Search Results

Search found 11138 results on 446 pages for 'dynamic linq'.

Page 1/446 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Understanding LINQ to SQL (11) Performance

    - by Dixin
    [LINQ via C# series] LINQ to SQL has a lot of great features like strong typing query compilation deferred execution declarative paradigm etc., which are very productive. Of course, these cannot be free, and one price is the performance. O/R mapping overhead Because LINQ to SQL is based on O/R mapping, one obvious overhead is, data changing usually requires data retrieving:private static void UpdateProductUnitPrice(int id, decimal unitPrice) { using (NorthwindDataContext database = new NorthwindDataContext()) { Product product = database.Products.Single(item => item.ProductID == id); // SELECT... product.UnitPrice = unitPrice; // UPDATE... database.SubmitChanges(); } } Before updating an entity, that entity has to be retrieved by an extra SELECT query. This is slower than direct data update via ADO.NET:private static void UpdateProductUnitPrice(int id, decimal unitPrice) { using (SqlConnection connection = new SqlConnection( "Data Source=localhost;Initial Catalog=Northwind;Integrated Security=True")) using (SqlCommand command = new SqlCommand( @"UPDATE [dbo].[Products] SET [UnitPrice] = @UnitPrice WHERE [ProductID] = @ProductID", connection)) { command.Parameters.Add("@ProductID", SqlDbType.Int).Value = id; command.Parameters.Add("@UnitPrice", SqlDbType.Money).Value = unitPrice; connection.Open(); command.Transaction = connection.BeginTransaction(); command.ExecuteNonQuery(); // UPDATE... command.Transaction.Commit(); } } The above imperative code specifies the “how to do” details with better performance. For the same reason, some articles from Internet insist that, when updating data via LINQ to SQL, the above declarative code should be replaced by:private static void UpdateProductUnitPrice(int id, decimal unitPrice) { using (NorthwindDataContext database = new NorthwindDataContext()) { database.ExecuteCommand( "UPDATE [dbo].[Products] SET [UnitPrice] = {0} WHERE [ProductID] = {1}", id, unitPrice); } } Or just create a stored procedure:CREATE PROCEDURE [dbo].[UpdateProductUnitPrice] ( @ProductID INT, @UnitPrice MONEY ) AS BEGIN BEGIN TRANSACTION UPDATE [dbo].[Products] SET [UnitPrice] = @UnitPrice WHERE [ProductID] = @ProductID COMMIT TRANSACTION END and map it as a method of NorthwindDataContext (explained in this post):private static void UpdateProductUnitPrice(int id, decimal unitPrice) { using (NorthwindDataContext database = new NorthwindDataContext()) { database.UpdateProductUnitPrice(id, unitPrice); } } As a normal trade off for O/R mapping, a decision has to be made between performance overhead and programming productivity according to the case. In a developer’s perspective, if O/R mapping is chosen, I consistently choose the declarative LINQ code, unless this kind of overhead is unacceptable. Data retrieving overhead After talking about the O/R mapping specific issue. Now look into the LINQ to SQL specific issues, for example, performance in the data retrieving process. The previous post has explained that the SQL translating and executing is complex. Actually, the LINQ to SQL pipeline is similar to the compiler pipeline. It consists of about 15 steps to translate an C# expression tree to SQL statement, which can be categorized as: Convert: Invoke SqlProvider.BuildQuery() to convert the tree of Expression nodes into a tree of SqlNode nodes; Bind: Used visitor pattern to figure out the meanings of names according to the mapping info, like a property for a column, etc.; Flatten: Figure out the hierarchy of the query; Rewrite: for SQL Server 2000, if needed Reduce: Remove the unnecessary information from the tree. Parameterize Format: Generate the SQL statement string; Parameterize: Figure out the parameters, for example, a reference to a local variable should be a parameter in SQL; Materialize: Executes the reader and convert the result back into typed objects. So for each data retrieving, even for data retrieving which looks simple: private static Product[] RetrieveProducts(int productId) { using (NorthwindDataContext database = new NorthwindDataContext()) { return database.Products.Where(product => product.ProductID == productId) .ToArray(); } } LINQ to SQL goes through above steps to translate and execute the query. Fortunately, there is a built-in way to cache the translated query. Compiled query When such a LINQ to SQL query is executed repeatedly, The CompiledQuery can be used to translate query for one time, and execute for multiple times:internal static class CompiledQueries { private static readonly Func<NorthwindDataContext, int, Product[]> _retrieveProducts = CompiledQuery.Compile((NorthwindDataContext database, int productId) => database.Products.Where(product => product.ProductID == productId).ToArray()); internal static Product[] RetrieveProducts( this NorthwindDataContext database, int productId) { return _retrieveProducts(database, productId); } } The new version of RetrieveProducts() gets better performance, because only when _retrieveProducts is first time invoked, it internally invokes SqlProvider.Compile() to translate the query expression. And it also uses lock to make sure translating once in multi-threading scenarios. Static SQL / stored procedures without translating Another way to avoid the translating overhead is to use static SQL or stored procedures, just as the above examples. Because this is a functional programming series, this article not dive into. For the details, Scott Guthrie already has some excellent articles: LINQ to SQL (Part 6: Retrieving Data Using Stored Procedures) LINQ to SQL (Part 7: Updating our Database using Stored Procedures) LINQ to SQL (Part 8: Executing Custom SQL Expressions) Data changing overhead By looking into the data updating process, it also needs a lot of work: Begins transaction Processes the changes (ChangeProcessor) Walks through the objects to identify the changes Determines the order of the changes Executes the changings LINQ queries may be needed to execute the changings, like the first example in this article, an object needs to be retrieved before changed, then the above whole process of data retrieving will be went through If there is user customization, it will be executed, for example, a table’s INSERT / UPDATE / DELETE can be customized in the O/R designer It is important to keep these overhead in mind. Bulk deleting / updating Another thing to be aware is the bulk deleting:private static void DeleteProducts(int categoryId) { using (NorthwindDataContext database = new NorthwindDataContext()) { database.Products.DeleteAllOnSubmit( database.Products.Where(product => product.CategoryID == categoryId)); database.SubmitChanges(); } } The expected SQL should be like:BEGIN TRANSACTION exec sp_executesql N'DELETE FROM [dbo].[Products] AS [t0] WHERE [t0].[CategoryID] = @p0',N'@p0 int',@p0=9 COMMIT TRANSACTION Hoverer, as fore mentioned, the actual SQL is to retrieving the entities, and then delete them one by one:-- Retrieves the entities to be deleted: exec sp_executesql N'SELECT [t0].[ProductID], [t0].[ProductName], [t0].[SupplierID], [t0].[CategoryID], [t0].[QuantityPerUnit], [t0].[UnitPrice], [t0].[UnitsInStock], [t0].[UnitsOnOrder], [t0].[ReorderLevel], [t0].[Discontinued] FROM [dbo].[Products] AS [t0] WHERE [t0].[CategoryID] = @p0',N'@p0 int',@p0=9 -- Deletes the retrieved entities one by one: BEGIN TRANSACTION exec sp_executesql N'DELETE FROM [dbo].[Products] WHERE ([ProductID] = @p0) AND ([ProductName] = @p1) AND ([SupplierID] IS NULL) AND ([CategoryID] = @p2) AND ([QuantityPerUnit] IS NULL) AND ([UnitPrice] = @p3) AND ([UnitsInStock] = @p4) AND ([UnitsOnOrder] = @p5) AND ([ReorderLevel] = @p6) AND (NOT ([Discontinued] = 1))',N'@p0 int,@p1 nvarchar(4000),@p2 int,@p3 money,@p4 smallint,@p5 smallint,@p6 smallint',@p0=78,@p1=N'Optimus Prime',@p2=9,@p3=$0.0000,@p4=0,@p5=0,@p6=0 exec sp_executesql N'DELETE FROM [dbo].[Products] WHERE ([ProductID] = @p0) AND ([ProductName] = @p1) AND ([SupplierID] IS NULL) AND ([CategoryID] = @p2) AND ([QuantityPerUnit] IS NULL) AND ([UnitPrice] = @p3) AND ([UnitsInStock] = @p4) AND ([UnitsOnOrder] = @p5) AND ([ReorderLevel] = @p6) AND (NOT ([Discontinued] = 1))',N'@p0 int,@p1 nvarchar(4000),@p2 int,@p3 money,@p4 smallint,@p5 smallint,@p6 smallint',@p0=79,@p1=N'Bumble Bee',@p2=9,@p3=$0.0000,@p4=0,@p5=0,@p6=0 -- ... COMMIT TRANSACTION And the same to the bulk updating. This is really not effective and need to be aware. Here is already some solutions from the Internet, like this one. The idea is wrap the above SELECT statement into a INNER JOIN:exec sp_executesql N'DELETE [dbo].[Products] FROM [dbo].[Products] AS [j0] INNER JOIN ( SELECT [t0].[ProductID], [t0].[ProductName], [t0].[SupplierID], [t0].[CategoryID], [t0].[QuantityPerUnit], [t0].[UnitPrice], [t0].[UnitsInStock], [t0].[UnitsOnOrder], [t0].[ReorderLevel], [t0].[Discontinued] FROM [dbo].[Products] AS [t0] WHERE [t0].[CategoryID] = @p0) AS [j1] ON ([j0].[ProductID] = [j1].[[Products])', -- The Primary Key N'@p0 int',@p0=9 Query plan overhead The last thing is about the SQL Server query plan. Before .NET 4.0, LINQ to SQL has an issue (not sure if it is a bug). LINQ to SQL internally uses ADO.NET, but it does not set the SqlParameter.Size for a variable-length argument, like argument of NVARCHAR type, etc. So for two queries with the same SQL but different argument length:using (NorthwindDataContext database = new NorthwindDataContext()) { database.Products.Where(product => product.ProductName == "A") .Select(product => product.ProductID).ToArray(); // The same SQL and argument type, different argument length. database.Products.Where(product => product.ProductName == "AA") .Select(product => product.ProductID).ToArray(); } Pay attention to the argument length in the translated SQL:exec sp_executesql N'SELECT [t0].[ProductID] FROM [dbo].[Products] AS [t0] WHERE [t0].[ProductName] = @p0',N'@p0 nvarchar(1)',@p0=N'A' exec sp_executesql N'SELECT [t0].[ProductID] FROM [dbo].[Products] AS [t0] WHERE [t0].[ProductName] = @p0',N'@p0 nvarchar(2)',@p0=N'AA' Here is the overhead: The first query’s query plan cache is not reused by the second one:SELECT sys.syscacheobjects.cacheobjtype, sys.dm_exec_cached_plans.usecounts, sys.syscacheobjects.[sql] FROM sys.syscacheobjects INNER JOIN sys.dm_exec_cached_plans ON sys.syscacheobjects.bucketid = sys.dm_exec_cached_plans.bucketid; They actually use different query plans. Again, pay attention to the argument length in the [sql] column (@p0 nvarchar(2) / @p0 nvarchar(1)). Fortunately, in .NET 4.0 this is fixed:internal static class SqlTypeSystem { private abstract class ProviderBase : TypeSystemProvider { protected int? GetLargestDeclarableSize(SqlType declaredType) { SqlDbType sqlDbType = declaredType.SqlDbType; if (sqlDbType <= SqlDbType.Image) { switch (sqlDbType) { case SqlDbType.Binary: case SqlDbType.Image: return 8000; } return null; } if (sqlDbType == SqlDbType.NVarChar) { return 4000; // Max length for NVARCHAR. } if (sqlDbType != SqlDbType.VarChar) { return null; } return 8000; } } } In this above example, the translated SQL becomes:exec sp_executesql N'SELECT [t0].[ProductID] FROM [dbo].[Products] AS [t0] WHERE [t0].[ProductName] = @p0',N'@p0 nvarchar(4000)',@p0=N'A' exec sp_executesql N'SELECT [t0].[ProductID] FROM [dbo].[Products] AS [t0] WHERE [t0].[ProductName] = @p0',N'@p0 nvarchar(4000)',@p0=N'AA' So that they reuses the same query plan cache: Now the [usecounts] column is 2.

    Read the article

  • An abundance of LINQ queries and expressions using both the query and method syntax.

    - by nikolaosk
    In this post I will be writing LINQ queries against an array of strings, an array of integers.Moreover I will be using LINQ to query an SQL Server database. I can use LINQ against arrays since the array of strings/integers implement the IENumerable interface. I thought it would be a good idea to use both the method syntax and the query syntax. There are other places on the net where you can find examples of LINQ queries but I decided to create a big post using as many LINQ examples as possible. We...(read more)

    Read the article

  • Differences between Dynamic Dispatch and Dynamic Binding

    - by Prog
    I've been looking on Google for a clear diffrentiation with examples but couldn't find any. I'm trying to understand the differences between Dynamic Dispatch and Dynamic Binding in Object Oriented languages. As far as I understand, Dynamic Dispatch is what happens when the concrete method invoked is decided at runtime, based on the concrete type. For example: public void doStuff(SuperType object){ object.act(); } SuperType has several subclasses. The concrete class of the object will only be known at runtime, and so the concrete act() implementation invoked will be decided at runtime. However, I'm not sure what Dynamic Binding means, and how it differs from Dynamic Dispatch. Please explain Dynamic Binding and how it's different from Dynamic Dispatch. Java examples would be welcome.

    Read the article

  • What is Linq?

    - by Aamir Hasan
    The way data can be retrieved in .NET. LINQ provides a uniform way to retrieve data from any object that implements the IEnumerable<T> interface. With LINQ, arrays, collections, relational data, and XML are all potential data sources. Why LINQ?With LINQ, you can use the same syntax to retrieve data from any data source:var query = from e in employeeswhere e.id == 1select e.nameThe middle level represents the three main parts of the LINQ project: LINQ to Objects is an API that provides methods that represent a set of standard query operators (SQOs) to retrieve data from any object whose class implements the IEnumerable<T> interface. These queries are performed against in-memory data.LINQ to ADO.NET augments SQOs to work against relational data. It is composed of three parts.LINQ to SQL (formerly DLinq) is use to query relational databases such as Microsoft SQL Server. LINQ to DataSet supports queries by using ADO.NET data sets and data tables. LINQ to Entities is a Microsoft ORM solution, allowing developers to use Entities (an ADO.NET 3.0 feature) to declaratively specify the structure of business objects and use LINQ to query them. LINQ to XML (formerly XLinq) not only augments SQOs but also includes a host of XML-specific features for XML document creation and queries. What You Need to Use LINQLINQ is a combination of extensions to .NET languages and class libraries that support them. To use it, you’ll need the following: Obviously LINQ, which is available from the new Microsoft .NET Framework 3.5 that you can download at http://go.microsoft.com/?linkid=7755937.You can speed up your application development time with LINQ using Visual Studio 2008, which offers visual tools such as LINQ to SQL designer and the Intellisense  support with LINQ’s syntax.Optionally, you can download the Visual C# 2008 Expression Edition tool at www.microsoft.com/vstudio/express/download. It is the free edition of Visual Studio 2008 and offers a lot of LINQ support such as Intellisense and LINQ to SQL designer. To use LINQ to ADO.NET, you need SQL

    Read the article

  • Exception with Linq2SQL Query

    - by Hadi Eskandari
    I am running a query using Linq2SQL that comes down to following query: DateTime? expiration = GetExpirationDate(); IQueryable<Persons> persons = GetPersons(); IQueryable<Items> subquery = from i in db.Items where i.ExpirationDate >= expiration select i; return persons.Where(p = p.Items != null && p.Items.Any(item => subquery.Contains(item))); When I evaluate the result of the function, I get a NullReferenceException and here's the stack trace. Any idea what I'm doing wrong?! Basically I want to select all the persons and filter them by item expiration date. at System.Data.Linq.SqlClient.SqlFactory.Member(SqlExpression expr, MemberInfo member) at System.Data.Linq.SqlClient.QueryConverter.VisitMemberAccess(MemberExpression ma) at System.Data.Linq.SqlClient.QueryConverter.VisitInner(Expression node) at System.Data.Linq.SqlClient.QueryConverter.Visit(Expression node) at System.Data.Linq.SqlClient.QueryConverter.VisitExpression(Expression exp) at System.Data.Linq.SqlClient.QueryConverter.VisitBinary(BinaryExpression b) at System.Data.Linq.SqlClient.QueryConverter.VisitInner(Expression node) at System.Data.Linq.SqlClient.QueryConverter.Visit(Expression node) at System.Data.Linq.SqlClient.QueryConverter.VisitExpression(Expression exp) at System.Data.Linq.SqlClient.QueryConverter.VisitBinary(BinaryExpression b) at System.Data.Linq.SqlClient.QueryConverter.VisitInner(Expression node) at System.Data.Linq.SqlClient.QueryConverter.Visit(Expression node) at System.Data.Linq.SqlClient.QueryConverter.VisitExpression(Expression exp) at System.Data.Linq.SqlClient.QueryConverter.VisitWhere(Expression sequence, LambdaExpression predicate) at System.Data.Linq.SqlClient.QueryConverter.VisitSequenceOperatorCall(MethodCallExpression mc) at System.Data.Linq.SqlClient.QueryConverter.VisitMethodCall(MethodCallExpression mc) at System.Data.Linq.SqlClient.QueryConverter.VisitInner(Expression node) at System.Data.Linq.SqlClient.QueryConverter.Visit(Expression node) at System.Data.Linq.SqlClient.QueryConverter.VisitContains(Expression sequence, Expression value) at System.Data.Linq.SqlClient.QueryConverter.VisitSequenceOperatorCall(MethodCallExpression mc) at System.Data.Linq.SqlClient.QueryConverter.VisitMethodCall(MethodCallExpression mc) at System.Data.Linq.SqlClient.QueryConverter.VisitInner(Expression node) at System.Data.Linq.SqlClient.QueryConverter.Visit(Expression node) at System.Data.Linq.SqlClient.QueryConverter.VisitExpression(Expression exp) at System.Data.Linq.SqlClient.QueryConverter.VisitQuantifier(SqlSelect select, LambdaExpression lambda, Boolean isAny) at System.Data.Linq.SqlClient.QueryConverter.VisitSequenceOperatorCall(MethodCallExpression mc) at System.Data.Linq.SqlClient.QueryConverter.VisitMethodCall(MethodCallExpression mc) at System.Data.Linq.SqlClient.QueryConverter.VisitInner(Expression node) at System.Data.Linq.SqlClient.QueryConverter.Visit(Expression node) at System.Data.Linq.SqlClient.QueryConverter.VisitExpression(Expression exp) at System.Data.Linq.SqlClient.QueryConverter.VisitBinary(BinaryExpression b) at System.Data.Linq.SqlClient.QueryConverter.VisitInner(Expression node) at System.Data.Linq.SqlClient.QueryConverter.Visit(Expression node) at System.Data.Linq.SqlClient.QueryConverter.VisitExpression(Expression exp) at System.Data.Linq.SqlClient.QueryConverter.VisitWhere(Expression sequence, LambdaExpression predicate) at System.Data.Linq.SqlClient.QueryConverter.VisitSequenceOperatorCall(MethodCallExpression mc) at System.Data.Linq.SqlClient.QueryConverter.VisitMethodCall(MethodCallExpression mc) at System.Data.Linq.SqlClient.QueryConverter.VisitInner(Expression node) at System.Data.Linq.SqlClient.QueryConverter.ConvertOuter(Expression node) at System.Data.Linq.SqlClient.SqlProvider.BuildQuery(Expression query, SqlNodeAnnotations annotations) at System.Data.Linq.SqlClient.SqlProvider.System.Data.Linq.Provider.IProvider.Execute(Expression query) at System.Data.Linq.DataQuery`1.System.Collections.Generic.IEnumerable.GetEnumerator() at System.Linq.SystemCore_EnumerableDebugView`1.get_Items()

    Read the article

  • How to create a dynamic Linq Join extension method

    - by Royd Brayshay
    There was a library of dynamic Linq extensions methods released as a sample with VS2008. I'd like to extend it with a Join method. The code below fails with a parameter miss match exception at run time. Can anyone find the problem? public static IQueryable Join(this IQueryable outer, IEnumerable inner, string outerSelector, string innerSelector, string resultsSelector, params object[] values) { if (inner == null) throw new ArgumentNullException("inner"); if (outerSelector == null) throw new ArgumentNullException("outerSelector"); if (innerSelector == null) throw new ArgumentNullException("innerSelector"); if (resultsSelector == null) throw new ArgumentNullException("resultsSelctor"); LambdaExpression outerSelectorLambda = DynamicExpression.ParseLambda(outer.ElementType, null, outerSelector, values); LambdaExpression innerSelectorLambda = DynamicExpression.ParseLambda(inner.AsQueryable().ElementType, null, innerSelector, values); ParameterExpression[] parameters = new ParameterExpression[] { Expression.Parameter(outer.ElementType, "outer"), Expression.Parameter(inner.AsQueryable().ElementType, "inner") }; LambdaExpression resultsSelectorLambda = DynamicExpression.ParseLambda(parameters, null, resultsSelector, values); return outer.Provider.CreateQuery( Expression.Call( typeof(Queryable), "Join", new Type[] { outer.ElementType, inner.AsQueryable().ElementType, outerSelectorLambda.Body.Type, innerSelectorLambda.Body.Type, resultsSelectorLambda.Body.Type }, outer.Expression, inner.AsQueryable().Expression, Expression.Quote(outerSelectorLambda), Expression.Quote(innerSelectorLambda), Expression.Quote(resultsSelectorLambda))); } I've now fixed it myself, here's the answer. Please vote it up or add a better one.

    Read the article

  • Dynamic Types and DynamicObject References in C#

    - by Rick Strahl
    I've been working a bit with C# custom dynamic types for several customers recently and I've seen some confusion in understanding how dynamic types are referenced. This discussion specifically centers around types that implement IDynamicMetaObjectProvider or subclass from DynamicObject as opposed to arbitrary type casts of standard .NET types. IDynamicMetaObjectProvider types  are treated special when they are cast to the dynamic type. Assume for a second that I've created my own implementation of a custom dynamic type called DynamicFoo which is about as simple of a dynamic class that I can think of:public class DynamicFoo : DynamicObject { Dictionary<string, object> properties = new Dictionary<string, object>(); public string Bar { get; set; } public DateTime Entered { get; set; } public override bool TryGetMember(GetMemberBinder binder, out object result) { result = null; if (!properties.ContainsKey(binder.Name)) return false; result = properties[binder.Name]; return true; } public override bool TrySetMember(SetMemberBinder binder, object value) { properties[binder.Name] = value; return true; } } This class has an internal dictionary member and I'm exposing this dictionary member through a dynamic by implementing DynamicObject. This implementation exposes the properties dictionary so the dictionary keys can be referenced like properties (foo.NewProperty = "Cool!"). I override TryGetMember() and TrySetMember() which are fired at runtime every time you access a 'property' on a dynamic instance of this DynamicFoo type. Strong Typing and Dynamic Casting I now can instantiate and use DynamicFoo in a couple of different ways: Strong TypingDynamicFoo fooExplicit = new DynamicFoo(); var fooVar = new DynamicFoo(); These two commands are essentially identical and use strong typing. The compiler generates identical code for both of them. The var statement is merely a compiler directive to infer the type of fooVar at compile time and so the type of fooExplicit is DynamicFoo, just like fooExplicit. This is very static - nothing dynamic about it - and it completely ignores the IDynamicMetaObjectProvider implementation of my class above as it's never used. Using either of these I can access the native properties:DynamicFoo fooExplicit = new DynamicFoo();// static typing assignmentsfooVar.Bar = "Barred!"; fooExplicit.Entered = DateTime.Now; // echo back static values Console.WriteLine(fooVar.Bar); Console.WriteLine(fooExplicit.Entered); but I have no access whatsoever to the properties dictionary. Basically this creates a strongly typed instance of the type with access only to the strongly typed interface. You get no dynamic behavior at all. The IDynamicMetaObjectProvider features don't kick in until you cast the type to dynamic. If I try to access a non-existing property on fooExplicit I get a compilation error that tells me that the property doesn't exist. Again, it's clearly and utterly non-dynamic. Dynamicdynamic fooDynamic = new DynamicFoo(); fooDynamic on the other hand is created as a dynamic type and it's a completely different beast. I can also create a dynamic by simply casting any type to dynamic like this:DynamicFoo fooExplicit = new DynamicFoo(); dynamic fooDynamic = fooExplicit; Note that dynamic typically doesn't require an explicit cast as the compiler automatically performs the cast so there's no need to use as dynamic. Dynamic functionality works at runtime and allows for the dynamic wrapper to look up and call members dynamically. A dynamic type will look for members to access or call in two places: Using the strongly typed members of the object Using theIDynamicMetaObjectProvider Interface methods to access members So rather than statically linking and calling a method or retrieving a property, the dynamic type looks up - at runtime  - where the value actually comes from. It's essentially late-binding which allows runtime determination what action to take when a member is accessed at runtime *if* the member you are accessing does not exist on the object. Class members are checked first before IDynamicMetaObjectProvider interface methods are kick in. All of the following works with the dynamic type:dynamic fooDynamic = new DynamicFoo(); // dynamic typing assignments fooDynamic.NewProperty = "Something new!"; fooDynamic.LastAccess = DateTime.Now; // dynamic assigning static properties fooDynamic.Bar = "dynamic barred"; fooDynamic.Entered = DateTime.Now; // echo back dynamic values Console.WriteLine(fooDynamic.NewProperty); Console.WriteLine(fooDynamic.LastAccess); Console.WriteLine(fooDynamic.Bar); Console.WriteLine(fooDynamic.Entered); The dynamic type can access the native class properties (Bar and Entered) and create and read new ones (NewProperty,LastAccess) all using a single type instance which is pretty cool. As you can see it's pretty easy to create an extensible type this way that can dynamically add members at runtime dynamically. The Alter Ego of IDynamicObject The key point here is that all three statements - explicit, var and dynamic - declare a new DynamicFoo(), but the dynamic declaration results in completely different behavior than the first two simply because the type has been cast to dynamic. Dynamic binding means that the type loses its typical strong typing, compile time features. You can see this easily in the Visual Studio code editor. As soon as you assign a value to a dynamic you lose Intellisense and you see which means there's no Intellisense and no compiler type checking on any members you apply to this instance. If you're new to the dynamic type it might seem really confusing that a single type can behave differently depending on how it is cast, but that's exactly what happens when you use a type that implements IDynamicMetaObjectProvider. Declare the type as its strong type name and you only get to access the native instance members of the type. Declare or cast it to dynamic and you get dynamic behavior which accesses native members plus it uses IDynamicMetaObjectProvider implementation to handle any missing member definitions by running custom code. You can easily cast objects back and forth between dynamic and the original type:dynamic fooDynamic = new DynamicFoo(); fooDynamic.NewProperty = "New Property Value"; DynamicFoo foo = fooDynamic; foo.Bar = "Barred"; Here the code starts out with a dynamic cast and a dynamic assignment. The code then casts back the value to the DynamicFoo. Notice that when casting from dynamic to DynamicFoo and back we typically do not have to specify the cast explicitly - the compiler can induce the type so I don't need to specify as dynamic or as DynamicFoo. Moral of the Story This easy interchange between dynamic and the underlying type is actually super useful, because it allows you to create extensible objects that can expose non-member data stores and expose them as an object interface. You can create an object that hosts a number of strongly typed properties and then cast the object to dynamic and add additional dynamic properties to the same type at runtime. You can easily switch back and forth between the strongly typed instance to access the well-known strongly typed properties and to dynamic for the dynamic properties added at runtime. Keep in mind that dynamic object access has quite a bit of overhead and is definitely slower than strongly typed binding, so if you're accessing the strongly typed parts of your objects you definitely want to use a strongly typed reference. Reserve dynamic for the dynamic members to optimize your code. The real beauty of dynamic is that with very little effort you can build expandable objects or objects that expose different data stores to an object interface. I'll have more on this in my next post when I create a customized and extensible Expando object based on DynamicObject.© Rick Strahl, West Wind Technologies, 2005-2012Posted in CSharp  .NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Is LINQ to SQL deprecated?

    - by Mayo
    Back in late 2008 there was alot of debate about the future of LINQ to SQL. Many suggested that Microsoft's investments in the Entity Framework in .NET 4.0 were a sign that LINQ to SQL had no future. I figured I'd wait before making my own decision since folks were not in agreement. Fast-forward 18 months and I've got vendors providing solutions that rely on LINQ to SQL and I have personally given it a try and really enjoyed working with it. I figured it was here to stay. But I'm reading a new book (C# 4.0 How-To by Ben Watson) and in chapter 21 (LINQ), he suggests that it "has been more or less deprecated by Microsoft" and suggests using LINQ to Entity Framework. My question to you is whether or not LINQ to SQL is officially deprecated and/or if authoritative entities (Microsoft, Scott Gu, etc.) officially suggest using LINQ to Entities instead of LINQ to SQL.

    Read the article

  • Short-circuit evaluation and LINQ-to-NHibernate

    - by afsharm
    It seems that LINQ-to-NHibernate and LINQ-to-SQL does not support short-circuit evaluation in where clause of query. Am I right? Is there any workaround? May it be added to next versions of LINQ-to-NHibernate and LINQ-to-SQL? for more information plz see followings: http://stackoverflow.com/questions/772261/the-or-operator-in-linq-with-c http://stackoverflow.com/questions/2306302/why-ordinary-laws-in-evaluting-boolean-expression-does-not-fit-into-linq

    Read the article

  • Creating a dynamic, extensible C# Expando Object

    - by Rick Strahl
    I love dynamic functionality in a strongly typed language because it offers us the best of both worlds. In C# (or any of the main .NET languages) we now have the dynamic type that provides a host of dynamic features for the static C# language. One place where I've found dynamic to be incredibly useful is in building extensible types or types that expose traditionally non-object data (like dictionaries) in easier to use and more readable syntax. I wrote about a couple of these for accessing old school ADO.NET DataRows and DataReaders more easily for example. These classes are dynamic wrappers that provide easier syntax and auto-type conversions which greatly simplifies code clutter and increases clarity in existing code. ExpandoObject in .NET 4.0 Another great use case for dynamic objects is the ability to create extensible objects - objects that start out with a set of static members and then can add additional properties and even methods dynamically. The .NET 4.0 framework actually includes an ExpandoObject class which provides a very dynamic object that allows you to add properties and methods on the fly and then access them again. For example with ExpandoObject you can do stuff like this:dynamic expand = new ExpandoObject(); expand.Name = "Rick"; expand.HelloWorld = (Func<string, string>) ((string name) => { return "Hello " + name; }); Console.WriteLine(expand.Name); Console.WriteLine(expand.HelloWorld("Dufus")); Internally ExpandoObject uses a Dictionary like structure and interface to store properties and methods and then allows you to add and access properties and methods easily. As cool as ExpandoObject is it has a few shortcomings too: It's a sealed type so you can't use it as a base class It only works off 'properties' in the internal Dictionary - you can't expose existing type data It doesn't serialize to XML or with DataContractSerializer/DataContractJsonSerializer Expando - A truly extensible Object ExpandoObject is nice if you just need a dynamic container for a dictionary like structure. However, if you want to build an extensible object that starts out with a set of strongly typed properties and then allows you to extend it, ExpandoObject does not work because it's a sealed class that can't be inherited. I started thinking about this very scenario for one of my applications I'm building for a customer. In this system we are connecting to various different user stores. Each user store has the same basic requirements for username, password, name etc. But then each store also has a number of extended properties that is available to each application. In the real world scenario the data is loaded from the database in a data reader and the known properties are assigned from the known fields in the database. All unknown fields are then 'added' to the expando object dynamically. In the past I've done this very thing with a separate property - Properties - just like I do for this class. But the property and dictionary syntax is not ideal and tedious to work with. I started thinking about how to represent these extra property structures. One way certainly would be to add a Dictionary, or an ExpandoObject to hold all those extra properties. But wouldn't it be nice if the application could actually extend an existing object that looks something like this as you can with the Expando object:public class User : Westwind.Utilities.Dynamic.Expando { public string Email { get; set; } public string Password { get; set; } public string Name { get; set; } public bool Active { get; set; } public DateTime? ExpiresOn { get; set; } } and then simply start extending the properties of this object dynamically? Using the Expando object I describe later you can now do the following:[TestMethod] public void UserExampleTest() { var user = new User(); // Set strongly typed properties user.Email = "[email protected]"; user.Password = "nonya123"; user.Name = "Rickochet"; user.Active = true; // Now add dynamic properties dynamic duser = user; duser.Entered = DateTime.Now; duser.Accesses = 1; // you can also add dynamic props via indexer user["NickName"] = "AntiSocialX"; duser["WebSite"] = "http://www.west-wind.com/weblog"; // Access strong type through dynamic ref Assert.AreEqual(user.Name,duser.Name); // Access strong type through indexer Assert.AreEqual(user.Password,user["Password"]); // access dyanmically added value through indexer Assert.AreEqual(duser.Entered,user["Entered"]); // access index added value through dynamic Assert.AreEqual(user["NickName"],duser.NickName); // loop through all properties dynamic AND strong type properties (true) foreach (var prop in user.GetProperties(true)) { object val = prop.Value; if (val == null) val = "null"; Console.WriteLine(prop.Key + ": " + val.ToString()); } } As you can see this code somewhat blurs the line between a static and dynamic type. You start with a strongly typed object that has a fixed set of properties. You can then cast the object to dynamic (as I discussed in my last post) and add additional properties to the object. You can also use an indexer to add dynamic properties to the object. To access the strongly typed properties you can use either the strongly typed instance, the indexer or the dynamic cast of the object. Personally I think it's kinda cool to have an easy way to access strongly typed properties by string which can make some data scenarios much easier. To access the 'dynamically added' properties you can use either the indexer on the strongly typed object, or property syntax on the dynamic cast. Using the dynamic type allows all three modes to work on both strongly typed and dynamic properties. Finally you can iterate over all properties, both dynamic and strongly typed if you chose. Lots of flexibility. Note also that by default the Expando object works against the (this) instance meaning it extends the current object. You can also pass in a separate instance to the constructor in which case that object will be used to iterate over to find properties rather than this. Using this approach provides some really interesting functionality when use the dynamic type. To use this we have to add an explicit constructor to the Expando subclass:public class User : Westwind.Utilities.Dynamic.Expando { public string Email { get; set; } public string Password { get; set; } public string Name { get; set; } public bool Active { get; set; } public DateTime? ExpiresOn { get; set; } public User() : base() { } // only required if you want to mix in seperate instance public User(object instance) : base(instance) { } } to allow the instance to be passed. When you do you can now do:[TestMethod] public void ExpandoMixinTest() { // have Expando work on Addresses var user = new User( new Address() ); // cast to dynamicAccessToPropertyTest dynamic duser = user; // Set strongly typed properties duser.Email = "[email protected]"; user.Password = "nonya123"; // Set properties on address object duser.Address = "32 Kaiea"; //duser.Phone = "808-123-2131"; // set dynamic properties duser.NonExistantProperty = "This works too"; // shows default value Address.Phone value Console.WriteLine(duser.Phone); } Using the dynamic cast in this case allows you to access *three* different 'objects': The strong type properties, the dynamically added properties in the dictionary and the properties of the instance passed in! Effectively this gives you a way to simulate multiple inheritance (which is scary - so be very careful with this, but you can do it). How Expando works Behind the scenes Expando is a DynamicObject subclass as I discussed in my last post. By implementing a few of DynamicObject's methods you can basically create a type that can trap 'property missing' and 'method missing' operations. When you access a non-existant property a known method is fired that our code can intercept and provide a value for. Internally Expando uses a custom dictionary implementation to hold the dynamic properties you might add to your expandable object. Let's look at code first. The code for the Expando type is straight forward and given what it provides relatively short. Here it is.using System; using System.Collections.Generic; using System.Linq; using System.Dynamic; using System.Reflection; namespace Westwind.Utilities.Dynamic { /// <summary> /// Class that provides extensible properties and methods. This /// dynamic object stores 'extra' properties in a dictionary or /// checks the actual properties of the instance. /// /// This means you can subclass this expando and retrieve either /// native properties or properties from values in the dictionary. /// /// This type allows you three ways to access its properties: /// /// Directly: any explicitly declared properties are accessible /// Dynamic: dynamic cast allows access to dictionary and native properties/methods /// Dictionary: Any of the extended properties are accessible via IDictionary interface /// </summary> [Serializable] public class Expando : DynamicObject, IDynamicMetaObjectProvider { /// <summary> /// Instance of object passed in /// </summary> object Instance; /// <summary> /// Cached type of the instance /// </summary> Type InstanceType; PropertyInfo[] InstancePropertyInfo { get { if (_InstancePropertyInfo == null && Instance != null) _InstancePropertyInfo = Instance.GetType().GetProperties(BindingFlags.Instance | BindingFlags.Public | BindingFlags.DeclaredOnly); return _InstancePropertyInfo; } } PropertyInfo[] _InstancePropertyInfo; /// <summary> /// String Dictionary that contains the extra dynamic values /// stored on this object/instance /// </summary> /// <remarks>Using PropertyBag to support XML Serialization of the dictionary</remarks> public PropertyBag Properties = new PropertyBag(); //public Dictionary<string,object> Properties = new Dictionary<string, object>(); /// <summary> /// This constructor just works off the internal dictionary and any /// public properties of this object. /// /// Note you can subclass Expando. /// </summary> public Expando() { Initialize(this); } /// <summary> /// Allows passing in an existing instance variable to 'extend'. /// </summary> /// <remarks> /// You can pass in null here if you don't want to /// check native properties and only check the Dictionary! /// </remarks> /// <param name="instance"></param> public Expando(object instance) { Initialize(instance); } protected virtual void Initialize(object instance) { Instance = instance; if (instance != null) InstanceType = instance.GetType(); } /// <summary> /// Try to retrieve a member by name first from instance properties /// followed by the collection entries. /// </summary> /// <param name="binder"></param> /// <param name="result"></param> /// <returns></returns> public override bool TryGetMember(GetMemberBinder binder, out object result) { result = null; // first check the Properties collection for member if (Properties.Keys.Contains(binder.Name)) { result = Properties[binder.Name]; return true; } // Next check for Public properties via Reflection if (Instance != null) { try { return GetProperty(Instance, binder.Name, out result); } catch { } } // failed to retrieve a property result = null; return false; } /// <summary> /// Property setter implementation tries to retrieve value from instance /// first then into this object /// </summary> /// <param name="binder"></param> /// <param name="value"></param> /// <returns></returns> public override bool TrySetMember(SetMemberBinder binder, object value) { // first check to see if there's a native property to set if (Instance != null) { try { bool result = SetProperty(Instance, binder.Name, value); if (result) return true; } catch { } } // no match - set or add to dictionary Properties[binder.Name] = value; return true; } /// <summary> /// Dynamic invocation method. Currently allows only for Reflection based /// operation (no ability to add methods dynamically). /// </summary> /// <param name="binder"></param> /// <param name="args"></param> /// <param name="result"></param> /// <returns></returns> public override bool TryInvokeMember(InvokeMemberBinder binder, object[] args, out object result) { if (Instance != null) { try { // check instance passed in for methods to invoke if (InvokeMethod(Instance, binder.Name, args, out result)) return true; } catch { } } result = null; return false; } /// <summary> /// Reflection Helper method to retrieve a property /// </summary> /// <param name="instance"></param> /// <param name="name"></param> /// <param name="result"></param> /// <returns></returns> protected bool GetProperty(object instance, string name, out object result) { if (instance == null) instance = this; var miArray = InstanceType.GetMember(name, BindingFlags.Public | BindingFlags.GetProperty | BindingFlags.Instance); if (miArray != null && miArray.Length > 0) { var mi = miArray[0]; if (mi.MemberType == MemberTypes.Property) { result = ((PropertyInfo)mi).GetValue(instance,null); return true; } } result = null; return false; } /// <summary> /// Reflection helper method to set a property value /// </summary> /// <param name="instance"></param> /// <param name="name"></param> /// <param name="value"></param> /// <returns></returns> protected bool SetProperty(object instance, string name, object value) { if (instance == null) instance = this; var miArray = InstanceType.GetMember(name, BindingFlags.Public | BindingFlags.SetProperty | BindingFlags.Instance); if (miArray != null && miArray.Length > 0) { var mi = miArray[0]; if (mi.MemberType == MemberTypes.Property) { ((PropertyInfo)mi).SetValue(Instance, value, null); return true; } } return false; } /// <summary> /// Reflection helper method to invoke a method /// </summary> /// <param name="instance"></param> /// <param name="name"></param> /// <param name="args"></param> /// <param name="result"></param> /// <returns></returns> protected bool InvokeMethod(object instance, string name, object[] args, out object result) { if (instance == null) instance = this; // Look at the instanceType var miArray = InstanceType.GetMember(name, BindingFlags.InvokeMethod | BindingFlags.Public | BindingFlags.Instance); if (miArray != null && miArray.Length > 0) { var mi = miArray[0] as MethodInfo; result = mi.Invoke(Instance, args); return true; } result = null; return false; } /// <summary> /// Convenience method that provides a string Indexer /// to the Properties collection AND the strongly typed /// properties of the object by name. /// /// // dynamic /// exp["Address"] = "112 nowhere lane"; /// // strong /// var name = exp["StronglyTypedProperty"] as string; /// </summary> /// <remarks> /// The getter checks the Properties dictionary first /// then looks in PropertyInfo for properties. /// The setter checks the instance properties before /// checking the Properties dictionary. /// </remarks> /// <param name="key"></param> /// /// <returns></returns> public object this[string key] { get { try { // try to get from properties collection first return Properties[key]; } catch (KeyNotFoundException ex) { // try reflection on instanceType object result = null; if (GetProperty(Instance, key, out result)) return result; // nope doesn't exist throw; } } set { if (Properties.ContainsKey(key)) { Properties[key] = value; return; } // check instance for existance of type first var miArray = InstanceType.GetMember(key, BindingFlags.Public | BindingFlags.GetProperty); if (miArray != null && miArray.Length > 0) SetProperty(Instance, key, value); else Properties[key] = value; } } /// <summary> /// Returns and the properties of /// </summary> /// <param name="includeProperties"></param> /// <returns></returns> public IEnumerable<KeyValuePair<string,object>> GetProperties(bool includeInstanceProperties = false) { if (includeInstanceProperties && Instance != null) { foreach (var prop in this.InstancePropertyInfo) yield return new KeyValuePair<string, object>(prop.Name, prop.GetValue(Instance, null)); } foreach (var key in this.Properties.Keys) yield return new KeyValuePair<string, object>(key, this.Properties[key]); } /// <summary> /// Checks whether a property exists in the Property collection /// or as a property on the instance /// </summary> /// <param name="item"></param> /// <returns></returns> public bool Contains(KeyValuePair<string, object> item, bool includeInstanceProperties = false) { bool res = Properties.ContainsKey(item.Key); if (res) return true; if (includeInstanceProperties && Instance != null) { foreach (var prop in this.InstancePropertyInfo) { if (prop.Name == item.Key) return true; } } return false; } } } Although the Expando class supports an indexer, it doesn't actually implement IDictionary or even IEnumerable. It only provides the indexer and Contains() and GetProperties() methods, that work against the Properties dictionary AND the internal instance. The reason for not implementing IDictionary is that a) it doesn't add much value since you can access the Properties dictionary directly and that b) I wanted to keep the interface to class very lean so that it can serve as an entity type if desired. Implementing these IDictionary (or even IEnumerable) causes LINQ extension methods to pop up on the type which obscures the property interface and would only confuse the purpose of the type. IDictionary and IEnumerable are also problematic for XML and JSON Serialization - the XML Serializer doesn't serialize IDictionary<string,object>, nor does the DataContractSerializer. The JavaScriptSerializer does serialize, but it treats the entire object like a dictionary and doesn't serialize the strongly typed properties of the type, only the dictionary values which is also not desirable. Hence the decision to stick with only implementing the indexer to support the user["CustomProperty"] functionality and leaving iteration functions to the publicly exposed Properties dictionary. Note that the Dictionary used here is a custom PropertyBag class I created to allow for serialization to work. One important aspect for my apps is that whatever custom properties get added they have to be accessible to AJAX clients since the particular app I'm working on is a SIngle Page Web app where most of the Web access is through JSON AJAX calls. PropertyBag can serialize to XML and one way serialize to JSON using the JavaScript serializer (not the DCS serializers though). The key components that make Expando work in this code are the Properties Dictionary and the TryGetMember() and TrySetMember() methods. The Properties collection is public so if you choose you can explicitly access the collection to get better performance or to manipulate the members in internal code (like loading up dynamic values form a database). Notice that TryGetMember() and TrySetMember() both work against the dictionary AND the internal instance to retrieve and set properties. This means that user["Name"] works against native properties of the object as does user["Name"] = "RogaDugDog". What's your Use Case? This is still an early prototype but I've plugged it into one of my customer's applications and so far it's working very well. The key features for me were the ability to easily extend the type with values coming from a database and exposing those values in a nice and easy to use manner. I'm also finding that using this type of object for ViewModels works very well to add custom properties to view models. I suspect there will be lots of uses for this - I've been using the extra dictionary approach to extensibility for years - using a dynamic type to make the syntax cleaner is just a bonus here. What can you think of to use this for? Resources Source Code and Tests (GitHub) Also integrated in Westwind.Utilities of the West Wind Web Toolkit West Wind Utilities NuGet© Rick Strahl, West Wind Technologies, 2005-2012Posted in CSharp  .NET  Dynamic Types   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • SQL Server and Hyper-V Dynamic Memory - Part 1

    - by SQLOS Team
    SQL and Dynamic Memory Blog Post Series   Hyper-V Dynamic Memory is a new feature in Windows Server 2008 R2 SP1 that allows the memory assigned to guest virtual machines to vary according to demand. Using this feature with SQL Server is supported, but how well does it work in an environment where available memory can vary dynamically, especially since SQL Server likes memory, and is not very eager to let go of it? The next three posts will look at this question in detail. In Part 1 Serdar Sutay, a program manager in the Windows Hyper-V team, introduces Dynamic Memory with an overview of the basic architecture, configuration and monitoring concepts. In subsequent parts we will look at SQL Server memory handling, and develop some guidelines on using SQL Server with Dynamic Memory.   Part 1: Dynamic Memory Introduction   In virtualized environments memory is often the bottleneck for reaching higher VM densities. In Windows Server 2008 R2 SP1 Hyper-V introduced a new feature “Dynamic Memory” to improve VM densities on Hyper-V hosts. Dynamic Memory increases the memory utilization in virtualized environments by enabling VM memory to be changed dynamically when the VM is running.   This brings up the question of how to utilize this feature with SQL Server VMs as SQL Server performance is very sensitive to the memory being used. In the next three posts we’ll discuss the internals of Dynamic Memory, SQL Server Memory Management and how to use Dynamic Memory with SQL Server VMs.   Memory Utilization Efficiency in Virtualized Environments   The primary reason memory is usually the bottleneck for higher VM densities is that users tend to be generous when assigning memory to their VMs. Here are some memory sizing practices we’ve heard from customers:   ·         I assign 4 GB of memory to my VMs. I don’t know if all of it is being used by the applications but no one complains. ·         I take the minimum system requirements and add 50% more. ·         I go with the recommendations provided by my software vendor.   In reality correctly sizing a virtual machine requires significant effort to monitor the memory usage of the applications. Since this is not done in most environments, VMs are usually over-provisioned in terms of memory. In other words, a SQL Server VM that is assigned 4 GB of memory may not need to use 4 GB.   How does Dynamic Memory help?   Dynamic Memory improves the memory utilization by removing the requirement to determine the memory need for an application. Hyper-V determines the memory needed by applications in the VM by evaluating the memory usage information in the guest with Dynamic Memory. VMs can start with a small amount of memory and they can be assigned more memory dynamically based on the workload of applications running inside.   Overview of Dynamic Memory Concepts   ·         Startup Memory: Startup Memory is the starting amount of memory when Dynamic Memory is enabled for a VM. Dynamic Memory will make sure that this amount of memory is always assigned to the VMs by default.   ·         Maximum Memory: Maximum Memory specifies the maximum amount of memory that a VM can grow to with Dynamic Memory. ·         Memory Demand: Memory Demand is the amount determined by Dynamic Memory as the memory needed by the applications in the VM. In Windows Server 2008 R2 SP1, this is equal to the total amount of committed memory of the VM. ·         Memory Buffer: Memory Buffer is the amount of memory assigned to the VMs in addition to their memory demand to satisfy immediate memory requirements and file cache needs.   Once Dynamic Memory is enabled for a VM, it will start with the “Startup Memory”. After the boot process Dynamic Memory will determine the “Memory Demand” of the VM. Based on this memory demand it will determine the amount of “Memory Buffer” that needs to be assigned to the VM. Dynamic Memory will assign the total of “Memory Demand” and “Memory Buffer” to the VM as long as this value is less than “Maximum Memory” and as long as physical memory is available on the host.   What happens when there is not enough physical memory available on the host?   Once there is not enough physical memory on the host to satisfy VM needs, Dynamic Memory will assign less than needed amount of memory to the VMs based on their importance. A concept known as “Memory Weight” is used to determine how much VMs should be penalized based on their needed amount of memory. “Memory Weight” is a configuration setting on the VM. It can be configured to be higher for the VMs with high performance requirements. Under high memory pressure on the host, the “Memory Weight” of the VMs are evaluated in a relative manner and the VMs with lower relative “Memory Weight” will be penalized more than the ones with higher “Memory Weight”.   Dynamic Memory Configuration   Based on these concepts “Startup Memory”, “Maximum Memory”, “Memory Buffer” and “Memory Weight” can be configured as shown below in Windows Server 2008 R2 SP1 Hyper-V Manager. Memory Demand is automatically calculated by Dynamic Memory once VMs start running.     Dynamic Memory Monitoring    In Windows Server 2008 R2 SP1, Hyper-V Manager displays the memory status of VMs in the following three columns:         ·         Assigned Memory represents the current physical memory assigned to the VM. In regular conditions this will be equal to the sum of “Memory Demand” and “Memory Buffer” assigned to the VM. When there is not enough memory on the host, this value can go below the Memory Demand determined for the VM. ·         Memory Demand displays the current “Memory Demand” determined for the VM. ·         Memory Status displays the current memory status of the VM. This column can represent three values for a VM: o   OK: In this condition the VM is assigned the total of Memory Demand and Memory Buffer it needs. o   Low: In this condition the VM is assigned all the Memory Demand and a certain percentage of the Memory Buffer it needs. o   Warning: In this condition the VM is assigned a lower memory than its Memory Demand. When VMs are running in this condition, it’s likely that they will exhibit performance problems due to internal paging happening in the VM.    So far so good! But how does it work with SQL Server?   SQL Server is aggressive in terms of memory usage for good reasons. This raises the question: How do SQL Server and Dynamic Memory work together? To understand the full story, we’ll first need to understand how SQL Server Memory Management works. This will be covered in our second post in “SQL and Dynamic Memory” series. Meanwhile if you want to dive deeper into Dynamic Memory you can check the below posts from the Windows Virtualization Team Blog:   http://blogs.technet.com/virtualization/archive/2010/03/18/dynamic-memory-coming-to-hyper-v.aspx   http://blogs.technet.com/virtualization/archive/2010/03/25/dynamic-memory-coming-to-hyper-v-part-2.aspx   http://blogs.technet.com/virtualization/archive/2010/04/07/dynamic-memory-coming-to-hyper-v-part-3.aspx   http://blogs.technet.com/b/virtualization/archive/2010/04/21/dynamic-memory-coming-to-hyper-v-part-4.aspx   http://blogs.technet.com/b/virtualization/archive/2010/05/20/dynamic-memory-coming-to-hyper-v-part-5.aspx   http://blogs.technet.com/b/virtualization/archive/2010/07/12/dynamic-memory-coming-to-hyper-v-part-6.aspx   - Serdar Sutay   Originally posted at http://blogs.msdn.com/b/sqlosteam/

    Read the article

  • SQL Server and Hyper-V Dynamic Memory - Part 1

    - by SQLOS Team
    SQL and Dynamic Memory Blog Post Series   Hyper-V Dynamic Memory is a new feature in Windows Server 2008 R2 SP1 that allows the memory assigned to guest virtual machines to vary according to demand. Using this feature with SQL Server is supported, but how well does it work in an environment where available memory can vary dynamically, especially since SQL Server likes memory, and is not very eager to let go of it? The next three posts will look at this question in detail. In Part 1 Serdar Sutay, a program manager in the Windows Hyper-V team, introduces Dynamic Memory with an overview of the basic architecture, configuration and monitoring concepts. In subsequent parts we will look at SQL Server memory handling, and develop some guidelines on using SQL Server with Dynamic Memory.   Part 1: Dynamic Memory Introduction   In virtualized environments memory is often the bottleneck for reaching higher VM densities. In Windows Server 2008 R2 SP1 Hyper-V introduced a new feature “Dynamic Memory” to improve VM densities on Hyper-V hosts. Dynamic Memory increases the memory utilization in virtualized environments by enabling VM memory to be changed dynamically when the VM is running.   This brings up the question of how to utilize this feature with SQL Server VMs as SQL Server performance is very sensitive to the memory being used. In the next three posts we’ll discuss the internals of Dynamic Memory, SQL Server Memory Management and how to use Dynamic Memory with SQL Server VMs.   Memory Utilization Efficiency in Virtualized Environments   The primary reason memory is usually the bottleneck for higher VM densities is that users tend to be generous when assigning memory to their VMs. Here are some memory sizing practices we’ve heard from customers:   ·         I assign 4 GB of memory to my VMs. I don’t know if all of it is being used by the applications but no one complains. ·         I take the minimum system requirements and add 50% more. ·         I go with the recommendations provided by my software vendor.   In reality correctly sizing a virtual machine requires significant effort to monitor the memory usage of the applications. Since this is not done in most environments, VMs are usually over-provisioned in terms of memory. In other words, a SQL Server VM that is assigned 4 GB of memory may not need to use 4 GB.   How does Dynamic Memory help?   Dynamic Memory improves the memory utilization by removing the requirement to determine the memory need for an application. Hyper-V determines the memory needed by applications in the VM by evaluating the memory usage information in the guest with Dynamic Memory. VMs can start with a small amount of memory and they can be assigned more memory dynamically based on the workload of applications running inside.   Overview of Dynamic Memory Concepts   ·         Startup Memory: Startup Memory is the starting amount of memory when Dynamic Memory is enabled for a VM. Dynamic Memory will make sure that this amount of memory is always assigned to the VMs by default.   ·         Maximum Memory: Maximum Memory specifies the maximum amount of memory that a VM can grow to with Dynamic Memory. ·         Memory Demand: Memory Demand is the amount determined by Dynamic Memory as the memory needed by the applications in the VM. In Windows Server 2008 R2 SP1, this is equal to the total amount of committed memory of the VM. ·         Memory Buffer: Memory Buffer is the amount of memory assigned to the VMs in addition to their memory demand to satisfy immediate memory requirements and file cache needs.   Once Dynamic Memory is enabled for a VM, it will start with the “Startup Memory”. After the boot process Dynamic Memory will determine the “Memory Demand” of the VM. Based on this memory demand it will determine the amount of “Memory Buffer” that needs to be assigned to the VM. Dynamic Memory will assign the total of “Memory Demand” and “Memory Buffer” to the VM as long as this value is less than “Maximum Memory” and as long as physical memory is available on the host.   What happens when there is not enough physical memory available on the host?   Once there is not enough physical memory on the host to satisfy VM needs, Dynamic Memory will assign less than needed amount of memory to the VMs based on their importance. A concept known as “Memory Weight” is used to determine how much VMs should be penalized based on their needed amount of memory. “Memory Weight” is a configuration setting on the VM. It can be configured to be higher for the VMs with high performance requirements. Under high memory pressure on the host, the “Memory Weight” of the VMs are evaluated in a relative manner and the VMs with lower relative “Memory Weight” will be penalized more than the ones with higher “Memory Weight”.   Dynamic Memory Configuration   Based on these concepts “Startup Memory”, “Maximum Memory”, “Memory Buffer” and “Memory Weight” can be configured as shown below in Windows Server 2008 R2 SP1 Hyper-V Manager. Memory Demand is automatically calculated by Dynamic Memory once VMs start running.     Dynamic Memory Monitoring    In Windows Server 2008 R2 SP1, Hyper-V Manager displays the memory status of VMs in the following three columns:         ·         Assigned Memory represents the current physical memory assigned to the VM. In regular conditions this will be equal to the sum of “Memory Demand” and “Memory Buffer” assigned to the VM. When there is not enough memory on the host, this value can go below the Memory Demand determined for the VM. ·         Memory Demand displays the current “Memory Demand” determined for the VM. ·         Memory Status displays the current memory status of the VM. This column can represent three values for a VM: o   OK: In this condition the VM is assigned the total of Memory Demand and Memory Buffer it needs. o   Low: In this condition the VM is assigned all the Memory Demand and a certain percentage of the Memory Buffer it needs. o   Warning: In this condition the VM is assigned a lower memory than its Memory Demand. When VMs are running in this condition, it’s likely that they will exhibit performance problems due to internal paging happening in the VM.    So far so good! But how does it work with SQL Server?   SQL Server is aggressive in terms of memory usage for good reasons. This raises the question: How do SQL Server and Dynamic Memory work together? To understand the full story, we’ll first need to understand how SQL Server Memory Management works. This will be covered in our second post in “SQL and Dynamic Memory” series. Meanwhile if you want to dive deeper into Dynamic Memory you can check the below posts from the Windows Virtualization Team Blog:   http://blogs.technet.com/virtualization/archive/2010/03/18/dynamic-memory-coming-to-hyper-v.aspx   http://blogs.technet.com/virtualization/archive/2010/03/25/dynamic-memory-coming-to-hyper-v-part-2.aspx   http://blogs.technet.com/virtualization/archive/2010/04/07/dynamic-memory-coming-to-hyper-v-part-3.aspx   http://blogs.technet.com/b/virtualization/archive/2010/04/21/dynamic-memory-coming-to-hyper-v-part-4.aspx   http://blogs.technet.com/b/virtualization/archive/2010/05/20/dynamic-memory-coming-to-hyper-v-part-5.aspx   http://blogs.technet.com/b/virtualization/archive/2010/07/12/dynamic-memory-coming-to-hyper-v-part-6.aspx   - Serdar Sutay   Originally posted at http://blogs.msdn.com/b/sqlosteam/

    Read the article

  • Linq Tutorial

    - by SAMIR BHOGAYTA
    Microsoft LINQ Tutorials http://www.deitel.com/ResourceCenters/Programming/MicrosoftLINQ/Tutorials/tabid/2673/Default.aspx Introducing C# 3 – Part 4 LINQ http://www.programmersheaven.com/2/CSharp3-4 101 LINQ Samples http://msdn.microsoft.com/en-us/vcsharp/aa336746.aspx What is LinQ http://www.dotnetspider.com/forum/173039-what-linq-net.aspx Beginners Guides http://www.progtalk.com/viewarticle.aspx?articleid=68 http://www.programmersheaven.com/2/CSharp3-4 http://dotnetslackers.com/articles/csharp/introducinglinq1.aspx Using Linq http://weblogs.asp.net/scottgu/archive/2006/05/14/446412.aspx Step By Step Articles http://www.codeproject.com/KB/linq/linqtutorial.aspx http://www.codeproject.com/KB/linq/linqtutorial2.aspx http://www.codeproject.com/KB/linq/linqtutorial3.aspx

    Read the article

  • Linq To SQL: Behaviour for table field which is NotNull and having Default value or binding

    - by kaushalparik27
    I found this something interesting while wandering over community which I would like to share. The post is whole about: DBML is not considering the table field's "Default value or Binding" setting which is a NotNull. I mean the field which can not be null but having default value set needs to be set IsDbGenerated = true in DBML file explicitly.Consider this situation: There is a simple tblEmployee table with below structure: The fields are simple. EmployeeID is a Primary Key with Identity Specification = True with Identity Seed = 1 to autogenerate numeric value for this field. EmployeeName and their EmailAddress to store in rest of 2 fields. And the last one is "DateAdded" with DateTime datatype which doesn't allow NULL but having Default Value/Binding with "GetDate()". That means if we don't pass any value to this field then SQL will insert current date in "DateAdded" field.So, I start with a new website, add a DBML file and dropped the said table to generate LINQ To SQL context class. Finally, I write a simple code snippet to insert data into the tblEmployee table; BUT, I am not passing any value to "DateAdded" field. Because I am considering SQL Server's "Default Value or Binding (GetDate())" setting to this field and understand that SQL will insert current date to this field.        using (TestDatabaseDataContext context = new TestDatabaseDataContext())        {            tblEmployee tblEmpObjet = new tblEmployee();            tblEmpObjet.EmployeeName = "KaushaL";            tblEmpObjet.EmployeeEmailAddress = "[email protected]";            context.tblEmployees.InsertOnSubmit(tblEmpObjet);            context.SubmitChanges();        }Here comes the twist when application give me below error:  This is something not expecting! From the error it clearly depicts that LINQ is passing NULL value to "DateAdded" Field while according to my understanding it should respect Sql Server's "Default value or Binding" setting for this field. A bit googling and I found very interesting related to this problem.When we set Primary Key to any field with "Identity Specification" Property set to true; DBML set one important property "IsDbGenerated=true" for this field. BUT, when we set "Default Value or Biding" property for some field; we need to explicitly tell the DBML/LINQ to let it know that this field is having default binding at DB side that needs to be respected if I don't pass any value. So, the solution is: You need to explicitly set "IsDbGenerated=true" for such field to tell the LINQ that the field is having default value or binding at Sql Server side so, please don't worry if i don't pass any value for it.You can select the field and set this property from property window in DBML Designer file or write the property in DBML.Designer.cs file directly. I have attached a working example with required table script with this post here. I hope this would be helpful for someone hunting for the same. Happy Discovery!

    Read the article

  • My "Ah-Ha!" Moment With LINQ

    - by CompiledMonkey
    I'm currently working on a set of web services that will be consumed by iPhone and Android devices. Given how often the web services will be called in a relatively short period of time, the data access for the web services has proven to be a very important aspect of the project. In choosing the technology stack for implementation, I opted for LINQ to SQL as it was something I had dabbled with in the past and wanted to learn more about in a real environment. The query optimization happening behind...(read more)

    Read the article

  • How can I set up multiple dynamic users to update a single network's dynamic IP

    - by d3vid
    On my home network we are allocated a dynamic IP. I want to configure ddclient (or an equivalent) to send IP updates to DNS-O-Matic/OpenDNS only when I am on my home network. I do not want to send IP updates when I'm on my office network. Can this be done? I am prepared to use different FLOSS software or a different free DNS service. Additionally, there are multiple users who may be on the home network or away on other networks. How can we configure ddclient on each machine so that whoever is on the home network updates the IP (i.e. so we don't have to rely on a particular machine being on the network to update the IP). OpenDNS support have said we can't simply install updater software on each machine.

    Read the article

  • Simple way to return anonymous types (to make MVC using LINQ possible)

    - by BlueRaja The Green Unicorn
    I'd like to implement MVC while using LINQ (specifically, LINQ-to-entities). The way I would do this is have the Controller generate (or call something which generates) the result-set using LINQ, then return that to the View to display the data. The problem is, if I do: return (from o in myTable select o); All the columns are read from the database, even the ones (potentially dozens) I don't want. And - more importantly - I can't do something like this: return (from o in myTable select new { o.column }); because there is no way to make anonymous types type-safe! I know for sure there is no nice, clean way of doing this in 3.5 (this is not clean...), but what about 4.0? Is there anything planned, or even proposed? Without something like duck-typing-for-LINQ, or type-safe anonymous return values (it seems to me the compiler should certainly be capable of that), it appears to be nearly impossible to cleanly separate the Controller from the View.

    Read the article

  • C# Dynamic Query Without A Database Model

    - by hitopp
    I have been searching the web for a solution to dynamic queries. I have found many different solutions (e.g. Linq to Sql, Dynamic Linq Expressions, Dynamic Query), but all of these solutions involve some sort of previous knowledge of the database (like a model in code). Maybe what I am asking is way off the deep end, but is there any possible way to dynamically query a database without a model? For example, a database has a Customers table with the following columns: CustomerID Name FavoriteColor I want to create a query as SELECT Name FROM Customers WHERE @0 = @1, where the two placeholders are populated dynamically. The resulting data does not tie to a model class and I would prefer to use some sort of framework to build the queries, not simple string concatenation. The System.Linq.Dynamic namespace came really close to fulfilling this request, but it uses a database model. I realize this is crazy, but I was just curious.

    Read the article

  • SQL Server and Hyper-V Dynamic Memory Part 3

    - by SQLOS Team
    In parts 1 and 2 of this series we looked at the basics of Hyper-V Dynamic Memory and SQL Server memory management. In this part Serdar looks at configuration guidelines for SQL Server memory management. Part 3: Configuration Guidelines for Hyper-V Dynamic Memory and SQL Server Now that we understand SQL Server Memory Management and Hyper-V Dynamic Memory basics, let’s take a look at general configuration guidelines in order to utilize benefits of Hyper-V Dynamic Memory in your SQL Server VMs. Requirements Host Operating System Requirements Hyper-V Dynamic Memory feature is introduced with Windows Server 2008 R2 SP1. Therefore in order to use Dynamic Memory for your virtual machines, you need to have Windows Server 2008 R2 SP1 or Microsoft Hyper-V Server 2008 R2 SP1 in your Hyper-V host. Guest Operating System Requirements In addition to this Dynamic Memory is only supported in Standard, Web, Enterprise and Datacenter editions of windows running inside VMs. Make sure that your VM is running one of these editions. For additional requirements on each operating system see “Dynamic Memory Configuration Guidelines” here. SQL Server Requirements All versions of SQL Server support Hyper-V Dynamic Memory. However, only certain editions of SQL Server are aware of dynamically changing system memory. To have a truly dynamic environment for your SQL Server VMs make sure that you are running one of the SQL Server editions listed below: ·         SQL Server 2005 Enterprise ·         SQL Server 2008 Enterprise / Datacenter Editions ·         SQL Server 2008 R2 Enterprise / Datacenter Editions Configuration guidelines for other versions of SQL Server are covered below in the FAQ section. Guidelines for configuring Dynamic Memory Parameters Here is how to configure Dynamic Memory for your SQL VMs in a nutshell: Hyper-V Dynamic Memory Parameter Recommendation Startup RAM 1 GB + SQL Min Server Memory Maximum RAM > SQL Max Server Memory Memory Buffer % 5 Memory Weight Based on performance needs   Startup RAM In order to ensure that your SQL Server VMs can start correctly, ensure that Startup RAM is higher than configured SQL Min Server Memory for your VMs. Otherwise SQL Server service will need to do paging in order to start since it will not be able to see enough memory during startup. Also note that Startup Memory will always be reserved for your VMs. This will guarantee a certain level of performance for your SQL Servers, however setting this too high will limit the consolidation benefits you’ll get out of your virtualization environment. Maximum RAM This one is obvious. If you’ve configured SQL Max Server Memory for your SQL Server, make sure that Dynamic Memory Maximum RAM configuration is higher than this value. Otherwise your SQL Server will not grow to memory values higher than the value configured for Dynamic Memory. Memory Buffer % Memory buffer configuration is used to provision file cache to virtual machines in order to improve performance. Due to the fact that SQL Server is managing its own buffer pool, Memory Buffer setting should be configured to the lowest value possible, 5%. Configuring a higher memory buffer will prevent low resource notifications from Windows Memory Manager and it will prevent reclaiming memory from SQL Server VMs. Memory Weight Memory weight configuration defines the importance of memory to a VM. Configure higher values for the VMs that have higher performance requirements. VMs with higher memory weight will have more memory under high memory pressure conditions on your host. Questions and Answers Q1 – Which SQL Server memory model is best for Dynamic Memory? The best SQL Server model for Dynamic Memory is “Locked Page Memory Model”. This memory model ensures that SQL Server memory is never paged out and it’s also adaptive to dynamically changing memory in the system. This will be extremely useful when Dynamic Memory is attempting to remove memory from SQL Server VMs ensuring no SQL Server memory is paged out. You can find instructions on configuring “Locked Page Memory Model” for your SQL Servers here. Q2 – What about other SQL Server Editions, how should I configure Dynamic Memory for them? Other editions of SQL Server do not adapt to dynamically changing environments. They will determine how much memory they should allocate during startup and don’t change this value afterwards. Therefore make sure that you configure a higher startup memory for your VM because that will be all the memory that SQL Server utilize Tune Maximum Memory and Memory Buffer based on the other workloads running on the system. If there are no other workloads consider using Static Memory for these editions. Q3 – What if I have multiple SQL Server instances in a VM? Having multiple SQL Server instances in a VM is not a general recommendation for predictable performance, manageability and isolation. In order to achieve a predictable behavior make sure that you configure SQL Min Server Memory and SQL Max Server Memory for each instance in the VM. And make sure that: ·         Dynamic Memory Startup Memory is greater than the sum of SQL Min Server Memory values for the instances in the VM ·         Dynamic Memory Maximum Memory is greater than the sum of SQL Max Server Memory values for the instances in the VM Q4 – I’m using Large Page Memory Model for my SQL Server. Can I still use Dynamic Memory? The short answer is no. SQL Server does not dynamically change its memory size when configured with Large Page Memory Model. In virtualized environments Hyper-V provides large page support by default. Most of the time, Large Page Memory Model doesn’t bring any benefits to a SQL Server if it’s running in virtualized environments. Q5 – How do I monitor SQL performance when I’m trying Dynamic Memory on my VMs? Use the performance counters below to monitor memory performance for SQL Server: Process - Working Set: This counter is available in the VM via process performance counters. It represents the actual amount of physical memory being used by SQL Server process in the VM. SQL Server – Buffer Cache Hit Ratio: This counter is available in the VM via SQL Server counters. This represents the paging being done by SQL Server. A rate of 90% or higher is desirable. Conclusion These blog posts are a quick start to a story that will be developing more in the near future. We’re still continuing our testing and investigations to provide more detailed configuration guidelines with example performance numbers with a white paper in the upcoming months. Now it’s time to give SQL Server and Hyper-V Dynamic Memory a try. Use this guidelines to kick-start your environment. See what you think about it and let us know of your experiences. - Serdar Sutay Originally posted at http://blogs.msdn.com/b/sqlosteam/

    Read the article

  • LINQ to Entities and Business / Validation Rules

    - by Chris
    We have a requirement where we need to allow users to dynamically create custom reports that will run against our database and return sets of data. It would be something similar to this: http://www.marcuswhitworth.com/2009/12/dynamic-linq-with-expression-trees/ but would ultimately contain the ability to create more complicated logic. I believe LINQ to Entities might possibly allow us to do something like we're attempting to achieve. I should note that these reports are going to need to run against multiple tables. Can anyone point me in the right direction for something like this? Has anyone done anything similar with LINQ to Entities?

    Read the article

  • Using LINQ to fetch result from nested SQL queries

    - by Shantanu Gupta
    This is my first question and first day in Linq so bit difficult day for me to understand. I want to fetch some records from database i.e. select * from tblDepartment where department_id in ( select department_id from tblMap where Guest_Id = @GuestId ) I have taken two DataTable. i.e. tblDepartment, tblMap Now I want to fetch this result and want to store it in third DataTable. How can I do this. I have been able to construct this query up till now after googling. var query = from myrow in _dtDepartment.AsEnumerable() where myrow.Field<int>("Department_Id") == _departmentId select myrow; Please provide me some link for learning Linq mainly for DataTables and DataSets. EDIT: I have got a very similar example here but i m still not able to understand how it is working. Please put some torch on it.

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >