Search Results

Search found 95 results on 4 pages for 'maze'.

Page 1/4 | 1 2 3 4  | Next Page >

  • Maze not being random.

    - by Matt Habel
    Hey there, I am building a program that generates a maze so I can later translate the path to my graphical part. I have most of it working, however, every time you can just take the east and south routes, and you'll get to the end. Even if I set the width as high as 64, so the maze is 64*64, I'm able to choose those 2 options and get to the end every time. I really don't understand why it is doing that. The code is below, it's fairly easy to understand. import random width = 8 def check(x,y): """Figures out the directions that Gen can move while""" if x-1 == -1: maze[x][y][3] = 0 if x+1 == width + 1: maze[x][y][1] = 0 if y+1 == width + 1: maze[x][y][2] = 0 if y-1 == -1: maze[x][y][0] = 0 if x + 1 in range(0,width) and visited[x+1][y] == False: maze[x][y][1] = 2 if x - 1 in range(0,width) and visited[x-1][y] == False: maze[x][y][3] = 2 if y + 1 in range(0,width) and visited[x][y+1] == False: maze[x][y][2] = 2 if y - 1 in range(0,width) and visited[x][y-1] == False: maze[x][y][0] = 2 def possibleDirs(x,y): """Figures out the ways that the person can move in each square""" dirs = [] walls = maze[x][y] if walls[0] == 1: dirs.append('n') if walls[1] == 1: dirs.append('e') if walls[2] == 1: dirs.append('s') if walls[3] == 1: dirs.append('w') return dirs def Gen(x,y): """Generates the maze using a depth-first search and recursive backtracking.""" visited[x][y] = True dirs = [] check(x,y) if maze[x][y][0] == 2: dirs.append(0) if maze[x][y][1] == 2: dirs.append(1) if maze[x][y][2] == 2: dirs.append(2) if maze[x][y][3] == 2: dirs.append(3) print dirs if len(dirs): #Randonly selects a derection for the current square to move past.append(current[:]) pos = random.choice(dirs) maze[x][y][pos] = 1 if pos == 0: current[1] -= 1 maze[x][y-1][2] = 1 if pos == 1: current[0] += 1 maze[x+1][y][3] = 1 if pos == 2: current[1] += 1 maze[x][y+1][0] = 1 if pos == 3: current[0] -= 1 maze[x-1][y][1] = 1 else: #If there's nowhere to go, go back one square lastPlace = past.pop() current[0] = lastPlace[0] current[1] = lastPlace[1] #Build the initial values for the maze to be replaced later maze = [] visited = [] past = [] #Generate empty 2d list with a value for each of the xy coordinates for i in range(0,width): maze.append([]) for q in range(0, width): maze[i].append([]) for n in range(0, 4): maze[i][q].append(4) #Makes a list of falses for all the non visited places for x in range(0, width): visited.append([]) for y in range(0, width): visited[x].append(False) dirs = [] print dirs current = [0,0] #Generates the maze so every single square has been filled. I'm not sure how this works, as it is possible to only go south and east to get to the final position. while current != [width-1, width-1]: Gen(current[0], current[1]) #Getting the ways the person can move in each square for i in range(0,width): dirs.append([]) for n in range(0,width): dirs[i].append([]) dirs[i][n] = possibleDirs(i,n) print dirs print visited pos = [0,0] #The user input part of the maze while pos != [width - 1, width - 1]: dirs = [] print pos if maze[pos[0]][pos[1]][0] == 1: dirs.append('n') if maze[pos[0]][pos[1]][1] == 1: dirs.append('e') if maze[pos[0]][pos[1]][2] == 1: dirs.append('s') if maze[pos[0]][pos[1]][3] == 1: dirs.append('w') print dirs path = raw_input("What direction do you want to go: ") if path not in dirs: print "You can't go that way!" continue elif path.lower() == 'n': pos[1] -= 1 elif path.lower() == 'e': pos[0] += 1 elif path.lower() == 's': pos[1] += 1 elif path.lower() == 'w': pos[0] -= 1 print"Good job!" As you can see, I think the problem is at the point where I generate the maze, however, when I just have it go until the current point is at the end, it doesn't fill every maze and is usually just one straight path. Thanks for helping. Update: I have changed the for loop that generates the maze to a simple while loop and it seems to work much better. It seems that when the for loop ran, it didn't go recursively, however, in the while loop it's perfectly fine. However, now all the squares do not fill out.

    Read the article

  • Non-perfect maze generation algorithm

    - by Shylux
    I want to generate a maze with the following properties: The maze is non-perfect. Means it has loops and multiple ways to reach the exit. The maze should be random. The algorithm should output different mazes for different input parameters The maze doesn't have to be braided. Means dead-ends are allowed and appreciated. I just can't find the right resources on google. The closest i found was this description of the different types of algorithms: http://www.astrolog.org/labyrnth/algrithm.htm. All other algorithms were for perfect mazes. Can anyone give me a website where i can look this up or maybe an algorithm directly?

    Read the article

  • Need some help on how to replay the last game of a java maze game

    - by Marty
    Hello, I am working on creating a Java maze game for a project. The maze is displayed on the console as standard output not in an applet. I have created most of hte code I need, however I am stuck at one problem and that is I need a user to be able to replay the last game i.e redraw the maze with the users moves but without any input from the user. I am not sure on what course of action to take, i was thinking about copying each users move or the position of each move into another array, as you can see i have 2 variables which hold the position of the player, plyrX and plyrY do you think copying these values into a new array after each move would solve my problem and how would i go about this? I have updated my code, apologies about the textIO.java class not being present, not sure how to resolve that exept post a link to TextIO.java [TextIO.java][1] My code below is updated with a new array of type char to hold values from the original maze (read in from text file and displayed using unicode characters) and also to new variables c_plyrX and c_plyrY which I am thinking should hold the values of plyrX and plyrY and copy them into the new array. When I try to call the replayGame(); method from the menu the maze loads for a second then the console exits so im not sure what I am doing wrong Thanks public class MazeGame { //unicode characters that will define the maze walls, //pathways, and in game characters. final static char WALL = '\u2588'; //wall final static char PATH = '\u2591'; //pathway final static char PLAYER = '\u25EF'; //player final static char ENTRANCE = 'E'; //entrance final static char EXIT = '\u2716'; //exit //declaring member variables which will hold the maze co-ordinates //X = rows, Y = columns static int entX = 0; //entrance X co-ordinate static int entY = 1; //entrance y co-ordinate static int plyrX = 0; static int plyrY = 1; static int exitX = 24; //exit X co-ordinate static int exitY = 37; //exit Y co-ordinate //static member variables which hold maze values //used so values can be accessed from different methods static int rows; //rows variable static int cols; //columns variable static char[][] maze; //defines 2 dimensional array to hold the maze //variables that hold player movement values static char dir; //direction static int spaces; //amount of spaces user can travel //variable to hold amount of moves the user has taken; static int movesTaken = 0; //new array to hold player moves for replaying game static char[][] mazeCopy; static int c_plyrX; static int c_plyrY; /** userMenu method for displaying the user menu which will provide various options for * the user to choose such as play a maze game, get instructions, etc. */ public static void userMenu(){ TextIO.putln("Maze Game"); TextIO.putln("*********"); TextIO.putln("Choose an option."); TextIO.putln(""); TextIO.putln("1. Play the Maze Game."); TextIO.putln("2. View Instructions."); TextIO.putln("3. Replay the last game."); TextIO.putln("4. Exit the Maze Game."); TextIO.putln(""); int option; //variable for holding users option TextIO.put("Type your choice: "); option = TextIO.getlnInt(); //gets users option //switch statement for processing menu options switch(option){ case 1: playMazeGame(); case 2: instructions(); case 3: if (c_plyrX == plyrX && c_plyrY == plyrY)replayGame(); else { TextIO.putln("Option not available yet, you need to play a game first."); TextIO.putln(); userMenu(); } case 4: System.exit(0); //exits the user out of the console default: TextIO.put("Option must be 1, 2, 3 or 4"); } } //end of userMenu /**main method, will call the userMenu and get the users choice and call * the relevant method to execute the users choice. */ public static void main(String[]args){ userMenu(); //calls the userMenu method } //end of main method /**instructions method, displays instructions on how to play * the game to the user/ */ public static void instructions(){ TextIO.putln("To beat the Maze Game you have to move your character"); TextIO.putln("through the maze and reach the exit in as few moves as possible."); TextIO.putln(""); TextIO.putln("Your characer is displayed as a " + PLAYER); TextIO.putln("The maze exit is displayed as a " + EXIT); TextIO.putln("Reach the exit and you have won escaped the maze."); TextIO.putln("To control your character type the direction you want to go"); TextIO.putln("and how many spaces you want to move"); TextIO.putln("for example 'D3' will move your character"); TextIO.putln("down 3 spaces."); TextIO.putln("Remember you can't walk through walls!"); boolean insOption; //boolean variable TextIO.putln(""); TextIO.put("Do you want to play the Maze Game now? (Y or N) "); insOption = TextIO.getlnBoolean(); if (insOption == true)playMazeGame(); else userMenu(); } //end of instructions method /**playMazeGame method, calls the loadMaze method and the charMove method * to start playing the Maze Game. */ public static void playMazeGame(){ loadMaze(); plyrMoves(); } //end of playMazeGame method /**loadMaze method, loads the 39x25 maze from the MazeGame.txt text file * and inserts values from the text file into the maze array and * displays the maze on screen using the unicode block characters. * plyrX and plyrY variables are set at their staring co ordinates so that when * a game is completed and the user selects to play a new game * the player character will always be at position 01. */ public static void loadMaze(){ plyrX = 0; plyrY = 1; TextIO.readFile("MazeGame.txt"); //now reads from the external MazeGame.txt file rows = TextIO.getInt(); //gets the number of rows from text file to create X dimensions cols = TextIO.getlnInt(); //gets number of columns from text file to create Y dimensions maze = new char[rows][cols]; //creates maze array of base type char with specified dimnensions //loop to process the array and read in values from the text file. for (int i = 0; i<rows; i++){ for (int j = 0; j<cols; j++){ maze[i][j] = TextIO.getChar(); } TextIO.getln(); } //end for loop TextIO.readStandardInput(); //closes MazeGame.txt file and reads from //standard input. //loop to process the array values and display as unicode characters for (int i = 0; i<rows; i++){ for (int j = 0; j<cols; j++){ if (i == plyrX && j == plyrY){ plyrX = i; plyrY = j; TextIO.put(PLAYER); //puts the player character at player co-ords } else{ if (maze[i][j] == '0') TextIO.putf("%c",WALL); //puts wall block if (maze[i][j] == '1') TextIO.putf("%c",PATH); //puts path block if (maze[i][j] == '2') { entX = i; entY = j; TextIO.putf("%c",ENTRANCE); //puts entrance character } if (maze[i][j] == '3') { exitX = i; //holds value of exit exitY = j; //co-ordinates TextIO.putf("%c",EXIT); //puts exit character } } } TextIO.putln(); } //end for loop } //end of loadMaze method /**redrawMaze method, method for redrawing the maze after each move. * */ public static void redrawMaze(){ TextIO.readFile("MazeGame.txt"); //now reads from the external MazeGame.txt file rows = TextIO.getInt(); //gets the number of rows from text file to create X dimensions cols = TextIO.getlnInt(); //gets number of columns from text file to create Y dimensions maze = new char[rows][cols]; //creates maze array of base type char with specified dimnensions //loop to process the array and read in values from the text file. for (int i = 0; i<rows; i++){ for (int j = 0; j<cols; j++){ maze[i][j] = TextIO.getChar(); } TextIO.getln(); } //end for loop TextIO.readStandardInput(); //closes MazeGame.txt file and reads from //standard input. //loop to process the array values and display as unicode characters for (int i = 0; i<rows; i++){ for (int j = 0; j<cols; j++){ if (i == plyrX && j == plyrY){ plyrX = i; plyrY = j; TextIO.put(PLAYER); //puts the player character at player co-ords } else{ if (maze[i][j] == '0') TextIO.putf("%c",WALL); //puts wall block if (maze[i][j] == '1') TextIO.putf("%c",PATH); //puts path block if (maze[i][j] == '2') { entX = i; entY = j; TextIO.putf("%c",ENTRANCE); //puts entrance character } if (maze[i][j] == '3') { exitX = i; //holds value of exit exitY = j; //co-ordinates TextIO.putf("%c",EXIT); //puts exit character } } } TextIO.putln(); } //end for loop } //end redrawMaze method /**replay game method * */ public static void replayGame(){ c_plyrX = plyrX; c_plyrY = plyrY; TextIO.readFile("MazeGame.txt"); //now reads from the external MazeGame.txt file rows = TextIO.getInt(); //gets the number of rows from text file to create X dimensions cols = TextIO.getlnInt(); //gets number of columns from text file to create Y dimensions mazeCopy = new char[rows][cols]; //creates maze array of base type char with specified dimnensions //loop to process the array and read in values from the text file. for (int i = 0; i<rows; i++){ for (int j = 0; j<cols; j++){ mazeCopy[i][j] = TextIO.getChar(); } TextIO.getln(); } //end for loop TextIO.readStandardInput(); //closes MazeGame.txt file and reads from //standard input. //loop to process the array values and display as unicode characters for (int i = 0; i<rows; i++){ for (int j = 0; j<cols; j++){ if (i == c_plyrX && j == c_plyrY){ c_plyrX = i; c_plyrY = j; TextIO.put(PLAYER); //puts the player character at player co-ords } else{ if (mazeCopy[i][j] == '0') TextIO.putf("%c",WALL); //puts wall block if (mazeCopy[i][j] == '1') TextIO.putf("%c",PATH); //puts path block if (mazeCopy[i][j] == '2') { entX = i; entY = j; TextIO.putf("%c",ENTRANCE); //puts entrance character } if (mazeCopy[i][j] == '3') { exitX = i; //holds value of exit exitY = j; //co-ordinates TextIO.putf("%c",EXIT); //puts exit character } } } TextIO.putln(); } //end for loop } //end replayGame method /**plyrMoves method, method for moving the players character * around the maze. */ public static void plyrMoves(){ int nplyrX = plyrX; int nplyrY = plyrY; int pMoves; direction(); //UP if (dir == 'U' || dir == 'u'){ nplyrX = plyrX; nplyrY = plyrY; for(pMoves = 0; pMoves <= spaces; pMoves++){ if (maze[nplyrX][nplyrY] == '0'){ TextIO.putln("Invalid move, try again."); } else if (pMoves != spaces){ nplyrX =plyrX + 1; } else { plyrX = plyrX-spaces; c_plyrX = plyrX; movesTaken++; } } }//end UP if //DOWN if (dir == 'D' || dir == 'd'){ nplyrX = plyrX; nplyrY = plyrY; for (pMoves = 0; pMoves <= spaces; pMoves ++){ if (maze[nplyrX][nplyrY] == '0'){ TextIO.putln("Invalid move, try again"); } else if (pMoves != spaces){ nplyrX = plyrX+1; } else{ plyrX = plyrX+spaces; c_plyrX = plyrX; movesTaken++; } } } //end DOWN if //LEFT if (dir == 'L' || dir =='l'){ nplyrX = plyrX; nplyrY = plyrY; for (pMoves = 0; pMoves <= spaces; pMoves++){ if (maze[nplyrX][nplyrY] == '0'){ TextIO.putln("Invalid move, try again"); } else if (pMoves != spaces){ nplyrY = plyrY + 1; } else{ plyrY = plyrY-spaces; c_plyrY = plyrY; movesTaken++; } } } //end LEFT if //RIGHT if (dir == 'R' || dir == 'r'){ nplyrX = plyrX; nplyrY = plyrY; for (pMoves = 0; pMoves <= spaces; pMoves++){ if (maze[nplyrX][nplyrY] == '0'){ TextIO.putln("Invalid move, try again."); } else if (pMoves != spaces){ nplyrY += 1; } else{ plyrY = plyrY+spaces; c_plyrY = plyrY; movesTaken++; } } } //end RIGHT if //prints message if player escapes from the maze. if (maze[plyrX][plyrY] == '3'){ TextIO.putln("****Congratulations****"); TextIO.putln(); TextIO.putln("You have escaped from the maze."); TextIO.putln(); userMenu(); } else{ movesTaken++; redrawMaze(); plyrMoves(); } } //end of plyrMoves method /**direction, method * */ public static char direction(){ TextIO.putln("Enter the direction you wish to move in and the distance"); TextIO.putln("i.e D3 = move down 3 spaces"); TextIO.putln("U - Up, D - Down, L - Left, R - Right: "); dir = TextIO.getChar(); if (dir =='U' || dir == 'D' || dir == 'L' || dir == 'R' || dir == 'u' || dir == 'd' || dir == 'l' || dir == 'r'){ spacesMoved(); } else{ loadMaze(); TextIO.putln("Invalid direction!"); TextIO.put("Direction must be one of U, D, L or R"); direction(); } return dir; //returns the value of dir (direction) } //end direction method /**spaces method, gets the amount of spaces the user wants to move * */ public static int spacesMoved(){ TextIO.putln(" "); spaces = TextIO.getlnInt(); if (spaces <= 0){ loadMaze(); TextIO.put("Invalid amount of spaces, try again"); spacesMoved(); } return spaces; } //end spacesMoved method } //end of MazeGame class

    Read the article

  • Confusing Java syntax...

    - by posfan12
    I'm trying to convert the following code (from Wikipedia) from Java to JavaScript: /* * 3 June 2003, [[:en:User:Cyp]]: * Maze, generated by my algorithm * 24 October 2006, [[:en:User:quin]]: * Source edited for clarity * 25 January 2009, [[:en:User:DebateG]]: * Source edited again for clarity and reusability * 1 June 2009, [[:en:User:Nandhp]]: * Source edited to produce SVG file when run from the command-line * * This program was originally written by [[:en:User:Cyp]], who * attached it to the image description page for an image generated by * it on en.wikipedia. The image was licensed under CC-BY-SA-3.0/GFDL. */ import java.awt.*; import java.applet.*; import java.util.Random; /* Define the bit masks */ class Constants { public static final int WALL_ABOVE = 1; public static final int WALL_BELOW = 2; public static final int WALL_LEFT = 4; public static final int WALL_RIGHT = 8; public static final int QUEUED = 16; public static final int IN_MAZE = 32; } public class Maze extends java.applet.Applet { /* The width and height (in cells) of the maze */ private int width; private int height; private int maze[][]; private static final Random rnd = new Random(); /* The width in pixels of each cell */ private int cell_width; /* Construct a Maze with the default width, height, and cell_width */ public Maze() { this(20,20,10); } /* Construct a Maze with specified width, height, and cell_width */ public Maze(int width, int height, int cell_width) { this.width = width; this.height = height; this.cell_width = cell_width; } /* Initialization method that will be called when the program is * run from the command-line. Maze will be written as SVG file. */ public static void main(String[] args) { Maze m = new Maze(); m.createMaze(); m.printSVG(); } /* Initialization method that will be called when the program is * run as an applet. Maze will be displayed on-screen. */ public void init() { createMaze(); } /* The maze generation algorithm. */ private void createMaze(){ int x, y, n, d; int dx[] = { 0, 0, -1, 1 }; int dy[] = { -1, 1, 0, 0 }; int todo[] = new int[height * width], todonum = 0; /* We want to create a maze on a grid. */ maze = new int[width][height]; /* We start with a grid full of walls. */ for (x = 0; x < width; ++x) { for (y = 0; y < height; ++y) { if (x == 0 || x == width - 1 || y == 0 || y == height - 1) { maze[x][y] = Constants.IN_MAZE; } else { maze[x][y] = 63; } } } /* Select any square of the grid, to start with. */ x = 1 + rnd.nextInt (width - 2); y = 1 + rnd.nextInt (height - 2); /* Mark this square as connected to the maze. */ maze[x][y] &= ~48; /* Remember the surrounding squares, as we will */ for (d = 0; d < 4; ++d) { if ((maze[][d][][d] & Constants.QUEUED) != 0) { /* want to connect them to the maze. */ todo[todonum++] = ((x + dx[d]) << Constants.QUEUED) | (y + dy[d]); maze[][d][][d] &= ~Constants.QUEUED; } } /* We won't be finished until all is connected. */ while (todonum > 0) { /* We select one of the squares next to the maze. */ n = rnd.nextInt (todonum); x = todo[n] >> 16; /* the top 2 bytes of the data */ y = todo[n] & 65535; /* the bottom 2 bytes of the data */ /* We will connect it, so remove it from the queue. */ todo[n] = todo[--todonum]; /* Select a direction, which leads to the maze. */ do { d = rnd.nextInt (4); } while ((maze[][d][][d] & Constants.IN_MAZE) != 0); /* Connect this square to the maze. */ maze[x][y] &= ~((1 << d) | Constants.IN_MAZE); maze[][d][][d] &= ~(1 << (d ^ 1)); /* Remember the surrounding squares, which aren't */ for (d = 0; d < 4; ++d) { if ((maze[][d][][d] & Constants.QUEUED) != 0) { /* connected to the maze, and aren't yet queued to be. */ todo[todonum++] = ((x + dx[d]) << Constants.QUEUED) | (y + dy[d]); maze[][d][][d] &= ~Constants.QUEUED; } } /* Repeat until finished. */ } /* Add an entrance and exit. */ maze[1][1] &= ~Constants.WALL_ABOVE; maze[width - 2][height - 2] &= ~Constants.WALL_BELOW; } /* Called by the applet infrastructure to display the maze on-screen. */ public void paint(Graphics g) { drawMaze(g); } /* Called to write the maze to an SVG file. */ public void printSVG() { System.out.format("<svg width=\"%d\" height=\"%d\" version=\"1.1\"" + " xmlns=\"http://www.w3.org/2000/svg\">\n", width*cell_width, height*cell_width); System.out.println(" <g stroke=\"black\" stroke-width=\"1\"" + " stroke-linecap=\"round\">"); drawMaze(null); System.out.println(" </g>\n</svg>"); } /* Main maze-drawing loop. */ public void drawMaze(Graphics g) { int x, y; for (x = 1; x < width - 1; ++x) { for (y = 1; y < height - 1; ++y) { if ((maze[x][y] & Constants.WALL_ABOVE) != 0) drawLine( x * cell_width, y * cell_width, (x + 1) * cell_width, y * cell_width, g); if ((maze[x][y] & Constants.WALL_BELOW) != 0) drawLine( x * cell_width, (y + 1) * cell_width, (x + 1) * cell_width, (y + 1) * cell_width, g); if ((maze[x][y] & Constants.WALL_LEFT) != 0) drawLine( x * cell_width, y * cell_width, x * cell_width, (y + 1) * cell_width, g); if ((maze[x][y] & Constants.WALL_RIGHT) != 0) drawLine((x + 1) * cell_width, y * cell_width, (x + 1) * cell_width, (y + 1) * cell_width, g); } } } /* Draw a line, either in the SVG file or on the screen. */ public void drawLine(int x1, int y1, int x2, int y2, Graphics g) { if ( g != null ) g.drawLine(x1, y1, x2, y2); else System.out.format(" <line x1=\"%d\" y1=\"%d\"" + " x2=\"%d\" y2=\"%d\" />\n", x1, y1, x2, y2); } } Anyway, I was chugging along fairly quickly when I came to a bit that I just don't understand: /* Remember the surrounding squares, as we will */ for (var d = 0; d < 4; ++d) { if ((maze[][d][][d] & Constants.QUEUED) != 0) { /* want to connect them to the maze. */ todo[todonum++] = ((x + dx[d]) << Constants.QUEUED) | (y + dy[d]); maze[][d][][d] &= ~Constants.QUEUED; } } What I don't get is why there are four sets of brackets following the "maze" parameter instead of just two, since "maze" is a two dimensional array, not a four dimensional array. I'm sure there's a good reason for this. Problem is, I just don't get it. Thanks!

    Read the article

  • Recursive Maze in Java

    - by Api
    I have written a short Java code for solving a simple maze problem to go from S to G. I do not understand where the problem is going wrong. import java.util.Scanner; public class tester { static char [][] grid={ {'.','.'}, {'.','.'}, {'S','G'}, }; static int a=2; static int b=2; static boolean findpath(int x, int y) { if((x > grid.length-1) || (y > grid[0].length-1) || (x < 0 || y < 0)) { return false; } else if(x==a && y==b){ return true; } else if (findpath(x,y-1) == true){ return true; } else if (findpath(x+1,y) == true){ return true; } else if (findpath(x,y+1) == true) { return true; } else if (findpath(x-1,y) == true){ return true; } return false; } public static void main(String[] args){ boolean result=findpath(2,0); System.out.print(result); } } I am giving the starting position directly and goal is defined in a & b. Do help.

    Read the article

  • Rendering a random generated maze in WinForms.NET

    - by Claus Jørgensen
    Hi I'm trying to create a maze-generator, and for this I have implemented the Randomized Prim's Algorithm in C#. However, the result of the generation is invalid. I can't figure out if it's my rendering, or the implementation that's invalid. So for starters, I'd like to have someone take a look at the implementation: maze is a matrix of cells. var cell = maze[0, 0]; cell.Connected = true; var walls = new HashSet<MazeWall>(cell.Walls); while (walls.Count > 0) { var randomWall = walls.GetRandom(); var randomCell = randomWall.A.Connected ? randomWall.B : randomWall.A; if (!randomCell.Connected) { randomWall.IsPassage = true; randomCell.Connected = true; foreach (var wall in randomCell.Walls) walls.Add(wall); } walls.Remove(randomWall); } Here's a example on the rendered result: Edit Ok, lets have a look at the rendering part then: private void MazePanel_Paint(object sender, PaintEventArgs e) { int size = 20; int cellSize = 10; MazeCell[,] maze = RandomizedPrimsGenerator.Generate(size); mazePanel.Size = new Size( size * cellSize + 1, size * cellSize + 1 ); e.Graphics.DrawRectangle(Pens.Blue, 0, 0, size * cellSize, size * cellSize ); for (int y = 0; y < size; y++) for (int x = 0; x < size; x++) { foreach(var wall in maze[x, y].Walls.Where(w => !w.IsPassage)) { if (wall.Direction == MazeWallOrientation.Horisontal) { e.Graphics.DrawLine(Pens.Blue, x * cellSize, y * cellSize, x * cellSize + cellSize, y * cellSize ); } else { e.Graphics.DrawLine(Pens.Blue, x * cellSize, y * cellSize, x * cellSize, y * cellSize + cellSize ); } } } } And I guess, to understand this we need to see the MazeCell and MazeWall class: namespace MazeGenerator.Maze { class MazeCell { public int Column { get; set; } public int Row { get; set; } public bool Connected { get; set; } private List<MazeWall> walls = new List<MazeWall>(); public List<MazeWall> Walls { get { return walls; } set { walls = value; } } public MazeCell() { this.Connected = false; } public void AddWall(MazeCell b) { walls.Add(new MazeWall(this, b)); } } enum MazeWallOrientation { Horisontal, Vertical, Undefined } class MazeWall : IEquatable<MazeWall> { public IEnumerable<MazeCell> Cells { get { yield return CellA; yield return CellB; } } public MazeCell CellA { get; set; } public MazeCell CellB { get; set; } public bool IsPassage { get; set; } public MazeWallOrientation Direction { get { if (CellA.Column == CellB.Column) { return MazeWallOrientation.Horisontal; } else if (CellA.Row == CellB.Row) { return MazeWallOrientation.Vertical; } else { return MazeWallOrientation.Undefined; } } } public MazeWall(MazeCell a, MazeCell b) { this.CellA = a; this.CellB = b; a.Walls.Add(this); b.Walls.Add(this); IsPassage = false; } #region IEquatable<MazeWall> Members public bool Equals(MazeWall other) { return (this.CellA == other.CellA) && (this.CellB == other.CellB); } #endregion } }

    Read the article

  • Maze not generating properly. Out of bounds exception. need quick fix

    - by Dan Joseph Porcioncula
    My maze generator seems to have a problem. I am trying to generate something like the maze from http://mazeworks.com/mazegen/mazetut/index.htm . My program displays this http://a1.sphotos.ak.fbcdn.net/hphotos-ak-snc7/s320x320/374060_426350204045347_100000111130260_1880768_1572427285_n.jpg and the error Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: -1 at Grid.genRand(Grid.java:73) at Grid.main(Grid.java:35) How do I fix my generator program? import java.awt.*; import java.awt.Color; import java.awt.Component; import java.awt.Graphics; import javax.swing.*; import java.util.ArrayList; public class Grid extends Canvas { Cell[][] maze; int size; int pathSize; double width, height; ArrayList<int[]> coordinates = new ArrayList<int[]>(); public Grid(int size, int h, int w) { this.size = size; maze = new Cell[size][size]; for(int i = 0; i<size; i++){ for(int a =0; a<size; a++){ maze[i][a] = new Cell(); } } setPreferredSize(new Dimension(h, w)); } public static void main(String[] args) { JFrame y = new JFrame(); y.setLayout(new BorderLayout()); Grid f = new Grid(25, 400, 400); y.add(f, BorderLayout.CENTER); y.setSize(450, 450); y.setVisible(true); y.setDefaultCloseOperation(y.EXIT_ON_CLOSE); f.genRand(); f.repaint(); } public void push(int[] xy) { coordinates.add(xy); int i = coordinates.size(); coordinates.ensureCapacity(i++); } public int[] pop() { int[] x = coordinates.get((coordinates.size())-1); coordinates.remove((coordinates.size())-1); return x; } public int[] top() { return coordinates.get((coordinates.size())-1); } public void genRand(){ // create a CellStack (LIFO) to hold a list of cell locations [x] // set TotalCells = number of cells in grid int TotalCells = size*size; // choose a cell at random and call it CurrentCell int m = randomInt(size); int n = randomInt(size); Cell curCel = maze[m][n]; // set VisitedCells = 1 int visCel = 1,d=0; int[] q; int h,o = 0,p = 0; // while VisitedCells < TotalCells while( visCel < TotalCells){ // find all neighbors of CurrentCell with all walls intact if(maze[m-1][n].countWalls() == 4){d++;} if(maze[m+1][n].countWalls() == 4){d++;} if(maze[m][n-1].countWalls() == 4){d++;} if(maze[m][n+1].countWalls() == 4){d++;} // if one or more found if(d!=0){ Point[] ls = new Point[4]; ls[0] = new Point(m-1,n); ls[1] = new Point(m+1,n); ls[2] = new Point(m,n-1); ls[3] = new Point(m,n+1); // knock down the wall between it and CurrentCell h = randomInt(3); switch(h){ case 0: o = (int)(ls[0].getX()); p = (int)(ls[0].getY()); curCel.destroyWall(2); maze[o][p].destroyWall(1); break; case 1: o = (int)(ls[1].getX()); p = (int)(ls[1].getY()); curCel.destroyWall(1); maze[o][p].destroyWall(2); break; case 2: o = (int)(ls[2].getX()); p = (int)(ls[2].getY()); curCel.destroyWall(3); maze[o][p].destroyWall(0); break; case 3: o = (int)(ls[3].getX()); p = (int)(ls[3].getY()); curCel.destroyWall(0); maze[o][p].destroyWall(3); break; } // push CurrentCell location on the CellStack push(new int[] {m,n}); // make the new cell CurrentCell m = o; n = p; curCel = maze[m][n]; // add 1 to VisitedCells visCel++; } // else else{ // pop the most recent cell entry off the CellStack q = pop(); m = q[0]; n = q[1]; curCel = maze[m][n]; // make it CurrentCell // endIf } // endWhile } } public int randomInt(int s) { return (int)(s* Math.random());} public void paint(Graphics g) { int k, j; width = getSize().width; height = getSize().height; double htOfRow = height / (size); double wdOfRow = width / (size); //checks verticals - destroys east border of cell for (k = 0; k < size; k++) { for (j = 0; j < size; j++) { if(maze[k][j].checkWall(2)){ g.drawLine((int) (k * wdOfRow), (int) (j * htOfRow), (int) (k * wdOfRow), (int) ((j+1) * htOfRow)); }} } //checks horizontal - destroys north border of cell for (k = 0; k < size; k++) { for (j = 0; j < size; j++) { if(maze[k][j].checkWall(3)){ g.drawLine((int) (k * wdOfRow), (int) (j * htOfRow), (int) ((k+1) * wdOfRow), (int) (j * htOfRow)); }} } } } class Cell { private final static int NORTH = 0; private final static int EAST = 1; private final static int WEST = 2; private final static int SOUTH = 3; private final static int NO = 4; private final static int START = 1; private final static int END = 2; boolean[] wall = new boolean[4]; boolean[] border = new boolean[4]; boolean[] backtrack = new boolean[4]; boolean[] solution = new boolean[4]; private boolean isVisited = false; private int Key = 0; public Cell(){ for(int i=0;i<4;i++){wall[i] = true;} } public int countWalls(){ int i, k =0; for(i=0; i<4; i++) { if (wall[i] == true) {k++;} } return k;} public boolean checkWall(int x){ switch(x){ case 0: return wall[0]; case 1: return wall[1]; case 2: return wall[2]; case 3: return wall[3]; } return true; } public void destroyWall(int x){ switch(x){ case 0: wall[0] = false; break; case 1: wall[1] = false; break; case 2: wall[2] = false; break; case 3: wall[3] = false; break; } } public void setStart(int i){Key = i;} public int getKey(){return Key;} public boolean checkVisit(){return isVisited;} public void visitCell(){isVisited = true;} }

    Read the article

  • Algorithm to get through a maze

    - by Sam
    Hello, We are currently programming a game (its a pretty unknown language: modula 2), And the problem we encountered is the following: we have a maze (not a perfect maze) in a 17 x 12 grid. The computer has to generate a way from the starting point (9, 12) to the end point (9, 1). I found some algorithms but they dont work when the robot has to go back: xxxxx x => x x xxx or: xxxxx x xxxxxx x x x x x xxxxxx x => x xxxxxxxxx I found a solution for the first example type but then the second type couldn't be solved and the solution I made up for the second type would cause the robot to get stuck in the first type of situation. It's a lot of code so i'll give the idea: WHILE (end destination not reached) DO { try to go right, if nothing blocks you: go right if you encounter a block, try up until you can go right, if you cant go up anymore try going down until you can go right, (starting from the place you first were blocked), if you cant go down anymore, try one step left and fill the spaces you tested with blocks. } This works for the first type of problem ... not for the second one. Now it could be that i started wrong so i am open for better algorithms or solutions specificaly to how i could improve my algorithm. Thanks a lot!!

    Read the article

  • Maze Navigation in Player Stage with Roomba

    - by Scott
    Here is my code: /* Scott Landau Robot Lab Assignment 1 */ // Standard Java Libs import java.io.*; // Player/Stage Libs import javaclient2.*; import javaclient2.structures.*; import javaclient2.structures.sonar.*; // Begin public class SpinningRobot { public static Position2DInterface pos = null; public static LaserInterface laser = null; public static void main(String[] args) { PlayerClient robot = new PlayerClient("localhost", 6665); laser = robot.requestInterfaceLaser(0, PlayerConstants.PLAYER_OPEN_MODE); pos = robot.requestInterfacePosition2D(0,PlayerConstants.PLAYER_OPEN_MODE); robot.runThreaded (-1, -1); pos.setSpeed(0.5f, -0.25f); // end pos float x, y; x = 46.0f; y = -46.0f; boolean done = false; while( !done ){ if(laser.isDataReady()) { float[] laser_data = laser.getData().getRanges(); System.out.println("== IR Sensor =="); System.out.println("Left Wall Distance: "+laser_data[360]); System.out.println("Right Wall Distance: " +laser_data[0]); // if laser doesn't reach left wall, move to detect it // so we can guide using left wall if ( laser_data[360] < 0.6f ) { while ( laser_data[360] < 0.6f ) { pos.setSpeed(0.5f, -0.5f); } } else if ( laser_data[0] < 0.6f ) { while(laser_data[0<0.6f) { pos.setSpeed(0.5f, 0.5f); } } pos.setSpeed(0.5f, -0.25f); // end pos? done = ( (pos.getX() == x) && (pos.getY() == y) ); } } } } // End I was trying to have the Roomba go continuously at a slight right curve, quickly turning away from each wall it came to close to if it recognized it with it's laser. I can only use laser_data[360] and laser_data[0] for this one robot. I think this would eventually navigate the maze. However, I am using the Player Stage platform, and Stage freezes when the Roomba comes close to a wall using this code, I have no idea why. Also, if you can think of a better maze navigation algorithm, please let me know. Thank you!

    Read the article

  • Creating a Maze using Java

    - by user356184
    Im using Java to create a maze of specified "rows" and "columns" over each other to look like a grid. I plan to use a depth-first recursive method to "open the doors" between the rooms (the box created by the rows and columns). I need help writing a openDoor method that will break the link between rooms.

    Read the article

  • Ensure house map maze with lifts can be solved?

    - by Philipp Lenssen
    In my game we see the floors of a house from the side, and the hero can take lifts -- a lift either goes up (to the next lift upwards), or down (to the next lift downwards), depending on the arrow as shown, and there's always a pair of exactly two lifts connected. That's the only way the hero can move vertically, though he can freely move horizontally. The house map is a randomized 11x5 grid with different items, and unpassable walls to the far left, far right, and sometimes in one of the two middle positions: My question: How can I ensure the map is always randomized yet always solvable and that the hero, starting at the left side of the bottom floor, can always leave it via any upwards-pointing lift at the top floor? For what it's worth I'm using the Lua language for development. Thanks so much!

    Read the article

  • Code Golf: Rotating Maze

    - by trinithis
    Code Golf: Rotating Maze Make a program that takes in a file consisting of a maze. The maze has walls given by '#'. The maze must include a single ball, given by a 'o' and any number of holes given by a '@'. The maze file can either be entered via command line or read in as a line through standard input. Please specify which in your solution. Your program then does the following: 1: If the ball is not directly above a wall, drop it down to the nearest wall. 2: If the ball passes through a hole during step 1, remove the ball. 3: Display the maze. 4: If there is no ball in the maze, exit. 5: Read a line from the standard input. Given a 1, rotate the maze counterclockwise. Given a 2, rotate the maze clockwise. Rotations are done by 90 degrees. It is up to you to decide if extraneous whitespace is allowed. If the user enters other inputs, repeat this step. 6: Goto step 1. You may assume all input mazes are closed. Note, a hole effectively acts as a wall in this regard. You may assume all input mazes have no extraneous whitespace. The shortest source code by character count wins. Example mazes: ###### #o @# ###### ########### #o # # ####### # ###@ # ######### ########################### # # # # @ # # # # ## # # ####o#### # # # # # # ######### # @ ######################

    Read the article

  • Pre game loading time vs. in game loading time

    - by Keeper
    I'm developing a game in which a random maze is included. There are some AI creatures, lurking the maze. And I want them to go in some path according to the mazes shape. Now there are two possibilities for me to implement that, the first way (which I used) is by calculating several wanted lurking paths once the maze is created. The second, is by calculating a path once needed to be calculated, when a creature starts lurking it. My main concern is loading times. If I calculate many paths at the creating of the maze, the pre loading time is a bit long, so I thought about calculating them when needed. At the moment the game is not 'heavy' so calculating paths in mid game is not noticeable, but I'm afraid it will once it will get more complicated. Any suggestions, comments, opinions, will be of help. Edit: As for now, let p be the number of pre-calculated paths, a creatures has the probability of 1/p to take a new path (which means a path calculation) instead of an existing one. A creature does not start its patrol until the path is fully calculated of course, so no need to worry about him getting killed in the process.

    Read the article

  • accessing values in two dimensional arrays

    - by BrainLikeADullPencil
    In some code I'm trying to learn from, the Maze string below is turned into an array (code not shown for that) and saved in the instance variable @maze. The starting point of the Maze is represented by the letter 'A' in that Maze, which can be accessed at @maze[1][13]---row 1, column 13. However, the code I'm looking at uses @maze[1][13,1] to get the A, which you can see returns the same result in my console. If I do @maze[1][13,2], it returns the letter "A " with two blank spaces next to it, and so on. [13,3] returns "A " with three blank spaces. Does the 2 in [13,2] mean, "return two values starting at [1][13]? If so, why? Is this some feature of arrays or two dimensional arrays that I don't get? [20] pry(#<Maze>):1> @maze[1][13] => "A" [17] pry(#<Maze>):1> @maze[1][13,1] => "A" [18] pry(#<Maze>):1> @maze[1][13,2] => "A " [19] pry(#<Maze>):1> @maze[1][13,3] => "A " Maze String MAZE1 = %{##################################### # # # #A # # # # # # # # # ####### # ### # ####### # # # # # # # # # # # ##### # ################# # ####### # # # # # # # # # ##### ##### ### ### # ### # # # # # # # # # # # # B# # # # # # # # ##### ##### # # ### # # ####### # # # # # # # # # # # # # # ### ### # # # # ##### # # # ##### # # # # # # # # #####################################}

    Read the article

  • Solve a maze using multicores?

    - by acidzombie24
    This question is messy, i dont need a working solution, i need some psuedo code. How would i solve this maze? This is a homework question. I have to get from point green to red. At every fork i need to 'spawn a thread' and go that direction. I need to figure out how to get to red but i am unsure how to avoid paths i already have taken (finishing with any path is ok, i am just not allowed to go in circles). Heres an example of my problem, i start by moving down and i see a fork so one goes right and one goes down (or this thread can take it, it doesnt matter). Now lets ignore the rest of the forks and say the one going right hits the wall, goes down, hits the wall and goes left, then goes up. The other thread goes down, hits the wall then goes all the way right. The bottom path has been taken twice, by starting at different sides. How do i mark this path has been taken? Do i need a lock? Is this the only way? Is there a lockless solution? Implementation wise i was thinking i could have the maze something like this. I dont like the solution because there is a LOT of locking (assuming i lock before each read and write of the haveTraverse member). I dont need to use the MazeSegment class below, i just wrote it up as an example. I am allowed to construct the maze however i want. I was thinking maybe the solution requires no connecting paths and thats hassling me. Maybe i could split the map up instead of using the format below (which is easy to read and understand). But if i knew how to split it up i would know how to walk it thus the problem. How do i walk this maze efficiently? The only hint i receive was dont try to conserve memory by reusing it, make copies. However that was related to a problem with ordering a list and i dont think the hint was a hint for this. class MazeSegment { enum Direction { up, down, left, right} List<Pair<Direction, MazeSegment*>> ConnectingPaths; int line_length; bool haveTraverse; } MazeSegment root; class MazeSegment { enum Direction { up, down, left, right} List<Pair<Direction, MazeSegment*>> ConnectingPaths; bool haveTraverse; } void WalkPath(MazeSegment segment) { if(segment.haveTraverse) return; segment.haveTraverse = true; foreach(var v in segment) { if(v.haveTraverse == false) spawn_thread(v); } } WalkPath(root);

    Read the article

  • Top Down bounds of vision

    - by Rorrik
    Obviously in a first person view point the player sees only what's in front of them (with the exception of radars and rearview mirrors, etc). My game has a top down perspective, but I still want to limit what the character sees based on their facing. I've already worked out having objects obstruct vision, but there are two other factors that I worry would be disorienting and want to do right. I want the player to have reduced peripheral vision and very little view behind them. The assumption is he can turn his head and so see fairly well out to the sides, but hardly at all behind without turning the whole body. How do I make it clear you are not seeing behind you? I want the map to turn so the player is always facing up. Part of the game is to experience kind of a maze and the player should be able to lose track of North. How can I turn the map rather than the player avatar without causing confusion?

    Read the article

  • How to draw the "trail" in a maze solving application

    - by snow-spur
    Hello i have designed a maze and i want to draw a path between the cells as the 'person' moves from one cell to the next. So each time i move the cell a line is drawn Also i am using the graphics module The graphics module is an object oriented library Im importing from graphics import* from maze import* my circle which is my cell center = Point(15, 15) c = Circle(center, 12) c.setFill('blue') c.setOutline('yellow') c.draw(win) p1 = Point(c.getCenter().getX(), c.getCenter().getY()) this is my loop if mazez.blockedCount(cloc)> 2: mazez.addDecoration(cloc, "grey") mazez[cloc].deadend = True c.move(-25, 0) p2 = Point(getX(), getY()) line = graphics.Line(p1, p2) cloc.col = cloc.col - 1 Now it says getX not defined every time i press a key is this because of p2???

    Read the article

  • finding a solution to a giving maze txt.file

    - by alberto
    how can i fix this program, the problem is when it print out the coordinate it give me a 7 for the start and finish, i would appreciated you help, thanks start = (len(data)) finish = (len(data)) pos= [] for i in range(len(pos)): for j in range(len(pos[i])): if pos[i][j] == "S": start=(i,j) elif pos[i][j] == "F": finish=(i,j) print "S found in",start, print "\nF found in",finish,"\n"

    Read the article

  • Need help with fixing Genetic Algorithm that's not evolving correctly

    - by EnderMB
    I am working on a maze solving application that uses a Genetic Algorithm to evolve a set of genes (within Individuals) to evolve a Population of Individuals that power an Agent through a maze. The majority of the code used appears to be working fine but when the code runs it's not selecting the best Individual's to be in the new Population correctly. When I run the application it outputs the following: Total Fitness: 380.0 - Best Fitness: 11.0 Total Fitness: 406.0 - Best Fitness: 15.0 Total Fitness: 344.0 - Best Fitness: 12.0 Total Fitness: 373.0 - Best Fitness: 11.0 Total Fitness: 415.0 - Best Fitness: 12.0 Total Fitness: 359.0 - Best Fitness: 11.0 Total Fitness: 436.0 - Best Fitness: 13.0 Total Fitness: 390.0 - Best Fitness: 12.0 Total Fitness: 379.0 - Best Fitness: 15.0 Total Fitness: 370.0 - Best Fitness: 11.0 Total Fitness: 361.0 - Best Fitness: 11.0 Total Fitness: 413.0 - Best Fitness: 16.0 As you can clearly see the fitnesses are not improving and neither are the best fitnesses. The main code responsible for this problem is here, and I believe the problem to be within the main method, most likely where the selection methods are called: package GeneticAlgorithm; import GeneticAlgorithm.Individual.Action; import Robot.Robot.Direction; import Maze.Maze; import Robot.Robot; import java.util.ArrayList; import java.util.Random; public class RunGA { protected static ArrayList tmp1, tmp2 = new ArrayList(); // Implementation of Elitism protected static int ELITISM_K = 5; // Population size protected static int POPULATION_SIZE = 50 + ELITISM_K; // Max number of Iterations protected static int MAX_ITERATIONS = 200; // Probability of Mutation protected static double MUTATION_PROB = 0.05; // Probability of Crossover protected static double CROSSOVER_PROB = 0.7; // Instantiate Random object private static Random rand = new Random(); // Instantiate Population of Individuals private Individual[] startPopulation; // Total Fitness of Population private double totalFitness; Robot robot = new Robot(); Maze maze; public void setElitism(int result) { ELITISM_K = result; } public void setPopSize(int result) { POPULATION_SIZE = result + ELITISM_K; } public void setMaxIt(int result) { MAX_ITERATIONS = result; } public void setMutProb(double result) { MUTATION_PROB = result; } public void setCrossoverProb(double result) { CROSSOVER_PROB = result; } /** * Constructor for Population */ public RunGA(Maze maze) { // Create a population of population plus elitism startPopulation = new Individual[POPULATION_SIZE]; // For every individual in population fill with x genes from 0 to 1 for (int i = 0; i < POPULATION_SIZE; i++) { startPopulation[i] = new Individual(); startPopulation[i].randGenes(); } // Evaluate the current population's fitness this.evaluate(maze, startPopulation); } /** * Set Population * @param newPop */ public void setPopulation(Individual[] newPop) { System.arraycopy(newPop, 0, this.startPopulation, 0, POPULATION_SIZE); } /** * Get Population * @return */ public Individual[] getPopulation() { return this.startPopulation; } /** * Evaluate fitness * @return */ public double evaluate(Maze maze, Individual[] newPop) { this.totalFitness = 0.0; ArrayList<Double> fitnesses = new ArrayList<Double>(); for (int i = 0; i < POPULATION_SIZE; i++) { maze = new Maze(8, 8); maze.fillMaze(); fitnesses.add(startPopulation[i].evaluate(maze, newPop)); //this.totalFitness += startPopulation[i].evaluate(maze, newPop); } //totalFitness = (Math.round(totalFitness / POPULATION_SIZE)); StringBuilder sb = new StringBuilder(); for(Double tmp : fitnesses) { sb.append(tmp + ", "); totalFitness += tmp; } // Progress of each Individual //System.out.println(sb.toString()); return this.totalFitness; } /** * Roulette Wheel Selection * @return */ public Individual rouletteWheelSelection() { // Calculate sum of all chromosome fitnesses in population - sum S. double randNum = rand.nextDouble() * this.totalFitness; int i; for (i = 0; i < POPULATION_SIZE && randNum > 0; ++i) { randNum -= startPopulation[i].getFitnessValue(); } return startPopulation[i-1]; } /** * Tournament Selection * @return */ public Individual tournamentSelection() { double randNum = rand.nextDouble() * this.totalFitness; // Get random number of population (add 1 to stop nullpointerexception) int k = rand.nextInt(POPULATION_SIZE) + 1; int i; for (i = 1; i < POPULATION_SIZE && i < k && randNum > 0; ++i) { randNum -= startPopulation[i].getFitnessValue(); } return startPopulation[i-1]; } /** * Finds the best individual * @return */ public Individual findBestIndividual() { int idxMax = 0; double currentMax = 0.0; double currentMin = 1.0; double currentVal; for (int idx = 0; idx < POPULATION_SIZE; ++idx) { currentVal = startPopulation[idx].getFitnessValue(); if (currentMax < currentMin) { currentMax = currentMin = currentVal; idxMax = idx; } if (currentVal > currentMax) { currentMax = currentVal; idxMax = idx; } } // Double check to see if this has the right one //System.out.println(startPopulation[idxMax].getFitnessValue()); // Maximisation return startPopulation[idxMax]; } /** * One Point Crossover * @param firstPerson * @param secondPerson * @return */ public static Individual[] onePointCrossover(Individual firstPerson, Individual secondPerson) { Individual[] newPerson = new Individual[2]; newPerson[0] = new Individual(); newPerson[1] = new Individual(); int size = Individual.SIZE; int randPoint = rand.nextInt(size); int i; for (i = 0; i < randPoint; ++i) { newPerson[0].setGene(i, firstPerson.getGene(i)); newPerson[1].setGene(i, secondPerson.getGene(i)); } for (; i < Individual.SIZE; ++i) { newPerson[0].setGene(i, secondPerson.getGene(i)); newPerson[1].setGene(i, firstPerson.getGene(i)); } return newPerson; } /** * Uniform Crossover * @param firstPerson * @param secondPerson * @return */ public static Individual[] uniformCrossover(Individual firstPerson, Individual secondPerson) { Individual[] newPerson = new Individual[2]; newPerson[0] = new Individual(); newPerson[1] = new Individual(); for(int i = 0; i < Individual.SIZE; ++i) { double r = rand.nextDouble(); if (r > 0.5) { newPerson[0].setGene(i, firstPerson.getGene(i)); newPerson[1].setGene(i, secondPerson.getGene(i)); } else { newPerson[0].setGene(i, secondPerson.getGene(i)); newPerson[1].setGene(i, firstPerson.getGene(i)); } } return newPerson; } public double getTotalFitness() { return totalFitness; } public static void main(String[] args) { // Initialise Environment Maze maze = new Maze(8, 8); maze.fillMaze(); // Instantiate Population //Population pop = new Population(); RunGA pop = new RunGA(maze); // Instantiate Individuals for Population Individual[] newPop = new Individual[POPULATION_SIZE]; // Instantiate two individuals to use for selection Individual[] people = new Individual[2]; Action action = null; Direction direction = null; String result = ""; /*result += "Total Fitness: " + pop.getTotalFitness() + " - Best Fitness: " + pop.findBestIndividual().getFitnessValue();*/ // Print Current Population System.out.println("Total Fitness: " + pop.getTotalFitness() + " - Best Fitness: " + pop.findBestIndividual().getFitnessValue()); // Instantiate counter for selection int count; for (int i = 0; i < MAX_ITERATIONS; i++) { count = 0; // Elitism for (int j = 0; j < ELITISM_K; ++j) { // This one has the best fitness newPop[count] = pop.findBestIndividual(); count++; } // Build New Population (Population size = Steps (28)) while (count < POPULATION_SIZE) { // Roulette Wheel Selection people[0] = pop.rouletteWheelSelection(); people[1] = pop.rouletteWheelSelection(); // Tournament Selection //people[0] = pop.tournamentSelection(); //people[1] = pop.tournamentSelection(); // Crossover if (rand.nextDouble() < CROSSOVER_PROB) { // One Point Crossover //people = onePointCrossover(people[0], people[1]); // Uniform Crossover people = uniformCrossover(people[0], people[1]); } // Mutation if (rand.nextDouble() < MUTATION_PROB) { people[0].mutate(); } if (rand.nextDouble() < MUTATION_PROB) { people[1].mutate(); } // Add to New Population newPop[count] = people[0]; newPop[count+1] = people[1]; count += 2; } // Make new population the current population pop.setPopulation(newPop); // Re-evaluate the current population //pop.evaluate(); pop.evaluate(maze, newPop); // Print results to screen System.out.println("Total Fitness: " + pop.totalFitness + " - Best Fitness: " + pop.findBestIndividual().getFitnessValue()); //result += "\nTotal Fitness: " + pop.totalFitness + " - Best Fitness: " + pop.findBestIndividual().getFitnessValue(); } // Best Individual Individual bestIndiv = pop.findBestIndividual(); //return result; } } I have uploaded the full project to RapidShare if you require the extra files, although if needed I can add the code to them here. This problem has been depressing me for days now and if you guys can help me I will forever be in your debt.

    Read the article

  • Declaring a string array in class header file - compiler thinks string is variable name?

    - by Dave
    Hey everybody, I need a bit of a hand with declaring a string array in my class header file in C++. atm it looks like this: //Maze.h #include <string> class Maze { GLfloat mazeSize, mazeX, mazeY, mazeZ; string* mazeLayout; public: Maze ( ); void render(); }; and the constructor looks like this: //Maze.cpp #include <GL/gl.h> #include "Maze.h" #include <iostream> #include <fstream> Maze::Maze( ) { cin >> mazeSize; mazeLayout = new string[mazeSize]; mazeX = 2/mazeSize; mazeY = 0.25; mazeZ = 2/mazeSize; } I'm getting a compiler error that says: In file included from model-view.cpp:11: Maze.h:14: error: ISO C++ forbids declaration of ‘string’ with no type Maze.h:14: error: expected ‘;’ before ‘*’ token and the only sense that makes to me is that for some reason it thinks I want string as a variable name not as a type declaration. If anybody could help me out that would be fantastic, been looking this up for a while and its giving me the shits lol. Cheers guys

    Read the article

  • How should I be storing objects that I wish to access in reverse order of the way I placed them in

    - by andrew hicks
    I'm following this guide here: http://www.mazeworks.com/mazegen/mazetut/index.htm Or more specficially create a CellStack (LIFO) to hold a list of cell locations set TotalCells = number of cells in grid choose a cell at random and call it CurrentCell set VisitedCells = 1 while VisitedCells < TotalCells find all neighbors of CurrentCell with all walls intact if one or more found choose one at random knock down the wall between it and CurrentCell push CurrentCell location on the CellStack make the new cell CurrentCell add 1 to VisitedCells else pop the most recent cell entry off the CellStack make it CurrentCell endIf endWhile Im writing this in java, My problem is. How should I be storing my visited cells, So that I can access them from reverse order of when I placed them in. Like this? List<Location> visitedCells = new ArrayList<Location>(); Then do I grab with visitedCells.get(visitedCells.size()-1)? Location stores the x, y and z. Not something Im trying to ask you.

    Read the article

  • Simple dynamic memory allocation bug.

    - by M4design
    I'm sure you (pros) can identify the bug's' in my code, I also would appreciate any other comments on my code. BTW, the code crashes after I run it. #include <stdlib.h> #include <stdio.h> #include <stdbool.h> typedef struct { int x; int y; } Location; typedef struct { bool walkable; unsigned char walked; // number of times walked upon } Cell; typedef struct { char name[40]; // Name of maze Cell **grid; // 2D array of cells int rows; // Number of rows int cols; // Number of columns Location entrance; } Maze; Maze *maz_new() { int i = 0; Maze *mazPtr = (Maze *)malloc(sizeof (Maze)); if(!mazPtr) { puts("The memory couldn't be initilised, Press ENTER to exit"); getchar(); exit(-1); } else { // allocating memory for the grid mazPtr->grid = (Cell **) malloc((sizeof (Cell)) * (mazPtr->rows)); for(i = 0; i < mazPtr->rows; i++) mazPtr->grid[i] = (Cell *) malloc((sizeof (Cell)) * (mazPtr->cols)); } return mazPtr; } void maz_delete(Maze *maz) { int i = 0; if (maz != NULL) { for(i = 0; i < maz->rows; i++) free(maz->grid[i]); free(maz->grid); } } int main() { Maze *ptr = maz_new(); maz_delete(ptr); getchar(); return 0; } Thanks in advance.

    Read the article

1 2 3 4  | Next Page >