Does the Java Memory Model (JSR-133) imply that entering a monitor flushes the CPU data cache(s)?
Posted
by Durandal
on Stack Overflow
See other posts from Stack Overflow
or by Durandal
Published on 2010-06-16T14:33:37Z
Indexed on
2010/06/16
17:02 UTC
Read the original article
Hit count: 178
There is something that bugs me with the Java memory model (if i even understand everything correctly). If there are two threads A and B, there are no guarantees that B will ever see a value written by A, unless both A and B synchronize on the same monitor.
For any system architecture that guarantees cache coherency between threads, there is no problem. But if the architecture does not support cache coherency in hardware, this essentially means that whenever a thread enters a monitor, all memory changes made before must be commited to main memory, and the cache must be invalidated. And it needs to be the entire data cache, not just a few lines, since the monitor has no information which variables in memory it guards. But that would surely impact performance of any application that needs to synchronize frequently (especially things like job queues with short running jobs). So can Java work reasonably well on architectures without hardware cache-coherency? If not, why doesn't the memory model make stronger guarantees about visibility? Wouldn't it be more efficient if the language would require information what is guarded by a monitor?
As i see it the memory model gives us the worst of both worlds, the absolute need to synchronize, even if cache coherency is guaranteed in hardware, and on the other hand bad performance on incoherent architectures (full cache flushes). So shouldn't it be more strict (require information what is guarded by a monitor) or more lose and restrict potential platforms to cache-coherent architectures?
As it is now, it doesn't make too much sense to me. Can somebody clear up why this specific memory model was choosen?
EDIT: My use of strict and lose was a bad choice in retrospect. I used "strict" for the case where less guarantees are made and "lose" for the opposite. To avoid confusion, its probably better to speak in terms of stronger or weaker guarantees.
© Stack Overflow or respective owner