Search Results

Search found 34 results on 2 pages for 'liskov'.

Page 1/2 | 1 2  | Next Page >

  • Liskov Substitution Principle and the Oft Forgot Third Wheel

    - by Stacy Vicknair
    Liskov Substitution Principle (LSP) is a principle of object oriented programming that many might be familiar with from the SOLID principles mnemonic from Uncle Bob Martin. The principle highlights the relationship between a type and its subtypes, and, according to Wikipedia, is defined by Barbara Liskov and Jeanette Wing as the following principle:   Let be a property provable about objects of type . Then should be provable for objects of type where is a subtype of .   Rectangles gonna rectangulate The iconic example of this principle is illustrated with the relationship between a rectangle and a square. Let’s say we have a class named Rectangle that had a property to set width and a property to set its height. 1: Public Class Rectangle 2: Overridable Property Width As Integer 3: Overridable Property Height As Integer 4: End Class   We all at some point here that inheritance mocks an “IS A” relationship, and by gosh we all know square IS A rectangle. So let’s make a square class that inherits from rectangle. However, squares do maintain the same length on every side, so let’s override and add that behavior. 1: Public Class Square 2: Inherits Rectangle 3:  4: Private _sideLength As Integer 5:  6: Public Overrides Property Width As Integer 7: Get 8: Return _sideLength 9: End Get 10: Set(value As Integer) 11: _sideLength = value 12: End Set 13: End Property 14:  15: Public Overrides Property Height As Integer 16: Get 17: Return _sideLength 18: End Get 19: Set(value As Integer) 20: _sideLength = value 21: End Set 22: End Property 23: End Class   Now, say we had the following test: 1: Public Sub SetHeight_DoesNotAffectWidth(rectangle As Rectangle) 2: 'arrange 3: Dim expectedWidth = 4 4: rectangle.Width = 4 5:  6: 'act 7: rectangle.Height = 7 8:  9: 'assert 10: Assert.AreEqual(expectedWidth, rectangle.Width) 11: End Sub   If we pass in a rectangle, this test passes just fine. What if we pass in a square?   This is where we see the violation of Liskov’s Principle! A square might "IS A” to a rectangle, but we have differing expectations on how a rectangle should function than how a square should! Great expectations Here’s where we pat ourselves on the back and take a victory lap around the office and tell everyone about how we understand LSP like a boss. And all is good… until we start trying to apply it to our work. If I can’t even change functionality on a simple setter without breaking the expectations on a parent class, what can I do with subtyping? Did Liskov just tell me to never touch subtyping again? The short answer: NO, SHE DIDN’T. When I first learned LSP, and from those I’ve talked with as well, I overlooked a very important but not appropriately stressed quality of the principle: our expectations. Our inclination is to want a logical catch-all, where we can easily apply this principle and wipe our hands, drop the mic and exit stage left. That’s not the case because in every different programming scenario, our expectations of the parent class or type will be different. We have to set reasonable expectations on the behaviors that we expect out of the parent, then make sure that those expectations are met by the child. Any expectations not explicitly expected of the parent aren’t expected of the child either, and don’t register as a violation of LSP that prevents implementation. You can see the flexibility mentioned in the Wikipedia article itself: A typical example that violates LSP is a Square class that derives from a Rectangle class, assuming getter and setter methods exist for both width and height. The Square class always assumes that the width is equal with the height. If a Square object is used in a context where a Rectangle is expected, unexpected behavior may occur because the dimensions of a Square cannot (or rather should not) be modified independently. This problem cannot be easily fixed: if we can modify the setter methods in the Square class so that they preserve the Square invariant (i.e., keep the dimensions equal), then these methods will weaken (violate) the postconditions for the Rectangle setters, which state that dimensions can be modified independently. Violations of LSP, like this one, may or may not be a problem in practice, depending on the postconditions or invariants that are actually expected by the code that uses classes violating LSP. Mutability is a key issue here. If Square and Rectangle had only getter methods (i.e., they were immutable objects), then no violation of LSP could occur. What this means is that the above situation with a rectangle and a square can be acceptable if we do not have the expectation for width to leave height unaffected, or vice-versa, in our application. Conclusion – the oft forgot third wheel Liskov Substitution Principle is meant to act as a guidance and warn us against unexpected behaviors. Objects can be stateful and as a result we can end up with unexpected situations if we don’t code carefully. Specifically when subclassing, make sure that the subclass meets the expectations held to its parent. Don’t let LSP think you cannot deviate from the behaviors of the parent, but understand that LSP is meant to highlight the importance of not only the parent and the child class, but also of the expectations WE set for the parent class and the necessity of meeting those expectations in order to help prevent sticky situations.   Code examples, in both VB and C# Technorati Tags: LSV,Liskov Substitution Principle,Uncle Bob,Robert Martin,Barbara Liskov,Liskov

    Read the article

  • Liskov principle: violation by type-hinting

    - by Elias Van Ootegem
    According to the Liskov principle, a construction like the one below is invalid, as it strengthens a pre-condition. I know the example is pointless/nonsense, but when I last asked a question like this, and used a more elaborate code sample, it seemed to distract people too much from the actual question. //Data models abstract class Argument { protected $value = null; public function getValue() { return $this->value; } abstract public function setValue($val); } class Numeric extends Argument { public function setValue($val) { $this->value = $val + 0;//coerce to number return $this; } } //used here: abstract class Output { public function printValue(Argument $arg) { echo $this->format($arg); return $this; } abstract public function format(Argument $arg); } class OutputNumeric extends Output { public function format(Numeric $arg)//<-- VIOLATION! { $format = is_float($arg->getValue()) ? '%.3f' : '%d'; return sprintf($format, $arg->getValue()); } } My question is this: Why would this kind of "violation" be considered harmful? So much so that some languages, like the one I used in this example (PHP), don't even allow this? I'm not allowed to strengthen the type-hint of an abstract method but, by overriding the printValue method, I am allowed to write: class OutputNumeric extends Output { final public function printValue(Numeric $arg) { echo $this->format($arg); } public function format(Argument $arg) { $format = is_float($arg->getValue()) ? '%.3f' : '%d'; return sprintf($format, $arg->getValue()); } } But this would imply repeating myself for each and every child of Output, and makes my objects harder to reuse. I understand why the Liskov principle exists, don't get me wrong, but I find it somewhat difficult to fathom why the signature of an abstract method in an abstract class has to be adhered to so much stricter than a non-abstract method. Could someone explain to me why I'm not allowed to hind at a child class, in a child class? The way I see it, the child class OutputNumeric is a specific use-case of Output, and thus might need a specific instance of Argument, namely Numeric. Is it really so wrong of me to write code like this?

    Read the article

  • Examples of Liskov Substitution

    - by james lewis
    I'm facilitating a session next week on the Liskov Substitution Principle and I was wondering if anyone had any examples of violations 'from the trenches'? I'm looking for something other than uncle Bob's rectangle - square problem and the persistent set problem he talks about in A-PPP (although that is a great example). So far I'm using the example of a (very simple) List and an IndexedList as the 'correct' use of inheritance. And the addition of a Set to this hierarchy as a violation (as a Set is distinct; strengthening the pre condition of the Add method). I've also taken this great example and it's solution from this question Both those examples are great but I'm looking for something more subtle and harder to spot. So far I've come up with nothing so if you've got a great, subtle example post it up. Also, any metaphors you've come across that helped you understand LSP would be really useful too.

    Read the article

  • Liskov substitution principle with abstract parent class

    - by Songo
    Does Liskov substitution principle apply to inheritance hierarchies where the parent is an abstract class the same way if the parent is a concrete class? The Wikipedia page list several conditions that have to be met before a hierarchy is deemed to be correct. However, I have read in a blog post that one way to make things easier to conform to LSP is to use abstract parent instead of a concrete class. How does the choice of the parent type (abstract vs concrete) impacts the LSP? Is it better to have an abstract base class whenever possible?

    Read the article

  • LSP vs OCP / Liskov Substitution VS Open Close

    - by Kolyunya
    I am trying to understand the SOLID principles of OOP and I've come to the conclusion that LSP and OCP have some similarities (if not to say more). the open/closed principle states "software entities (classes, modules, functions, etc.) should be open for extension, but closed for modification". LSP in simple words states that any instance of Foo can be replaced with any instance of Bar which is derived from Foo and the program will work the same very way. I'm not a pro OOP programmer, but it seems to me that LSP is only possible if Bar, derived from Foo does not change anything in it but only extends it. That means that in particular program LSP is true only when OCP is true and OCP is true only if LSP is true. That means that they are equal. Correct me if I'm wrong. I really want to understand these ideas. Great thanks for an answer.

    Read the article

  • Liskov substitution and abstract classes / strategy pattern

    - by Kolyunya
    I'm trying to follow LSP in practical programming. And I wonder if different constructors of subclasses violate it. It would be great to hear an explanation instead of just yes/no. Thanks much! P.S. If the answer is no, how do I make different strategies with different input without violating LSP? class IStrategy { public: virtual void use() = 0; }; class FooStrategy : public IStrategy { public: FooStrategy(A a, B b) { c = /* some operations with a, b */ } virtual void use() { std::cout << c; } private: C c; }; class BarStrategy : public IStrategy { public: BarStrategy(D d, E e) { f = /* some operations with d, e */ } virtual void use() { std::cout << f; } private: F f; };

    Read the article

  • Zend_Form and Liskov Substitution Principle

    - by blockhead
    A very common pattern I see (I'm picking on Zend Framework, only because I was dealing with it at the moment of this question), is something like this: class My_Form extends Zend_Form { public function init() { $this->addElement(); } } Zend_Form is not an abstract class, but is perfectly usable on its own. This seems to be "recommended" as place to "encapsulate" your forms into a nice class. Does this violate the Liskov Substitution Principle? Each subclass of Zend_Form will have a wildy different behavior than the base class. Would it be better to use composition for this, or am I totally misunderstanding this principle?

    Read the article

  • Liskov Substition and Composition

    - by FlySwat
    Let say I have a class like this: public sealed class Foo { public void Bar { // Do Bar Stuff } } And I want to extend it to add something beyond what an extension method could do....My only option is composition: public class SuperFoo { private Foo _internalFoo; public SuperFoo() { _internalFoo = new Foo(); } public void Bar() { _internalFoo.Bar(); } public void Baz() { // Do Baz Stuff } } While this works, it is a lot of work...however I still run into a problem: public void AcceptsAFoo(Foo a) I can pass in a Foo here, but not a super Foo, because C# has no idea that SuperFoo truly does qualify in the Liskov Substitution sense...This means that my extended class via composition is of very limited use. So, the only way to fix it is to hope that the original API designers left an interface laying around: public interface IFoo { public Bar(); } public sealed class Foo : IFoo { // etc } Now, I can implement IFoo on SuperFoo (Which since SuperFoo already implements Foo, is just a matter of changing the signature). public class SuperFoo : IFoo And in the perfect world, the methods that consume Foo would consume IFoo's: public void AcceptsAFoo(IFoo a) Now, C# understands the relationship between SuperFoo and Foo due to the common interface and all is well. The big problem is that .NET seals lots of classes that would occasionally be nice to extend, and they don't usually implement a common interface, so API methods that take a Foo would not accept a SuperFoo and you can't add an overload. So, for all the composition fans out there....How do you get around this limitation? The only thing I can think of is to expose the internal Foo publicly, so that you can pass it on occasion, but that seems messy.

    Read the article

  • SOLID Liskov Substitution Principle

    - by Omu
    if i have something like class square : figure {} class triangle : figure {} does that mean that i should never ever use the square and triangle classes but only refer to figure ? like never do like this: var x = new square();

    Read the article

  • How to verify the Liskov substitution principle in an inheritance hierarchy?

    - by Songo
    Inspired by this answer: Liskov Substitution Principle requires that Preconditions cannot be strengthened in a subtype. Postconditions cannot be weakened in a subtype. Invariants of the supertype must be preserved in a subtype. History constraint (the "history rule"). Objects are regarded as being modifiable only through their methods (encapsulation). Since subtypes may introduce methods that are not present in the supertype, the introduction of these methods may allow state changes in the subtype that are not permissible in the supertype. The history constraint prohibits this. I was hoping if someone would post a class hierarchy that violates these 4 points and how to solve them accordingly. I'm looking for an elaborate explanation for educational purposes on how to identify each of the 4 points in the hierarchy and the best way to fix it. Note: I was hoping to post a code sample for people to work on, but the question itself is about how to identify the faulty hierarchies :)

    Read the article

  • Friendly way to override `const`-overloaded member function?

    - by xtofl
    Given a base class class A { int i; public: int& f(){ return i;} const int& f() const { return i;} }; And a sub class class ConstA : private A { public: const int& f() const { return A::f(); } }; Is there a wrist-friendly way to access the ConstA::f method on a non-const variable? ConstA ca; int i = ca.f(); // compile error: int& A::f() is not accessible since A is privately inherited int j = static_cast<const ConstA&>(ca).f(); // this works, but it hurts a little... Or is it so ugly since hiding A::f generally is a bad idea, violating the Liskov Substitution Principle: any subclass of A must at least be capable of all A's functionality? void set( A& a, int i ) { a.f() = i; } class ConstA2 : public A { private: int& f(){ return A::f(); } }; ConstA2 ca2; set( ca2, 1 ); (Note: this question popped up while thinking about this question)

    Read the article

  • Is this a violation of the Liskov Substitution Principle?

    - by Paul T Davies
    Say we have a list of Task entities, and a ProjectTask sub type. Tasks can be closed at any time, except ProjectTasks which cannot be closed once they have a status of Started. The UI should ensure the option to close a started ProjectTask is never available, but some safeguards are present in the domain: public class Task { public Status Status { get; set; } public virtual void Close() { Status = Status.Closed; } } public ProjectTask : Task { public override void Close() { if (Status == Status.Started) throw new Exception("Cannot close a started Project Task"); base.Close(); } } Now when calling Close() on a Task, there is a chance the call will fail if it is a ProjectTask with the started status, when it wouldn't if it was a base Task. But this is the business requirements. It should fail. Can this be regarded as a violation?

    Read the article

  • SOLID Thoughts

    - by GeekAgilistMercenary
    SOLID came up again in discussion.  What is SOLID?  Well, glad you asked, because I am going to elaborate on the SOLID Principles a bit. Initial Concept S Single Responsibility Principle O Open/Closed Principle L Liskov Substitution Principle I Interface Segregation Principle D Dependency Inversion/Injection Principle The Single Responsibility Principle (SRP) is stated that every object should have a single responsibility and should be entirely encapsulated by the class.  This helps keep cohesion.  Here is a short example, starting with a basic class. public class Car { decimal Gas; int Doors; int Speed; decimal RampJumpSpeed; } Now I will refactor a little bit to make it a bit more SRP friendly. public class Car { decimal Gas; int Speed; }   public class DuneBuggy : Car { decimal RampJumpSpeed; }   public class EconomyCar : Car { int Doors; } What we end up with, instead of one class, is an abstract class and two classes that have their respective methods or properties to keep the responsibilities were they need to be. The Open Closed Principle (OCP) is one of my favorites, which states simply, that you should be able to extend a classes behavior without modifying it.  There are a couple of ways one can extend a class, by inheritance, composition, or by proxy implementation.  The Liskov Substitution Principle (LSP) states that a derived class must be substitutable for their base classes. The Dependency Inversion Principle (DIP) states that one should depend on abstractions and not on concrete implementations. Finally, the Interface Segregation Principle (ISP) states that fine grain interfaces should be client specific. So hope that helps with kicking off a basic understanding of SOLID Principles.  I will be following this entry up with some new bits in the near future related to good software design and practice. Original post.

    Read the article

  • Matching the superclass's constructor's parameter list, is treating a null default value as a non-null value within a constructor a violation of LSP?

    - by Panzercrisis
    I kind of ran into this when messing around with FlashPunk, and I'm going to use it as an example. Essentially the main sprite class is pretty much class Entity. Entity's constructor has four parameters, each with a default value. One of them is graphic, whose default value is null. Entity is designed to be inherited from, with many such subclasses providing their own graphic within their own internal workings. Normally these subclasses would not have graphic in their constructor's parameter lists, but would simply pick something internally and go with it. However I was looking into possibly still adhering to the Liskov Substitution Principal. Which led me to the following example: package com.blank.graphics { import net.flashpunk.*; import net.flashpunk.graphics.Image; public class SpaceGraphic extends Entity { [Embed(source = "../../../../../../assets/spaces/blank.png")] private const BLANK_SPACE:Class; public function SpaceGraphic(x:Number = 0, y:Number = 0, graphic:Graphic = null, mask:Mask = null) { super(x, y, graphic, mask); if (!graphic) { this.graphic = new Image(BLANK_SPACE); } } } } Alright, so now there's a parameter list in the constructor that perfectly matches the one in the super class's constructor. But if the default value for graphic is used, it'll exhibit two different behaviors, depending on whether you're using the subclass or the superclass. In the superclass, there won't be a graphic, but in the subclass, it'll choose the default graphic. Is this a violation of the Liskov Substitution Principal? Does the fact that subclasses are almost intended to use different parameter lists have any bearing on this? Would minimizing the parameter list violate it in a case like this? Thanks.

    Read the article

  • Does C++ support subtyping?

    - by the_naive
    I know it might be a silly question to ask, but I didn't quite get an a absolute clear answer on this matter, so I thought I'd put it here. Does c++ support the subtyping in the sense that it fulfills Liskov's principle fully? I understand how parametric polymorphism, inclusion polymorphism(subclassing and overriding) work in c++ but I'm not entirely sure or understand if subtyping exists in the context of C++. Could you please explain?

    Read the article

  • Writing C# Code Using SOLID Principles

    - by bipinjoshi
    Most of the modern programming languages including C# support objected oriented programming. Features such as encapsulation, inheritance, overloading and polymorphism are code level features. Using these features is just one part of the story. Equally important is to apply some object oriented design principles while writing your C# code. SOLID principles is a set of five such principles--namely Single Responsibility Principle, Open/Closed Principle, Liskov Substitution Principle, Interface Segregation Principle and Dependency Inversion Principle. Applying these time proven principles make your code structured, neat and easy to maintain. This article discusses SOLID principles and also illustrates how they can be applied to your C# code.http://www.binaryintellect.net/articles/7f857089-68f5-4d76-a3b7-57b898b6f4a8.aspx 

    Read the article

  • Where does this concept of "favor composition over inheritance" come from?

    - by Mason Wheeler
    In the last few months, the mantra "favor composition over inheritance" seems to have sprung up out of nowhere and become almost some sort of meme within the programming community. And every time I see it, I'm a little bit mystified. It's like someone said "favor drills over hammers." In my experience, composition and inheritance are two different tools with different use cases, and treating them as if they were interchangeable and one was inherently superior to the other makes no sense. Also, I never see a real explanation for why inheritance is bad and composition is good, which just makes me more suspicious. Is it supposed to just be accepted on faith? Liskov substitution and polymorphism have well-known, clear-cut benefits, and IMO comprise the entire point of using object-oriented programming, and no one ever explains why they should be discarded in favor of composition. Does anyone know where this concept comes from, and what the rationale behind it is?

    Read the article

  • Code Smell: Inheritance Abuse

    - by dsimcha
    It's been generally accepted in the OO community that one should "favor composition over inheritance". On the other hand, inheritance does provide both polymorphism and a straightforward, terse way of delegating everything to a base class unless explicitly overridden and is therefore extremely convenient and useful. Delegation can often (though not always) be verbose and brittle. The most obvious and IMHO surest sign of inheritance abuse is violation of the Liskov Substitution Principle. What are some other signs that inheritance is The Wrong Tool for the Job even if it seems convenient?

    Read the article

  • Code Smell: Inheritance Abuse

    - by dsimcha
    It's been generally accepted in the OO community that one should "favor composition over inheritance". On the other hand, inheritance does provide both polymorphism and a straightforward, terse way of delegating everything to a base class unless explicitly overridden and is therefore extremely convenient and useful. Delegation can often (though not always) be verbose and brittle. The most obvious and IMHO surest sign of inheritance abuse is violation of the Liskov Substitution Principle. What are some other signs that inheritance is The Wrong Tool for the Job even if it seems convenient?

    Read the article

  • What is testable code?

    - by Michael Freidgeim
    We are improving quality of code and trying to develop more unit tests. The question that developers asked  was  "How to make code testable ?"  From http://openmymind.net/2010/8/17/Write-testable-code-even-if-you-dont-write-tests/ First and foremost, its loosely coupled, taking advantage of dependency injection (and auto-wiring), composition and interface-programming. Testable code is also readable - meaning it leverages single responsibility principle and Liskov substitution principle.A few practical suggestions are listed in http://misko.hevery.com/code-reviewers-guide/More recommendations are in http://googletesting.blogspot.com/2008/08/by-miko-hevery-so-you-decided-to.htmlIt is slightly too theoretical - " the trick is translating these abstract concepts into concrete decisions in your code."

    Read the article

  • How to attend one off lectures? [closed]

    - by Senthil Kumaran
    Many times, we come across one-off lectures from famous Computer Scientists. Last year, I came across one by Ms. Barbara Liskov, but I could not go because the University Hall was bit far. Tomorrow, there is one by Dr. Knuth! Now the problem I am facing is, "I don't know much about the material he is going to talk", so I am not sure if I should plan and I fear it will be like going for a "temple". :) What is your advise and general strategy that you have followed whenever you wanted to attend a talk or lecture wherein, it may have been worthwhile if it were an introductory tutorial, but instead you were sitting in an advanced 1 hour lecture by a famous scientist.

    Read the article

  • Papers on Software Methodology recommendation

    - by kunjaan
    Please recommend me software engineering/methodology/practices paper. So far I have enjoyed: 1968 Dijkstra : Go To Statement Considered Harmful Reason about correctness about program Nikalus Wirth : Program Development by Stepwise Refinement Not worried about program structure 1971 David Parnas : Information Distribution Aspects of Design Methodology 1972 Liskov : Design Methodology for Reliable Software Systems Extensible Language : Schuman and P Jourrand R. Balzer Structured Programming : Dahl - Hierarchical Program Structures 1971 Jim Morris Protection in Programming Languages 1973 Bill Wulf and Mary Shaw Global Variable Considered Harmful 1974 : Lisko and Zilles ADTs

    Read the article

  • Software Engineering Papers

    - by kunjaan
    Please recommend me software engineering/methodology/practices paper. So far I have enjoyed: 1968 Dijkstra : Go To Statement Considered Harmful Nikalus Wirth : Program Development by Stepwise Refinement 1971 David Parnas : Information Distribution Aspects of Design Methodology 1972 Liskov : Design Methodology for Reliable Software Systems Extensible Language : Schuman and P Jourrand R. Balzer Structured Programming : Dahl - Hierarchical Program StructuresImplementation Patterns 1971 Jim Morris Protection in Programming Languages 1973 Bill Wulf and Mary Shaw Global Variable Considered Harmful 1974 : Lisko and Zilles ADTs

    Read the article

1 2  | Next Page >