Search Results

Search found 7 results on 1 pages for 'hidayat'.

Page 1/1 | 1 

  • Writing the correct value in the depth buffer when using ray-casting

    - by hidayat
    I am doing a ray-casting in a 3d texture until I hit a correct value. I am doing the ray-casting in a cube and the cube corners are already in world coordinates so I don't have to multiply the vertices with the modelviewmatrix to get the correct position. Vertex shader world_coordinate_ = gl_Vertex; Fragment shader vec3 direction = (world_coordinate_.xyz - cameraPosition_); direction = normalize(direction); for (float k = 0.0; k < steps; k += 1.0) { .... pos += direction*delta_step; float thisLum = texture3D(texture3_, pos).r; if(thisLum > surface_) ... } Everything works as expected, what I now want is to sample the correct value to the depth buffer. The value that is now written to the depth buffer is the cube coordinate. But I want the value of pos in the 3d texture to be written. So lets say the cube is placed 10 away from origin in -z and the size is 10*10*10. My solution that does not work correctly is this: pos *= 10; pos.z += 10; pos.z *= -1; vec4 depth_vec = gl_ProjectionMatrix * vec4(pos.xyz, 1.0); float depth = ((depth_vec.z / depth_vec.w) + 1.0) * 0.5; gl_FragDepth = depth;

    Read the article

  • Low coupling and tight cohesion

    - by hidayat
    Of course it depends on the situation. But when a lower lever object or system communicate with an higher level system, should callbacks or events be preferred to keeping a pointer to higher level object? For example, we have a world class that has a member variable vector<monster> monsters. When the monster class is going to communicate with the world class, should I prefer using a callback function then or should I have a pointer to the world class inside the monster class?

    Read the article

  • Swap bits in c++ for a double

    - by hidayat
    Im trying to change from big endian to little endian on a double. One way to go is to use double val, tmp = 5.55; ((unsigned int *)&val)[0] = ntohl(((unsigned int *)&tmp)[1]); ((unsigned int *)&val)[1] = ntohl(((unsigned int *)&tmp)[0]); But then I get a warning: "dereferencing type-punned pointer will break strict-aliasing rules" and I dont want to turn this warning off. Another way to go is: #define ntohll(x) ( ( (uint64_t)(ntohl( (uint32_t)((x << 32) >> 32) )) << 32) | ntohl( ((uint32_t)(x >> 32)) ) ) val = (double)bswap_64(unsigned long long(tmp)); //or val = (double)ntohll(unsigned long long(tmp)); But then a lose the decimals. Anyone know a good way to swap the bits on a double without using a for loop?

    Read the article

  • problem with python script

    - by hidayat
    I want to run a csh file from a python scrip, example, #!/usr/bin/python import os os.system("source path/to/file.csh") and I want this file to run in the same shell as I am running the python script, because the file.csh script is settings some environment variables that I need. Does anyone know how to do this in Python?

    Read the article

  • print address of virtual member function

    - by hidayat
    I am trying to print the address of a virtual member function. If I only wants to print the address of the function I can write: print("address: %p", &A::func); But I want to do something like this: A *b = new B(); printf("address: %p", &b->func); printf("address: %p", &b->A::func); however this does not compile, is it possible to do something like this even do looking up the address in the vtable is done in runtime?

    Read the article

  • overloading new/delete problem

    - by hidayat
    This is my scenario, Im trying to overload new and delete globally. I have written my allocator class in a file called allocator.h. And what I am trying to achieve is that if a file is including this header file, my version of new and delete should be used. So in a header file "allocator.h" i have declared the two functions extern void* operator new(std::size_t size); extern void operator delete(void *p, std::size_t size); I the same header file I have a class that does all the allocator stuff, class SmallObjAllocator { ... }; I want to call this class from the new and delete functions and I would like the class to be static, so I have done this: template<unsigned dummy> struct My_SmallObjectAllocatorImpl { static SmallObjAllocator myAlloc; }; template<unsigned dummy> SmallObjAllocator My_SmallObjectAllocatorImpl<dummy>::myAlloc(DEFAULT_CHUNK_SIZE, MAX_OBJ_SIZE); typedef My_SmallObjectAllocatorImpl<0> My_SmallObjectAllocator; and in the cpp file it looks like this: allocator.cc void* operator new(std::size_t size) { std::cout << "using my new" << std::endl; if(size > MAX_OBJ_SIZE) return malloc(size); else return My_SmallObjectAllocator::myAlloc.allocate(size); } void operator delete(void *p, std::size_t size) { if(size > MAX_OBJ_SIZE) free(p); else My_SmallObjectAllocator::myAlloc.deallocate(p, size); } The problem is when I try to call the constructor for the class SmallObjAllocator which is a static object. For some reason the compiler are calling my overloaded function new when initializing it. So it then tries to use My_SmallObjectAllocator::myAlloc.deallocate(p, size); which is not defined so the program crashes. So why are the compiler calling new when I define a static object? and how can I solve it?

    Read the article

  • problem understanding templates in c++

    - by hidayat
    Template code is not compiled until the template function is used. But where does it save the compiled code, is it saved in the object file from which used the template function in the first place? For example, main.cpp is calling a template function from the file test.h, the compiler generates an object file main.o, Is the template function inside the main.o file? because template code is not inlined, is it?

    Read the article

1