Search Results

Search found 11138 results on 446 pages for 'dynamic linq'.

Page 3/446 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Linq to SQL Problem System.Data.Linq.IdentityManager.StandardIdentityManager.MultiKeyManager

    - by luckyluke
    I have a really tricky thing going up here. My project has around 100 tables and they are all mapped by LINQ. Everything works fine in a dev and test environment. These enviroments are MS Win 2008 r2 servers with SQL 2008 sp1 databases. IIS and SQL are on a different machines. Now on production enviroment which is MS Win 2003 x64 web farm + geoclustered SQL 2008 IT DOES not work. All I get is the exception System.IndexOutOfRangeException: Index was outside the bounds of the array. at System.Data.Linq.IdentityManager.StandardIdentityManager.MultiKeyManager3.TryCreateKeyFr>om Values(Object[] values, MultiKey& k) at System.Data.Linq.IdentityManager.StandardIdentityManager.IdentityCache2.Find(Object[] keyValues) at System.Data.Linq.ChangeProcessor.GetOtherItem(MetaAssociation assoc, Object instance) at System.Data.Linq.ChangeProcessor.BuildEdgeMaps() at System.Data.Linq.ChangeProcessor.SubmitChanges(ConflictMode failureMode) at System.Data.Linq.DataContext.SubmitChanges(ConflictMode failureMode) at ERS.IIMP.Services.ExposuresSrv.Update(Int32 ExpID, Int32 AssID) Services\ExposuresSrv.cs` My question is What the hell. They have precisely the same DBML, the DB has exactly THE SAME structure (when I get the DB from prod to TEST and mount it eveything works just great), the binaries on the WEB Server are the same. I seriously do not know what to do.... Did anyone found that Linq works on one env and does not on the second?? I mam really lost here. I really hope You can help me:)

    Read the article

  • Nesting Linq-to-Objects query within Linq-to-Entities query –what is happening under the covers?

    - by carewithl
    var numbers = new int[] { 1, 2, 3, 4, 5 }; var contacts = from c in context.Contacts where c.ContactID == numbers.Max() | c.ContactID == numbers.FirstOrDefault() select c; foreach (var item in contacts) Console.WriteLine(item.ContactID); Linq-to-Entities query is first translated into Linq expression tree, which is then converted by Object Services into command tree. And if Linq-to-Entities query nests Linq-to-Objects query, then this nested query also gets translated into an expression tree. a) I assume none of the operators of the nested Linq-to-Objects query actually get executed, but instead data provider for particular DB (or perhaps Object Services) knows how to transform the logic of Linq-to-Objects operators into appropriate SQL statements? b) Data provider knows how to create equivalent SQL statements only for some of the Linq-to-Objects operators? c) Similarly, data provider knows how to create equivalent SQL statements only for some of the non-Linq methods in the Net Framework class library? EDIT: I know only some Sql so I can't be completely sure, but reading Sql query generated for the above code it seems data provider didn't actually execute numbers.Max method, but instead just somehow figured out that numbers.Max should return the maximum value and then proceed to include in generated Sql query a call to TSQL's build-in MAX function. It also put all the values held by numbers array into a Sql query. SELECT CASE WHEN (([Project1].[C1] = 1) AND ([Project1].[C1] IS NOT NULL)) THEN '0X0X' ELSE '0X1X' END AS [C1], [Extent1].[ContactID] AS [ContactID], [Extent1].[FirstName] AS [FirstName], [Extent1].[LastName] AS [LastName], [Extent1].[Title] AS [Title], [Extent1].[AddDate] AS [AddDate], [Extent1].[ModifiedDate] AS [ModifiedDate], [Extent1].[RowVersion] AS [RowVersion], CASE WHEN (([Project1].[C1] = 1) AND ([Project1].[C1] IS NOT NULL)) THEN [Project1].[CustomerTypeID] END AS [C2], CASE WHEN (([Project1].[C1] = 1) AND ([Project1].[C1] IS NOT NULL)) THEN [Project1].[InitialDate] END AS [C3], CASE WHEN (([Project1].[C1] = 1) AND ([Project1].[C1] IS NOT NULL)) THEN [Project1].[PrimaryDesintation] END AS [C4], CASE WHEN (([Project1].[C1] = 1) AND ([Project1].[C1] IS NOT NULL)) THEN [Project1].[SecondaryDestination] END AS [C5], CASE WHEN (([Project1].[C1] = 1) AND ([Project1].[C1] IS NOT NULL)) THEN [Project1].[PrimaryActivity] END AS [C6], CASE WHEN (([Project1].[C1] = 1) AND ([Project1].[C1] IS NOT NULL)) THEN [Project1].[SecondaryActivity] END AS [C7], CASE WHEN (([Project1].[C1] = 1) AND ([Project1].[C1] IS NOT NULL)) THEN [Project1].[Notes] END AS [C8], CASE WHEN (([Project1].[C1] = 1) AND ([Project1].[C1] IS NOT NULL)) THEN [Project1].[RowVersion] END AS [C9], CASE WHEN (([Project1].[C1] = 1) AND ([Project1].[C1] IS NOT NULL)) THEN [Project1].[BirthDate] END AS [C10], CASE WHEN (([Project1].[C1] = 1) AND ([Project1].[C1] IS NOT NULL)) THEN [Project1].[HeightInches] END AS [C11], CASE WHEN (([Project1].[C1] = 1) AND ([Project1].[C1] IS NOT NULL)) THEN [Project1].[WeightPounds] END AS [C12], CASE WHEN (([Project1].[C1] = 1) AND ([Project1].[C1] IS NOT NULL)) THEN [Project1].[DietaryRestrictions] END AS [C13] FROM [dbo].[Contact] AS [Extent1] LEFT OUTER JOIN (SELECT [Extent2].[ContactID] AS [ContactID], [Extent2].[BirthDate] AS [BirthDate], [Extent2].[HeightInches] AS [HeightInches], [Extent2].[WeightPounds] AS [WeightPounds], [Extent2].[DietaryRestrictions] AS [DietaryRestrictions], [Extent3].[CustomerTypeID] AS [CustomerTypeID], [Extent3].[InitialDate] AS [InitialDate], [Extent3].[PrimaryDesintation] AS [PrimaryDesintation], [Extent3].[SecondaryDestination] AS [SecondaryDestination], [Extent3].[PrimaryActivity] AS [PrimaryActivity], [Extent3].[SecondaryActivity] AS [SecondaryActivity], [Extent3].[Notes] AS [Notes], [Extent3].[RowVersion] AS [RowVersion], cast(1 as bit) AS [C1] FROM [dbo].[ContactPersonalInfo] AS [Extent2] INNER JOIN [dbo].[Customers] AS [Extent3] ON [Extent2].[ContactID] = [Extent3].[ContactID]) AS [Project1] ON [Extent1].[ContactID] = [Project1].[ContactID] LEFT OUTER JOIN (SELECT TOP (1) [c].[C1] AS [C1] FROM (SELECT [UnionAll3].[C1] AS [C1] FROM (SELECT [UnionAll2].[C1] AS [C1] FROM (SELECT [UnionAll1].[C1] AS [C1] FROM (SELECT 1 AS [C1] FROM (SELECT 1 AS X) AS [SingleRowTable1] UNION ALL SELECT 2 AS [C1] FROM (SELECT 1 AS X) AS [SingleRowTable2]) AS [UnionAll1] UNION ALL SELECT 3 AS [C1] FROM (SELECT 1 AS X) AS [SingleRowTable3]) AS [UnionAll2] UNION ALL SELECT 4 AS [C1] FROM (SELECT 1 AS X) AS [SingleRowTable4]) AS [UnionAll3] UNION ALL SELECT 5 AS [C1] FROM (SELECT 1 AS X) AS [SingleRowTable5]) AS [c]) AS [Limit1] ON 1 = 1 LEFT OUTER JOIN (SELECT TOP (1) [c].[C1] AS [C1] FROM (SELECT [UnionAll7].[C1] AS [C1] FROM (SELECT [UnionAll6].[C1] AS [C1] FROM (SELECT [UnionAll5].[C1] AS [C1] FROM (SELECT 1 AS [C1] FROM (SELECT 1 AS X) AS [SingleRowTable6] UNION ALL SELECT 2 AS [C1] FROM (SELECT 1 AS X) AS [SingleRowTable7]) AS [UnionAll5] UNION ALL SELECT 3 AS [C1] FROM (SELECT 1 AS X) AS [SingleRowTable8]) AS [UnionAll6] UNION ALL SELECT 4 AS [C1] FROM (SELECT 1 AS X) AS [SingleRowTable9]) AS [UnionAll7] UNION ALL SELECT 5 AS [C1] FROM (SELECT 1 AS X) AS [SingleRowTable10]) AS [c]) AS [Limit2] ON 1 = 1 CROSS JOIN (SELECT MAX([UnionAll12].[C1]) AS [A1] FROM (SELECT [UnionAll11].[C1] AS [C1] FROM (SELECT [UnionAll10].[C1] AS [C1] FROM (SELECT [UnionAll9].[C1] AS [C1] FROM (SELECT 1 AS [C1] FROM (SELECT 1 AS X) AS [SingleRowTable11] UNION ALL SELECT 2 AS [C1] FROM (SELECT 1 AS X) AS [SingleRowTable12]) AS [UnionAll9] UNION ALL SELECT 3 AS [C1] FROM (SELECT 1 AS X) AS [SingleRowTable13]) AS [UnionAll10] UNION ALL SELECT 4 AS [C1] FROM (SELECT 1 AS X) AS [SingleRowTable14]) AS [UnionAll11] UNION ALL SELECT 5 AS [C1] FROM (SELECT 1 AS X) AS [SingleRowTable15]) AS [UnionAll12]) AS [GroupBy1] WHERE [Extent1].[ContactID] IN ([GroupBy1].[A1], (CASE WHEN ([Limit1].[C1] IS NULL) THEN 0 ELSE [Limit2].[C1] END)) Based on this, is it possible that Linq2Entities provider indeed doesn't execute non-Linq and Linq-to-Object methods, but instead creates equivalent SQL statements for some of them ( and for others it throws an exception )? Thank you in advance

    Read the article

  • When is LINQ (to objects) Overused?

    - by Mystagogue
    My career started as a hard-core functional-paradigm developer (LISP), and now I'm a hard-care .net/C# developer. Of course I'm enamored with LINQ. However, I also believe in (1) using the right tool for the job and (2) preserving the KISS principle: of the 60+ engineers I work with, perhaps only 20% have hours of LINQ / functional paradigm experience, and 5% have 6 to 12 months of such experience. In short, I feel compelled to stay away from LINQ unless I'm hampered in achieving a goal without it (wherein replacing 3 lines of O-O code with one line of LINQ is not a "goal"). But now one of the engineers, having 12 months LINQ / functional-paradigm experience, is using LINQ to objects, or at least lambda expressions anyway, in every conceivable location in production code. My various appeals to the KISS principle have not yielded any results. Therefore... What published studies can I next appeal to? What "coding standard" guideline have others concocted with some success? Are there published LINQ performance issues I could point out? In short, I'm trying to achieve my first goal - KISS - by indirect persuasion. Of course this problem could be extended to countless other areas (such as overuse of extension methods). Perhaps there is an "uber" guide, highly regarded (e.g. published studies, etc), that takes a broader swing at this. Anything?

    Read the article

  • Free Dynamic DNS Nameservers

    - by Maxim Zaslavsky
    I recently set up a home server that I want to use as my primary hosting platform. So far, I've mapped some domains to it by setting up A records for them that point to my home IP. As my home IP can change randomly and without notice, however, I'm afraid of such downtime. Thus, I'm looking for a dynamic DNS solution. So far, I've set up DynDNS, but I haven't found a way to use dynamic DNS with an existing domain. Are there any free dynamic DNS nameserver services available?

    Read the article

  • Using transactions with LINQ-to-SQL

    - by Jalpesh P. Vadgama
    Today one of my colleague asked that how we can use transactions with the LINQ-to-SQL Classes when we use more then one entities updated at same time. It was a good question. Here is my answer for that.For ASP.NET 2.0  or higher version have a new class called TransactionScope which can be used to manage transaction with the LINQ. Let’s take a simple scenario we are having a shopping cart application in which we are storing details or particular order placed into the database using LINQ-to-SQL. There are two tables Order and OrderDetails which will have all the information related to order. Order will store particular information about orders while OrderDetails table will have product and quantity of product for particular order.We need to insert data in both tables as same time and if any errors comes then it should rollback the transaction. To use TransactionScope in above scenario first we have add a reference to System.Transactions like below. After adding the transaction we need to drag and drop the Order and Order Details tables into Linq-To-SQL Classes it will create entities for that. Below is the code for transaction scope to use mange transaction with Linq Context. MyContextDataContext objContext = new MyContextDataContext(); using (System.Transactions.TransactionScope tScope = new System.Transactions.TransactionScope(TransactionScopeOption.Required)) { objContext.Order.InsertOnSubmit(Order); objContext.OrderDetails.InsertOnSumbit(OrderDetails); objContext.SubmitChanges(); tScope.Complete(); } Here it will commit transaction only if using blocks will run successfully. Hope this will help you. Technorati Tags: Linq,Transaction,System.Transactions,ASP.NET

    Read the article

  • use Data Annotation to my Linq to SQL

    - by Khalid Omar
    i have a mvc web project and i'm using linq to sql i'm using dataannotaion like this public class ClientValidation { [Required] public string name1st { get; set; } } then in the linq class i add that above client class [global::System.Data.Linq.Mapping.TableAttribute(Name = "dbo.Client")] [MetadataType(typeof(ClientValidation))] public partial class Client : INotifyPropertyChanging, INotifyPropertyChanged { } every thing is going ok the question is when i re generate the linq when i add table or change any thing in database i need to rewrite [MetadataType(typeof(ClientValidation))] is there any other method to enable me regenerate the model and keep the data annotation as it

    Read the article

  • Using JSON.NET for dynamic JSON parsing

    - by Rick Strahl
    With the release of ASP.NET Web API as part of .NET 4.5 and MVC 4.0, JSON.NET has effectively pushed out the .NET native serializers to become the default serializer for Web API. JSON.NET is vastly more flexible than the built in DataContractJsonSerializer or the older JavaScript serializer. The DataContractSerializer in particular has been very problematic in the past because it can't deal with untyped objects for serialization - like values of type object, or anonymous types which are quite common these days. The JavaScript Serializer that came before it actually does support non-typed objects for serialization but it can't do anything with untyped data coming in from JavaScript and it's overall model of extensibility was pretty limited (JavaScript Serializer is what MVC uses for JSON responses). JSON.NET provides a robust JSON serializer that has both high level and low level components, supports binary JSON, JSON contracts, Xml to JSON conversion, LINQ to JSON and many, many more features than either of the built in serializers. ASP.NET Web API now uses JSON.NET as its default serializer and is now pulled in as a NuGet dependency into Web API projects, which is great. Dynamic JSON Parsing One of the features that I think is getting ever more important is the ability to serialize and deserialize arbitrary JSON content dynamically - that is without mapping the JSON captured directly into a .NET type as DataContractSerializer or the JavaScript Serializers do. Sometimes it isn't possible to map types due to the differences in languages (think collections, dictionaries etc), and other times you simply don't have the structures in place or don't want to create them to actually import the data. If this topic sounds familiar - you're right! I wrote about dynamic JSON parsing a few months back before JSON.NET was added to Web API and when Web API and the System.Net HttpClient libraries included the System.Json classes like JsonObject and JsonArray. With the inclusion of JSON.NET in Web API these classes are now obsolete and didn't ship with Web API or the client libraries. I re-linked my original post to this one. In this post I'll discus JToken, JObject and JArray which are the dynamic JSON objects that make it very easy to create and retrieve JSON content on the fly without underlying types. Why Dynamic JSON? So, why Dynamic JSON parsing rather than strongly typed parsing? Since applications are interacting more and more with third party services it becomes ever more important to have easy access to those services with easy JSON parsing. Sometimes it just makes lot of sense to pull just a small amount of data out of large JSON document received from a service, because the third party service isn't directly related to your application's logic most of the time - and it makes little sense to map the entire service structure in your application. For example, recently I worked with the Google Maps Places API to return information about businesses close to me (or rather the app's) location. The Google API returns a ton of information that my application had no interest in - all I needed was few values out of the data. Dynamic JSON parsing makes it possible to map this data, without having to map the entire API to a C# data structure. Instead I could pull out the three or four values I needed from the API and directly store it on my business entities that needed to receive the data - no need to map the entire Maps API structure. Getting JSON.NET The easiest way to use JSON.NET is to grab it via NuGet and add it as a reference to your project. You can add it to your project with: PM> Install-Package Newtonsoft.Json From the Package Manager Console or by using Manage NuGet Packages in your project References. As mentioned if you're using ASP.NET Web API or MVC 4 JSON.NET will be automatically added to your project. Alternately you can also go to the CodePlex site and download the latest version including source code: http://json.codeplex.com/ Creating JSON on the fly with JObject and JArray Let's start with creating some JSON on the fly. It's super easy to create a dynamic object structure with any of the JToken derived JSON.NET objects. The most common JToken derived classes you are likely to use are JObject and JArray. JToken implements IDynamicMetaProvider and so uses the dynamic  keyword extensively to make it intuitive to create object structures and turn them into JSON via dynamic object syntax. Here's an example of creating a music album structure with child songs using JObject for the base object and songs and JArray for the actual collection of songs:[TestMethod] public void JObjectOutputTest() { // strong typed instance var jsonObject = new JObject(); // you can explicitly add values here using class interface jsonObject.Add("Entered", DateTime.Now); // or cast to dynamic to dynamically add/read properties dynamic album = jsonObject; album.AlbumName = "Dirty Deeds Done Dirt Cheap"; album.Artist = "AC/DC"; album.YearReleased = 1976; album.Songs = new JArray() as dynamic; dynamic song = new JObject(); song.SongName = "Dirty Deeds Done Dirt Cheap"; song.SongLength = "4:11"; album.Songs.Add(song); song = new JObject(); song.SongName = "Love at First Feel"; song.SongLength = "3:10"; album.Songs.Add(song); Console.WriteLine(album.ToString()); } This produces a complete JSON structure: { "Entered": "2012-08-18T13:26:37.7137482-10:00", "AlbumName": "Dirty Deeds Done Dirt Cheap", "Artist": "AC/DC", "YearReleased": 1976, "Songs": [ { "SongName": "Dirty Deeds Done Dirt Cheap", "SongLength": "4:11" }, { "SongName": "Love at First Feel", "SongLength": "3:10" } ] } Notice that JSON.NET does a nice job formatting the JSON, so it's easy to read and paste into blog posts :-). JSON.NET includes a bunch of configuration options that control how JSON is generated. Typically the defaults are just fine, but you can override with the JsonSettings object for most operations. The important thing about this code is that there's no explicit type used for holding the values to serialize to JSON. Rather the JSON.NET objects are the containers that receive the data as I build up my JSON structure dynamically, simply by adding properties. This means this code can be entirely driven at runtime without compile time restraints of structure for the JSON output. Here I use JObject to create a album 'object' and immediately cast it to dynamic. JObject() is kind of similar in behavior to ExpandoObject in that it allows you to add properties by simply assigning to them. Internally, JObject values are stored in pseudo collections of key value pairs that are exposed as properties through the IDynamicMetaObject interface exposed in JSON.NET's JToken base class. For objects the syntax is very clean - you add simple typed values as properties. For objects and arrays you have to explicitly create new JObject or JArray, cast them to dynamic and then add properties and items to them. Always remember though these values are dynamic - which means no Intellisense and no compiler type checking. It's up to you to ensure that the names and values you create are accessed consistently and without typos in your code. Note that you can also access the JObject instance directly (not as dynamic) and get access to the underlying JObject type. This means you can assign properties by string, which can be useful for fully data driven JSON generation from other structures. Below you can see both styles of access next to each other:// strong type instance var jsonObject = new JObject(); // you can explicitly add values here jsonObject.Add("Entered", DateTime.Now); // expando style instance you can just 'use' properties dynamic album = jsonObject; album.AlbumName = "Dirty Deeds Done Dirt Cheap"; JContainer (the base class for JObject and JArray) is a collection so you can also iterate over the properties at runtime easily:foreach (var item in jsonObject) { Console.WriteLine(item.Key + " " + item.Value.ToString()); } The functionality of the JSON objects are very similar to .NET's ExpandObject and if you used it before, you're already familiar with how the dynamic interfaces to the JSON objects works. Importing JSON with JObject.Parse() and JArray.Parse() The JValue structure supports importing JSON via the Parse() and Load() methods which can read JSON data from a string or various streams respectively. Essentially JValue includes the core JSON parsing to turn a JSON string into a collection of JsonValue objects that can be then referenced using familiar dynamic object syntax. Here's a simple example:public void JValueParsingTest() { var jsonString = @"{""Name"":""Rick"",""Company"":""West Wind"", ""Entered"":""2012-03-16T00:03:33.245-10:00""}"; dynamic json = JValue.Parse(jsonString); // values require casting string name = json.Name; string company = json.Company; DateTime entered = json.Entered; Assert.AreEqual(name, "Rick"); Assert.AreEqual(company, "West Wind"); } The JSON string represents an object with three properties which is parsed into a JObject class and cast to dynamic. Once cast to dynamic I can then go ahead and access the object using familiar object syntax. Note that the actual values - json.Name, json.Company, json.Entered - are actually of type JToken and I have to cast them to their appropriate types first before I can do type comparisons as in the Asserts at the end of the test method. This is required because of the way that dynamic types work which can't determine the type based on the method signature of the Assert.AreEqual(object,object) method. I have to either assign the dynamic value to a variable as I did above, or explicitly cast ( (string) json.Name) in the actual method call. The JSON structure can be much more complex than this simple example. Here's another example of an array of albums serialized to JSON and then parsed through with JsonValue():[TestMethod] public void JsonArrayParsingTest() { var jsonString = @"[ { ""Id"": ""b3ec4e5c"", ""AlbumName"": ""Dirty Deeds Done Dirt Cheap"", ""Artist"": ""AC/DC"", ""YearReleased"": 1976, ""Entered"": ""2012-03-16T00:13:12.2810521-10:00"", ""AlbumImageUrl"": ""http://ecx.images-amazon.com/images/I/61kTaH-uZBL._AA115_.jpg"", ""AmazonUrl"": ""http://www.amazon.com/gp/product/…ASIN=B00008BXJ4"", ""Songs"": [ { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Dirty Deeds Done Dirt Cheap"", ""SongLength"": ""4:11"" }, { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Love at First Feel"", ""SongLength"": ""3:10"" }, { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Big Balls"", ""SongLength"": ""2:38"" } ] }, { ""Id"": ""7b919432"", ""AlbumName"": ""End of the Silence"", ""Artist"": ""Henry Rollins Band"", ""YearReleased"": 1992, ""Entered"": ""2012-03-16T00:13:12.2800521-10:00"", ""AlbumImageUrl"": ""http://ecx.images-amazon.com/images/I/51FO3rb1tuL._SL160_AA160_.jpg"", ""AmazonUrl"": ""http://www.amazon.com/End-Silence-Rollins-Band/dp/B0000040OX/ref=sr_1_5?ie=UTF8&qid=1302232195&sr=8-5"", ""Songs"": [ { ""AlbumId"": ""7b919432"", ""SongName"": ""Low Self Opinion"", ""SongLength"": ""5:24"" }, { ""AlbumId"": ""7b919432"", ""SongName"": ""Grip"", ""SongLength"": ""4:51"" } ] } ]"; JArray jsonVal = JArray.Parse(jsonString) as JArray; dynamic albums = jsonVal; foreach (dynamic album in albums) { Console.WriteLine(album.AlbumName + " (" + album.YearReleased.ToString() + ")"); foreach (dynamic song in album.Songs) { Console.WriteLine("\t" + song.SongName); } } Console.WriteLine(albums[0].AlbumName); Console.WriteLine(albums[0].Songs[1].SongName); } JObject and JArray in ASP.NET Web API Of course these types also work in ASP.NET Web API controller methods. If you want you can accept parameters using these object or return them back to the server. The following contrived example receives dynamic JSON input, and then creates a new dynamic JSON object and returns it based on data from the first:[HttpPost] public JObject PostAlbumJObject(JObject jAlbum) { // dynamic input from inbound JSON dynamic album = jAlbum; // create a new JSON object to write out dynamic newAlbum = new JObject(); // Create properties on the new instance // with values from the first newAlbum.AlbumName = album.AlbumName + " New"; newAlbum.NewProperty = "something new"; newAlbum.Songs = new JArray(); foreach (dynamic song in album.Songs) { song.SongName = song.SongName + " New"; newAlbum.Songs.Add(song); } return newAlbum; } The raw POST request to the server looks something like this: POST http://localhost/aspnetwebapi/samples/PostAlbumJObject HTTP/1.1User-Agent: FiddlerContent-type: application/jsonHost: localhostContent-Length: 88 {AlbumName: "Dirty Deeds",Songs:[ { SongName: "Problem Child"},{ SongName: "Squealer"}]} and the output that comes back looks like this: {  "AlbumName": "Dirty Deeds New",  "NewProperty": "something new",  "Songs": [    {      "SongName": "Problem Child New"    },    {      "SongName": "Squealer New"    }  ]} The original values are echoed back with something extra appended to demonstrate that we're working with a new object. When you receive or return a JObject, JValue, JToken or JArray instance in a Web API method, Web API ignores normal content negotiation and assumes your content is going to be received and returned as JSON, so effectively the parameter and result type explicitly determines the input and output format which is nice. Dynamic to Strong Type Mapping You can also map JObject and JArray instances to a strongly typed object, so you can mix dynamic and static typing in the same piece of code. Using the 2 Album jsonString shown earlier, the code below takes an array of albums and picks out only a single album and casts that album to a static Album instance.[TestMethod] public void JsonParseToStrongTypeTest() { JArray albums = JArray.Parse(jsonString) as JArray; // pick out one album JObject jalbum = albums[0] as JObject; // Copy to a static Album instance Album album = jalbum.ToObject<Album>(); Assert.IsNotNull(album); Assert.AreEqual(album.AlbumName,jalbum.Value<string>("AlbumName")); Assert.IsTrue(album.Songs.Count > 0); } This is pretty damn useful for the scenario I mentioned earlier - you can read a large chunk of JSON and dynamically walk the property hierarchy down to the item you want to access, and then either access the specific item dynamically (as shown earlier) or map a part of the JSON to a strongly typed object. That's very powerful if you think about it - it leaves you in total control to decide what's dynamic and what's static. Strongly typed JSON Parsing With all this talk of dynamic let's not forget that JSON.NET of course also does strongly typed serialization which is drop dead easy. Here's a simple example on how to serialize and deserialize an object with JSON.NET:[TestMethod] public void StronglyTypedSerializationTest() { // Demonstrate deserialization from a raw string var album = new Album() { AlbumName = "Dirty Deeds Done Dirt Cheap", Artist = "AC/DC", Entered = DateTime.Now, YearReleased = 1976, Songs = new List<Song>() { new Song() { SongName = "Dirty Deeds Done Dirt Cheap", SongLength = "4:11" }, new Song() { SongName = "Love at First Feel", SongLength = "3:10" } } }; // serialize to string string json2 = JsonConvert.SerializeObject(album,Formatting.Indented); Console.WriteLine(json2); // make sure we can serialize back var album2 = JsonConvert.DeserializeObject<Album>(json2); Assert.IsNotNull(album2); Assert.IsTrue(album2.AlbumName == "Dirty Deeds Done Dirt Cheap"); Assert.IsTrue(album2.Songs.Count == 2); } JsonConvert is a high level static class that wraps lower level functionality, but you can also use the JsonSerializer class, which allows you to serialize/parse to and from streams. It's a little more work, but gives you a bit more control. The functionality available is easy to discover with Intellisense, and that's good because there's not a lot in the way of documentation that's actually useful. Summary JSON.NET is a pretty complete JSON implementation with lots of different choices for JSON parsing from dynamic parsing to static serialization, to complex querying of JSON objects using LINQ. It's good to see this open source library getting integrated into .NET, and pushing out the old and tired stock .NET parsers so that we finally have a bit more flexibility - and extensibility - in our JSON parsing. Good to go! Resources Sample Test Project http://json.codeplex.com/© Rick Strahl, West Wind Technologies, 2005-2012Posted in .NET  Web Api  AJAX   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • how to use a generated dbml classes to deserialize xml via linq?

    - by Eelco Meuter
    Hi, I have a complex data structure, which I boiled down in a dbml file with one class and 6 one-to-many relations. This data must also be read via xml. The xml structure is something like: <table id=1> <column 1></column 1> <column n></column n> <m-n table x> <column 1></column 1> </m-n table x> </table> where the tag <m-n table x> is one of the six related tables. The idea is to generate an xsd based upon the dbml, which I can use to create and validate a xml. This xml can hopefully deserialized into the dbml classes. The question is: Can this be done? If so, how do I generate the xsd. I use a sql server express 2008 r2 as backend. Thanks in advance for your time!

    Read the article

  • Transactions in LINQ to SQL applications

    - by nikolaosk
    In this post I would like to talk about LINQ to SQL and transactions.When I have a LINQ to SQL class I always get asked this question, "How does LINQ treat Transactions?". When we use the DeleteOnSubmit() method or the InsertOnSubmit() method, all of those commands at some point are translated into T-SQL commands and then are executed against the database. All of those commands live in transactions and they follow the basic rules of transaction processing. They do succeed together or fail together...(read more)

    Read the article

  • Parallel LINQ - PLINQ

    - by nmarun
    Turns out now with .net 4.0 we can run a query like a multi-threaded application. Say you want to query a collection of objects and return only those that meet certain conditions. Until now, we basically had one ‘control’ that iterated over all the objects in the collection, checked the condition on each object and returned if it passed. We obviously agree that if we can ‘break’ this task into smaller ones, assign each task to a different ‘control’ and ask all the controls to do their job - in-parallel, the time taken the finish the entire task will be much lower. Welcome to PLINQ. Let’s take some examples. I have the following method that uses our good ol’ LINQ. 1: private static void Linq(int lowerLimit, int upperLimit) 2: { 3: // populate an array with int values from lowerLimit to the upperLimit 4: var source = Enumerable.Range(lowerLimit, upperLimit); 5:  6: // Start a timer 7: Stopwatch stopwatch = new Stopwatch(); 8: stopwatch.Start(); 9:  10: // set the expectation => build the expression tree 11: var evenNumbers =   from num in source 12: where IsDivisibleBy(num, 2) 13: select num; 14: 15: // iterate over and print the returned items 16: foreach (var number in evenNumbers) 17: { 18: Console.WriteLine(string.Format("** {0}", number)); 19: } 20:  21: stopwatch.Stop(); 22:  23: // check the metrics 24: Console.WriteLine(String.Format("Elapsed {0}ms", stopwatch.ElapsedMilliseconds)); 25: } I’ve added comments for the major steps, but the only thing I want to talk about here is the IsDivisibleBy() method. I know I could have just included the logic directly in the where clause. I called a method to add ‘delay’ to the execution of the query - to simulate a loooooooooong operation (will be easier to compare the results). 1: private static bool IsDivisibleBy(int number, int divisor) 2: { 3: // iterate over some database query 4: // to add time to the execution of this method; 5: // the TableB has around 10 records 6: for (int i = 0; i < 10; i++) 7: { 8: DataClasses1DataContext dataContext = new DataClasses1DataContext(); 9: var query = from b in dataContext.TableBs select b; 10: 11: foreach (var row in query) 12: { 13: // Do NOTHING (wish my job was like this) 14: } 15: } 16:  17: return number % divisor == 0; 18: } Now, let’s look at how to modify this to PLINQ. 1: private static void Plinq(int lowerLimit, int upperLimit) 2: { 3: // populate an array with int values from lowerLimit to the upperLimit 4: var source = Enumerable.Range(lowerLimit, upperLimit); 5:  6: // Start a timer 7: Stopwatch stopwatch = new Stopwatch(); 8: stopwatch.Start(); 9:  10: // set the expectation => build the expression tree 11: var evenNumbers = from num in source.AsParallel() 12: where IsDivisibleBy(num, 2) 13: select num; 14:  15: // iterate over and print the returned items 16: foreach (var number in evenNumbers) 17: { 18: Console.WriteLine(string.Format("** {0}", number)); 19: } 20:  21: stopwatch.Stop(); 22:  23: // check the metrics 24: Console.WriteLine(String.Format("Elapsed {0}ms", stopwatch.ElapsedMilliseconds)); 25: } That’s it, this is now in PLINQ format. Oh and if you haven’t found the difference, look line 11 a little more closely. You’ll see an extension method ‘AsParallel()’ added to the ‘source’ variable. Couldn’t be more simpler right? So this is going to improve the performance for us. Let’s test it. So in my Main method of the Console application that I’m working on, I make a call to both. 1: static void Main(string[] args) 2: { 3: // set lower and upper limits 4: int lowerLimit = 1; 5: int upperLimit = 20; 6: // call the methods 7: Console.WriteLine("Calling Linq() method"); 8: Linq(lowerLimit, upperLimit); 9: 10: Console.WriteLine(); 11: Console.WriteLine("Calling Plinq() method"); 12: Plinq(lowerLimit, upperLimit); 13:  14: Console.ReadLine(); // just so I get enough time to read the output 15: } YMMV, but here are the results that I got:    It’s quite obvious from the above results that the Plinq() method is taking considerably less time than the Linq() version. I’m sure you’ve already noticed that the output of the Plinq() method is not in order. That’s because, each of the ‘control’s we sent to fetch the results, reported with values as and when they obtained them. This is something about parallel LINQ that one needs to remember – the collection cannot be guaranteed to be undisturbed. This could be counted as a negative about PLINQ (emphasize ‘could’). Nevertheless, if we want the collection to be sorted, we can use a SortedSet (.net 4.0) or build our own custom ‘sorter’. Either way we go, there’s a good chance we’ll end up with a better performance using PLINQ. And there’s another negative of PLINQ (depending on how you see it). This is regarding the CPU cycles. See the usage for Linq() method (used ResourceMonitor): I have dual CPU’s and see the height of the peak in the bottom two blocks and now compare to what happens when I run the Plinq() method. The difference is obvious. Higher usage, but for a shorter duration (width of the peak). Both these points make sense in both cases. Linq() runs for a longer time, but uses less resources whereas Plinq() runs for a shorter time and consumes more resources. Even after knowing all these, I’m still inclined towards PLINQ. PLINQ rocks! (no hard feelings LINQ)

    Read the article

  • Retrieving data using stored procedures with LINQ to SQL in an ASP.Net application

    - by nikolaosk
    In this post I would like to present a step by step example on how to use stored procedures with LINQ to SQL. Many people will wonder why I am bothering talking about LINQ to SQL so much. First of all I give a lot of seminars where people want to learn LINQ to SQL.A lot of people like and use LINQ to SQL in their projects. There are a lot of people right now who use it extensively. In this post I will use two stored procedures that return data from the database. If you want to check out how to use...(read more)

    Read the article

  • Select,Insert,Update and Delete data with LINQ to SQL in an ASP.Net application

    - by nikolaosk
    As you might have guessed I am continuing my LINQ to SQL posts. I am teaching a course right now on ADO.Net 3.5 (LINQ & EF) and I know a lot of people who have learned through my blog and my style of writing. I am going to use a step by step example to demonstrate how to select,update,insert,delete data through LINQ to SQL into the database. If you want to have a look on how to return data from a database with LINQ to SQL and stored procedures click here . If you want to have a look on how to...(read more)

    Read the article

  • Compiled Linq & String.Contains

    - by sharru
    i'm using linq-to-sql and i'm use complied linq for better performance. I have a users table with a INT field called "LookingFor" that can have the following values.1,2,3,12,123,13,23. I wrote a query to return the users based on the "lookingFor" column i want to return all users that contains the "lookingFor" value (not only those equal to it). In example if user.LookingFor = 12 , and query paramter is 1 this user should be selected. private static Func<NeDataContext, int, IQueryable<int>> MainSearchQuery = CompiledQuery.Compile((NeDataContext db, int lookingFor) => (from u in db.Users where (lookingFor == -1 ? true : u.LookingFor.ToString().Contains(lookingFor) select u.username); This WORKS on non complied linq but throws error when using complied. How do i fix it to work using complied linq? I get this error: Only arguments that can be evaluated on the client are supported for the String.Contains method.

    Read the article

  • MVC using LINQ? - Can't return anonymous types

    - by BlueRaja
    I'd like to implement MVC while using LINQ (specifically, LINQ-to-entities). The way I would do this is have the Controller generate (or call something which generates) the result-set using LINQ, then return that to the View to display the data. The problem is, if I do: return (from o in myTable select o); All the columns are read from the database, even the ones (potentially dozens) I don't want. And - more importantly - I can't do something like this: return (from o in myTable select new { o.column }); because there is no way to make anonymous types type-safe! I know for sure there is no nice, clean way of doing this in 3.5 (this is not clean...), but what about 4.0? Is there anything planned, or even proposed? Without something like duck-typing-for-LINQ, or type-safe anonymous return values (it seems to me the compiler should certainly be capable of that), it appears to be nearly impossible to cleanly separate the Controller from the View.

    Read the article

  • Is it possible to compile a query in linq-to-objects

    - by Luke101
    I have a linq to objects query in a recursive loop and afraid when the objects approach more then 1000 and a have more then 100 users on the site -- my website will break. so is it possible to compile a linq to objects query. The linq query does nothing more then find the direct children of a node.

    Read the article

  • Is it possible to compile a query for linq-to-objects

    - by Luke101
    I have a linq to objects query in a recursive loop and afraid when the objects approach more then 1000 and a have more then 100 users on the site -- my website will break. so is it possible to compile a linq to objects query. The linq query does nothing more then find the direct children of a node.

    Read the article

  • Add LINQ Auto-Generated Value Marker [Column(IsDbGenerated=true)] in Buddy Class

    - by Alex
    Hello, is it possible to decorate a field of a LINQ generated class with [Column(IsDbGenerated=true)] using a buddy class (which is linked to the LINQ class via [MetadataType(typeof(BuddyMetadata))]) ? My goal is to be able to clear and repopulate the LINQ ORM designer without having to set the "Auto Generate Value" property manually every time to re-establish the fact that certain columns are autogenerated. Thanks!

    Read the article

  • LINQ-to-SQL vs stored procedures?

    - by scottmarlowe
    I took a look at the "Beginner's Guide to LINQ" post here on StackOverflow (http://stackoverflow.com/questions/8050/beginners-guide-to-linq), but had a follow-up question: We're about to ramp up a new project where nearly all of our database op's will be fairly simple data retrievals (there's another segment of the project which already writes the data). Most of our other projects up to this point make use of stored procedures for such things. However, I'd like to leverage LINQ-to-SQL if it makes more sense. So, the question is this: For simple data retrievals, which approach is better, LINQ-to-SQL or stored procs? Any specific pro's or con's? Thanks.

    Read the article

  • LINQ-to-SQL vs stored procedures?

    - by scottmarlowe
    I took a look at the "Beginner's Guide to LINQ" post here on StackOverflow (http://stackoverflow.com/questions/8050/beginners-guide-to-linq), but had a follow-up question: We're about to ramp up a new project where nearly all of our database op's will be fairly simple data retrievals (there's another segment of the project which already writes the data). Most of our other projects up to this point make use of stored procedures for such things. However, I'd like to leverage LINQ-to-SQL if it makes more sense. So, the question is this: For simple data retrievals, which approach is better, LINQ-to-SQL or stored procs? Any specific pro's or con's? Thanks.

    Read the article

  • Performing LINQ Self Join

    - by senfo
    I'm not getting the results I want for a query I'm writing in LINQ using the following: var config = (from ic in repository.Fetch() join oc in repository.Fetch() on ic.Slot equals oc.Slot where ic.Description == "Input" && oc.Description == "Output" select new Config { InputOid = ic.Oid, OutputOid = oc.Oid }).Distinct(); The following SQL returns 53 rows (which is correct), but the above LINQ returns 96 rows: SELECT DISTINCT ic.Oid AS InputOid, oc.Oid AS OutputOid FROM dbo.Config AS ic INNER JOIN dbo.Config AS oc ON ic.Slot = oc.Slot WHERE ic.Description = 'Input' AND oc.Description = 'Output' How would I replicate the above SQL in a LINQ query? Update: I don't think it matters, but I'm working with LINQ to Entities 4.0.

    Read the article

  • Filtering data in LINQ with the help of where clause

    - by vik20000in
     LINQ has bought with itself a super power of querying Objects, Database, XML, SharePoint and nearly any other data structure. The power of LINQ lies in the fact that it is managed code that lets you write SQL type code to fetch data.  Whenever working with data we always need a way to filter out the data based on different condition. In this post we will look at some of the different ways in which we can filter data in LINQ with the help of where clause. Simple Filter for an array. Let’s say we have an array of number and we want to filter out data based on some condition. Below is an example int[] numbers = { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0 }; var lowNums =                 from num in numbers                 where num < 5                 select num;   Filter based on one of the property in the class. With the help of LINQ we can also filer out data from a list based on value of some property. var soldOutProducts =                 from prod in products                 where prod.UnitsInStock == 0                 select prod; Filter based on Multiple of the property in the class. var expensiveInStockProducts =         from prod in products         where prod.UnitsInStock > 0 && prod.UnitPrice > 3.00M         select prod; Filter based on the index of the Item in the list.In the below example we can see that we are able to filter data based on the index of the item in the list. string[] digits = { "zero", "one", "two", "three", "four", "five", "six"}; var shortDigits = digits.Where((digit, index) => digit.Length < index); There are many other way in which we can filter out data in LINQ. In the above post I have tried and shown few ways using the LINQ. Vikram

    Read the article

  • LINQ aggregate left join on SQL CE

    - by P Daddy
    What I need is such a simple, easy query, it blows me away how much work I've done just trying to do it in LINQ. In T-SQL, it would be: SELECT I.InvoiceID, I.CustomerID, I.Amount AS AmountInvoiced, I.Date AS InvoiceDate, ISNULL(SUM(P.Amount), 0) AS AmountPaid, I.Amount - ISNULL(SUM(P.Amount), 0) AS AmountDue FROM Invoices I LEFT JOIN Payments P ON I.InvoiceID = P.InvoiceID WHERE I.Date between @start and @end GROUP BY I.InvoiceID, I.CustomerID, I.Amount, I.Date ORDER BY AmountDue DESC The best equivalent LINQ expression I've come up with, took me much longer to do: var invoices = ( from I in Invoices where I.Date >= start && I.Date <= end join P in Payments on I.InvoiceID equals P.InvoiceID into payments select new{ I.InvoiceID, I.CustomerID, AmountInvoiced = I.Amount, InvoiceDate = I.Date, AmountPaid = ((decimal?)payments.Select(P=>P.Amount).Sum()).GetValueOrDefault(), AmountDue = I.Amount - ((decimal?)payments.Select(P=>P.Amount).Sum()).GetValueOrDefault() } ).OrderByDescending(row=>row.AmountDue); This gets an equivalent result set when run against SQL Server. Using a SQL CE database, however, changes things. The T-SQL stays almost the same. I only have to change ISNULL to COALESCE. Using the same LINQ expression, however, results in an error: There was an error parsing the query. [ Token line number = 4, Token line offset = 9,Token in error = SELECT ] So we look at the generated SQL code: SELECT [t3].[InvoiceID], [t3].[CustomerID], [t3].[Amount] AS [AmountInvoiced], [t3].[Date] AS [InvoiceDate], [t3].[value] AS [AmountPaid], [t3].[value2] AS [AmountDue] FROM ( SELECT [t0].[InvoiceID], [t0].[CustomerID], [t0].[Amount], [t0].[Date], COALESCE(( SELECT SUM([t1].[Amount]) FROM [Payments] AS [t1] WHERE [t0].[InvoiceID] = [t1].[InvoiceID] ),0) AS [value], [t0].[Amount] - (COALESCE(( SELECT SUM([t2].[Amount]) FROM [Payments] AS [t2] WHERE [t0].[InvoiceID] = [t2].[InvoiceID] ),0)) AS [value2] FROM [Invoices] AS [t0] ) AS [t3] WHERE ([t3].[Date] >= @p0) AND ([t3].[Date] <= @p1) ORDER BY [t3].[value2] DESC Ugh! Okay, so it's ugly and inefficient when run against SQL Server, but we're not supposed to care, since it's supposed to be quicker to write, and the performance difference shouldn't be that large. But it just doesn't work against SQL CE, which apparently doesn't support subqueries within the SELECT list. In fact, I've tried several different left join queries in LINQ, and they all seem to have the same problem. Even: from I in Invoices join P in Payments on I.InvoiceID equals P.InvoiceID into payments select new{I, payments} generates: SELECT [t0].[InvoiceID], [t0].[CustomerID], [t0].[Amount], [t0].[Date], [t1].[InvoiceID] AS [InvoiceID2], [t1].[Amount] AS [Amount2], [t1].[Date] AS [Date2], ( SELECT COUNT(*) FROM [Payments] AS [t2] WHERE [t0].[InvoiceID] = [t2].[InvoiceID] ) AS [value] FROM [Invoices] AS [t0] LEFT OUTER JOIN [Payments] AS [t1] ON [t0].[InvoiceID] = [t1].[InvoiceID] ORDER BY [t0].[InvoiceID] which also results in the error: There was an error parsing the query. [ Token line number = 2, Token line offset = 5,Token in error = SELECT ] So how can I do a simple left join on a SQL CE database using LINQ? Am I wasting my time?

    Read the article

  • whats wrong in this LINQ synatx?

    - by Saurabh Kumar
    Hi, I am trying to convert a SQL query to LINQ. Somehow my count(distinct(x)) logic does not seem to be working correctly. The original SQL is quite efficient(or so i think), but the generated SQL is not even returning the correct result. I am trying to fix this LINQ to do what the original SQL is doing, AND in an efficient way as the original query is doing. Help here would be really apreciated as I am stuck here :( SQL which is working and I need to make a comparable LINQ of: SELECT [t1].[PersonID] AS [personid] FROM [dbo].[Code] AS [t0] INNER JOIN [dbo].[phonenumbers] AS [t1] ON [t1].[PhoneCode] = [t0].[Code] INNER JOIN [dbo].[person] ON [t1].[PersonID]= [dbo].[Person].PersonID WHERE ([t0].[codetype] = 'phone') AND ( ([t0].[CodeDescription] = 'Home') AND ([t1].[PhoneNum] = '111') OR ([t0].[CodeDescription] = 'Work') AND ([t1].[PhoneNum] = '222') ) GROUP BY [t1].[PersonID] HAVING COUNT(DISTINCT([t1].[PhoneNum]))=2 The LINQ which I made is approximately as below: var ids = context.Code.Where(predicate); var rs = from r in ids group r by new { r.phonenumbers.person.PersonID} into g let matchcount=g.Select(p => p.phonenumbers.PhoneNum).Distinct().Count() where matchcount ==2 select new { personid = g.Key }; Unfortunately, the above LINQ is NOT generating the correct result, and is actually internally getting generated to the SQL shown below. By the way, this generated query is also reading ALL the rows(about 19592040) around 2 times due to the COUNTS :( Wich is a big performance issue too. Please help/point me to the right direction. Declare @p0 VarChar(10)='phone' Declare @p1 VarChar(10)='Home' Declare @p2 VarChar(10)='111' Declare @p3 VarChar(10)='Work' Declare @p4 VarChar(10)='222' Declare @p5 VarChar(10)='2' SELECT [t9].[PersonID], ( SELECT COUNT(*) FROM ( SELECT DISTINCT [t13].[PhoneNum] FROM [dbo].[Code] AS [t10] INNER JOIN [dbo].[phonenumbers] AS [t11] ON [t11].[PhoneType] = [t10].[Code] INNER JOIN [dbo].[Person] AS [t12] ON [t12].[PersonID] = [t11].[PersonID] INNER JOIN [dbo].[phonenumbers] AS [t13] ON [t13].[PhoneType] = [t10].[Code] WHERE ([t9].[PersonID] = [t12].[PersonID]) AND ([t10].[codetype] = @p0) AND ((([t10].[codetype] = @p1) AND ([t11].[PhoneNum] = @p2)) OR (([t10].[codetype] = @p3) AND ([t11].[PhoneNum] = @p4))) ) AS [t14] ) AS [cnt] FROM ( SELECT [t3].[PersonID], ( SELECT COUNT(*) FROM ( SELECT DISTINCT [t7].[PhoneNum] FROM [dbo].[Code] AS [t4] INNER JOIN [dbo].[phonenumbers] AS [t5] ON [t5].[PhoneType] = [t4].[Code] INNER JOIN [dbo].[Person] AS [t6] ON [t6].[PersonID] = [t5].[PersonID] INNER JOIN [dbo].[phonenumbers] AS [t7] ON [t7].[PhoneType] = [t4].[Code] WHERE ([t3].[PersonID] = [t6].[PersonID]) AND ([t4].[codetype] = @p0) AND ((([t4].[codetype] = @p1) AND ([t5].[PhoneNum] = @p2)) OR (([t4].[codetype] = @p3) AND ([t5].[PhoneNum] = @p4))) ) AS [t8] ) AS [value] FROM ( SELECT [t2].[PersonID] FROM [dbo].[Code] AS [t0] INNER JOIN [dbo].[phonenumbers] AS [t1] ON [t1].[PhoneType] = [t0].[Code] INNER JOIN [dbo].[Person] AS [t2] ON [t2].[PersonID] = [t1].[PersonID] WHERE ([t0].[codetype] = @p0) AND ((([t0].[codetype] = @p1) AND ([t1].[PhoneNum] = @p2)) OR (([t0].[codetype] = @p3) AND ([t1].[PhoneNum] = @p4))) GROUP BY [t2].[PersonID] ) AS [t3] ) AS [t9] WHERE [t9].[value] = @p5 Thanks!

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >