page App about ensuring that you do not display untrusted content because you don’t have the Request Validation safety net which you have in a traditional server-side ASP.NET app. Protecting Going Out (Automatic HTML Encoding) Server-side ASP.NET also protects you from XSS attacks when you render content. By default, all content rendered by the razor view engine is HTML encoded. For example, the following razor view displays the text “<b>Hello!</b>” instead of the text “Hello!” in bold: @{ var message = "<b>Hello!</b>"; } @message   If you don’t want to render content as HTML encoded in razor then you need to take the extra step of using the @Html.Raw() helper. In a Web Form page, if you use <%: %> instead of <%= %> then you get automatic HTML Encoding: <%@ Page Language="C#" %> <% var message = "<b>Hello!</b>"; %> <%: message %> This automatic HTML Encoding will prevent many types of XSS attacks. It prevents <script> tags from being rendered and only allows &lt;script&gt; tags to be rendered which are useless for executing JavaScript. (This automatic HTML encoding does not protect you from all forms of XSS attacks. For example, you can assign the value “javascript:alert(‘evil’)” to the Hyperlink control’s NavigateUrl property and execute the JavaScript). The situation with Knockout is more complicated. If you use the Knockout TEXT binding then you get HTML encoded content. On the other hand, if you use the HTML binding then you do not: <!-- This JavaScript DOES NOT execute --> <div data-bind="text:someProp"></div> <!-- This Javacript DOES execute --> <div data-bind="html:someProp"></div> <script src="Scripts/jquery-1.7.1.js"></script> <script src="Scripts/knockout-2.1.0.js"></script> <script> var viewModel = { someProp : "<script>alert('Evil!')<" + "/script>" }; ko.applyBindings(viewModel); </script>   So, in the page above, the DIV element which uses the TEXT binding is safe from XSS attacks. According to the Knockout documentation: “Since this binding sets your text value using a text node, it’s safe to set any string value without risking HTML or script injection.” Just like server-side HTML encoding, Knockout does not protect you from all types of XSS attacks. For example, there is nothing in Knockout which prevents you from binding JavaScript to a hyperlink like this: <a data-bind="attr:{href:homePageUrl}">Go</a> <script src="Scripts/jquery-1.7.1.min.js"></script> <script src="Scripts/knockout-2.1.0.js"></script> <script> var viewModel = { homePageUrl: "javascript:alert('evil!')" }; ko.applyBindings(viewModel); </script> In the page above, the value “javascript:alert(‘evil’)” is bound to the HREF attribute using Knockout. When you click the link, the JavaScript executes. Cross-Site Request Forgery (CSRF) Attacks Cross-Site Request Forgery (CSRF) attacks rely on the fact that a session cookie does not expire until you close your browser. In particular, if you visit and login to MajorBank.com and then you navigate to Hackers.com then you will still be authenticated against MajorBank.com even after you navigate to Hackers.com. Because MajorBank.com cannot tell whether a request is coming from MajorBank.com or Hackers.com, Hackers.com can submit requests to MajorBank.com pretending to be you. For example, Hackers.com can post an HTML form from Hackers.com to MajorBank.com and change your email address at MajorBank.com. Hackers.com can post a form to MajorBank.com using your authentication cookie. After your email address has been changed, by using a password reset page at MajorBank.com, a hacker can access your bank account. To prevent CSRF attacks, you need some mechanism for detecting whether a request is coming from a page loaded from your website or whether the request is coming from some other website. The recommended way of preventing Cross-Site Request Forgery attacks is to use the “Synchronizer Token Pattern” as described here: https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet When using the Synchronizer Token Pattern, you include a hidden input field which contains a random token whenever you display an HTML form. When the user opens the form, you add a cookie to the user’s browser with the same random token. When the user posts the form, you verify that the hidden form token and the cookie token match. Preventing Cross-Site Request Forgery Attacks with ASP.NET MVC ASP.NET gives you a helper and an action filter which you can use to thwart Cross-Site Request Forgery attacks. For example, the following razor form for creating a product shows how you use the @Html.AntiForgeryToken() helper: @model MvcApplication2.Models.Product <h2>Create Product</h2> @using (Html.BeginForm()) { @Html.AntiForgeryToken(); <div> @Html.LabelFor( p => p.Name, "Product Name:") @Html.TextBoxFor( p => p.Name) </div> <div> @Html.LabelFor( p => p.Price, "Product Price:") @Html.TextBoxFor( p => p.Price) </div> <input type="submit" /> } The @Html.AntiForgeryToken() helper generates a random token and assigns a serialized version of the same random token to both a cookie and a hidden form field. (Actually, if you dive into the source code, the AntiForgeryToken() does something a little more complex because it takes advantage of a user’s identity when generating the token). Here’s what the hidden form field looks like: <input name=”__RequestVerificationToken” type=”hidden” value=”NqqZGAmlDHh6fPTNR_mti3nYGUDgpIkCiJHnEEL59S7FNToyyeSo7v4AfzF2i67Cv0qTB1TgmZcqiVtgdkW2NnXgEcBc-iBts0x6WAIShtM1″ /> And here’s what the cookie looks like using the Google Chrome developer toolbar: You use the [ValidateAntiForgeryToken] action filter on the controller action which is the recipient of the form post to validate that the token in the hidden form field matches the token in the cookie. If the tokens don’t match then validation fails and you can’t post the form: public ActionResult Create() { return View(); } [ValidateAntiForgeryToken] [HttpPost] public ActionResult Create(Product productToCreate) { if (ModelState.IsValid) { // save product to db return RedirectToAction("Index"); } return View(); } How does this all work? Let’s imagine that a hacker has copied the Create Product page from MajorBank.com to Hackers.com – the hacker grabs the HTML source and places it at Hackers.com. Now, imagine that the hacker trick you into submitting the Create Product form from Hackers.com to MajorBank.com. You’ll get the following exception: The Cross-Site Request Forgery attack is blocked because the anti-forgery token included in the Create Product form at Hackers.com won’t match the anti-forgery token stored in the cookie in your browser. The tokens were generated at different times for different users so the attack fails. Preventing Cross-Site Request Forgery Attacks with a Single Page App In a Single Page App, you can’t prevent Cross-Site Request Forgery attacks using the same method as a server-side ASP.NET MVC app. In a Single Page App, HTML forms are not generated on the server. Instead, in a Single Page App, forms are loaded dynamically in the browser. Phil Haack has a blog post on this topic where he discusses passing the anti-forgery token in an Ajax header instead of a hidden form field. He also describes how you can create a custom anti-forgery token attribute to compare the token in the Ajax header and the token in the cookie. See: http://haacked.com/archive/2011/10/10/preventing-csrf-with-ajax.aspx Also, take a look at Johan’s update to Phil Haack’s original post: http://johan.driessen.se/posts/Updated-Anti-XSRF-Validation-for-ASP.NET-MVC-4-RC (Other server frameworks such as Rails and Django do something similar. For example, Rails uses an X-CSRF-Token to prevent CSRF attacks which you generate on the server – see http://excid3.com/blog/rails-tip-2-include-csrf-token-with-every-ajax-request/#.UTFtgDDkvL8 ). For example, if you are creating a Durandal app, then you can use the following razor view for your one and only server-side page: @{ Layout = null; } <!DOCTYPE html> <html> <head> <title>Index</title> </head> <body> @Html.AntiForgeryToken() <div id="applicationHost"> Loading app.... </div> @Scripts.Render("~/scripts/vendor") <script type="text/javascript" src="~/App/durandal/amd/require.js" data-main="/App/main"></script> </body> </html> Notice that this page includes a call to @Html.AntiForgeryToken() to generate the anti-forgery token. Then, whenever you make an Ajax request in the Durandal app, you can retrieve the anti-forgery token from the razor view and pass the token as a header: var csrfToken = $("input[name='__RequestVerificationToken']").val(); $.ajax({ headers: { __RequestVerificationToken: csrfToken }, type: "POST", dataType: "json", contentType: 'application/json; charset=utf-8', url: "/api/products", data: JSON.stringify({ name: "Milk", price: 2.33 }), statusCode: { 200: function () { alert("Success!"); } } }); Use the following code to create an action filter which you can use to match the header and cookie tokens: using System.Linq; using System.Net.Http; using System.Web.Helpers; using System.Web.Http.Controllers; namespace MvcApplication2.Infrastructure { public class ValidateAjaxAntiForgeryToken : System.Web.Http.AuthorizeAttribute { protected override bool IsAuthorized(HttpActionContext actionContext) { var headerToken = actionContext .Request .Headers .GetValues("__RequestVerificationToken") .FirstOrDefault(); ; var cookieToken = actionContext .Request .Headers .GetCookies() .Select(c => c[AntiForgeryConfig.CookieName]) .FirstOrDefault(); // check for missing cookie or header if (cookieToken == null || headerToken == null) { return false; } // ensure that the cookie matches the header try { AntiForgery.Validate(cookieToken.Value, headerToken); } catch { return false; } return base.IsAuthorized(actionContext); } } } Notice that the action filter derives from the base AuthorizeAttribute. The ValidateAjaxAntiForgeryToken only works when the user is authenticated and it will not work for anonymous requests. Add the action filter to your ASP.NET Web API controller actions like this: [ValidateAjaxAntiForgeryToken] public HttpResponseMessage PostProduct(Product productToCreate) { // add product to db return Request.CreateResponse(HttpStatusCode.OK); } After you complete these steps, it won’t be possible for a hacker to pretend to be you at Hackers.com and submit a form to MajorBank.com. The header token used in the Ajax request won’t travel to Hackers.com. This approach works, but I am not entirely happy with it. The one thing that I don’t like about this approach is that it creates a hard dependency on using razor. Your single page in your Single Page App must be generated from a server-side razor view. A better solution would be to generate the anti-forgery token in JavaScript. Unfortunately, until all browsers support a way to generate cryptographically strong random numbers – for example, by supporting the window.crypto.getRandomValues() method — there is no good way to generate anti-forgery tokens in JavaScript. So, at least right now, the best solution for generating the tokens is the server-side solution with the (regrettable) dependency on razor. Conclusion The goal of this blog entry was to explore some ways in which you need to handle security differently in the case of a Single Page App than in the case of a traditional server app. In particular, I focused on how to prevent Cross-Site Scripting and Cross-Site Request Forgery attacks in the case of a Single Page App. I want to emphasize that I am not suggesting that Single Page Apps are inherently less secure than server-side apps. Whatever type of web application you build – regardless of whether it is a Single Page App, an ASP.NET MVC app, an ASP.NET Web Forms app, or a Rails app – you must constantly guard against security vulnerabilities.

    Read the article

1