Search Results

Search found 22 results on 1 pages for 'lattice'.

Page 1/1 | 1 

  • Fortran recursion segmentation faults

    - by ConnorG
    Hey all - I have to design and implement a Fortran routine to determine the size of clusters on a square lattice, and it seemed extremely convenient to code the subroutine recursively. However, whenever my lattice size grows beyond a certain value (around 200/side), the subroutine consistently segfaults. Here's my cluster-detection routine: RECURSIVE SUBROUTINE growCluster(lattice, adj, idx, area) INTEGER, INTENT(INOUT) :: lattice(:), area INTEGER, INTENT(IN) :: adj(:,:), idx lattice(idx) = -1 area = area + 1 IF (lattice(adj(1,idx)).GT.0) & CALL growCluster(lattice,adj,adj(1,idx),area) IF (lattice(adj(2,idx)).GT.0) & CALL growCluster(lattice,adj,adj(2,idx),area) IF (lattice(adj(3,idx)).GT.0) & CALL growCluster(lattice,adj,adj(3,idx),area) IF (lattice(adj(4,idx)).GT.0) & CALL growCluster(lattice,adj,adj(4,idx),area) END SUBROUTINE growCluster where adj(1,n) represents the north neighbor of site n, adj(2,n) represents the west and so on. What would cause the erratic segfault behavior? Is the cluster just "too huge" for large lattice sizes?

    Read the article

  • Utilise Surv object in ggplot or lattice

    - by Misha
    Anyone know how to take advantage of ggplot or lattice in doing survival analysis? It would be nice to do trellis/facet like survival graphs. So in the end I played around and sort of found a solution for a kaplan meier plot. Apologize for the messy code in taking the list elements into a dataframe, but I couldnt figure out another way. Note: It only works with two levels of stratum. If anyone know how I can use x<-length(stratum) to do this please let me know (in stata I could append to a macro-unsure how this works in R)... ggkm<-function(time,event,stratum) { m2s<-Surv(time,as.numeric(event)) fit <- survfit(m2s ~ stratum) f$time<-fit$time f$surv<-fit$surv f$strata<-c(rep(names(fit$strata[1]),fit$strata[1]),rep(names(fit$strata[2]),fit$strata[2])) f$upper<-fit$upper f$lower<-fit$lower r<-ggplot (f,aes(x=time,y=surv,fill=strata,group=strata))+geom_line()+geom_ribbon(aes(ymin=lower,ymax=upper),alpha=0.3) return(r) }

    Read the article

  • Can one use polygon() or equivalent in lattice and ggplot2 plots?

    - by Alex Reynolds
    Is it possible to annotate lattice (or ggplot2) figures with elements created with polygon() (or elements created with a similar function) from the graphics library? I'm not too familiar with either library beyond examples of simple graphs posted on the web and printed in Deepayan Sarkar's book. Therefore, while I have code for what I've been doing in R with the graphics library, pointing me to relevant, equivalent functions and usage examples for lattice or ggplot2 specifically would be appreciated. Thanks.

    Read the article

  • Using Mathematica to generate crystal lattices

    - by lavabo
    How do you generate a 3x3x3 lattice in Mathematica? Is it possible to color some of the lattice points? It seems that it is possible but I cannot get it to work so far http://reference.wolfram.com/mathematica/ref/LatticeData.html What I mean by 3x3x3 is something like figure (c) on the right:http://physics.ucsd.edu/was-sdphul/labs/2dl/exp6/exp63.gif

    Read the article

  • Drawing lattices online

    - by lavabo
    This isn't really a programming question but... Is there any way to draw online a lattice for a material, like a compound? i.e. a 3D gridlike pattern? I know there are some applications for drawing mathematical lattices, but the notation to me is unfamiliar - are there simply programs or applets or something for drawing lattices like in a compound?

    Read the article

  • Drawing lattices online

    - by lavabo
    This isn't really a programming question but... Is there any way to draw online a lattice for a material, like a compound? i.e. a 3D gridlike pattern? I know there are some applications for drawing mathematical lattices, but the notation to me is unfamiliar - are there simply programs or applets or something for drawing lattices like in a compound?

    Read the article

  • prolog sets problem, stack overflow

    - by garm0nboz1a
    Hi. I'm gonna show some code and ask, what could be optimized and where am I sucked? sublist([], []). sublist([H | Tail1], [H | Tail2]) :- sublist(Tail1, Tail2). sublist(H, [_ | Tail]) :- sublist(H, Tail). less(X, X, _). less(X, Z, RelationList) :- member([X,Z], RelationList). less(X, Z, RelationList) :- member([X,Y], RelationList), less(Y, Z, RelationList), \+less(Z, X, RelationList). lessList(X, LessList, RelationList) :- findall(Y, less(X, Y, RelationList), List), list_to_set(List, L), sort(L, LessList), !. list_mltpl(List1, List2, List) :- findall(X, ( member(X, List1), member(X, List2)), List). chain([_], _). chain([H,T | Tail], RelationList) :- less(H, T, RelationList), chain([T|Tail], RelationList), !. have_inf(X1, X2, RelationList) :- lessList(X1, X1_cone, RelationList), lessList(X2, X2_cone, RelationList), list_mltpl(X1_cone, X2_cone, Cone), chain(Cone, RelationList), !. relations(List, E) :- findall([X1,X2], (member(X1, E), member(X2, E), X1 =\= X2), Relations), sublist(List, Relations). semilattice(List, E) :- forall( (member(X1, E), member(X2, E), X1 < X2), have_inf(X1, X2, List) ). main(E) :- relations(X, E), semilattice(X, E). I'm trying to model all possible graph sets of N elements. Predicate relations(List, E) connects list of possible graphs(List) and input set E. Then I'm describing semilattice predicate to check relations' List for some properties. So, what I have. 1) semilattice/2 is working fast and clear ?- semilattice([[1,3],[2,4],[3,5],[4,5]],[1,2,3,4,5]). true. ?- semilattice([[1,3],[1,4],[2,3],[2,4],[3,5],[4,5]],[1,2,3,4,5]). false. 2) relations/2 is working not well ?- findall(X, relations(X,[1,2,3,4]), List), length(List, Len), writeln(Len),fail. 4096 false. ?- findall(X, relations(X,[1,2,3,4,5]), List), length(List, Len), writeln(Len),fail. ERROR: Out of global stack ^ Exception: (11) setup_call_catcher_cleanup('$bags':'$new_findall_bag'(17852886), '$bags':fa_loop(_G263, user:relations(_G263, [1, 2, 3, 4|...]), 17852886, _G268, []), _G835, '$bags':'$destroy_findall_bag'(17852886)) ? abort % Execution Aborted 3) Mix of them to finding all possible semilattice does not work at all. ?- main([1,2]). ERROR: Out of local stack ^ Exception: (15) setup_call_catcher_cleanup('$bags':'$new_findall_bag'(17852886), '$bags':fa_loop(_G41, user:less(1, _G41, [[1, 2], [2, 1]]), 17852886, _G52, []), _G4767764, '$bags':'$destroy_findall_bag'(17852886)) ?

    Read the article

  • How do I return the indices of a multidimensional array element in C?

    - by Eddy
    Say I have a 2D array of random boolean ones and zeroes called 'lattice', and I have a 1D array called 'list' which lists the addresses of all the zeroes in the 2D array. This is how the arrays are defined: define n 100 bool lattice[n][n]; bool *list[n*n]; After filling the lattice with ones and zeroes, I store the addresses of the zeroes in list: for(j = 0; j < n; j++) { for(i = 0; i < n; i++) { if(!lattice[i][j]) // if element = 0 { list[site_num] = &lattice[i][j]; // store address of zero site_num++; } } } How do I extract the x,y coordinates of each zero in the array? In other words, is there a way to return the indices of an array element through referring to its address?

    Read the article

  • How to define and work with an array of bits in C?

    - by Eddy
    I want to create a very large array on which I write '0's and '1's. I'm trying to simulate a physical process called random sequential adsorption, where units of length 2, dimers, are deposited onto an n-dimensional lattice at a random location, without overlapping each other. The process stops when there is no more room left on the lattice for depositing more dimers (lattice is jammed). Initially I start with a lattice of zeroes, and the dimers are represented by a pair of '1's. As each dimer is deposited, the site on the left of the dimer is blocked, due to the fact that the dimers cannot overlap. So I simulate this process by depositing a triple of '1's on the lattice. I need to repeat the entire simulation a large number of times and then work out the average coverage %. I've already done this using an array of chars for 1D and 2D lattices. At the moment I'm trying to make the code as efficient as possible, before working on the 3D problem and more complicated generalisations. This is basically what the code looks like in 1D, simplified: int main() { /* Define lattice */ array = (char*)malloc(N * sizeof(char)); total_c = 0; /* Carry out RSA multiple times */ for (i = 0; i < 1000; i++) rand_seq_ads(); /* Calculate average coverage efficiency at jamming */ printf("coverage efficiency = %lf", total_c/1000); return 0; } void rand_seq_ads() { /* Initialise array, initial conditions */ memset(a, 0, N * sizeof(char)); available_sites = N; count = 0; /* While the lattice still has enough room... */ while(available_sites != 0) { /* Generate random site location */ x = rand(); /* Deposit dimer (if site is available) */ if(array[x] == 0) { array[x] = 1; array[x+1] = 1; count += 1; available_sites += -2; } /* Mark site left of dimer as unavailable (if its empty) */ if(array[x-1] == 0) { array[x-1] = 1; available_sites += -1; } } /* Calculate coverage %, and add to total */ c = count/N total_c += c; } For the actual project I'm doing, it involves not just dimers but trimers, quadrimers, and all sorts of shapes and sizes (for 2D and 3D). I was hoping that I would be able to work with individual bits instead of bytes, but I've been reading around and as far as I can tell you can only change 1 byte at a time, so either I need to do some complicated indexing or there is a simpler way to do it? Thanks for your answers

    Read the article

  • How to use objetcs as modules/functors in Scala?

    - by Jeff
    Hi. I want to use object instances as modules/functors, more or less as shown below: abstract class Lattice[E] extends Set[E] { val minimum: E val maximum: E def meet(x: E, y: E): E def join(x: E, y: E): E def neg(x: E): E } class Calculus[E](val lat: Lattice[E]) { abstract class Expr case class Var(name: String) extends Expr {...} case class Val(value: E) extends Expr {...} case class Neg(e1: Expr) extends Expr {...} case class Cnj(e1: Expr, e2: Expr) extends Expr {...} case class Dsj(e1: Expr, e2: Expr) extends Expr {...} } So that I can create a different calculus instance for each lattice (the operations I will perform need the information of which are the maximum and minimum values of the lattice). I want to be able to mix expressions of the same calculus but not be allowed to mix expressions of different ones. So far, so good. I can create my calculus instances, but problem is that I can not write functions in other classes that manipulate them. For example, I am trying to create a parser to read expressions from a file and return them; I also was trying to write an random expression generator to use in my tests with ScalaCheck. Turns out that every time a function generates an Expr object I can't use it outside the function. Even if I create the Calculus instance and pass it as an argument to the function that will in turn generate the Expr objects, the return of the function is not recognized as being of the same type of the objects created outside the function. Maybe my english is not clear enough, let me try a toy example of what I would like to do (not the real ScalaCheck generator, but close enough). def genRndExpr[E](c: Calculus[E], level: Int): Calculus[E]#Expr = { if (level > MAX_LEVEL) { val select = util.Random.nextInt(2) select match { case 0 => genRndVar(c) case 1 => genRndVal(c) } } else { val select = util.Random.nextInt(3) select match { case 0 => new c.Neg(genRndExpr(c, level+1)) case 1 => new c.Dsj(genRndExpr(c, level+1), genRndExpr(c, level+1)) case 2 => new c.Cnj(genRndExpr(c, level+1), genRndExpr(c, level+1)) } } } Now, if I try to compile the above code I get lots of error: type mismatch; found : plg.mvfml.Calculus[E]#Expr required: c.Expr case 0 = new c.Neg(genRndExpr(c, level+1)) And the same happens if I try to do something like: val boolCalc = new Calculus(Bool) val e1: boolCalc.Expr = genRndExpr(boolCalc) Please note that the generator itself is not of concern, but I will need to do similar things (i.e. create and manipulate calculus instance expressions) a lot on the rest of the system. Am I doing something wrong? Is it possible to do what I want to do? Help on this matter is highly needed and appreciated. Thanks a lot in advance.

    Read the article

  • How to use objects as modules/functors in Scala?

    - by Jeff
    Hi. I want to use object instances as modules/functors, more or less as shown below: abstract class Lattice[E] extends Set[E] { val minimum: E val maximum: E def meet(x: E, y: E): E def join(x: E, y: E): E def neg(x: E): E } class Calculus[E](val lat: Lattice[E]) { abstract class Expr case class Var(name: String) extends Expr {...} case class Val(value: E) extends Expr {...} case class Neg(e1: Expr) extends Expr {...} case class Cnj(e1: Expr, e2: Expr) extends Expr {...} case class Dsj(e1: Expr, e2: Expr) extends Expr {...} } So that I can create a different calculus instance for each lattice (the operations I will perform need the information of which are the maximum and minimum values of the lattice). I want to be able to mix expressions of the same calculus but not be allowed to mix expressions of different ones. So far, so good. I can create my calculus instances, but problem is that I can not write functions in other classes that manipulate them. For example, I am trying to create a parser to read expressions from a file and return them; I also was trying to write an random expression generator to use in my tests with ScalaCheck. Turns out that every time a function generates an Expr object I can't use it outside the function. Even if I create the Calculus instance and pass it as an argument to the function that will in turn generate the Expr objects, the return of the function is not recognized as being of the same type of the objects created outside the function. Maybe my english is not clear enough, let me try a toy example of what I would like to do (not the real ScalaCheck generator, but close enough). def genRndExpr[E](c: Calculus[E], level: Int): Calculus[E]#Expr = { if (level > MAX_LEVEL) { val select = util.Random.nextInt(2) select match { case 0 => genRndVar(c) case 1 => genRndVal(c) } } else { val select = util.Random.nextInt(3) select match { case 0 => new c.Neg(genRndExpr(c, level+1)) case 1 => new c.Dsj(genRndExpr(c, level+1), genRndExpr(c, level+1)) case 2 => new c.Cnj(genRndExpr(c, level+1), genRndExpr(c, level+1)) } } } Now, if I try to compile the above code I get lots of error: type mismatch; found : plg.mvfml.Calculus[E]#Expr required: c.Expr case 0 = new c.Neg(genRndExpr(c, level+1)) And the same happens if I try to do something like: val boolCalc = new Calculus(Bool) val e1: boolCalc.Expr = genRndExpr(boolCalc) Please note that the generator itself is not of concern, but I will need to do similar things (i.e. create and manipulate calculus instance expressions) a lot on the rest of the system. Am I doing something wrong? Is it possible to do what I want to do? Help on this matter is highly needed and appreciated. Thanks a lot in advance. After receiving an answer from Apocalisp and trying it. Thanks a lot for the answer, but there are still some issues. The proposed solution was to change the signature of the function to: def genRndExpr[E, C <: Calculus[E]](c: C, level: Int): C#Expr I changed the signature for all the functions involved: getRndExpr, getRndVal and getRndVar. And I got the same error message everywhere I call these functions and got the following error message: error: inferred type arguments [Nothing,C] do not conform to method genRndVar's type parameter bounds [E,C genRndVar(c) Since the compiler seemed to be unable to figure out the right types I changed all function call to be like below: case 0 => new c.Neg(genRndExpr[E,C](c, level+1)) After this, on the first 2 function calls (genRndVal and genRndVar) there were no compiling error, but on the following 3 calls (recursive calls to genRndExpr), where the return of the function is used to build a new Expr object I got the following error: error: type mismatch; found : C#Expr required: c.Expr case 0 = new c.Neg(genRndExpr[E,C](c, level+1)) So, again, I'm stuck. Any help will be appreciated.

    Read the article

  • Segmentation fault in my C program

    - by user233542
    I don't understand why this would give me a seg fault. Any ideas? This is the function that returns the signal to stop the program (plus the other function that is called within this): double bisect(double A0,double A1,double Sol[N],double tol,double c) { double Amid,shot; while (A1-A0 > tol) { Amid = 0.5*(A0+A1); shot = shoot(Sol, Amid, c); if (shot==2.*Pi) { return Amid; } if (shot > 2.*Pi){ A1 = Amid; } else if (shot < 2.*Pi){ A0 = Amid; } } return 0.5*(A1+A0); } double shoot(double Sol[N],double A,double c) { int i,j; /*Initial Conditions*/ for (i=0;i<buff;i++) { Sol[i] = 0.; } for (i=buff+l;i<N;i++) { Sol[i] = 2.*Pi; } Sol[buff]= 0; Sol[buff+1]= A*exp(sqrt(1+3*c)*dx); for (i=buff+2;i<buff+l;i++) { Sol[i] = (dx*dx)*( sin(Sol[i-1]) + c*sin(3.*(Sol[i-1])) ) - Sol[i-2] + 2.*Sol[i-1]; } return Sol[i-1]; } The values buff, l, N are defined using a #define statement. l = 401, buff = 50, N = 2000 Here is the full code: #include <stdio.h> #include <stdlib.h> #include <math.h> #define w 10 /*characteristic width of a soliton*/ #define dx 0.05 /*distance between lattice sites*/ #define s (2*w)/dx /*size of soliton shape*/ #define l (int)(s+1) /*array length for soliton*/ #define N (int)2000 /*length of field array--lattice sites*/ #define Pi (double)4*atan(1) #define buff (int)50 double shoot(double Sol[N],double A,double c); double bisect(double A0,double A1,double Sol[N],double tol,double c); void super_pos(double antiSol[N],double Sol[N],double phi[][N]); void vel_ver(double phi[][N],double v,double c,int tsteps,double dt); int main(int argc, char **argv) { double c,Sol[N],antiSol[N],A,A0,A1,tol,v,dt; int tsteps,i; FILE *fp1,*fp2,*fp3; fp1 = fopen("soliton.dat","w"); fp2 = fopen("final-phi.dat","w"); fp3 = fopen("energy.dat","w"); printf("Please input the number of time steps:"); scanf("%d",&tsteps); printf("Also, enter the time step size:"); scanf("%lf",&dt); do{ printf("Please input the parameter c in the interval [-1/3,1]:"); scanf("%lf",&c);} while(c < (-1./3.) || c > 1.); printf("Please input the inital speed of eiter soliton:"); scanf("%lf",&v); double phi[tsteps+1][N]; tol = 0.0000001; A0 = 0.; A1 = 2.*Pi; A = bisect(A0,A1,Sol,tol,c); shoot(Sol,A,c); for (i=0;i<N;i++) { fprintf(fp1,"%d\t",i); fprintf(fp1,"%lf\n",Sol[i]); } fclose(fp1); super_pos(antiSol,Sol,phi); /*vel_ver(phi,v,c,tsteps,dt); for (i=0;i<N;i++){ fprintf(fp2,"%d\t",i); fprintf(fp2,"%lf\n",phi[tsteps][i]); }*/ } double shoot(double Sol[N],double A,double c) { int i,j; /*Initial Conditions*/ for (i=0;i<buff;i++) { Sol[i] = 0.; } for (i=buff+l;i<N;i++) { Sol[i] = 2.*Pi; } Sol[buff]= 0; Sol[buff+1]= A*exp(sqrt(1+3*c)*dx); for (i=buff+2;i<buff+l;i++) { Sol[i] = (dx*dx)*( sin(Sol[i-1]) + c*sin(3.*(Sol[i-1])) ) - Sol[i-2] + 2.*Sol[i-1]; } return Sol[i-1]; } double bisect(double A0,double A1,double Sol[N],double tol,double c) { double Amid,shot; while (A1-A0 > tol) { Amid = 0.5*(A0+A1); shot = shoot(Sol, Amid, c); if (shot==2.*Pi) { return Amid; } if (shot > 2.*Pi){ A1 = Amid; } else if (shot < 2.*Pi){ A0 = Amid; } } return 0.5*(A1+A0); } void super_pos(double antiSol[N],double Sol[N],double phi[][N]) { int i; /*for (i=0;i<N;i++) { phi[i]=0; } for (i=buffer+s;i<1950-s;i++) { phi[i]=2*Pi; }*/ for (i=0;i<N;i++) { antiSol[i] = Sol[N-i]; } /*for (i=0;i<s+1;i++) { phi[buffer+j] = Sol[j]; phi[1549+j] = antiSol[j]; }*/ for (i=0;i<N;i++) { phi[0][i] = antiSol[i] + Sol[i] - 2.*Pi; } } /* This funciton will set the 2nd input array to the derivative at the time t, for all points x in the lattice */ void deriv2(double phi[][N],double DphiDx2[][N],int t) { //double SolDer2[s+1]; int x; for (x=0;x<N;x++) { DphiDx2[t][x] = (phi[buff+x+1][t] + phi[buff+x-1][t] - 2.*phi[x][t])/(dx*dx); } /*for (i=0;i<N;i++) { ptr[i] = &SolDer2[i]; }*/ //return DphiDx2[x]; } void vel_ver(double phi[][N],double v,double c,int tsteps,double dt) { int t,x; double d1,d2,dp,DphiDx1[tsteps+1][N],DphiDx2[tsteps+1][N],dpdt[tsteps+1][N],p[tsteps+1][N]; for (t=0;t<tsteps;t++){ if (t==0){ for (x=0;x<N;x++){//inital conditions deriv2(phi,DphiDx2,t); dpdt[t][x] = DphiDx2[t][x] - sin(phi[t][x]) - sin(3.*phi[t][x]); DphiDx1[t][x] = (phi[t][x+1] - phi[t][x])/dx; p[t][x] = -v*DphiDx1[t][x]; } } for (x=0;x<N;x++){//velocity-verlet phi[t+1][x] = phi[t][x] + dt*p[t][x] + (dt*dt/2)*dpdt[t][x]; p[t+1][x] = p[t][x] + (dt/2)*dpdt[t][x]; deriv2(phi,DphiDx2,t+1); dpdt[t][x] = DphiDx2[t][x] - sin(phi[t+1][x]) - sin(3.*phi[t+1][x]); p[t+1][x] += (dt/2)*dpdt[t+1][x]; } } } So, this really isn't due to my overwriting the end of the Sol array. I've commented out both functions that I suspected of causing the problem (bisect or shoot) and inserted a print function. Two things happen. When I have code like below: double A,Pi,B,c; c=0; Pi = 4.*atan(1.); A = Pi; B = 1./4.; printf("%lf",B); B = shoot(Sol,A,c); printf("%lf",B); I get a segfault from the function, shoot. However, if I take away the shoot function so that I have: double A,Pi,B,c; c=0; Pi = 4.*atan(1.); A = Pi; B = 1./4.; printf("%lf",B); it gives me a segfault at the printf... Why!?

    Read the article

  • template expressions and visual studio 2005 c++

    - by chris
    I'd like to build the olb3d library with my visual studio 2005 compiler but this failes due to template errors. To be more specific, the following expression seem to be a problem: void function(T u[Lattice::d]) On the website of the project is stated that prpably my compiler is not capable of such complicated template expressions - one should use the gcc 3.4.1. My question is now if there is a way to upgrade my vs c++ compiler so it can handle template expressions on the level as the gcc 3.4.1? Maybe it helps if I get a newer version of visual studio? Cheers C.

    Read the article

  • How do I suppress this output?

    - by David
    I have a code chunk in an R Markdown file. ```{r} library(UsingR) ``` Using knitHTML to compile causes the following output, which never happened before I updated to the latest versions of R and RStudio: ## Loading required package: MASS ## Loading required package: HistData ## Loading required package: Hmisc ## Loading required package: grid ## Loading required package: lattice ## Loading required package: survival ## Loading required package: splines ## Loading required package: Formula ## ## Attaching package: 'Hmisc' ## ## The following objects are masked from 'package:base': ## ## format.pval, round.POSIXt, trunc.POSIXt, units ## ## Loading required package: aplpack ## Loading required package: tcltk ## Loading required package: quantreg ## Loading required package: SparseM ## ## Attaching package: 'SparseM' ## ## The following object is masked from 'package:base': ## ## backsolve ## ## ## Attaching package: 'quantreg' ## ## The following object is masked from 'package:Hmisc': ## ## latex ## ## The following object is masked from 'package:survival': ## ## untangle.specials ## ## ## Attaching package: 'UsingR' ## ## The following object is masked from 'package:survival': ## ## cancer How can I suppress this output? Note: echo=FALSE did not work.

    Read the article

  • Interactive Charts for web application

    - by user227290
    We are working on a web based application (implemented in JAVA) on commodity prices and one part of it is interactive charting. I provide a simplified example here. We have a table in Mysql database where we have information on commodity prices in US states and counties. One aspect of the application is to create interactive plots based on user choice. For example, if the user needs to see the price density in Oregon and Linn county then she chooses it from the menu in a webpage and it is rendered on fly with accompanying quantile information in a table. As the user changes state and county these plots and table change on fly.For our computational need we are using R (and use rjava to integrate it to our web application) and I know that if interactivity is not an issue this is a piece of cake in ggplot2, but I am not aware of any interactive version of R graphics framework (like lattice, ggplot2). We are exploring google visualization API but I am not sure we can have the statistical power we need in some of the plots.Please help.

    Read the article

  • Examples of monoids/semigroups in programming

    - by jkff
    It is well-known that monoids are stunningly ubiquitous in programing. They are so ubiquitous and so useful that I, as a 'hobby project', am working on a system that is completely based on their properties (distributed data aggregation). To make the system useful I need useful monoids :) I already know of these: Numeric or matrix sum Numeric or matrix product Minimum or maximum under a total order with a top or bottom element (more generally, join or meet in a bounded lattice, or even more generally, product or coproduct in a category) Set union Map union where conflicting values are joined using a monoid Intersection of subsets of a finite set (or just set intersection if we speak about semigroups) Intersection of maps with a bounded key domain (same here) Merge of sorted sequences, perhaps with joining key-equal values in a different monoid/semigroup Bounded merge of sorted lists (same as above, but we take the top N of the result) Cartesian product of two monoids or semigroups List concatenation Endomorphism composition. Now, let us define a quasi-property of an operation as a property that holds up to an equivalence relation. For example, list concatenation is quasi-commutative if we consider lists of equal length or with identical contents up to permutation to be equivalent. Here are some quasi-monoids and quasi-commutative monoids and semigroups: Any (a+b = a or b, if we consider all elements of the carrier set to be equivalent) Any satisfying predicate (a+b = the one of a and b that is non-null and satisfies some predicate P, if none does then null; if we consider all elements satisfying P equivalent) Bounded mixture of random samples (xs+ys = a random sample of size N from the concatenation of xs and ys; if we consider any two samples with the same distribution as the whole dataset to be equivalent) Bounded mixture of weighted random samples Which others do exist?

    Read the article

  • How to define 2-bit numbers in C, if possible?

    - by Eddy
    For my university process I'm simulating a process called random sequential adsorption. One of the things I have to do involves randomly depositing squares (which cannot overlap) onto a lattice until there is no more room left, repeating the process several times in order to find the average 'jamming' coverage %. Basically I'm performing operations on a large array of integers, of which 3 possible values exist: 0, 1 and 2. The sites marked with '0' are empty, the sites marked with '1' are full. Initially the array is defined like this: int i, j; int n = 1000000000; int array[n][n]; for(j = 0; j < n; j++) { for(i = 0; i < n; i++) { array[i][j] = 0; } } Say I want to deposit 5*5 squares randomly on the array (that cannot overlap), so that the squares are represented by '1's. This would be done by choosing the x and y coordinates randomly and then creating a 5*5 square of '1's with the topleft point of the square starting at that point. I would then mark sites near the square as '2's. These represent the sites that are unavailable since depositing a square at those sites would cause it to overlap an existing square. This process would continue until there is no more room left to deposit squares on the array (basically, no more '0's left on the array) Anyway, to the point. I would like to make this process as efficient as possible, by using bitwise operations. This would be easy if I didn't have to mark sites near the squares. I was wondering whether creating a 2-bit number would be possible, so that I can account for the sites marked with '2'. Sorry if this sounds really complicated, I just wanted to explain why I want to do this.

    Read the article

  • Loading, listing, and using R Modules and Functions in PL/R

    - by Dave Jarvis
    I am having difficulty with: Listing the R packages and functions available to PostgreSQL. Installing a package (such as Kendall) for use with PL/R Calling an R function within PostgreSQL Listing Available R Packages Q.1. How do you find out what R modules have been loaded? SELECT * FROM r_typenames(); That shows the types that are available, but what about checking if Kendall( X, Y ) is loaded? For example, the documentation shows: CREATE TABLE plr_modules ( modseq int4, modsrc text ); That seems to allow inserting records to dictate that Kendall is to be loaded, but the following code doesn't explain, syntactically, how to ensure that it gets loaded: INSERT INTO plr_modules VALUES (0, 'pg.test.module.load <-function(msg) {print(msg)}'); Q.2. What would the above line look like if you were trying to load Kendall? Q.3. Is it applicable? Installing R Packages Using the "synaptic" package manager the following packages have been installed: r-base r-base-core r-base-dev r-base-html r-base-latex r-cran-acepack r-cran-boot r-cran-car r-cran-chron r-cran-cluster r-cran-codetools r-cran-design r-cran-foreign r-cran-hmisc r-cran-kernsmooth r-cran-lattice r-cran-matrix r-cran-mgcv r-cran-nlme r-cran-quadprog r-cran-robustbase r-cran-rpart r-cran-survival r-cran-vr r-recommended Q.4. How do I know if Kendall is in there? Q.5. If it isn't, how do I find out what package it is in? Q.6. If it isn't in a package suitable for installing with apt-get (aptitude, synaptic, dpkg, what have you), how do I go about installing it on Ubuntu? Q.7. Where are the installation steps documented? Calling R Functions I have the following code: EXECUTE 'SELECT ' 'regr_slope( amount, year_taken ),' 'regr_intercept( amount, year_taken ),' 'corr( amount, year_taken ),' 'sum( measurements ) AS total_measurements ' 'FROM temp_regression' INTO STRICT slope, intercept, correlation, total_measurements; This code calls the PostgreSQL function corr to calculate Pearson's correlation over the data. Ideally, I'd like to do the following (by switching corr for plr_kendall): EXECUTE 'SELECT ' 'regr_slope( amount, year_taken ),' 'regr_intercept( amount, year_taken ),' 'plr_kendall( amount, year_taken ),' 'sum( measurements ) AS total_measurements ' 'FROM temp_regression' INTO STRICT slope, intercept, correlation, total_measurements; Q.8. Do I have to write plr_kendall myself? Q.9. Where can I find a simple example that walks through: Loading an R module into PG. Writing a PG wrapper for the desired R function. Calling the PG wrapper from a SELECT. For example, would the last two steps look like: create or replace function plr_kendall( _float8, _float8 ) returns float as ' agg_kendall(arg1, arg2) ' language 'plr'; CREATE AGGREGATE agg_kendall ( sfunc = plr_array_accum, basetype = float8, -- ??? stype = _float8, -- ??? finalfunc = plr_kendall ); And then the SELECT as above? Thank you!

    Read the article

  • Templates, interfaces (multiple inheritance) and static functions (named constructors)

    - by fledgling Cxx user
    Setup I have a graph library where I am trying to decompose things as much as possible, and the cleanest way to describe it that I found is the following: there is a vanilla type node implementing only a list of edges: class node { public: int* edges; int edge_count; }; Then, I would like to be able to add interfaces to this whole mix, like so: template <class T> class node_weight { public: T weight; }; template <class T> class node_position { public: T x; T y; }; and so on. Then, the actual graph class comes in, which is templated on the actual type of node: template <class node_T> class graph { protected: node_T* nodes; public: static graph cartesian(int n, int m) { graph r; r.nodes = new node_T[n * m]; return r; } }; The twist is that it has named constructors which construct some special graphs, like a Cartesian lattice. In this case, I would like to be able to add some extra information into the graph, depending on what interfaces are implemented by node_T. What would be the best way to accomplish this? Possible solution I thought of the following humble solution, through dynamic_cast<>: template <class node_T, class weight_T, class position_T> class graph { protected: node_T* nodes; public: static graph cartesian(int n, int m) { graph r; r.nodes = new node_T[n * m]; if (dynamic_cast<node_weight<weight_T>>(r.nodes[0]) != nullptr) { // do stuff knowing you can add weights } if (dynamic_cast<node_position<positionT>>(r.nodes[0]) != nullptr) { // do stuff knowing you can set position } return r; } }; which would operate on node_T being the following: template <class weight_T, class position_T> class node_weight_position : public node, public node_weight<weight_T>, public node_position<position_T> { // ... }; Questions Is this -- philosophically -- the right way to go? I know people don't look nicely at multiple inheritance, though with "interfaces" like these it should all be fine. There are unfortunately problems with this. From what I know at least, dynamic_cast<> involves quite a bit of run-time overhead. Hence, I run into a problem with what I had solved earlier: writing graph algorithms that require weights independently of whether the actual node_T class has weights or not. The solution with this 'interface' approach would be to write a function: template <class node_T, class weight_T> inline weight_T get_weight(node_T const & n) { if (dynamic_cast<node_weight<weight_T>>(n) != nullptr) { return dynamic_cast<node_weight<weight_T>>(n).weight; } return T(1); } but the issue with it is that it works using run-time information (dynamic_cast), yet in principle I would like to decide it at compile-time and thus make the code more efficient. If there is a different solution that would solve both problems, especially a cleaner and better one than what I have, I would love to hear about it!

    Read the article

1