Search Results

Search found 112 results on 5 pages for 'exploits'.

Page 1/5 | 1 2 3 4 5  | Next Page >

  • [Livre]:Chaînes d'exploits: Scénarios de hacking avancé et prévention, de A.Whitaker, K.Evans, J.Vot

    Bonjour La rédaction de DVP a lu pour vous l'ouvrage suivant: Chaînes d'exploits: Scénarios de hacking avancé et prévention de Andrew Whitaker, Keatron Evans, Jack Voth paru aux Editions PEARSON [IMG]http://images-eu.amazon.com/images/P/274402371X.08.LZZZZZZZ.jpg[/IMG] Citation: Un pirate informatique s'appuie rarement sur une unique attaque, mais utilise plutôt des chaînes d'exploits, qui impliquent plusie...

    Read the article

  • Hardening Word and Reader against exploits

    - by satuon
    I have recently heard a lot about exploits for PDF and DOC files on Windows, which when opened in Reader or Word would infect the computer. I'm assuming most of those exploits rely on some kind of active content, I've heard that Reader allows JavaScript for example. I already have antivirus, but I've heard they often don't catch those types of exploits, so I want to try a little proactive defense. Is there a way to harden Reader and Word by disabling plugins or options that are often used by exploits?

    Read the article

  • Learning about security and finding exploits

    - by Jayraj
    First things first: I have absolutely no interest in learning how to crack systems for personal enrichment, hurting other people or doing anything remotely malicious. I understand the basis of many exploits (XSS, SQL injection, use after free etc.), though I've never performed any myself. I even have some idea about how to guard web applications from common exploits (like the aforementioned XSS and SQL injection) Reading this question about the Internet Explorer zero-day vulnerability from the Security SE piqued my curiosity and made me wonder: how did someone even find out about this exploit? What tools did they use? How did they know what to look for? I'm wary about visiting hacker dens online for fear of getting my own system infected (the Defcon stories make me paranoid). So what's a good, safe place to start learning?

    Read the article

  • Why do browsers have so many possible exploits?

    - by Beau Martínez
    When browsing I am ocassionally given warnings about pages that host malware "that could damage my computer". I am seriously perplexed as to why, in 2010, browsers still have possible exploits and can be cracked. My question is "Why?". I'm assuming it's because of the quick development that occured in the browser wars which were unsufficiently tested, but I'm unsure. Surely WebKit would have patched all the issues in KHTML, or Gecko sorted out the flaws in Netscape's engine, and the IE coders sorted through their codebase to eliminate possible flaws? (Somewhat related: http://superuser.com/questions/117770/which-browser-is-the-most-secure-research-and-practically-based.)

    Read the article

  • CentOS Vulnerabilities - Exploits/Payloads

    - by Joao Heleno
    Greetings. I'm doing an academic work where I have to find vulnerabilities in CentOS and show how to take advantage of those same vulnerabilities. I'm no hacker and I'm finding this task to be of great difficulty, that is, I see all the security alerts and their descriptions but no explanation of how to take advantage. Maybe I'm being a little naive but all I want to know is if there is any tool I can use to show that CentOS 5.0 vulnerability XPTO exists and to show it "working". If possible something like CVE-2007-0001 exploit tool, CVE-2007-0002 payload and so on. Thanks.

    Read the article

  • Symantec publie son bilan 2010 et ses prévisions pour 2011, plus d'exploits de failles zero-day et d'attaques sensibles

    Symantec fait son bilan 2010 et donne ses perspectives pour 2011 : plus d'attaques contre les infrastructures vitales et d'exploits de failles zero-day Symantec publie aujourd'hui ses perspectives en termes de sécurité informatique pour 2011, grâce à l'observation des phénomènes apparus ou s'étant développés en 2010, et s'appuyant sur son réseau de plus de 240.000 capteurs dans le monde entier. Première tendance lourde : « L'hactivisme » - La fréquence des attaques contre les infrastructures vitales va augmenter et les fournisseurs de services vont réagir, mais les gouvernements risquent d'être plus lents Les pirates ont certainement été attentifs aux effets produits par la menace Stuxnet sur les secteurs d'...

    Read the article

  • Microsoft publie son rapport semestriel SIRv16, l'état des lieux sur la sécurité note la montée en puissance des kits d'exploits

    Microsoft publie son rapport semestriel SIRv16, l'état des lieux sur la sécurité note la montée en puissance des kits d'exploits Microsoft a publié le 16e volume de son rapport semestriel SIR (Security Intelligence Report) qui a couvert les menaces de sécurité durant le semestre passé (juillet à décembre 2013). Les cinq pays recensant le plus grand nombre d'attaques au cours de la période sont respectivement le Pakistan, l'Indonésie, l'Algérie, la Tunisie et l'Inde avec un pourcentage d'infection...

    Read the article

  • Les smartphones visés par 33 % de malwares en plus en 2010, Android affecté par 400 % d'exploits supplémentaires

    Les smartphones visés par 33% de malwares en plus en 2010, Android affecté par 400% d'exploits supplémentaires Depuis des années, les menaces informatiques ne s'en prenaient qu'aux ordinateurs. Elles élargissent désormais leur champ d'action, avec des téléphones toujours plus perfectionnés. Une étude récente a ainsi démontré que les malwares s'en prenant spécifiquement aux smartphones ont augmenté de 33% en 2010. Il faut dire aussi que les utilisateurs sont moins méfiants quant aux données qui transitent par leur mobile. Et peu d'entre eux savent même que les virus mobiles existent. L'explosion de la demande et de l'utilisation des applications mobiles a aussi contribué à ce phénomène. La mauvaise nou...

    Read the article

  • Les pirates utilisent de plus en plus les sites légitimes pour leurs exploits, révèle un rapport de Kaspersky Lab

    Les pirates utilisent de plus en plus les sites légitimes pour leurs exploits, révèle un rapport de Kaspersky Lab Kaspersky Lab vient de publier ses dernières observations sur l'évolution des menaces de sécurité informatique. Il y est mis en lumière une hausse des attaques en ligne en 2010, avec plus de 580 millions d'incidents détectés. Et une nouvelle tendance s'est faite remarquer : les risques ne planaient plus seulement au dessus des sites proposant des contenus illégaux, mais aussi du côté des pages légitimes (comme les sites de shopping ou de jeu en ligne), que les cyber-criminels prennent de plus en plus à parti. En général, ces derniers s'attaquent à des serveurs vulnérables, et injectent un code malveillant...

    Read the article

  • Le risque de cyber guerre est surestimé ainsi que les effets des exploits actuels, rapportent des chercheurs anglais

    Le risque de cyber guerre est surestimé ainsi que les effets des exploits actuels, rapportent des chercheurs anglais Depuis quelques mois, on crie en tous sens à la "cyberguerre". Pourtant, d'après une étude récente, la menace serait surestimée. Rassurantes, les conclusions de cette recherche affirment que si une pandémie ou une crise économique peut créer des soucis planétaires, les cyber attaques en sont loin mais tout juste capables de créer des désordres ponctuels et localisés. De plus, le terme de "guerre numérique" serait souvent mal utilisé, et ne correspondrait pas à certaines activités pour lesquelles il est utilisé, comme l'espionnage ou l'hacktivisme, ou bien encore les accidents. les d...

    Read the article

  • Testing for security vulnerabilities on web applications

    - by Moak
    A lot of companies use CMS software that updates on the regular, often they are security fixes, implying that the previous version have security vulnerabilities. But most clients never upgrade this, or even the CMS has been modified so that an update would break the site. Are there sites that document these exploits, and instruct how to test for them? Or does this information not even get published? (in order not to have people try to exploit them) Also is there a generic php/js based check list to prevent hack attempts? I know about SQL injections and XSS, but I'm sure that there are more threats out there. Peace

    Read the article

  • Toorcon 15 (2013)

    - by danx
    The Toorcon gang (senior staff): h1kari (founder), nfiltr8, and Geo Introduction to Toorcon 15 (2013) A Tale of One Software Bypass of MS Windows 8 Secure Boot Breaching SSL, One Byte at a Time Running at 99%: Surviving an Application DoS Security Response in the Age of Mass Customized Attacks x86 Rewriting: Defeating RoP and other Shinanighans Clowntown Express: interesting bugs and running a bug bounty program Active Fingerprinting of Encrypted VPNs Making Attacks Go Backwards Mask Your Checksums—The Gorry Details Adventures with weird machines thirty years after "Reflections on Trusting Trust" Introduction to Toorcon 15 (2013) Toorcon 15 is the 15th annual security conference held in San Diego. I've attended about a third of them and blogged about previous conferences I attended here starting in 2003. As always, I've only summarized the talks I attended and interested me enough to write about them. Be aware that I may have misrepresented the speaker's remarks and that they are not my remarks or opinion, or those of my employer, so don't quote me or them. Those seeking further details may contact the speakers directly or use The Google. For some talks, I have a URL for further information. A Tale of One Software Bypass of MS Windows 8 Secure Boot Andrew Furtak and Oleksandr Bazhaniuk Yuri Bulygin, Oleksandr ("Alex") Bazhaniuk, and (not present) Andrew Furtak Yuri and Alex talked about UEFI and Bootkits and bypassing MS Windows 8 Secure Boot, with vendor recommendations. They previously gave this talk at the BlackHat 2013 conference. MS Windows 8 Secure Boot Overview UEFI (Unified Extensible Firmware Interface) is interface between hardware and OS. UEFI is processor and architecture independent. Malware can replace bootloader (bootx64.efi, bootmgfw.efi). Once replaced can modify kernel. Trivial to replace bootloader. Today many legacy bootkits—UEFI replaces them most of them. MS Windows 8 Secure Boot verifies everything you load, either through signatures or hashes. UEFI firmware relies on secure update (with signed update). You would think Secure Boot would rely on ROM (such as used for phones0, but you can't do that for PCs—PCs use writable memory with signatures DXE core verifies the UEFI boat loader(s) OS Loader (winload.efi, winresume.efi) verifies the OS kernel A chain of trust is established with a root key (Platform Key, PK), which is a cert belonging to the platform vendor. Key Exchange Keys (KEKs) verify an "authorized" database (db), and "forbidden" database (dbx). X.509 certs with SHA-1/SHA-256 hashes. Keys are stored in non-volatile (NV) flash-based NVRAM. Boot Services (BS) allow adding/deleting keys (can't be accessed once OS starts—which uses Run-Time (RT)). Root cert uses RSA-2048 public keys and PKCS#7 format signatures. SecureBoot — enable disable image signature checks SetupMode — update keys, self-signed keys, and secure boot variables CustomMode — allows updating keys Secure Boot policy settings are: always execute, never execute, allow execute on security violation, defer execute on security violation, deny execute on security violation, query user on security violation Attacking MS Windows 8 Secure Boot Secure Boot does NOT protect from physical access. Can disable from console. Each BIOS vendor implements Secure Boot differently. There are several platform and BIOS vendors. It becomes a "zoo" of implementations—which can be taken advantage of. Secure Boot is secure only when all vendors implement it correctly. Allow only UEFI firmware signed updates protect UEFI firmware from direct modification in flash memory protect FW update components program SPI controller securely protect secure boot policy settings in nvram protect runtime api disable compatibility support module which allows unsigned legacy Can corrupt the Platform Key (PK) EFI root certificate variable in SPI flash. If PK is not found, FW enters setup mode wich secure boot turned off. Can also exploit TPM in a similar manner. One is not supposed to be able to directly modify the PK in SPI flash from the OS though. But they found a bug that they can exploit from User Mode (undisclosed) and demoed the exploit. It loaded and ran their own bootkit. The exploit requires a reboot. Multiple vendors are vulnerable. They will disclose this exploit to vendors in the future. Recommendations: allow only signed updates protect UEFI fw in ROM protect EFI variable store in ROM Breaching SSL, One Byte at a Time Yoel Gluck and Angelo Prado Angelo Prado and Yoel Gluck, Salesforce.com CRIME is software that performs a "compression oracle attack." This is possible because the SSL protocol doesn't hide length, and because SSL compresses the header. CRIME requests with every possible character and measures the ciphertext length. Look for the plaintext which compresses the most and looks for the cookie one byte-at-a-time. SSL Compression uses LZ77 to reduce redundancy. Huffman coding replaces common byte sequences with shorter codes. US CERT thinks the SSL compression problem is fixed, but it isn't. They convinced CERT that it wasn't fixed and they issued a CVE. BREACH, breachattrack.com BREACH exploits the SSL response body (Accept-Encoding response, Content-Encoding). It takes advantage of the fact that the response is not compressed. BREACH uses gzip and needs fairly "stable" pages that are static for ~30 seconds. It needs attacker-supplied content (say from a web form or added to a URL parameter). BREACH listens to a session's requests and responses, then inserts extra requests and responses. Eventually, BREACH guesses a session's secret key. Can use compression to guess contents one byte at-a-time. For example, "Supersecret SupersecreX" (a wrong guess) compresses 10 bytes, and "Supersecret Supersecret" (a correct guess) compresses 11 bytes, so it can find each character by guessing every character. To start the guess, BREACH needs at least three known initial characters in the response sequence. Compression length then "leaks" information. Some roadblocks include no winners (all guesses wrong) or too many winners (multiple possibilities that compress the same). The solutions include: lookahead (guess 2 or 3 characters at-a-time instead of 1 character). Expensive rollback to last known conflict check compression ratio can brute-force first 3 "bootstrap" characters, if needed (expensive) block ciphers hide exact plain text length. Solution is to align response in advance to block size Mitigations length: use variable padding secrets: dynamic CSRF tokens per request secret: change over time separate secret to input-less servlets Future work eiter understand DEFLATE/GZIP HTTPS extensions Running at 99%: Surviving an Application DoS Ryan Huber Ryan Huber, Risk I/O Ryan first discussed various ways to do a denial of service (DoS) attack against web services. One usual method is to find a slow web page and do several wgets. Or download large files. Apache is not well suited at handling a large number of connections, but one can put something in front of it Can use Apache alternatives, such as nginx How to identify malicious hosts short, sudden web requests user-agent is obvious (curl, python) same url requested repeatedly no web page referer (not normal) hidden links. hide a link and see if a bot gets it restricted access if not your geo IP (unless the website is global) missing common headers in request regular timing first seen IP at beginning of attack count requests per hosts (usually a very large number) Use of captcha can mitigate attacks, but you'll lose a lot of genuine users. Bouncer, goo.gl/c2vyEc and www.github.com/rawdigits/Bouncer Bouncer is software written by Ryan in netflow. Bouncer has a small, unobtrusive footprint and detects DoS attempts. It closes blacklisted sockets immediately (not nice about it, no proper close connection). Aggregator collects requests and controls your web proxies. Need NTP on the front end web servers for clean data for use by bouncer. Bouncer is also useful for a popularity storm ("Slashdotting") and scraper storms. Future features: gzip collection data, documentation, consumer library, multitask, logging destroyed connections. Takeaways: DoS mitigation is easier with a complete picture Bouncer designed to make it easier to detect and defend DoS—not a complete cure Security Response in the Age of Mass Customized Attacks Peleus Uhley and Karthik Raman Peleus Uhley and Karthik Raman, Adobe ASSET, blogs.adobe.com/asset/ Peleus and Karthik talked about response to mass-customized exploits. Attackers behave much like a business. "Mass customization" refers to concept discussed in the book Future Perfect by Stan Davis of Harvard Business School. Mass customization is differentiating a product for an individual customer, but at a mass production price. For example, the same individual with a debit card receives basically the same customized ATM experience around the world. Or designing your own PC from commodity parts. Exploit kits are another example of mass customization. The kits support multiple browsers and plugins, allows new modules. Exploit kits are cheap and customizable. Organized gangs use exploit kits. A group at Berkeley looked at 77,000 malicious websites (Grier et al., "Manufacturing Compromise: The Emergence of Exploit-as-a-Service", 2012). They found 10,000 distinct binaries among them, but derived from only a dozen or so exploit kits. Characteristics of Mass Malware: potent, resilient, relatively low cost Technical characteristics: multiple OS, multipe payloads, multiple scenarios, multiple languages, obfuscation Response time for 0-day exploits has gone down from ~40 days 5 years ago to about ~10 days now. So the drive with malware is towards mass customized exploits, to avoid detection There's plenty of evicence that exploit development has Project Manager bureaucracy. They infer from the malware edicts to: support all versions of reader support all versions of windows support all versions of flash support all browsers write large complex, difficult to main code (8750 lines of JavaScript for example Exploits have "loose coupling" of multipe versions of software (adobe), OS, and browser. This allows specific attacks against specific versions of multiple pieces of software. Also allows exploits of more obscure software/OS/browsers and obscure versions. Gave examples of exploits that exploited 2, 3, 6, or 14 separate bugs. However, these complete exploits are more likely to be buggy or fragile in themselves and easier to defeat. Future research includes normalizing malware and Javascript. Conclusion: The coming trend is that mass-malware with mass zero-day attacks will result in mass customization of attacks. x86 Rewriting: Defeating RoP and other Shinanighans Richard Wartell Richard Wartell The attack vector we are addressing here is: First some malware causes a buffer overflow. The malware has no program access, but input access and buffer overflow code onto stack Later the stack became non-executable. The workaround malware used was to write a bogus return address to the stack jumping to malware Later came ASLR (Address Space Layout Randomization) to randomize memory layout and make addresses non-deterministic. The workaround malware used was to jump t existing code segments in the program that can be used in bad ways "RoP" is Return-oriented Programming attacks. RoP attacks use your own code and write return address on stack to (existing) expoitable code found in program ("gadgets"). Pinkie Pie was paid $60K last year for a RoP attack. One solution is using anti-RoP compilers that compile source code with NO return instructions. ASLR does not randomize address space, just "gadgets". IPR/ILR ("Instruction Location Randomization") randomizes each instruction with a virtual machine. Richard's goal was to randomize a binary with no source code access. He created "STIR" (Self-Transofrming Instruction Relocation). STIR disassembles binary and operates on "basic blocks" of code. The STIR disassembler is conservative in what to disassemble. Each basic block is moved to a random location in memory. Next, STIR writes new code sections with copies of "basic blocks" of code in randomized locations. The old code is copied and rewritten with jumps to new code. the original code sections in the file is marked non-executible. STIR has better entropy than ASLR in location of code. Makes brute force attacks much harder. STIR runs on MS Windows (PEM) and Linux (ELF). It eliminated 99.96% or more "gadgets" (i.e., moved the address). Overhead usually 5-10% on MS Windows, about 1.5-4% on Linux (but some code actually runs faster!). The unique thing about STIR is it requires no source access and the modified binary fully works! Current work is to rewrite code to enforce security policies. For example, don't create a *.{exe,msi,bat} file. Or don't connect to the network after reading from the disk. Clowntown Express: interesting bugs and running a bug bounty program Collin Greene Collin Greene, Facebook Collin talked about Facebook's bug bounty program. Background at FB: FB has good security frameworks, such as security teams, external audits, and cc'ing on diffs. But there's lots of "deep, dark, forgotten" parts of legacy FB code. Collin gave several examples of bountied bugs. Some bounty submissions were on software purchased from a third-party (but bounty claimers don't know and don't care). We use security questions, as does everyone else, but they are basically insecure (often easily discoverable). Collin didn't expect many bugs from the bounty program, but they ended getting 20+ good bugs in first 24 hours and good submissions continue to come in. Bug bounties bring people in with different perspectives, and are paid only for success. Bug bounty is a better use of a fixed amount of time and money versus just code review or static code analysis. The Bounty program started July 2011 and paid out $1.5 million to date. 14% of the submissions have been high priority problems that needed to be fixed immediately. The best bugs come from a small % of submitters (as with everything else)—the top paid submitters are paid 6 figures a year. Spammers like to backstab competitors. The youngest sumitter was 13. Some submitters have been hired. Bug bounties also allows to see bugs that were missed by tools or reviews, allowing improvement in the process. Bug bounties might not work for traditional software companies where the product has release cycle or is not on Internet. Active Fingerprinting of Encrypted VPNs Anna Shubina Anna Shubina, Dartmouth Institute for Security, Technology, and Society (I missed the start of her talk because another track went overtime. But I have the DVD of the talk, so I'll expand later) IPsec leaves fingerprints. Using netcat, one can easily visually distinguish various crypto chaining modes just from packet timing on a chart (example, DES-CBC versus AES-CBC) One can tell a lot about VPNs just from ping roundtrips (such as what router is used) Delayed packets are not informative about a network, especially if far away from the network More needed to explore about how TCP works in real life with respect to timing Making Attacks Go Backwards Fuzzynop FuzzyNop, Mandiant This talk is not about threat attribution (finding who), product solutions, politics, or sales pitches. But who are making these malware threats? It's not a single person or group—they have diverse skill levels. There's a lot of fat-fingered fumblers out there. Always look for low-hanging fruit first: "hiding" malware in the temp, recycle, or root directories creation of unnamed scheduled tasks obvious names of files and syscalls ("ClearEventLog") uncleared event logs. Clearing event log in itself, and time of clearing, is a red flag and good first clue to look for on a suspect system Reverse engineering is hard. Disassembler use takes practice and skill. A popular tool is IDA Pro, but it takes multiple interactive iterations to get a clean disassembly. Key loggers are used a lot in targeted attacks. They are typically custom code or built in a backdoor. A big tip-off is that non-printable characters need to be printed out (such as "[Ctrl]" "[RightShift]") or time stamp printf strings. Look for these in files. Presence is not proof they are used. Absence is not proof they are not used. Java exploits. Can parse jar file with idxparser.py and decomile Java file. Java typially used to target tech companies. Backdoors are the main persistence mechanism (provided externally) for malware. Also malware typically needs command and control. Application of Artificial Intelligence in Ad-Hoc Static Code Analysis John Ashaman John Ashaman, Security Innovation Initially John tried to analyze open source files with open source static analysis tools, but these showed thousands of false positives. Also tried using grep, but tis fails to find anything even mildly complex. So next John decided to write his own tool. His approach was to first generate a call graph then analyze the graph. However, the problem is that making a call graph is really hard. For example, one problem is "evil" coding techniques, such as passing function pointer. First the tool generated an Abstract Syntax Tree (AST) with the nodes created from method declarations and edges created from method use. Then the tool generated a control flow graph with the goal to find a path through the AST (a maze) from source to sink. The algorithm is to look at adjacent nodes to see if any are "scary" (a vulnerability), using heuristics for search order. The tool, called "Scat" (Static Code Analysis Tool), currently looks for C# vulnerabilities and some simple PHP. Later, he plans to add more PHP, then JSP and Java. For more information see his posts in Security Innovation blog and NRefactory on GitHub. Mask Your Checksums—The Gorry Details Eric (XlogicX) Davisson Eric (XlogicX) Davisson Sometimes in emailing or posting TCP/IP packets to analyze problems, you may want to mask the IP address. But to do this correctly, you need to mask the checksum too, or you'll leak information about the IP. Problem reports found in stackoverflow.com, sans.org, and pastebin.org are usually not masked, but a few companies do care. If only the IP is masked, the IP may be guessed from checksum (that is, it leaks data). Other parts of packet may leak more data about the IP. TCP and IP checksums both refer to the same data, so can get more bits of information out of using both checksums than just using one checksum. Also, one can usually determine the OS from the TTL field and ports in a packet header. If we get hundreds of possible results (16x each masked nibble that is unknown), one can do other things to narrow the results, such as look at packet contents for domain or geo information. With hundreds of results, can import as CSV format into a spreadsheet. Can corelate with geo data and see where each possibility is located. Eric then demoed a real email report with a masked IP packet attached. Was able to find the exact IP address, given the geo and university of the sender. Point is if you're going to mask a packet, do it right. Eric wouldn't usually bother, but do it correctly if at all, to not create a false impression of security. Adventures with weird machines thirty years after "Reflections on Trusting Trust" Sergey Bratus Sergey Bratus, Dartmouth College (and Julian Bangert and Rebecca Shapiro, not present) "Reflections on Trusting Trust" refers to Ken Thompson's classic 1984 paper. "You can't trust code that you did not totally create yourself." There's invisible links in the chain-of-trust, such as "well-installed microcode bugs" or in the compiler, and other planted bugs. Thompson showed how a compiler can introduce and propagate bugs in unmodified source. But suppose if there's no bugs and you trust the author, can you trust the code? Hell No! There's too many factors—it's Babylonian in nature. Why not? Well, Input is not well-defined/recognized (code's assumptions about "checked" input will be violated (bug/vunerabiliy). For example, HTML is recursive, but Regex checking is not recursive. Input well-formed but so complex there's no telling what it does For example, ELF file parsing is complex and has multiple ways of parsing. Input is seen differently by different pieces of program or toolchain Any Input is a program input executes on input handlers (drives state changes & transitions) only a well-defined execution model can be trusted (regex/DFA, PDA, CFG) Input handler either is a "recognizer" for the inputs as a well-defined language (see langsec.org) or it's a "virtual machine" for inputs to drive into pwn-age ELF ABI (UNIX/Linux executible file format) case study. Problems can arise from these steps (without planting bugs): compiler linker loader ld.so/rtld relocator DWARF (debugger info) exceptions The problem is you can't really automatically analyze code (it's the "halting problem" and undecidable). Only solution is to freeze code and sign it. But you can't freeze everything! Can't freeze ASLR or loading—must have tables and metadata. Any sufficiently complex input data is the same as VM byte code Example, ELF relocation entries + dynamic symbols == a Turing Complete Machine (TM). @bxsays created a Turing machine in Linux from relocation data (not code) in an ELF file. For more information, see Rebecca "bx" Shapiro's presentation from last year's Toorcon, "Programming Weird Machines with ELF Metadata" @bxsays did same thing with Mach-O bytecode Or a DWARF exception handling data .eh_frame + glibc == Turning Machine X86 MMU (IDT, GDT, TSS): used address translation to create a Turning Machine. Page handler reads and writes (on page fault) memory. Uses a page table, which can be used as Turning Machine byte code. Example on Github using this TM that will fly a glider across the screen Next Sergey talked about "Parser Differentials". That having one input format, but two parsers, will create confusion and opportunity for exploitation. For example, CSRs are parsed during creation by cert requestor and again by another parser at the CA. Another example is ELF—several parsers in OS tool chain, which are all different. Can have two different Program Headers (PHDRs) because ld.so parses multiple PHDRs. The second PHDR can completely transform the executable. This is described in paper in the first issue of International Journal of PoC. Conclusions trusting computers not only about bugs! Bugs are part of a problem, but no by far all of it complex data formats means bugs no "chain of trust" in Babylon! (that is, with parser differentials) we need to squeeze complexity out of data until data stops being "code equivalent" Further information See and langsec.org. USENIX WOOT 2013 (Workshop on Offensive Technologies) for "weird machines" papers and videos.

    Read the article

  • iPad Jailbreak – On The Lam In A Single Day

    - by David Totzke
    Exploits to jailbreak the iPhone are well known.  The iPad runs on the iPhone 3.2 firmware.  What this means is that the iPad was shipped with known security vulnerabilities that would allow someone to gain root access to the device. Nice. It’s not like these are security vulnerabilities that are known but have no exploits.  The exploits are numerous and freely available. Of course, if you fit the demographic, you probably have nothing to worry about. Magical and Revolutionary?  Hardly. Dave Just because I can…

    Read the article

  • Près de la moitié des attaques exploitent des failles de Java par défaut de mises à jour, d'après le rapport Security Intelligence de Microsoft

    Près de la moitié des attaques exploitent des failles de Java Par défaut de mises à jour, d'après le rapport Security Intelligence de Microsoft Les exploits contre la sécurité informatique durant la première moitié de 2011 étaient en grande partie associés aux vulnérabilités de la famille de produits Java, la technologie maintenue par Oracle. Le rapport Security Intelligence de Microsoft souligne en effet un record : entre le tiers et la moitié des exploits sont dus à des failles dans l'environnement d'exécution (JRE), la machine virtuelle (JVM) et le JDK. [IMG]http://idelways.developpez.com/news/images/java-exploits.png[/IMG] Oracle ne tarde pas outr...

    Read the article

  • Our Server Rooted but exploit doesnt work?

    - by Salina Odelva
    Hi everyone. My friend's hosting server got rooted and we have traced some of attacker's commands.. We've found some exploits under /tmp/.idc directory.. We've disconnected the server and are now testing some local kernel exploits that the attacker tried on our server. Here is our kernel version: 2.4.21-4.ELsmp #1 SMP We think that he got root access by the modified uselib() local root exploit but the exploit doesn't work! loki@danaria {/tmp}# ./mail -l ./lib [+] SLAB cleanup child 1 VMAs 32768 The exploit hangs like this.. I've waited over 5 minutes but nothing has happened. I've also tried other exploits but they didn't work.. Any ideas? or experimentations with this exploit? Because we need to find the issue and patch our kernel but we can't understand how he used this exploit to get root... Thanks

    Read the article

  • What causes player box/world geometry glitches in old games?

    - by Alexander
    I'm looking to understand and find the terminology for what causes - or allows - players to interfere with geometry in old games. Famously, ID's Quake3 gave birth to a whole community of people breaking the physics by jumping, sliding, getting stuck and launching themselves off points in geometry. Some months ago (though I'd be darned if I can find it again!) I saw a conference held by Bungie's Vic DeLeon and a colleague in which Vic briefly discussed the issues he ran into while attempting to wrap 'collision' objects (please correct my terminology) around environment objects so that players could appear as though they were walking on organic surfaces, while not clipping through them or appear to be walking on air at certain points, due to complexities in the modeling. My aim is to compose a case study essay for University in which I can tackle this issue in games, drawing on early exploits and how techniques have changed to address such exploits and to aid in the gameplay itself. I have 3 current day example of where exploits still exist, however specifically targeting ID Software clearly shows they've massively improved their techniques between Q3 and Q4. So in summary, with your help please, I'd like to gain a slightly better understanding of this issue as a whole (its terminology mainly) so I can use terms and ask the right questions within the right contexts. In practical application, I know what it is, I know how to do it, but I don't have the benefit of level design knowledge yet and its technical widgety knick-knack terms =) Many thanks in advance AJ

    Read the article

  • ExtJs - Set a fixed width in a center layout in a Panel

    - by Benjamin
    Hi all, Using ExtJs. I'm trying to design a main which is divided into three sub panels (a tree list, a grid and a panel). The way it works is that you have a tree list (west) with elements, you click on an element which populates the grid (center), then you click on an element in the grid and that generates the panel (west). My main panel containing the three other ones has been defined with a layout 'border'. Now the problem I face is that the center layout (the grid) has been defined in the code with a fixed width and the west panel as an auto width. But when the interface gets generated, the grid width is suddenly taking all the space in the interface instead of the west panel. The code looks like that: var exploits_details_panel = new Ext.Panel({ region: 'east', autoWidth: true, autoScroll: true, html: 'test' }); var exploit_commands = new Ext.grid.GridPanel({ store: new Ext.data.Store({ autoDestroy: true }), sortable: true, autoWidth: false, region: 'center', stripeRows: true, autoScroll: true, border: true, width: 225, columns: [ {header: 'command', width: 150, sortable: true}, {header: 'date', width: 70, sortable: true} ] }); var exploits_tree = new Ext.tree.TreePanel({ border: true, region: 'west', width: 200, useArrows: true, autoScroll: true, animate: true, containerScroll: true, rootVisible: false, root: {nodeType: 'async'}, dataUrl: '/ui/modules/select/exploits/tree', listeners: { 'click': function(node) { } } }); var exploits = new Ext.Panel({ id: 'beef-configuration-exploits', title: 'Auto-Exploit', region: 'center', split: true, autoScroll: true, layout: { type: 'border', padding: '5', align: 'left' }, items: [exploits_tree, exploit_commands, exploits_details_panel] }); Here 'var exploits' is my main panel containing the three other sub panels. The 'exploits_tree' is the tree list containing some elements. When you click on one of the elements the grid 'exploit_commands' gets populated and when you click in one of the populated elements, the 'exploits_details_panel' panel gets generated. How can I set a fixed width on 'exploit_commands'? Thanks for your time.

    Read the article

  • Looking for a SECURE Audio Player for Windows

    - by Avery Payne
    I know there are dozens of audio players for windows, but which one has: the best security record (least reported vulnerabilities) the least number of security exploits the best security implementation, along with the reasoning behind the implementaiton (i.e. how it is handled). As Windows users start to see more and more reports of media-based attacks against Windows Media Player (& co.) it would be useful to have a player that has some proactive security approaches to handling exploits.

    Read the article

  • How can you become a competent web application security expert without breaking the law?

    - by hal10001
    I find this to be equivalent to undercover police officers who join a gang, do drugs and break the law as a last resort in order to enforce it. To be a competent security expert, I feel hacking has to be a constant hands-on effort. Yet, that requires finding exploits, testing them on live applications, and being able to demonstrate those exploits with confidence. For those that consider themselves "experts" in Web application security, what did you do to learn the art without actually breaking the law? Or, is this the gray area that nobody likes to talk about because you have to bend the law to its limits?

    Read the article

  • Avoiding Hacker Trix

    - by Mike Benkovich
    Originally posted on: http://geekswithblogs.net/benko/archive/2014/08/20/avoiding-hacker-trix.aspxThis week we're doing a session called "Avoiding Hacker Trix" which goes thru some of the top web exploits that you should be aware of. In this webcast we will cover a variety of things including what we call the secure development process, cross site scripting attack, one click attack, SQL Injection and more. There are a bunch of links we cover, but rather than having you copy these down I'm providing them here... Links from the slide deck: Anti-XSS Library Download www.Fiddler2.com www.HelloSecureWorld.com Open Source Web Application Project - Top 10 Exploits Exploit: Cross Site Scripting - Paypal Exploit: SQL Injection - www.ri.gov Exploit: Cross Site Scripting - FTD Exploit: Insecure Direct Object Reference - Cahoots Exploit: Integer Overflow - Apple

    Read the article

  • New versions of Firefox, Fiddler and SVN

    - by TATWORTH
    There are new versions of Fiddler and Tortoise SVN at: http://www.fiddlertool.com/fiddler/version.asp http://tortoisesvn.net/downloads.html  Fiddler is an excellent tool for montoring web service traffic. It also will capture traffic to and from your browser. Firefox needs no introduction from me, just be sure to go in firefox, Help, Check for Updates and make sure you have the latest. Since various browser exploits are about to be publicly discussed, there has been a recent flurry of browser updates, please be sure to get the latest in advance of exploits being made public.

    Read the article

  • what kind of credentials/prerequisites do you need to be a professional penetration tester ?

    - by dfafa
    does it take more than knowing Bt4 ? are there any one that just runs a scanner and no real labor involved ? would you be expected to be able to code your own exploits without having to dl from milw0rm and discover entry into a system by yourself, in other words, do you have to think outside the box even when there's so many tools that makes the job a lot easier ? would you ever be expected to be able to write your own scanners, exploits and etc ? i am also curious how people are able to write long pages of hex address, that magically causes some type of memory overflow...how are people guessing at the hex values for game hacks for instance ? are certification important ? what about formal school education ? I am a CS major.

    Read the article

  • Security updates for all supported versions of SQL Server

    - by AaronBertrand
    It's patch Tuesday! [ UPDATE June 19 : Please see my follow-up post about this security update.] Today Microsoft released a security bulletin covering several issues that could potentially affect SQL Server; these exploits include remote code execution, denial of service, information disclosure and elevation of privilege. You should test these patches on all machines running SQL Server, including those running only client tools (e.g. Management Studio or Management Studio Express). The updates affect...(read more)

    Read the article

1 2 3 4 5  | Next Page >