Search Results

Search found 130 results on 6 pages for 'ether'.

Page 1/6 | 1 2 3 4 5 6  | Next Page >

  • Linux router: ping doesn't route back

    - by El Barto
    I have a Debian box which I'm trying to set up as a router and an Ubuntu box which I'm using as a client. My problem is that when the Ubuntu client tries to ping a server on the Internet, all the packets are lost (though, as you can see below, they seem to go to the server and back without problem). I'm doing this in the Ubuntu Box: # ping -I eth1 my.remote-server.com PING my.remote-server.com (X.X.X.X) from 10.1.1.12 eth1: 56(84) bytes of data. ^C --- my.remote-server.com ping statistics --- 13 packets transmitted, 0 received, 100% packet loss, time 12094ms (I changed the name and IP of the remote server for privacy). From the Debian Router I see this: # tcpdump -i eth1 -qtln icmp tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 305, seq 7, length 64 IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 305, seq 8, length 64 IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 305, seq 8, length 64 IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 305, seq 9, length 64 IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 305, seq 9, length 64 IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 305, seq 10, length 64 IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 305, seq 10, length 64 IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 305, seq 11, length 64 IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 305, seq 11, length 64 ^C 9 packets captured 9 packets received by filter 0 packets dropped by kernel # tcpdump -i eth2 -qtln icmp tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on eth2, link-type EN10MB (Ethernet), capture size 65535 bytes IP 192.168.1.10 > X.X.X.X: ICMP echo request, id 360, seq 213, length 64 IP X.X.X.X > 192.168.1.10: ICMP echo reply, id 360, seq 213, length 64 IP 192.168.1.10 > X.X.X.X: ICMP echo request, id 360, seq 214, length 64 IP X.X.X.X > 192.168.1.10: ICMP echo reply, id 360, seq 214, length 64 IP 192.168.1.10 > X.X.X.X: ICMP echo request, id 360, seq 215, length 64 IP X.X.X.X > 192.168.1.10: ICMP echo reply, id 360, seq 215, length 64 IP 192.168.1.10 > X.X.X.X: ICMP echo request, id 360, seq 216, length 64 IP X.X.X.X > 192.168.1.10: ICMP echo reply, id 360, seq 216, length 64 IP 192.168.1.10 > X.X.X.X: ICMP echo request, id 360, seq 217, length 64 IP X.X.X.X > 192.168.1.10: ICMP echo reply, id 360, seq 217, length 64 ^C 10 packets captured 10 packets received by filter 0 packets dropped by kernel And at the remote server I see this: # tcpdump -i eth0 -qtln icmp tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on eth0, link-type EN10MB (Ethernet), capture size 96 bytes IP Y.Y.Y.Y > X.X.X.X: ICMP echo request, id 360, seq 1, length 64 IP X.X.X.X > Y.Y.Y.Y: ICMP echo reply, id 360, seq 1, length 64 IP Y.Y.Y.Y > X.X.X.X: ICMP echo request, id 360, seq 2, length 64 IP X.X.X.X > Y.Y.Y.Y: ICMP echo reply, id 360, seq 2, length 64 IP Y.Y.Y.Y > X.X.X.X: ICMP echo request, id 360, seq 3, length 64 IP X.X.X.X > Y.Y.Y.Y: ICMP echo reply, id 360, seq 3, length 64 IP Y.Y.Y.Y > X.X.X.X: ICMP echo request, id 360, seq 4, length 64 IP X.X.X.X > Y.Y.Y.Y: ICMP echo reply, id 360, seq 4, length 64 IP Y.Y.Y.Y > X.X.X.X: ICMP echo request, id 360, seq 5, length 64 IP X.X.X.X > Y.Y.Y.Y: ICMP echo reply, id 360, seq 5, length 64 IP Y.Y.Y.Y > X.X.X.X: ICMP echo request, id 360, seq 6, length 64 IP X.X.X.X > Y.Y.Y.Y: ICMP echo reply, id 360, seq 6, length 64 IP Y.Y.Y.Y > X.X.X.X: ICMP echo request, id 360, seq 7, length 64 IP X.X.X.X > Y.Y.Y.Y: ICMP echo reply, id 360, seq 7, length 64 IP Y.Y.Y.Y > X.X.X.X: ICMP echo request, id 360, seq 8, length 64 IP X.X.X.X > Y.Y.Y.Y: ICMP echo reply, id 360, seq 8, length 64 IP Y.Y.Y.Y > X.X.X.X: ICMP echo request, id 360, seq 9, length 64 IP X.X.X.X > Y.Y.Y.Y: ICMP echo reply, id 360, seq 9, length 64 18 packets captured 228 packets received by filter 92 packets dropped by kernel Here "X.X.X.X" is my remote server's IP and "Y.Y.Y.Y" is my local network's public IP. So, what I understand is that the ping packets are coming out of the Ubuntu box (10.1.1.12), to the router (10.1.1.1), from there to the next router (192.168.1.1) and reaching the remote server (X.X.X.X). Then they come back all the way to the Debian router, but they never reach the Ubuntu box back. What am I missing? Here's the Debian router setup: # ifconfig eth1 Link encap:Ethernet HWaddr 94:0c:6d:82:0d:98 inet addr:10.1.1.1 Bcast:10.1.1.255 Mask:255.255.255.0 inet6 addr: fe80::960c:6dff:fe82:d98/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:105761 errors:0 dropped:0 overruns:0 frame:0 TX packets:48944 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:40298768 (38.4 MiB) TX bytes:44831595 (42.7 MiB) Interrupt:19 Base address:0x6000 eth2 Link encap:Ethernet HWaddr 6c:f0:49:a4:47:38 inet addr:192.168.1.10 Bcast:192.168.1.255 Mask:255.255.255.0 inet6 addr: fe80::6ef0:49ff:fea4:4738/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:38335992 errors:0 dropped:0 overruns:0 frame:0 TX packets:37097705 errors:0 dropped:0 overruns:0 carrier:1 collisions:0 txqueuelen:1000 RX bytes:4260680226 (3.9 GiB) TX bytes:3759806551 (3.5 GiB) Interrupt:27 eth3 Link encap:Ethernet HWaddr 94:0c:6d:82:c8:72 UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) Interrupt:20 Base address:0x2000 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:3408 errors:0 dropped:0 overruns:0 frame:0 TX packets:3408 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:358445 (350.0 KiB) TX bytes:358445 (350.0 KiB) tun0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 inet addr:10.8.0.1 P-t-P:10.8.0.2 Mask:255.255.255.255 UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1 RX packets:2767779 errors:0 dropped:0 overruns:0 frame:0 TX packets:1569477 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:100 RX bytes:3609469393 (3.3 GiB) TX bytes:96113978 (91.6 MiB) # route -n Kernel IP routing table Destination Gateway Genmask Flags Metric Ref Use Iface 10.8.0.2 0.0.0.0 255.255.255.255 UH 0 0 0 tun0 127.0.0.1 0.0.0.0 255.255.255.255 UH 0 0 0 lo 10.8.0.0 10.8.0.2 255.255.255.0 UG 0 0 0 tun0 192.168.1.0 0.0.0.0 255.255.255.0 U 1 0 0 eth2 10.1.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1 0.0.0.0 192.168.1.1 0.0.0.0 UG 0 0 0 eth2 # arp -n # Note: Here I have changed all the different MACs except the ones corresponding to the Ubuntu box (on 10.1.1.12 and 192.168.1.12) Address HWtype HWaddress Flags Mask Iface 192.168.1.118 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.72 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.94 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.102 ether NN:NN:NN:NN:NN:NN C eth2 10.1.1.12 ether 00:1e:67:15:2b:f0 C eth1 192.168.1.86 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.2 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.61 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.64 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.116 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.91 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.52 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.93 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.87 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.92 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.100 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.40 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.53 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.1 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.83 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.89 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.12 ether 00:1e:67:15:2b:f1 C eth2 192.168.1.77 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.66 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.90 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.65 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.41 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.78 ether NN:NN:NN:NN:NN:NN C eth2 192.168.1.123 ether NN:NN:NN:NN:NN:NN C eth2 # iptables -L -n Chain INPUT (policy ACCEPT) target prot opt source destination Chain FORWARD (policy ACCEPT) target prot opt source destination Chain OUTPUT (policy ACCEPT) target prot opt source destination # iptables -L -n -t nat Chain PREROUTING (policy ACCEPT) target prot opt source destination Chain POSTROUTING (policy ACCEPT) target prot opt source destination MASQUERADE all -- 10.1.1.0/24 !10.1.1.0/24 MASQUERADE all -- !10.1.1.0/24 10.1.1.0/24 Chain OUTPUT (policy ACCEPT) target prot opt source destination And here's the Ubuntu box: # ifconfig eth0 Link encap:Ethernet HWaddr 00:1e:67:15:2b:f1 inet addr:192.168.1.12 Bcast:192.168.1.255 Mask:255.255.255.0 inet6 addr: fe80::21e:67ff:fe15:2bf1/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:28785139 errors:0 dropped:0 overruns:0 frame:0 TX packets:19050735 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:32068182803 (32.0 GB) TX bytes:6061333280 (6.0 GB) Interrupt:16 Memory:b1a00000-b1a20000 eth1 Link encap:Ethernet HWaddr 00:1e:67:15:2b:f0 inet addr:10.1.1.12 Bcast:10.1.1.255 Mask:255.255.255.0 inet6 addr: fe80::21e:67ff:fe15:2bf0/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:285086 errors:0 dropped:0 overruns:0 frame:0 TX packets:12719 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:30817249 (30.8 MB) TX bytes:2153228 (2.1 MB) Interrupt:16 Memory:b1900000-b1920000 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:86048 errors:0 dropped:0 overruns:0 frame:0 TX packets:86048 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:11426538 (11.4 MB) TX bytes:11426538 (11.4 MB) # route -n Kernel IP routing table Destination Gateway Genmask Flags Metric Ref Use Iface 0.0.0.0 192.168.1.1 0.0.0.0 UG 0 0 0 eth0 0.0.0.0 10.1.1.1 0.0.0.0 UG 100 0 0 eth1 10.1.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1 10.8.0.0 192.168.1.10 255.255.255.0 UG 0 0 0 eth0 169.254.0.0 0.0.0.0 255.255.0.0 U 1000 0 0 eth0 192.168.1.0 0.0.0.0 255.255.255.0 U 1 0 0 eth0 # arp -n # Note: Here I have changed all the different MACs except the ones corresponding to the Debian box (on 10.1.1.1 and 192.168.1.10) Address HWtype HWaddress Flags Mask Iface 192.168.1.70 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.90 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.97 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.103 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.13 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.120 (incomplete) eth0 192.168.1.111 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.118 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.51 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.102 (incomplete) eth0 192.168.1.64 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.52 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.74 (incomplete) eth0 192.168.1.94 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.121 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.72 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.87 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.91 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.71 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.78 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.83 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.88 (incomplete) eth0 192.168.1.82 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.98 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.100 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.93 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.73 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.11 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.85 (incomplete) eth0 192.168.1.112 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.89 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.65 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.81 ether NN:NN:NN:NN:NN:NN C eth0 10.1.1.1 ether 94:0c:6d:82:0d:98 C eth1 192.168.1.53 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.116 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.61 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.10 ether 6c:f0:49:a4:47:38 C eth0 192.168.1.86 (incomplete) eth0 192.168.1.119 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.66 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.1 ether NN:NN:NN:NN:NN:NN C eth0 192.168.1.1 ether NN:NN:NN:NN:NN:NN C eth1 192.168.1.92 ether NN:NN:NN:NN:NN:NN C eth0 # iptables -L -n Chain INPUT (policy ACCEPT) target prot opt source destination Chain FORWARD (policy ACCEPT) target prot opt source destination Chain OUTPUT (policy ACCEPT) target prot opt source destination # iptables -L -n -t nat Chain PREROUTING (policy ACCEPT) target prot opt source destination Chain INPUT (policy ACCEPT) target prot opt source destination Chain OUTPUT (policy ACCEPT) target prot opt source destination Chain POSTROUTING (policy ACCEPT) target prot opt source destination Edit: Following Patrick's suggestion, I did a tcpdump con the Ubuntu box and I see this: # tcpdump -i eth1 -qtln icmp tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 21967, seq 1, length 64 IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 21967, seq 1, length 64 IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 21967, seq 2, length 64 IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 21967, seq 2, length 64 IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 21967, seq 3, length 64 IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 21967, seq 3, length 64 IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 21967, seq 4, length 64 IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 21967, seq 4, length 64 IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 21967, seq 5, length 64 IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 21967, seq 5, length 64 IP 10.1.1.12 > X.X.X.X: ICMP echo request, id 21967, seq 6, length 64 IP X.X.X.X > 10.1.1.12: ICMP echo reply, id 21967, seq 6, length 64 ^C 12 packets captured 12 packets received by filter 0 packets dropped by kernel So the question is: if all packets seem to be coming and going, why does ping report 100% packet loss?

    Read the article

  • Are file access times not properly maintained in Mac OS X?

    - by Ether
    I'm trying to determine how file access times are maintained by default in Mac OS X, as I'm trying to diagnose some odd behaviour I'm seeing in a new MBP Unibody (running Snow Leopard, 10.6.2): The symptoms (drilling down to the specific behaviour that seems to be causing the issue): mutt is unable to switch to mailboxes which have recently received new mail mail is delivered by procmail, which updates the mtime of the mbox folder it is updating, but does not alter the atime (this is how new mail detection works: by comparing atime to mtime) however, both the mtime and atime of the mbox file is getting updated Through testing, it does not appear that atimes can be set separately in the filesystem: : [ether@tequila ~]$; touch test : [ether@tequila ~]$; touch -m -t 200801010000 test2 : [ether@tequila ~]$; touch -a -t 200801010000 test3 : [ether@tequila ~]$; ls -l test* -rw------- 1 ether staff 0 Dec 30 11:42 test -rw------- 1 ether staff 0 Jan 1 2008 test2 -rw------- 1 ether staff 0 Dec 30 11:43 test3 : [ether@tequila ~]$; ls -lu test* -rw------- 1 ether staff 0 Dec 30 11:42 test -rw------- 1 ether staff 0 Dec 30 11:43 test2 -rw------- 1 ether staff 0 Dec 30 11:43 test3 The test2 file is created with an old mtime, and the atime is set to now (as it is a new file), which is correct. However, test3 is created with an old atime, but is not set properly on the file. To be sure this is not just behaviour seen with new files, let's modify an old file: : [ether@tequila ~]$; touch -a -t 200801010000 test : [ether@tequila ~]$; ls -l test -rw------- 1 ether staff 0 Dec 30 11:42 test : [ether@tequila ~]$; ls -lu test -rw------- 1 ether staff 0 Dec 30 11:45 test So it would seem that atimes cannot be set explicitly (it is always reset to "now" when either mtime or atime modifications are submitted). Is this something inherent to the filesystem itself, is it something that can be changed, or am I totally crazy and looking in the wrong place? PS. the output of mount is: : [ether@tequila ~]$; mount /dev/disk0s2 on / (hfs, local, journaled) devfs on /dev (devfs, local, nobrowse) map -hosts on /net (autofs, nosuid, automounted, nobrowse) map auto_home on /home (autofs, automounted, nobrowse) ...and Disk Utility says that the drive is of type "Mac OS Extended (Journaled)".

    Read the article

  • Why isn't 'ether proto \ip host host' a legal tcpdump expression?

    - by Ezequiel Garzon
    In its description of valid tcpdump expressions, the pcap-filter man pages state: The filter expression consists of one or more primitives. Primitives usually consist of an id (name or number) preceded by one or more qualifiers. In turn, these qualifiers are type, dir and proto. So far so good, but further down we find this: ip host host which is equivalent to: ether proto \ip and host host In the first case, ip and host are, respectively, proto and type. What pattern does ether proto \ip follow? Isn't that, as a whole, a proto qualifier? If so, why isn't (a properly escaped) 'ether proto \ip host host' legal (no and)?

    Read the article

  • Is it possible to host a website in the 'ether' of the Internet -- not on a server -- so that it can

    - by Chris Altman
    This is a theoretical problem I am curious about. Websites are hosted on servers. Servers can be taken offline. Is it possible to host a website in the 'ether' of the Internet -- not on a server -- so that it cannot be taken down? One example, is that the website is hosted on other websites, like a parasite. Another is that it is assembled through storing pieces on DNS machines, routers, etc., so that it get assembled on the fly. The purpose is that this website could live forever because no one person can remove it. The answers I am looking for are plausible idea/approaches on technically how this could be built.

    Read the article

  • What does it mean when ARP shows <incomplete> on eth1

    - by Geoff Dalgas
    We have been using HAProxy along with heartbeat from the Linux-HA project. We are using two linux instances to provide a failover. Each server has with their own public IP and a single IP which is shared between the two using a virtual interface (eth1:1) at IP: 69.59.196.211 The virtual interface (eth1:1) IP 69.59.196.211 is configured as the gateway for the windows servers behind them and we use ip_forwarding to route traffic. We are experiencing an occasional network outage on one of our windows servers behind our linux gateways. HAProxy will detect the server is offline which we can verify by remoting to the failed server and attempting to ping the gateway: Pinging 69.59.196.211 with 32 bytes of data: Reply from 69.59.196.220: Destination host unreachable. Running arp -a on this failed server shows that there is no entry for the gateway address (69.59.196.211): Interface: 69.59.196.220 --- 0xa Internet Address Physical Address Type 69.59.196.161 00-26-88-63-c7-80 dynamic 69.59.196.210 00-15-5d-0a-3e-0e dynamic 69.59.196.212 00-21-5e-4d-45-c9 dynamic 69.59.196.213 00-15-5d-00-b2-0d dynamic 69.59.196.215 00-21-5e-4d-61-1a dynamic 69.59.196.217 00-21-5e-4d-2c-e8 dynamic 69.59.196.219 00-21-5e-4d-38-e5 dynamic 69.59.196.221 00-15-5d-00-b2-0d dynamic 69.59.196.222 00-15-5d-0a-3e-09 dynamic 69.59.196.223 ff-ff-ff-ff-ff-ff static 224.0.0.22 01-00-5e-00-00-16 static 224.0.0.252 01-00-5e-00-00-fc static 225.0.0.1 01-00-5e-00-00-01 static On our linux gateway instances arp -a shows: peak-colo-196-220.peak.org (69.59.196.220) at <incomplete> on eth1 stackoverflow.com (69.59.196.212) at 00:21:5e:4d:45:c9 [ether] on eth1 peak-colo-196-215.peak.org (69.59.196.215) at 00:21:5e:4d:61:1a [ether] on eth1 peak-colo-196-219.peak.org (69.59.196.219) at 00:21:5e:4d:38:e5 [ether] on eth1 peak-colo-196-222.peak.org (69.59.196.222) at 00:15:5d:0a:3e:09 [ether] on eth1 peak-colo-196-209.peak.org (69.59.196.209) at 00:26:88:63:c7:80 [ether] on eth1 peak-colo-196-217.peak.org (69.59.196.217) at 00:21:5e:4d:2c:e8 [ether] on eth1 Why would arp occasionally set the entry for this failed server as <incomplete>? Should we be defining our arp entries statically? I've always left arp alone since it works 99% of the time, but in this one instance it appears to be failing. Are there any additional troubleshooting steps we can take help resolve this issue? THINGS WE HAVE TRIED I added a static arp entry for testing on one of the linux gateways which still didn't help. root@haproxy2:~# arp -a peak-colo-196-215.peak.org (69.59.196.215) at 00:21:5e:4d:61:1a [ether] on eth1 peak-colo-196-221.peak.org (69.59.196.221) at 00:15:5d:00:b2:0d [ether] on eth1 stackoverflow.com (69.59.196.212) at 00:21:5e:4d:45:c9 [ether] on eth1 peak-colo-196-219.peak.org (69.59.196.219) at 00:21:5e:4d:38:e5 [ether] on eth1 peak-colo-196-209.peak.org (69.59.196.209) at 00:26:88:63:c7:80 [ether] on eth1 peak-colo-196-217.peak.org (69.59.196.217) at 00:21:5e:4d:2c:e8 [ether] on eth1 peak-colo-196-220.peak.org (69.59.196.220) at 00:21:5e:4d:30:8d [ether] PERM on eth1 root@haproxy2:~# arp -i eth1 -s 69.59.196.220 00:21:5e:4d:30:8d root@haproxy2:~# ping 69.59.196.220 PING 69.59.196.220 (69.59.196.220) 56(84) bytes of data. --- 69.59.196.220 ping statistics --- 7 packets transmitted, 0 received, 100% packet loss, time 6006ms Rebooting the windows web server solves this issue temporarily with no other changes to the network but our experience shows this issue will come back. Swapping network cards and switches I noticed the link light on the port of the switch for the failed windows server was running at 100Mb instead of 1Gb on the failed interface. I moved the cable to several other open ports and the link indicated 100Mb for each port that I tried. I also swapped the cable with the same result. I tried changing the properties of the network card in windows and the server locked up and required a hard reset after clicking apply. This windows server has two physical network interfaces so I have swapped the cables and network settings on the two interfaces to see if the problem follows the interface. If the public interface goes down again we will know that it is not an issue with the network card. (We also tried another switch we have on hand, no change) Changing network hardware driver versions We've had the same problem with the latest Broadcom driver, as well as the built-in driver that ships in Windows Server 2008 R2. Replacing network cables As a last ditch effort we remembered another change that occurred was the replacement of all of the patch cords between our servers / switch. We had purchased two sets, one green of lengths 1ft - 3ft for the private interfaces and another set of red cables for the public interfaces. We swapped out all of the public interface patch cables with a different brand and ran our servers without issue for a full week ... aaaaaand then the problem recurred. Disable checksum offload, remove TProxy We also tried disabling TCP/IP checksum offload in the driver, no change. We're now pulling out TProxy and moving to a more traditional x-forwarded-for network arrangement without any fancy IP address rewriting. We'll see if that helps.

    Read the article

  • Is it possible to host a website in the 'ether' of the Internet -- not on a server -- so that it can

    - by Christopher Altman
    This is a theoretical problem I am curious about. Websites are hosted on servers. Servers can be taken offline. Is it possible to host a website in the 'ether' of the Internet -- not on a server -- so that it cannot be taken down? One example, is that the website is hosted on other websites, like a parasite. Another is that it is assembled through storing pieces on DNS machines, routers, etc., so that it get assembled on the fly. The purpose is that this website could live forever because no one person can remove it. The answers I am looking for are plausible idea/approaches on technically how this could be built.

    Read the article

  • Windows Server 2008 R2 network adapter stops working, requires hard reboot

    - by Geoff Dalgas
    TL;DR version: Turns out this was a Windows Server 2008 R2 kernel networking bug. After siccing Microsoft support on it, we (eventually) got an unpublished kernel hotfix from Microsoft to address it. If you, too, are experiencing mysterious low-level network driver failures requiring a reboot/bluescreen cycle, you might want that hotfix (or maybe Service Pack 1 whenever it is released, too.) We have been using HAProxy along with heartbeat from the Linux-HA project. We are using two linux instances to provide a failover. Each server has with their own public IP and a single IP which is shared between the two using a virtual interface (eth1:1) at IP: 69.59.196.211 The virtual interface (eth1:1) IP 69.59.196.211 is configured as the gateway for the windows servers behind them and we use ip_forwarding to route traffic. We are experiencing an occasional network outage on one of our windows servers behind our linux gateways. HAProxy will detect the server is offline which we can verify by remoting to the failed server and attempting to ping the gateway: Pinging 69.59.196.211 with 32 bytes of data: Reply from 69.59.196.220: Destination host unreachable. Running arp -a on this failed server shows that there is no entry for the gateway address (69.59.196.211): Interface: 69.59.196.220 --- 0xa Internet Address Physical Address Type 69.59.196.161 00-26-88-63-c7-80 dynamic 69.59.196.210 00-15-5d-0a-3e-0e dynamic 69.59.196.212 00-21-5e-4d-45-c9 dynamic 69.59.196.213 00-15-5d-00-b2-0d dynamic 69.59.196.215 00-21-5e-4d-61-1a dynamic 69.59.196.217 00-21-5e-4d-2c-e8 dynamic 69.59.196.219 00-21-5e-4d-38-e5 dynamic 69.59.196.221 00-15-5d-00-b2-0d dynamic 69.59.196.222 00-15-5d-0a-3e-09 dynamic 69.59.196.223 ff-ff-ff-ff-ff-ff static 224.0.0.22 01-00-5e-00-00-16 static 224.0.0.252 01-00-5e-00-00-fc static 225.0.0.1 01-00-5e-00-00-01 static On our linux gateway instances arp -a shows: peak-colo-196-220.peak.org (69.59.196.220) at <incomplete> on eth1 stackoverflow.com (69.59.196.212) at 00:21:5e:4d:45:c9 [ether] on eth1 peak-colo-196-215.peak.org (69.59.196.215) at 00:21:5e:4d:61:1a [ether] on eth1 peak-colo-196-219.peak.org (69.59.196.219) at 00:21:5e:4d:38:e5 [ether] on eth1 peak-colo-196-222.peak.org (69.59.196.222) at 00:15:5d:0a:3e:09 [ether] on eth1 peak-colo-196-209.peak.org (69.59.196.209) at 00:26:88:63:c7:80 [ether] on eth1 peak-colo-196-217.peak.org (69.59.196.217) at 00:21:5e:4d:2c:e8 [ether] on eth1 Why would arp occasionally set the entry for this failed server as <incomplete>? Should we be defining our arp entries statically? I've always left arp alone since it works 99% of the time, but in this one instance it appears to be failing. Are there any additional troubleshooting steps we can take help resolve this issue? THINGS WE HAVE TRIED I added a static arp entry for testing on one of the linux gateways which still didn't help. root@haproxy2:~# arp -a peak-colo-196-215.peak.org (69.59.196.215) at 00:21:5e:4d:61:1a [ether] on eth1 peak-colo-196-221.peak.org (69.59.196.221) at 00:15:5d:00:b2:0d [ether] on eth1 stackoverflow.com (69.59.196.212) at 00:21:5e:4d:45:c9 [ether] on eth1 peak-colo-196-219.peak.org (69.59.196.219) at 00:21:5e:4d:38:e5 [ether] on eth1 peak-colo-196-209.peak.org (69.59.196.209) at 00:26:88:63:c7:80 [ether] on eth1 peak-colo-196-217.peak.org (69.59.196.217) at 00:21:5e:4d:2c:e8 [ether] on eth1 peak-colo-196-220.peak.org (69.59.196.220) at 00:21:5e:4d:30:8d [ether] PERM on eth1 root@haproxy2:~# arp -i eth1 -s 69.59.196.220 00:21:5e:4d:30:8d root@haproxy2:~# ping 69.59.196.220 PING 69.59.196.220 (69.59.196.220) 56(84) bytes of data. --- 69.59.196.220 ping statistics --- 7 packets transmitted, 0 received, 100% packet loss, time 6006ms Rebooting the windows web server solves this issue temporarily with no other changes to the network but our experience shows this issue will come back. Swapping network cards and switches I noticed the link light on the port of the switch for the failed windows server was running at 100Mb instead of 1Gb on the failed interface. I moved the cable to several other open ports and the link indicated 100Mb for each port that I tried. I also swapped the cable with the same result. I tried changing the properties of the network card in windows and the server locked up and required a hard reset after clicking apply. This windows server has two physical network interfaces so I have swapped the cables and network settings on the two interfaces to see if the problem follows the interface. If the public interface goes down again we will know that it is not an issue with the network card. (We also tried another switch we have on hand, no change) Changing network hardware driver versions We've had the same problem with the latest Broadcom driver, as well as the built-in driver that ships in Windows Server 2008 R2. Replacing network cables As a last ditch effort we remembered another change that occurred was the replacement of all of the patch cords between our servers / switch. We had purchased two sets, one green of lengths 1ft - 3ft for the private interfaces and another set of red cables for the public interfaces. We swapped out all of the public interface patch cables with a different brand and ran our servers without issue for a full week ... aaaaaand then the problem recurred. Disable checksum offload, remove TProxy We also tried disabling TCP/IP checksum offload in the driver, no change. We're now pulling out TProxy and moving to a more traditional x-forwarded-for network arrangement without any fancy IP address rewriting. We'll see if that helps. Switch Virtualization providers On the off chance this was related to Hyper-V in some way (we do host Linux VMs on it), we switched to VMWare Server. No change. Switch host model We've reached the end of our troubleshooting rope and are now formally involving Microsoft support. They recommended changing the host model: http://en.wikipedia.org/wiki/Host_model http://technet.microsoft.com/en-us/magazine/2007.09.cableguy.aspx We did that, and.. we'll see.

    Read the article

  • debian lenny xen bridge networking problem

    - by Sasha
    DomU isn't talking to the world, but it talks to Dom0. Here are the tests that I made: Dom0 (external networking is working): ping 188.40.96.238 #Which is Domu's ip PING 188.40.96.238 (188.40.96.238) 56(84) bytes of data. 64 bytes from 188.40.96.238: icmp_seq=1 ttl=64 time=0.092 ms DomU: ping 188.40.96.215 #Which is Dom0's ip PING 188.40.96.215 (188.40.96.215) 56(84) bytes of data. 64 bytes from 188.40.96.215: icmp_seq=1 ttl=64 time=0.045 ms ping 188.40.96.193 #Which is the gateway - fail PING 188.40.96.193 (188.40.96.193) 56(84) bytes of data. ^C --- 188.40.96.193 ping statistics --- 2 packets transmitted, 0 received, 100% packet loss, time 1013ms The system is debian lenny with a normal setup. Here is my configs: uname -a Linux green0 2.6.26-2-xen-686 #1 SMP Wed Aug 19 08:47:57 UTC 2009 i686 GNU/Linux cat /etc/xen/green1.cfg |grep -v '#' kernel = '/boot/vmlinuz-2.6.26-2-xen-686' ramdisk = '/boot/initrd.img-2.6.26-2-xen-686' memory = '2000' root = '/dev/xvda2 ro' disk = [ 'file:/home/xen/domains/green1/swap.img,xvda1,w', 'file:/home/xen/domains/green1/disk.img,xvda2,w', ] name = 'green1' vif = [ 'ip=188.40.96.238,mac=00:16:3E:1F:C4:CC' ] on_poweroff = 'destroy' on_reboot = 'restart' on_crash = 'restart' ifconfig eth0 Link encap:Ethernet HWaddr 00:24:21:ef:2f:86 inet addr:188.40.96.215 Bcast:188.40.96.255 Mask:255.255.255.192 inet6 addr: fe80::224:21ff:feef:2f86/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:3296 errors:0 dropped:0 overruns:0 frame:0 TX packets:2204 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:262717 (256.5 KiB) TX bytes:330465 (322.7 KiB) lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) peth0 Link encap:Ethernet HWaddr 00:24:21:ef:2f:86 inet6 addr: fe80::224:21ff:feef:2f86/64 Scope:Link UP BROADCAST RUNNING PROMISC MULTICAST MTU:1500 Metric:1 RX packets:3407 errors:0 dropped:657431448 overruns:0 frame:0 TX packets:2291 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:319941 (312.4 KiB) TX bytes:338423 (330.4 KiB) Interrupt:16 Base address:0x8000 vif2.0 Link encap:Ethernet HWaddr fe:ff:ff:ff:ff:ff inet6 addr: fe80::fcff:ffff:feff:ffff/64 Scope:Link UP BROADCAST RUNNING PROMISC MULTICAST MTU:1500 Metric:1 RX packets:27 errors:0 dropped:0 overruns:0 frame:0 TX packets:151 errors:0 dropped:33 overruns:0 carrier:0 collisions:0 txqueuelen:32 RX bytes:1164 (1.1 KiB) TX bytes:20974 (20.4 KiB) ip a s 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo inet6 ::1/128 scope host valid_lft forever preferred_lft forever 2: peth0: <BROADCAST,MULTICAST,PROMISC,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 1000 link/ether 00:24:21:ef:2f:86 brd ff:ff:ff:ff:ff:ff inet6 fe80::224:21ff:feef:2f86/64 scope link valid_lft forever preferred_lft forever 4: vif0.0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN link/ether fe:ff:ff:ff:ff:ff brd ff:ff:ff:ff:ff:ff 5: veth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff 6: vif0.1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN link/ether fe:ff:ff:ff:ff:ff brd ff:ff:ff:ff:ff:ff 7: veth1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff 8: vif0.2: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN link/ether fe:ff:ff:ff:ff:ff brd ff:ff:ff:ff:ff:ff 9: veth2: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff 10: vif0.3: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN link/ether fe:ff:ff:ff:ff:ff brd ff:ff:ff:ff:ff:ff 11: veth3: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff 12: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN link/ether 00:24:21:ef:2f:86 brd ff:ff:ff:ff:ff:ff inet 188.40.96.215/26 brd 188.40.96.255 scope global eth0 inet6 fe80::224:21ff:feef:2f86/64 scope link valid_lft forever preferred_lft forever 14: vif2.0: <BROADCAST,MULTICAST,PROMISC,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 32 link/ether fe:ff:ff:ff:ff:ff brd ff:ff:ff:ff:ff:ff inet6 fe80::fcff:ffff:feff:ffff/64 scope link valid_lft forever preferred_lft forever brctl show bridge name bridge id STP enabled interfaces eth0 8000.002421ef2f86 no peth0 vif2.0 ip r l Dom0: 188.40.96.192/26 dev eth0 proto kernel scope link src 188.40.96.215 default via 188.40.96.193 dev eth0 DomU: 188.40.96.192/26 dev eth0 proto kernel scope link src 188.40.96.238 default via 188.40.96.193 dev eth0

    Read the article

  • Is it possible to host a website in the 'ether' of the Internet -- not on a server -- so that it cannot be taken down? [closed]

    - by Christopher Altman
    This is a theoretical problem I am curious about. Websites are hosted on servers. Servers can be taken offline. Is it possible to host a website in the 'ether' of the Internet -- not on a server -- so that it cannot be taken down? One example, is that the website is hosted on other websites, like a parasite. Another is that it is assembled through storing pieces on DNS machines, routers, etc., so that it get assembled on the fly. The purpose is that this website could live forever because no one person can remove it. The answers I am looking for are plausible idea/approaches on technically how this could be built.

    Read the article

  • Linux - Only first virtual interface can ping external gateway

    - by husvar
    I created 3 virtual interfaces with different mac addresses all linked to the same physical interface. I see that they successfully arp for the gw and they can ping (the request is coming in the packet capture in wireshark). However the ping utility does not count the responses. Does anyone knows the issue? I am running Ubuntu 14.04 in a VmWare. root@ubuntu:~# ip link sh 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 link/ether 00:0c:29:bc:fc:8b brd ff:ff:ff:ff:ff:ff root@ubuntu:~# ip addr sh 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever inet6 ::1/128 scope host valid_lft forever preferred_lft forever 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000 link/ether 00:0c:29:bc:fc:8b brd ff:ff:ff:ff:ff:ff inet6 fe80::20c:29ff:febc:fc8b/64 scope link valid_lft forever preferred_lft forever root@ubuntu:~# ip route sh root@ubuntu:~# ip link add link eth0 eth0.1 addr 00:00:00:00:00:11 type macvlan root@ubuntu:~# ip link add link eth0 eth0.2 addr 00:00:00:00:00:22 type macvlan root@ubuntu:~# ip link add link eth0 eth0.3 addr 00:00:00:00:00:33 type macvlan root@ubuntu:~# ip -4 link sh 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 link/ether 00:0c:29:bc:fc:8b brd ff:ff:ff:ff:ff:ff 18: eth0.1@eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group default link/ether 00:00:00:00:00:11 brd ff:ff:ff:ff:ff:ff 19: eth0.2@eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group default link/ether 00:00:00:00:00:22 brd ff:ff:ff:ff:ff:ff 20: eth0.3@eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group default link/ether 00:00:00:00:00:33 brd ff:ff:ff:ff:ff:ff root@ubuntu:~# ip -4 addr sh 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever root@ubuntu:~# ip -4 route sh root@ubuntu:~# dhclient -v eth0.1 Internet Systems Consortium DHCP Client 4.2.4 Copyright 2004-2012 Internet Systems Consortium. All rights reserved. For info, please visit https://www.isc.org/software/dhcp/ Listening on LPF/eth0.1/00:00:00:00:00:11 Sending on LPF/eth0.1/00:00:00:00:00:11 Sending on Socket/fallback DHCPDISCOVER on eth0.1 to 255.255.255.255 port 67 interval 3 (xid=0x568eac05) DHCPREQUEST of 192.168.1.145 on eth0.1 to 255.255.255.255 port 67 (xid=0x568eac05) DHCPOFFER of 192.168.1.145 from 192.168.1.254 DHCPACK of 192.168.1.145 from 192.168.1.254 bound to 192.168.1.145 -- renewal in 1473 seconds. root@ubuntu:~# dhclient -v eth0.2 Internet Systems Consortium DHCP Client 4.2.4 Copyright 2004-2012 Internet Systems Consortium. All rights reserved. For info, please visit https://www.isc.org/software/dhcp/ Listening on LPF/eth0.2/00:00:00:00:00:22 Sending on LPF/eth0.2/00:00:00:00:00:22 Sending on Socket/fallback DHCPDISCOVER on eth0.2 to 255.255.255.255 port 67 interval 3 (xid=0x21e3114e) DHCPREQUEST of 192.168.1.146 on eth0.2 to 255.255.255.255 port 67 (xid=0x21e3114e) DHCPOFFER of 192.168.1.146 from 192.168.1.254 DHCPACK of 192.168.1.146 from 192.168.1.254 bound to 192.168.1.146 -- renewal in 1366 seconds. root@ubuntu:~# dhclient -v eth0.3 Internet Systems Consortium DHCP Client 4.2.4 Copyright 2004-2012 Internet Systems Consortium. All rights reserved. For info, please visit https://www.isc.org/software/dhcp/ Listening on LPF/eth0.3/00:00:00:00:00:33 Sending on LPF/eth0.3/00:00:00:00:00:33 Sending on Socket/fallback DHCPDISCOVER on eth0.3 to 255.255.255.255 port 67 interval 3 (xid=0x11dc5f03) DHCPREQUEST of 192.168.1.147 on eth0.3 to 255.255.255.255 port 67 (xid=0x11dc5f03) DHCPOFFER of 192.168.1.147 from 192.168.1.254 DHCPACK of 192.168.1.147 from 192.168.1.254 bound to 192.168.1.147 -- renewal in 1657 seconds. root@ubuntu:~# ip -4 link sh 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 link/ether 00:0c:29:bc:fc:8b brd ff:ff:ff:ff:ff:ff 18: eth0.1@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN mode DEFAULT group default link/ether 00:00:00:00:00:11 brd ff:ff:ff:ff:ff:ff 19: eth0.2@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN mode DEFAULT group default link/ether 00:00:00:00:00:22 brd ff:ff:ff:ff:ff:ff 20: eth0.3@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN mode DEFAULT group default link/ether 00:00:00:00:00:33 brd ff:ff:ff:ff:ff:ff root@ubuntu:~# ip -4 addr sh 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever 18: eth0.1@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN group default inet 192.168.1.145/24 brd 192.168.1.255 scope global eth0.1 valid_lft forever preferred_lft forever 19: eth0.2@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN group default inet 192.168.1.146/24 brd 192.168.1.255 scope global eth0.2 valid_lft forever preferred_lft forever 20: eth0.3@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN group default inet 192.168.1.147/24 brd 192.168.1.255 scope global eth0.3 valid_lft forever preferred_lft forever root@ubuntu:~# ip -4 route sh default via 192.168.1.254 dev eth0.1 192.168.1.0/24 dev eth0.1 proto kernel scope link src 192.168.1.145 192.168.1.0/24 dev eth0.2 proto kernel scope link src 192.168.1.146 192.168.1.0/24 dev eth0.3 proto kernel scope link src 192.168.1.147 root@ubuntu:~# arping -c 5 -I eth0.1 192.168.1.254 ARPING 192.168.1.254 from 192.168.1.145 eth0.1 Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 6.936ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 2.986ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 0.654ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 5.137ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 2.426ms Sent 5 probes (1 broadcast(s)) Received 5 response(s) root@ubuntu:~# arping -c 5 -I eth0.2 192.168.1.254 ARPING 192.168.1.254 from 192.168.1.146 eth0.2 Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 5.665ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 3.753ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 16.500ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 3.287ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 32.438ms Sent 5 probes (1 broadcast(s)) Received 5 response(s) root@ubuntu:~# arping -c 5 -I eth0.3 192.168.1.254 ARPING 192.168.1.254 from 192.168.1.147 eth0.3 Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 4.422ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 2.429ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 2.321ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 40.423ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 2.268ms Sent 5 probes (1 broadcast(s)) Received 5 response(s) root@ubuntu:~# tcpdump -n -i eth0.1 -v & [1] 5317 root@ubuntu:~# ping -c5 -q -I eth0.1 192.168.1.254 PING 192.168.1.254 (192.168.1.254) from 192.168.1.145 eth0.1: 56(84) bytes of data. tcpdump: listening on eth0.1, link-type EN10MB (Ethernet), capture size 65535 bytes 13:18:37.612558 IP (tos 0x0, ttl 64, id 2595, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.145 > 192.168.1.254: ICMP echo request, id 5318, seq 2, length 64 13:18:37.618864 IP (tos 0x68, ttl 64, id 14493, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.145: ICMP echo reply, id 5318, seq 2, length 64 13:18:37.743650 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.87 tell 192.168.1.86, length 46 13:18:38.134997 IP (tos 0x0, ttl 128, id 23547, offset 0, flags [none], proto UDP (17), length 229) 192.168.1.86.138 > 192.168.1.255.138: NBT UDP PACKET(138) 13:18:38.614580 IP (tos 0x0, ttl 64, id 2596, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.145 > 192.168.1.254: ICMP echo request, id 5318, seq 3, length 64 13:18:38.793479 IP (tos 0x68, ttl 64, id 14495, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.145: ICMP echo reply, id 5318, seq 3, length 64 13:18:39.151282 IP6 (class 0x68, hlim 255, next-header ICMPv6 (58) payload length: 32) fe80::5a98:35ff:fe57:e070 > ff02::1:ff6b:e9b4: [icmp6 sum ok] ICMP6, neighbor solicitation, length 32, who has 2001:818:d812:da00:8ae3:abff:fe6b:e9b4 source link-address option (1), length 8 (1): 58:98:35:57:a0:70 13:18:39.615612 IP (tos 0x0, ttl 64, id 2597, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.145 > 192.168.1.254: ICMP echo request, id 5318, seq 4, length 64 13:18:39.746981 IP (tos 0x68, ttl 64, id 14496, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.145: ICMP echo reply, id 5318, seq 4, length 64 --- 192.168.1.254 ping statistics --- 5 packets transmitted, 5 received, 0% packet loss, time 4008ms rtt min/avg/max/mdev = 2.793/67.810/178.934/73.108 ms root@ubuntu:~# killall tcpdump >> /dev/null 2>&1 9 packets captured 12 packets received by filter 0 packets dropped by kernel [1]+ Done tcpdump -n -i eth0.1 -v root@ubuntu:~# tcpdump -n -i eth0.2 -v & [1] 5320 root@ubuntu:~# ping -c5 -q -I eth0.2 192.168.1.254 PING 192.168.1.254 (192.168.1.254) from 192.168.1.146 eth0.2: 56(84) bytes of data. tcpdump: listening on eth0.2, link-type EN10MB (Ethernet), capture size 65535 bytes 13:18:41.536874 ARP, Ethernet (len 6), IPv4 (len 4), Reply 192.168.1.254 is-at 58:98:35:57:a0:70, length 46 13:18:41.536933 IP (tos 0x0, ttl 64, id 2599, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.146 > 192.168.1.254: ICMP echo request, id 5321, seq 1, length 64 13:18:41.539255 IP (tos 0x68, ttl 64, id 14507, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.146: ICMP echo reply, id 5321, seq 1, length 64 13:18:42.127715 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.87 tell 192.168.1.86, length 46 13:18:42.511725 IP (tos 0x0, ttl 64, id 2600, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.146 > 192.168.1.254: ICMP echo request, id 5321, seq 2, length 64 13:18:42.514385 IP (tos 0x68, ttl 64, id 14527, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.146: ICMP echo reply, id 5321, seq 2, length 64 13:18:42.743856 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.87 tell 192.168.1.86, length 46 13:18:43.511727 IP (tos 0x0, ttl 64, id 2601, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.146 > 192.168.1.254: ICMP echo request, id 5321, seq 3, length 64 13:18:43.513768 IP (tos 0x68, ttl 64, id 14528, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.146: ICMP echo reply, id 5321, seq 3, length 64 13:18:43.637598 IP (tos 0x0, ttl 128, id 23551, offset 0, flags [none], proto UDP (17), length 225) 192.168.1.86.17500 > 255.255.255.255.17500: UDP, length 197 13:18:43.641185 IP (tos 0x0, ttl 128, id 23552, offset 0, flags [none], proto UDP (17), length 225) 192.168.1.86.17500 > 192.168.1.255.17500: UDP, length 197 13:18:43.641201 IP (tos 0x0, ttl 128, id 23553, offset 0, flags [none], proto UDP (17), length 225) 192.168.1.86.17500 > 255.255.255.255.17500: UDP, length 197 13:18:43.743890 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.87 tell 192.168.1.86, length 46 13:18:44.510758 IP (tos 0x0, ttl 64, id 2602, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.146 > 192.168.1.254: ICMP echo request, id 5321, seq 4, length 64 13:18:44.512892 IP (tos 0x68, ttl 64, id 14538, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.146: ICMP echo reply, id 5321, seq 4, length 64 13:18:45.510794 IP (tos 0x0, ttl 64, id 2603, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.146 > 192.168.1.254: ICMP echo request, id 5321, seq 5, length 64 13:18:45.519701 IP (tos 0x68, ttl 64, id 14539, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.146: ICMP echo reply, id 5321, seq 5, length 64 13:18:49.287554 IP6 (class 0x68, hlim 255, next-header ICMPv6 (58) payload length: 32) fe80::5a98:35ff:fe57:e070 > ff02::1:ff6b:e9b4: [icmp6 sum ok] ICMP6, neighbor solicitation, length 32, who has 2001:818:d812:da00:8ae3:abff:fe6b:e9b4 source link-address option (1), length 8 (1): 58:98:35:57:a0:70 13:18:50.013463 IP (tos 0x0, ttl 255, id 50737, offset 0, flags [DF], proto UDP (17), length 73) 192.168.1.146.5353 > 224.0.0.251.5353: 0 [2q] PTR (QM)? _ipps._tcp.local. PTR (QM)? _ipp._tcp.local. (45) 13:18:50.218874 IP6 (class 0x68, hlim 255, next-header ICMPv6 (58) payload length: 32) fe80::5a98:35ff:fe57:e070 > ff02::1:ff6b:e9b4: [icmp6 sum ok] ICMP6, neighbor solicitation, length 32, who has 2001:818:d812:da00:8ae3:abff:fe6b:e9b4 source link-address option (1), length 8 (1): 58:98:35:57:a0:70 13:18:51.129961 IP6 (class 0x68, hlim 255, next-header ICMPv6 (58) payload length: 32) fe80::5a98:35ff:fe57:e070 > ff02::1:ff6b:e9b4: [icmp6 sum ok] ICMP6, neighbor solicitation, length 32, who has 2001:818:d812:da00:8ae3:abff:fe6b:e9b4 source link-address option (1), length 8 (1): 58:98:35:57:a0:70 13:18:52.197074 IP6 (hlim 255, next-header UDP (17) payload length: 53) 2001:818:d812:da00:200:ff:fe00:22.5353 > ff02::fb.5353: [udp sum ok] 0 [2q] PTR (QM)? _ipps._tcp.local. PTR (QM)? _ipp._tcp.local. (45) 13:18:54.128240 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.87 tell 192.168.1.86, length 46 --- 192.168.1.254 ping statistics --- 5 packets transmitted, 0 received, 100% packet loss, time 4000ms root@ubuntu:~# killall tcpdump >> /dev/null 2>&1 13:18:54.657731 IP6 (class 0x68, hlim 255, next-header ICMPv6 (58) payload length: 32) fe80::5a98:35ff:fe57:e070 > ff02::1:ff6b:e9b4: [icmp6 sum ok] ICMP6, neighbor solicitation, length 32, who has 2001:818:d812:da00:8ae3:abff:fe6b:e9b4 source link-address option (1), length 8 (1): 58:98:35:57:a0:70 13:18:54.743174 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.87 tell 192.168.1.86, length 46 25 packets captured 26 packets received by filter 0 packets dropped by kernel [1]+ Done tcpdump -n -i eth0.2 -v root@ubuntu:~# tcpdump -n -i eth0.3 icmp & [1] 5324 root@ubuntu:~# ping -c5 -q -I eth0.3 192.168.1.254 PING 192.168.1.254 (192.168.1.254) from 192.168.1.147 eth0.3: 56(84) bytes of data. tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on eth0.3, link-type EN10MB (Ethernet), capture size 65535 bytes 13:18:56.373434 IP 192.168.1.147 > 192.168.1.254: ICMP echo request, id 5325, seq 1, length 64 13:18:57.372116 IP 192.168.1.147 > 192.168.1.254: ICMP echo request, id 5325, seq 2, length 64 13:18:57.381263 IP 192.168.1.254 > 192.168.1.147: ICMP echo reply, id 5325, seq 2, length 64 13:18:58.371141 IP 192.168.1.147 > 192.168.1.254: ICMP echo request, id 5325, seq 3, length 64 13:18:58.373275 IP 192.168.1.254 > 192.168.1.147: ICMP echo reply, id 5325, seq 3, length 64 13:18:59.371165 IP 192.168.1.147 > 192.168.1.254: ICMP echo request, id 5325, seq 4, length 64 13:18:59.373259 IP 192.168.1.254 > 192.168.1.147: ICMP echo reply, id 5325, seq 4, length 64 13:19:00.371211 IP 192.168.1.147 > 192.168.1.254: ICMP echo request, id 5325, seq 5, length 64 13:19:00.373278 IP 192.168.1.254 > 192.168.1.147: ICMP echo reply, id 5325, seq 5, length 64 --- 192.168.1.254 ping statistics --- 5 packets transmitted, 1 received, 80% packet loss, time 4001ms rtt min/avg/max/mdev = 13.666/13.666/13.666/0.000 ms root@ubuntu:~# killall tcpdump >> /dev/null 2>&1 9 packets captured 10 packets received by filter 0 packets dropped by kernel [1]+ Done tcpdump -n -i eth0.3 icmp root@ubuntu:~# arp -n Address HWtype HWaddress Flags Mask Iface 192.168.1.254 ether 58:98:35:57:a0:70 C eth0.1 192.168.1.254 ether 58:98:35:57:a0:70 C eth0.2 192.168.1.254 ether 58:98:35:57:a0:70 C eth0.3

    Read the article

  • qemu-kvm virtual machine virtio network freeze under load

    - by Rick Koshi
    I'm having a problem with my virtual machines, where the network will freeze under heavy load. I'm using CentOS 6.2 as both host and guest, not using libvirt, just running qemu-kvm directly as follows: /usr/libexec/qemu-kvm \ -drive file=/data2/vm/rb-dev2-www1-vm.img,index=0,media=disk,cache=none,if=virtio \ -boot order=c \ -m 2G \ -smp cores=1,threads=2 \ -vga std \ -name rb-dev2-www1-vm \ -vnc :84,password \ -net nic,vlan=0,macaddr=52:54:20:00:00:54,model=virtio \ -net tap,vlan=0,ifname=tap84,script=/etc/qemu-ifup \ -monitor unix:/var/run/vm/rb-dev2-www1-vm.mon,server,nowait \ -rtc base=utc \ -device piix3-usb-uhci \ -device usb-tablet /etc/qemu-ifup (used by the above command) is a very simple script, containing the following: #!/bin/sh sudo /sbin/ifconfig $1 0.0.0.0 promisc up sudo /usr/sbin/brctl addif br0 $1 sleep 2 And here's the info on br0 and other interfaces: avl-host3 14# brctl show bridge name bridge id STP enabled interfaces br0 8000.180373f5521a no bond0 tap84 virbr0 8000.525400858961 yes virbr0-nic avl-host3 15# ip addr show 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo inet6 ::1/128 scope host valid_lft forever preferred_lft forever 2: em1: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc mq master bond0 state UP qlen 1000 link/ether 18:03:73:f5:52:1a brd ff:ff:ff:ff:ff:ff 3: em2: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc mq master bond0 state UP qlen 1000 link/ether 18:03:73:f5:52:1a brd ff:ff:ff:ff:ff:ff 4: em3: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN qlen 1000 link/ether 18:03:73:f5:52:1e brd ff:ff:ff:ff:ff:ff 5: em4: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN qlen 1000 link/ether 18:03:73:f5:52:20 brd ff:ff:ff:ff:ff:ff 6: bond0: <BROADCAST,MULTICAST,MASTER,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP link/ether 18:03:73:f5:52:1a brd ff:ff:ff:ff:ff:ff inet6 fe80::1a03:73ff:fef5:521a/64 scope link valid_lft forever preferred_lft forever 7: br0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN link/ether 18:03:73:f5:52:1a brd ff:ff:ff:ff:ff:ff inet 172.16.1.46/24 brd 172.16.1.255 scope global br0 inet6 fe80::1a03:73ff:fef5:521a/64 scope link valid_lft forever preferred_lft forever 8: virbr0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN link/ether 52:54:00:85:89:61 brd ff:ff:ff:ff:ff:ff inet 192.168.122.1/24 brd 192.168.122.255 scope global virbr0 9: virbr0-nic: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN qlen 500 link/ether 52:54:00:85:89:61 brd ff:ff:ff:ff:ff:ff 12: tap84: <BROADCAST,MULTICAST,PROMISC,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 500 link/ether ba:e8:9b:2a:ff:48 brd ff:ff:ff:ff:ff:ff inet6 fe80::b8e8:9bff:fe2a:ff48/64 scope link valid_lft forever preferred_lft forever bond0 is a bond of em1 and em2. virbr0 and virbr0-nic are vestigial interfaces left over from CentOS's default installation. They are unused (as far as I know). The guest runs perfectly until I run a large 'rsync', when the network will freeze after some seemingly-random time (usually under a minute). When it freezes, there is no network activity in or out of the guest. I can still connect to the guest's console via vnc, but it is unable to speak out its network interface. Any attempt to 'ping' from the guest gives a "Destination Host Unreachable" error for 3/4 packets and no reply for every fourth packet. Sometimes (perhaps two thirds of the time), I can bring the interface back to life by doing a "service network restart" from the guest's console. If this works (and if I do it before the rsync times out), the rsync will resume. Usually it will freeze again within a minute or two. If I repeat, the rsync will eventually finish, and I presume the machine goes back to waiting for another period of heavy load. Throughout the whole process, there are no console errors or relevant (that I can see) syslog messages on either guest or host machine. If the "service network restart" doesn't work the first time, trying again (and again and again) never seems to work. The command completes normally, with normal output, but the interface stays frozen. However, a soft reboot of the guest machine (without restarting qemu-kvm) always seems to bring it back. I am aware of the "lowest mac address" assignment problem, where the bridge takes on the mac address of the slave interface with the lowest mac address. This causes temporary network freezes, but is definitely not what's happening for me. My freezes are permanent until manual intervention, and you can see from the 'ip addr show' output above that the mac address being used by br0 is that of the physical ethernet. There are no other virtual machines running on the host. I've verified that each virtual machine on the subnet has its own unique mac address. I have rebuilt the guest machine several times, and I have tried this on three different host machines (identical hardware, built identically). Oddly, I do have one virtual host (the second of this series) which never seemed to have a problem. It never had its network freeze when it was running the same rsync during its build. It's particularly odd because it was the second build. The first, on a different host, did have the freezing problem, but the second did not. I assumed at the time that I had done something wrong with the first build, and that the problem was resolved. Unfortunately, the problem reappeared when I built the third VM. Also unfortunately, I can't do many tests with the working VM, as it's now in production use, and I'm hoping I can find the cause of this issue before that machine starts having problems. It's possible that I just got really lucky while running the rsync on the working machine, and that one time it didn't freeze. Of course it's possible that I somehow changed the build scripts without realizing it and re-broke something, but I can't find any such thing. In any case, I'm hoping someone has some idea what could cause this. Addendum: Preliminary tests suggest that I don't have the problem if I substitute e1000 for virtio in the first -net flag to qemu-kvm. I don't consider this a solution, but it is suitable for a stopgap. Has anyone else had (or better yet, solved) this problem with the virtio network driver?

    Read the article

  • Can't get network bridging to work

    - by Antonis Christofides
    I'm trying to make network bridging to work on a Debian squeeze (I'm experimenting in order to make a QEMU/KVM virtual machine that will be visible to the outside network as if it were a distinct machine). The problem is that when I type brctl addif br0 eth0 then I lose connectivity to the network until I type brctl delif br0 eth0. More specifically, here's how my machine looks like before I do anything (essentially eth0 is listening on 147.102.160.153): root@laura:/home/anthony# ip addr show 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo inet6 ::1/128 scope host valid_lft forever preferred_lft forever 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000 link/ether 8c:73:6e:db:1c:1b brd ff:ff:ff:ff:ff:ff inet 147.102.160.153/24 brd 147.102.160.255 scope global eth0 inet6 2001:648:2000:a0:8e73:6eff:fedb:1c1b/64 scope global dynamic valid_lft 2591848sec preferred_lft 604648sec inet6 fe80::8e73:6eff:fedb:1c1b/64 scope link valid_lft forever preferred_lft forever 3: wlan0: <BROADCAST,MULTICAST> mtu 1500 qdisc mq state DOWN qlen 1000 link/ether 4c:ed:de:8e:44:d7 brd ff:ff:ff:ff:ff:ff 4: vboxnet0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN qlen 1000 link/ether 0a:00:27:00:00:00 brd ff:ff:ff:ff:ff:ff 5: pan0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN link/ether ee:7c:88:59:d0:e8 brd ff:ff:ff:ff:ff:ff Now let me add the bridge: root@laura:/home/anthony# brctl addbr br0 root@laura:/home/anthony# ip tuntap add dev tap0 mode tap root@laura:/home/anthony# ip link set tap0 up root@laura:/home/anthony# brctl addif br0 tap0 Until here everything continues to work normally. Finally, I try to add eth0 to the bridge: root@laura:/home/anthony# brctl addif br0 eth0 At this point, I no longer have a network connection. If I try to ping something, it tells "Destination Host Unreachable". The output of ip addr show seems normal: root@laura:/home/anthony# ip addr show 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo inet6 ::1/128 scope host valid_lft forever preferred_lft forever 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000 link/ether 8c:73:6e:db:1c:1b brd ff:ff:ff:ff:ff:ff inet 147.102.160.153/24 brd 147.102.160.255 scope global eth0 inet6 2001:648:2000:a0:8e73:6eff:fedb:1c1b/64 scope global dynamic valid_lft 2591908sec preferred_lft 604708sec inet6 fe80::8e73:6eff:fedb:1c1b/64 scope link valid_lft forever preferred_lft forever [snip wlan0, vboxnet0 and pan0, which are down and irrelevant] 8: br0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN link/ether 16:30:f2:67:ab:75 brd ff:ff:ff:ff:ff:ff 9: tap0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UNKNOWN qlen 500 link/ether 16:30:f2:67:ab:75 brd ff:ff:ff:ff:ff:ff inet6 fe80::1430:f2ff:fe67:ab75/64 scope link valid_lft forever preferred_lft forever Also: root@laura:/home/anthony# route -n Kernel IP routing table Destination Gateway Genmask Flags Metric Ref Use Iface 147.102.160.0 0.0.0.0 255.255.255.0 U 1 0 0 eth0 169.254.0.0 0.0.0.0 255.255.0.0 U 1000 0 0 eth0 0.0.0.0 147.102.160.200 0.0.0.0 UG 0 0 0 eth0 I can't understand what I'm doing wrong. I want the machine to continue to listen on 147.102.160.153 on eth0, and in addition to that I want to have a tap0 interface, bridged to eth0, that will be available to the guest machine so that the latter listens on another ip address (say 147.102.160.205). (If there's another way to achieve what I want, I'm also interested.)

    Read the article

  • Bridged network on OS X only gets UDP broadcast traffic

    - by a paid nerd
    I've created a bridged network Mac OS X 10.8.5 using ifconfig and TUNTAP for OS X to bridge my wireless connection, en0, with a virtual interface, tap0, which I can use for guest VMs: $ sudo sysctl -w net.inet.ip.forwarding=1 $ sudo sysctl -w net.link.ether.inet.proxyall=1 $ sudo sysctl -w net.inet.ip.fw.enable=1 $ sudo ifconfig bridge0 create $ sudo ifconfig bridge0 addm en0 addm tap0 $ sudo ifconfig bridge0 up $ ifconfig en0: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500 ether 28:cf:xx:xx:xx:xx inet6 xxxx::xxxx:xxxx:xxxx:xxxx%en0 prefixlen 64 scopeid 0x4 inet 192.168.100.64 netmask 0xffffff00 broadcast 192.168.100.1 media: autoselect status: active bridge0: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500 ether ac:de:xx:xx:xx:xx Configuration: priority 0 hellotime 0 fwddelay 0 maxage 0 ipfilter disabled flags 0x2 member: en0 flags=3<LEARNING,DISCOVER> port 4 priority 0 path cost 0 member: tap0 flags=3<LEARNING,DISCOVER> port 8 priority 0 path cost 0 tap0: flags=8943<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST> mtu 1500 ether ca:3d:xx:xx:xx:xx open (pid 88244) However, if I tcpdump -i tap0, I only see broadcast traffic. Shouldn't I see a mirror of everything on en0? (192.168.100.33, the host doing the broadcasting, is another unrelate, noisy server on my LAN.) (I asked a similar question here and will probably close it.)

    Read the article

  • FreeBSD 8.0 - Macbook: Trying to Connect to Wireless

    - by Koroviev
    What Happened A few days ago I installed FreeBSD 8from USB to my Macbook (Core Duo, 13"). The first thing I wanted to do was get my GUI back. I'm new to FreeBSD and it's my first time off of mac or windows, so I had some learning to do. I tried to a make clean install of xorg with ports but it returned many "No address record" errors. I realised I hadn't configured network settings and then the fun started. I ran ifconfig and it found 5 devices: msk0, ath0, fwe0, fwip0, lo0. * ath0 was identified as media: IEEE 802.11 Wireless Ethernet autoselect so it was clear which one I needed. From what I gathered, there are 3 files and two processes involved here: /boot/loader.conf /etc/wpa_supplicant.conf /etc/rc.conf /etc/rc.d/netif wpa_supplicant (which is a part of the former too) I'm certain it's a big simplification, so correct me if I'm wrong here. What I Tried I configured /boot/loader.conf with the few basic settings, and I'm most sure that this file is okay. The other 2 were more puzzling. I tried to make a network package in wpa_supplicant.conf. I found the ssid of the router, but the security wasn't so easy. The routers configuration on security is set to "Auto", with no explanation given. Other options are there, but Auto is selected. Another laptop uses WEP to connect (it's Vista, so I don't know how to get any more info than that), but I never configured it to do it. There's a string labled "wireless key" on the bottom of the router which I entered to set it up a new machine on the network (Windows and Macs, so it was simplified). I never had to choose a security type and only learned about them by installing FreeBSD. So perhaps WEP is what "Auto" means, but I can't find any other evidence. wpa_supplicant.conf seemed to never be correctly configured. I always got errors related to it and WPA_supplicant doesn't work. It gave me "Can't disable/enable WPA in the driver" errors and more once when I enabled -d -d. This was when I was trying some suspect configurations in rc.conf though. Usually it does nothing except hijack the shell and print "CTRL-SCAN-EVENT-RESULT" every 10 seconds. I learned how to clone the ath0 device to a wlandev interface (wlan0). ath0 is associated to it and their connection seems to go smoothly. But the wlan0's connection to the network is the problem. I couldn't create this with rc.conf, I do something wrong and get ifconfig: create: bad value errors whenever it's parsed. I did it via the shell instead. What Now? I scanned with wlan0 today: ifconfig wlan0 list scan It shows my router, even my neighbour's router. It was a relief to finally get some feedback. So wlan0 is UP and detects the router, but it is always status: no carrier. It can't associate with it and I can't figure out why. Running /etc/rc.d/netif start returns almost the same result as ifconfig would. It shows lo0 and wlan0, and sometimes ath0. I still not sure what lo0 is doing. So; how do I associate with it? We can assume it's WEP security based on how the other laptop is setup. I'll give every relevant output here. After boot, with a blank rc.conf this is what ifconfig returns: msk0: flags=8802<BROADCAST,SIMPLEX,MULTICAST> metric 0 mtu 1500 options=11a<TXCSUM,VLAN_MTU,VLAN_HWTAGGING,TSO4> ether 00:17:f2:29:89:3b media: Ethernet autoselect ath0: flags=8802<BROADCAST,SIMPLEX,MULTICAST> metric 0 mtu 2290 ether 00:16:cb:bb:fe:65 media: IEEE 802.11 Wireless Ethernet autoselect (autoselect) status: no carrier fwe0: flags=8802<BROADCAST,SIMPLEX,MULTICAST> metric 0 mtu 1500 options=8<VLAN_MTU> ether 02:17:f2:60:ad:7e ch 1 dma -1 fwip0: flags=8802<BROADCAST,SIMPLEX,MULTICAST> metric 0 mtu 1500 lladdr 0.17.f2.ff.fe.60.ad.7e.a.2.ff.fe.0.0.0.0 lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> metric 0 mtu 16384 options=3<RXCSUM,TXCSUM> inet6 fe80::1%lo0 prefixlen 64 scopeid 0x5 inet6 ::1 prefixlen 128 inet 127.0.0.1 netmask 0xff000000 I run: ifconfig wlan0 create wlandev ath0 It returns: wlan0: bpf attached wlan0: bpf attached wlan0: Ethernet address: xx:xx:xx:xx:xx:xx Ifconfig now returns: msk0: flags=8802<BROADCAST,SIMPLEX,MULTICAST> metric 0 mtu 1500 options=11a<TXCSUM,VLAN_MTU,VLAN_HWTAGGING,TSO4> ether 00:17:f2:29:89:3b media: Ethernet autoselect ath0: flags=8802<BROADCAST,SIMPLEX,MULTICAST> metric 0 mtu 2290 ether 00:16:cb:bb:fe:65 media: IEEE 802.11 Wireless Ethernet autoselect (autoselect) status: no carrier fwe0: flags=8802<BROADCAST,SIMPLEX,MULTICAST> metric 0 mtu 1500 options=8<VLAN_MTU> ether 02:17:f2:60:ad:7e ch 1 dma -1 fwip0: flags=8802<BROADCAST,SIMPLEX,MULTICAST> metric 0 mtu 1500 lladdr 0.17.f2.ff.fe.60.ad.7e.a.2.ff.fe.0.0.0.0 lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> metric 0 mtu 16384 options=3<RXCSUM,TXCSUM> inet6 fe80::1%lo0 prefixlen 64 scopeid 0x5 inet6 ::1 prefixlen 128 inet 127.0.0.1 netmask 0xff000000 wlan0: flags=8802<BROADCAST,SIMPLEX,MULTICAST> metric 0 mtu 1500 ether 00:16:cb:bb:fe:65 media: IEEE 802.11 Wireless Ethernet autoselect (autoselect) status: no carrier ssid "" channel 1 (2412 Mhz 11b) regdomain 106 indoor ecm authmode OPEN privacy OFF txpower 20 bmiss 7 scanvalid 60 bgscan bgscanintvl 300 bgscanidle 250 roam:rssi 7 roam:rate 1 wme burst bintval 0 I run: ifconfig wlan0 up ifconfig wlan0 scan It finds my router and displays its details. I can feed it my routers details now, using: ifconfig wlan0 key value key value ... They show up in wlan0 when I run ifconfig, but it still doesn't associate. What details should I feed it, what exactly is needed? What, if anything, should I have in /etc/wpa_supplicant.conf (and if that psk is needed, is it most likely the string I mentioned above)? If I define the ssid in wpa_supplicant.conf, should I still feed it to wlan0? What process should I then use to associate it? 5 .How should I add these things to rc.conf so it will automatically do this at boot? A huge thank you in advance for any help you can give, I've spent hours crawling about the shell and I've learned quite a bit from it (I finally got the hang of vi too, from all that editing). But the sooner this is fixed, the better. *P.S. I was, and still am, wondering where the extra three devices come from (the wireless and wired were all I expected to find). lo0 is up at each boot and /etc/rc.d/netif, I have no idea what it is and can't find it in dmesg. Resources: /etc/loader.conf: Code: if_ath_load="YES" wlan_wep_load="YES" wlan_ccmp_load="YES" wlan_tkip_load="YES" /etc/wpa_supplicant.conf (I emptied it of everything unnecessary, because I was just causing errors) network={ ssid="BTVOYAGER2110-1C" } /etc/rc.conf has no network settings, I commented them out because of errors. There was my attempt to clone ath0 and feed it info, but I did if via the shell instead. I've included the output of dmesg as an attachment, in case it's useful. I'd include the boot text (which appears before login) but I don't know how to catch it into a text file. If it's needed and somebody tells me how, I will (actually, even if it's not needed, how can I view it to read?).

    Read the article

  • CARP: two machines think they're the master, but only on one interface

    - by Conor McDermottroe
    I have two machines, each configured identically as a firewall/load balancer for a busy website. I have set them up with CARP and pfsync on both the internal and external interfaces. The internal interface is behaving as expected (primary listed as MASTER and secondary listed as BACKUP) On both machines, the network interfaces are as follows: em0 - External interface bge0 - Internal interface bge1 - Crossover connection between both machines carp0 - Shared external interface for CARP carp1 - Shared internal interface for CARP I've rewritten the IP addresses and MAC addresses below. The networks are as follows: 10.0.1.0/24 - External network 10.0.2.0/24 - Internal network 10.0.3.0/24 - Crossover network Here's the output from ifconfig on the primary: em0: flags=8943<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST> metric 0 mtu 1500 options=19b<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,VLAN_HWCSUM,TSO4> ether [SNIP] inet 10.0.1.10 netmask 0xffffff00 broadcast 10.0.1.255 media: Ethernet 100baseTX <full-duplex> status: active bge0: flags=8943<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST> metric 0 mtu 1500 options=9b<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,VLAN_HWCSUM> ether [SNIP] inet 10.0.2.10 netmask 0xffffff00 broadcast 10.0.2.255 media: Ethernet 1000baseT <full-duplex> status: active bge1: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500 options=9b<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,VLAN_HWCSUM> ether [SNIP] inet 10.0.3.10 netmask 0xffffff00 broadcast 10.0.3.255 media: Ethernet 1000baseT <full-duplex> status: active lo0: flags=80c9<UP,LOOPBACK,RUNNING,NOARP,MULTICAST> metric 0 mtu 16384 options=3<RXCSUM,TXCSUM> inet6 fe80::1%lo0 prefixlen 64 scopeid 0x4 inet6 ::1 prefixlen 128 inet 127.0.0.1 netmask 0xff000000 pflog0: flags=141<UP,RUNNING,PROMISC> metric 0 mtu 33152 pfsync0: flags=0<> metric 0 mtu 1460 pfsync: syncdev: bge1 syncpeer: 10.0.3.11 maxupd: 128 carp0: flags=49<UP,LOOPBACK,RUNNING> metric 0 mtu 1500 inet 10.0.1.5 netmask 0xffffff00 carp: MASTER vhid 1 advbase 1 advskew 0 carp1: flags=49<UP,LOOPBACK,RUNNING> metric 0 mtu 1500 inet 10.0.2.5 netmask 0xffffff00 carp: MASTER vhid 2 advbase 1 advskew 0 And here's the /etc/rc.conf excerpt from the primary: defaultrouter="10.0.1.1" network_interfaces="em0 bge0 bge1 lo0 pfsync0" cloned_interfaces="carp0 carp1" ifconfig_em0="inet 10.0.1.10 netmask 255.255.255.0 media 100BaseTX mediaopt full-duplex" ifconfig_bge0="inet 10.0.2.10 netmask 255.255.255.0 media 1000BaseTX mediaopt full-duplex" ifconfig_bge1="inet 10.0.3.10 netmask 255.255.255.0 media 1000BaseTX mediaopt full-duplex" ifconfig_carp0="vhid 1 pass [SNIP] 10.0.1.5/24" ifconfig_carp1="vhid 2 pass [SNIP] 10.0.2.5/24" pfsync_enable="YES" pfsync_syncdev="bge1" pfsync_syncpeer="10.0.3.11" And here's the output on the secondary: em0: flags=8943<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST> metric 0 mtu 1500 options=19b<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,VLAN_HWCSUM,TSO4> ether [SNIP] inet 10.0.1.11 netmask 0xffffff00 broadcast 10.0.1.255 media: Ethernet 100baseTX <full-duplex> status: active bge0: flags=8943<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST> metric 0 mtu 1500 options=9b<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,VLAN_HWCSUM> ether [SNIP] inet 10.0.2.11 netmask 0xffffff00 broadcast 10.0.2.255 media: Ethernet 1000baseT <full-duplex> status: active bge1: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500 options=9b<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,VLAN_HWCSUM> ether [SNIP] inet 10.0.3.11 netmask 0xffffff00 broadcast 10.0.3.255 media: Ethernet 1000baseT <full-duplex> status: active lo0: flags=80c9<UP,LOOPBACK,RUNNING,NOARP,MULTICAST> metric 0 mtu 16384 options=3<RXCSUM,TXCSUM> inet6 fe80::1%lo0 prefixlen 64 scopeid 0x4 inet6 ::1 prefixlen 128 inet 127.0.0.1 netmask 0xff000000 pflog0: flags=141<UP,RUNNING,PROMISC> metric 0 mtu 33152 pfsync0: flags=0<> metric 0 mtu 1460 pfsync: syncdev: bge1 syncpeer: 10.0.3.10 maxupd: 128 carp0: flags=49<UP,LOOPBACK,RUNNING> metric 0 mtu 1500 inet 10.0.1.5 netmask 0xffffff00 carp: MASTER vhid 1 advbase 1 advskew 20 carp1: flags=49<UP,LOOPBACK,RUNNING> metric 0 mtu 1500 inet 10.0.2.5 netmask 0xffffff00 carp: BACKUP vhid 2 advbase 1 advskew 20 And here's the /etc/rc.conf excerpt from the secondary: defaultrouter="10.0.1.1" network_interfaces="em0 bge0 bge1 lo0 pfsync0" cloned_interfaces="carp0 carp1" ifconfig_em0="inet 10.0.1.11 netmask 255.255.255.0 media 100BaseTX mediaopt full-duplex" ifconfig_bge0="inet 10.0.2.11 netmask 255.255.255.0 media 1000BaseTX mediaopt full-duplex" ifconfig_bge1="inet 10.0.3.11 netmask 255.255.255.0 media 1000BaseTX mediaopt full-duplex" ifconfig_carp0="vhid 1 pass [SNIP] advskew 20 10.0.1.5/24" ifconfig_carp1="vhid 2 pass [SNIP] advskew 20 10.0.2.5/24" pfsync_enable="YES" pfsync_syncdev="bge1" pfsync_syncpeer="10.0.3.10" What I don't understand is, the carp status on carp0 is MASTER on both machines when the status on carp1 is as it should be (MASTER on the primary and BACKUP on the secondary). What am I missing? Where should I be looking for clues?

    Read the article

  • LXC Container Networking

    - by digitaladdictions
    I just started to experiment with LXC containers. I was able to create a container and start it up but I cannot get dhcp to assign the container an IP address. If I assign a static address the container can ping the host IP but not outside the host IP. The host is CentOS 6.5 and the guest is Ubuntu 14.04LTS. I used the template downloaded by lxc-create -t download -n cn-01 command. If I am trying to get an IP address on the same subnet as the host I don't believe I should need the IP tables rule for masquerading but I added it anyways. Same with IP forwarding. I compiled LXC by hand from the following source https://linuxcontainers.org/downloads/lxc-1.0.4.tar.gz Host Operating System Version #> cat /etc/redhat-release CentOS release 6.5 (Final) #> uname -a Linux localhost.localdomain 2.6.32-431.20.3.el6.x86_64 #1 SMP Thu Jun 19 21:14:45 UTC 2014 x86_64 x86_64 x86_64 GNU/Linux Container Config #> cat /usr/local/var/lib/lxc/cn-01/config # Template used to create this container: /usr/local/share/lxc/templates/lxc-download # Parameters passed to the template: # For additional config options, please look at lxc.container.conf(5) # Distribution configuration lxc.include = /usr/local/share/lxc/config/ubuntu.common.conf lxc.arch = x86_64 # Container specific configuration lxc.rootfs = /usr/local/var/lib/lxc/cn-01/rootfs lxc.utsname = cn-01 # Network configuration lxc.network.type = veth lxc.network.flags = up lxc.network.link = br0 LXC default.confu 1500 qdisc pfifo_fast state UP qlen 1000 link/ether 00:0c:29:12:30:f2 brd ff:ff:ff:ff:f #> cat /usr/local/etc/lxc/default.conf lxc.network.type = veth lxc.network.link = br0 lxc.network.flags = up #> lxc-checkconfig Kernel configuration not found at /proc/config.gz; searching... Kernel configuration found at /boot/config-2.6.32-431.20.3.el6.x86_64 --- Namespaces --- Namespaces: enabled Utsname namespace: enabled Ipc namespace: enabled Pid namespace: enabled User namespace: enabled Network namespace: enabled Multiple /dev/pts instances: enabled --- Control groups --- Cgroup: enabled Cgroup namespace: enabled Cgroup device: enabled Cgroup sched: enabled Cgroup cpu account: enabled Cgroup memory controller: /usr/local/bin/lxc-checkconfig: line 103: [: too many arguments enabled Cgroup cpuset: enabled --- Misc --- Veth pair device: enabled Macvlan: enabled Vlan: enabled File capabilities: /usr/local/bin/lxc-checkconfig: line 118: [: -gt: unary operator expected Note : Before booting a new kernel, you can check its configuration usage : CONFIG=/path/to/config /usr/local/bin/lxc-checkconfig Network Config (HOST) #> cat /etc/sysconfig/network-scripts/ifcfg-br0 DEVICE=br0 TYPE=Bridge BOOTPROTO=dhcp ONBOOT=yes #> cat /etc/sysconfig/network-scripts/ifcfg-eth0 DEVICE=eth0 ONBOOT=yes TYPE=Ethernet IPV6INIT=no USERCTL=no BRIDGE=br0 #> cat /etc/networks default 0.0.0.0 loopback 127.0.0.0 link-local 169.254.0.0 #> ip a s 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo inet6 ::1/128 scope host valid_lft forever preferred_lft forever 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000 link/ether 00:0c:29:12:30:f2 brd ff:ff:ff:ff:ff:ff inet6 fe80::20c:29ff:fe12:30f2/64 scope link valid_lft forever preferred_lft forever 3: pan0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN link/ether 42:7e:43:b3:61:c5 brd ff:ff:ff:ff:ff:ff 4: br0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN link/ether 00:0c:29:12:30:f2 brd ff:ff:ff:ff:ff:ff inet 10.60.70.121/24 brd 10.60.70.255 scope global br0 inet6 fe80::20c:29ff:fe12:30f2/64 scope link valid_lft forever preferred_lft forever 12: vethT6BGL2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000 link/ether fe:a1:69:af:50:17 brd ff:ff:ff:ff:ff:ff inet6 fe80::fca1:69ff:feaf:5017/64 scope link valid_lft forever preferred_lft forever #> brctl show bridge name bridge id STP enabled interfaces br0 8000.000c291230f2 no eth0 vethT6BGL2 pan0 8000.000000000000 no #> cat /proc/sys/net/ipv4/ip_forward 1 # Generated by iptables-save v1.4.7 on Fri Jul 11 15:11:36 2014 *nat :PREROUTING ACCEPT [34:6287] :POSTROUTING ACCEPT [0:0] :OUTPUT ACCEPT [0:0] -A POSTROUTING -o eth0 -j MASQUERADE COMMIT # Completed on Fri Jul 11 15:11:36 2014 Network Config (Container) #> cat /etc/network/interfaces # This file describes the network interfaces available on your system # and how to activate them. For more information, see interfaces(5). # The loopback network interface auto lo iface lo inet loopback auto eth0 iface eth0 inet dhcp #> ip a s 11: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000 link/ether 02:69:fb:42:ee:d7 brd ff:ff:ff:ff:ff:ff inet6 fe80::69:fbff:fe42:eed7/64 scope link valid_lft forever preferred_lft forever 13: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo inet6 ::1/128 scope host valid_lft forever preferred_lft forever

    Read the article

  • Creating a Reverse Proxy using Jpcap

    - by Ramon Marco Navarro
    I need to create a program that receives HTTP request and forwards those requests to the web servers. I have successfully made this using only Java Sockets but the client needed the program to be implemented in Jpcap. I'd like to know if this is possible and what literature I should be reading for this project. This is what I have now by stitching together pieces from the Jpcap tutorial: import java.net.InetAddress; import java.io.*; import jpcap.*; import jpcap.packet.*; public class Router { public static void main(String args[]) { //Obtain the list of network interfaces NetworkInterface[] devices = JpcapCaptor.getDeviceList(); //for each network interface for (int i = 0; i < devices.length; i++) { //print out its name and description System.out.println(i+": "+devices[i].name + "(" + devices[i].description+")"); //print out its datalink name and description System.out.println(" datalink: "+devices[i].datalink_name + "(" + devices[i].datalink_description+")"); //print out its MAC address System.out.print(" MAC address:"); for (byte b : devices[i].mac_address) System.out.print(Integer.toHexString(b&0xff) + ":"); System.out.println(); //print out its IP address, subnet mask and broadcast address for (NetworkInterfaceAddress a : devices[i].addresses) System.out.println(" address:"+a.address + " " + a.subnet + " "+ a.broadcast); } int index = 1; // set index of the interface that you want to open. //Open an interface with openDevice(NetworkInterface intrface, int snaplen, boolean promics, int to_ms) JpcapCaptor captor = null; try { captor = JpcapCaptor.openDevice(devices[index], 65535, false, 20); captor.setFilter("port 80 and host 192.168.56.1", true); } catch(java.io.IOException e) { System.err.println(e); } //call processPacket() to let Jpcap call PacketPrinter.receivePacket() for every packet capture. captor.loopPacket(-1,new PacketPrinter()); captor.close(); } } class PacketPrinter implements PacketReceiver { //this method is called every time Jpcap captures a packet public void receivePacket(Packet p) { JpcapSender sender = null; try { NetworkInterface[] devices = JpcapCaptor.getDeviceList(); sender = JpcapSender.openDevice(devices[1]); } catch(IOException e) { System.err.println(e); } IPPacket packet = (IPPacket)p; try { // IP Address of machine sending HTTP requests (the client) // It's still on the same LAN as the servers for testing purposes. packet.dst_ip = InetAddress.getByName("192.168.56.2"); } catch(java.net.UnknownHostException e) { System.err.println(e); } //create an Ethernet packet (frame) EthernetPacket ether=new EthernetPacket(); //set frame type as IP ether.frametype=EthernetPacket.ETHERTYPE_IP; //set source and destination MAC addresses // MAC Address of machine running reverse proxy server ether.src_mac = new MacAddress("08:00:27:00:9C:80").getAddress(); // MAC Address of machine running web server ether.dst_mac = new MacAddress("08:00:27:C7:D2:4C").getAddress(); //set the datalink frame of the packet as ether packet.datalink=ether; //send the packet sender.sendPacket(packet); sender.close(); //just print out a captured packet System.out.println(packet); } } Any help would be greatly appreciated. Thank you.

    Read the article

  • Can't connect to local IP address on OSX

    - by Alex Worden
    I'm trying to connect to a webserver that's running on my mac OSX 1.6. I'm able to connect to it locally using http://127.0.0.1:8888/myapp but when I attempt to connect to it using my machine's local IP address (http://192.168.1.15:8888/myapp IP shown below) from the same machine (or another on the network) I cannot connect. I can ping the LAN IP address. I've tried adding IP forwarding to my router for port 8888 but it didn't help. I've checked and the OSX firewall is disabled Can anyone suggest what else is blocking the connection? Here's what I get when I run ifconfig: ~ :ifconfig lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384 inet6 ::1 prefixlen 128 inet6 fe80::1%lo0 prefixlen 64 scopeid 0x1 inet 127.0.0.1 netmask 0xff000000 gif0: flags=8010<POINTOPOINT,MULTICAST> mtu 1280 stf0: flags=0<> mtu 1280 en0: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500 ether 00:1f:5b:e8:16:4d media: autoselect status: inactive supported media: autoselect 10baseT/UTP <half-duplex> 10baseT/UTP <full-duplex> 10baseT/UTP <full-duplex,hw-loopback> 10baseT/UTP <full-duplex,flow-control> 100baseTX <half-duplex> 100baseTX <full-duplex> 100baseTX <full-duplex,hw-loopback> 100baseTX <full-duplex,flow-control> 1000baseT <full-duplex> 1000baseT <full-duplex,hw-loopback> 1000baseT <full-duplex,flow-control> none en1: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500 inet6 fe80::21e:c2ff:febf:4809%en1 prefixlen 64 scopeid 0x5 inet 192.168.1.15 netmask 0xffffff00 broadcast 192.168.1.255 ether 00:1e:c2:bf:48:09 media: autoselect status: active supported media: autoselect fw0: flags=8802<BROADCAST,SIMPLEX,MULTICAST> mtu 4078 lladdr 00:1f:5b:ff:fe:2b:b3:3c media: autoselect <full-duplex> status: inactive supported media: autoselect <full-duplex> en5: flags=8822<BROADCAST,SMART,SIMPLEX,MULTICAST> mtu 1500 ether 00:1e:c2:8e:0f:45 media: autoselect status: inactive supported media: none autoselect 10baseT/UTP <half-duplex> en2: flags=8922<BROADCAST,SMART,PROMISC,SIMPLEX,MULTICAST> mtu 1500 ether 00:1c:42:00:00:00 media: autoselect status: inactive supported media: autoselect en3: flags=8922<BROADCAST,SMART,PROMISC,SIMPLEX,MULTICAST> mtu 1500 ether 00:1c:42:00:00:01 media: autoselect status: inactive supported media: autoselect

    Read the article

  • How can I specify multiple rules for a particular log file(s) with logrotate?

    - by Ether
    I have a logrotate.d config file that looks something like this: /home/myapp/log/* { daily compress dateext ifempty delaycompress olddir /home/myapp/baklog } There are a few particular log files where I want to apply additional rules, such as "mail". How can I apply additional rules to just some files? If I add another rule above that matches the additional files (e.g. /home/myapp/log/warning.log { ... }, I get an error like error: /etc/logrotate.d/myapp:3 duplicate log entry for /home/myapp/log/warning.log. How can I specify multiple rules that match particular files in an overlapping kind of way?

    Read the article

  • Trouble connecting a Ubuntu system to IPv6 tunnel over NAT

    - by John Millikin
    I'm trying to set up an IPv6 tunnel, via Hurricane Electric's tunnel-broker service. I've configured my system using their example commands: # $ipv4a = tunnel server's IPv4 IP # $ipv4b = user's IPv4 IP # $ipv6a = tunnel server's side of point-to-point /64 allocation # $ipv6b = user's side of point-to-point /64 allocation ip tunnel add he-ipv6 mode sit remote $ipv4a local $ipv4b ttl 255 ip link set he-ipv6 up ip addr add $ipv6b dev he-ipv6 ip route add ::/0 dev he-ipv6 And have configured my desktop to be in my NAT router's DMZ. The router is running Tomato firmware. But I can't ping any IPv6 services: $ ping6 -I he-ipv6 '2001:470:1f04:454::1' PING 2001:470:1f04:454::1(2001:470:1f04:454::1) from 2001:470:1f04:454::2 he-ipv6: 56 data bytes From 2001:470:1f04:454::2 icmp_seq=1 Destination unreachable: Address unreachable From 2001:470:1f04:454::2 icmp_seq=2 Destination unreachable: Address unreachable I can ping my local address: $ ping6 -I he-ipv6 '2001:470:1f04:454::2' PING 2001:470:1f04:454::2(2001:470:1f04:454::2) from 2001:470:1f04:454::2 he-ipv6: 56 data bytes 64 bytes from 2001:470:1f04:454::2: icmp_seq=1 ttl=64 time=0.037 ms 64 bytes from 2001:470:1f04:454::2: icmp_seq=2 ttl=64 time=0.039 ms I don't know much about routing, but results I found online suggested the output of ip -6 route and ip addr could be useful: $ ip -6 route 2001:470:1f04:454::/64 via :: dev he-ipv6 proto kernel metric 256 mtu 1480 advmss 1420 hoplimit 4294967295 fe80::/64 dev virbr0 proto kernel metric 256 mtu 1500 advmss 1440 hoplimit 4294967295 fe80::/64 dev eth1 proto kernel metric 256 mtu 1500 advmss 1440 hoplimit 4294967295 fe80::/64 via :: dev he-ipv6 proto kernel metric 256 mtu 1480 advmss 1420 hoplimit 4294967295 default dev he-ipv6 metric 1024 mtu 1480 advmss 1420 hoplimit 4294967295 $ ip addr 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo inet6 ::1/128 scope host valid_lft forever preferred_lft forever 2: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 100 link/ether 00:1c:c0:a1:98:b2 brd ff:ff:ff:ff:ff:ff inet 192.168.1.10/24 brd 192.168.1.255 scope global eth1 inet6 fe80::21c:c0ff:fea1:98b2/64 scope link valid_lft forever preferred_lft forever 3: virbr0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN link/ether 36:4c:33:ab:0d:c6 brd ff:ff:ff:ff:ff:ff inet 192.168.122.1/24 brd 192.168.122.255 scope global virbr0 inet6 fe80::344c:33ff:feab:dc6/64 scope link valid_lft forever preferred_lft forever 4: vboxnet0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN qlen 1000 link/ether 00:76:62:6e:65:74 brd ff:ff:ff:ff:ff:ff 5: pan0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN link/ether 7e:29:5e:7c:ba:93 brd ff:ff:ff:ff:ff:ff 6: sit0: <NOARP> mtu 1480 qdisc noop state DOWN link/sit 0.0.0.0 brd 0.0.0.0 7: he-ipv6@NONE: <POINTOPOINT,NOARP,UP,LOWER_UP> mtu 1480 qdisc noqueue state UNKNOWN link/sit 24.130.225.239 peer 72.52.104.74 inet6 2001:470:1f04:454::2/64 scope global valid_lft forever preferred_lft forever inet6 fe80::1882:e1ef/128 scope link valid_lft forever preferred_lft forever

    Read the article

  • Issue reading packets from a pcap file. dpkt

    - by Chris
    I am running the following test script to try to read packets from a sample .pcap file I have downloaded. import socket import dpkt import sys pcapReader = dpkt.pcap.Reader(file("test1.pcap", "rb")) for ts, data in pcapReader: ether = dpkt.ethernet.Ethernet(data) if ether.type != dpkt.ethernet.ETH_TYPE_IP: raise ip = ether.data src = socket.inet_ntoa(ip.src) dst = socket.inet_ntoa(ip.dst) print "%s -> %s" % (src, dst) For some reason, this is not being interpreted properly. When running it, I get KeyError: 138 module body in test.py at line 4 function __init__ in pcap.py at line 105 Program exited. Why is this? What's wrong?

    Read the article

  • Issue reading packets from a pcap file. dpkt module. What gives?

    - by Chris
    I am running the following test script to try to read packets from a sample .pcap file I have downloaded. It won't seem to run. I have all of the modules, but no examples seem to be running. import socket import dpkt import sys pcapReader = dpkt.pcap.Reader(file("test1.pcap", "rb")) for ts, data in pcapReader: ether = dpkt.ethernet.Ethernet(data) if ether.type != dpkt.ethernet.ETH_TYPE_IP: raise ip = ether.data src = socket.inet_ntoa(ip.src) dst = socket.inet_ntoa(ip.dst) print "%s -> %s" % (src, dst) For some reason, this is not being interpreted properly. When running it, I get KeyError: 138 module body in test.py at line 4 function __init__ in pcap.py at line 105 Program exited. Why is this? What's wrong?

    Read the article

  • How can I determine if an object or reference has a valid string coercion?

    - by Ether
    I've run into a situation (while logging various data changes) where I need to determine if a reference has a valid string coercion (e.g. can properly be printed into a log or stored in a database). There isn't anything in Scalar::Util to do this, so I have cobbled together something using other methods in that library: use strict; use warnings; use Scalar::Util qw(reftype refaddr); sub has_string_coercion { my $value = shift; my $as_string = "$value"; my $ref = ref $value; my $reftype = reftype $value; my $refaddr = sprintf "0x%x", refaddr $value; if ($ref eq $reftype) { # base-type references stringify as REF(0xADDR) return $as_string !~ /^${ref}\(${refaddr}\)$/; } else { # blessed objects stringify as REF=REFTYPE(0xADDR) return $as_string !~ /^${ref}=${reftype}\(${refaddr}\)$/; } } # Example: use DateTime; my $ref1 = DateTime->now; my $ref2 = \'foo'; print "DateTime has coercion: " . has_string_coercion($ref1) . "\n\n"; print "scalar ref has coercion: " . has_string_coercion($ref2) . "\n"; However, I suspect there might be a better way of determining this by inspecting the guts of the variable in some way. How can this be done better?

    Read the article

  • Is there anything exciting in perl 5.11 (to become perl 5.12)?

    - by Ether
    Perl 5.11 is now released! Is there anything really exciting in this release, or is it mostly maintenance patches? (From what I've read so far, it appears to be a rollup of improvements we have already seen in prior releases.) the CHANGES file Jesse Vincent's announcement chromatic's blog post 5.11 is the development release of what will become 5.12. The release process itself is changing to a monthly release model. UPDATE: Perl 5.12 is now released (April 12, 2010). the CHANGES file Jesse Vincent's announcement

    Read the article

  • How do I call a function name that is stored in a hash in Perl?

    - by Ether
    I'm sure this is covered in the documentation somewhere but I have been unable to find it... I'm looking for the syntactic sugar that will make it possible to call a method on a class whose name is stored in a hash (as opposed to a simple scalar): use strict; use warnings; package Foo; sub foo { print "in foo()\n" } package main; my %hash = (func => 'foo'); Foo->$hash{func}; If I copy $hash{func} into a scalar variable first, then I can call Foo->$func just fine... but what is missing to enable Foo->$hash{func} to work? (EDIT: I don't mean to do anything special by calling a method on class Foo -- this could just as easily be a blessed object (and in my actual code it is); it was just easier to write up a self-contained example using a class method.) EDIT 2: Just for completeness re the comments below, this is what I'm actually doing (this is in a library of Moose attribute sugar, created with Moose::Exporter): # adds an accessor to a sibling module sub foreignTable { my ($meta, $table, %args) = @_; my $class = 'MyApp::Dir1::Dir2::' . $table; my $dbAccessor = lcfirst $table; eval "require $class" or do { die "Can't load $class: $@" }; $meta->add_attribute( $table, is => 'ro', isa => $class, init_arg => undef, # don't allow in constructor lazy => 1, predicate => 'has_' . $table, default => sub { my $this = shift; $this->debug("in builder for $class"); ### here's the line that uses a hash value as the method name my @args = ($args{primaryKey} => $this->${\$args{primaryKey}}); push @args, ( _dbObject => $this->_dbObject->$dbAccessor ) if $args{fkRelationshipExists}; $this->debug("passing these values to $class -> new: @args"); $class->new(@args); }, ); } I've replaced the marked line above with this: my $pk_accessor = $this->meta->find_attribute_by_name($args{primaryKey})->get_read_method_ref; my @args = ($args{primaryKey} => $this->$pk_accessor); PS. I've just noticed that this same technique (using the Moose meta class to look up the coderef rather than assuming its naming convention) cannot also be used for predicates, as Class::MOP::Attribute does not have a similar get_predicate_method_ref accessor. :(

    Read the article

1 2 3 4 5 6  | Next Page >