Search Results

Search found 10 results on 1 pages for 'memcachedb'.

Page 1/1 | 1 

  • Memcachedb Versus MongoDB Versus CouchDB in terms of file based caching solution?

    - by Scott Faisal
    We need a caching solution that essentially caches data (text files) anywhere from 3 days up to a week based on user preferences and criteria. In this case memory based caching does not make sense to us. We were referred to MemcacheDB however I also thought of some NO SQL solutions. Our current application uses RDMS (MYSQL) and I guess it makes sense to use MemcacheDB however NOSQL does appeal as it is something more on the horizon. However we have not deployed a production level application under NOSQL and the beta stuff does not settle well with management/investors. Any how what are your thoughts and how would you address it? Thank You

    Read the article

  • wanting a good memory + disk caching solution

    - by brofield
    I'm currently storing generated HTML pages in a memcached in-memory cache. This works great, however I am wanting to increase the storage capacity of the cache beyond available memory. What I would really like is: memcached semantics (i.e. not reliable, just a cache) memcached api preferred (but not required) large in-memory first level cache (MRU) huge on-disk second level cache (main) evicted from on-disk cache at maximum storage using LRU or LFU proven implementation In searching for a solution I've found the following solutions but they all miss my marks in some way. Does anyone know of either: other options that I haven't considered a way to make memcachedb do evictions Already considered are: memcachedb best fit but doesn't do evictions: explicitly "not a cache" can't see any way to do evictions (either manual or automatic) tugela cache abandoned, no support don't want to recommend it to customers nmdb doesn't use memcache api new and unproven don't want to recommend it to customers

    Read the article

  • Which key:value store to use with Python?

    - by Kurt
    So I'm looking at various key:value (where value is either strictly a single value or possibly an object) stores for use with Python, and have found a few promising ones. I have no specific requirement as of yet because I am in the evaluation phase. I'm looking for what's good, what's bad, what are the corner cases these things handle well or don't, etc. I'm sure some of you have already tried them out so I'd love to hear your findings/problems/etc. on the various key:value stores with Python. I'm looking primarily at: memcached - http://www.danga.com/memcached/ python clients: http://pypi.python.org/pypi/python-memcached/1.40 http://www.tummy.com/Community/software/python-memcached/ CouchDB - http://couchdb.apache.org/ python clients: http://code.google.com/p/couchdb-python/ Tokyo Tyrant - http://1978th.net/tokyotyrant/ python clients: http://code.google.com/p/pytyrant/ Lightcloud - http://opensource.plurk.com/LightCloud/ Based on Tokyo Tyrant, written in Python Redis - http://code.google.com/p/redis/ python clients: http://pypi.python.org/pypi/txredis/0.1.1 MemcacheDB - http://memcachedb.org/ So I started benchmarking (simply inserting keys and reading them) using a simple count to generate numeric keys and a value of "A short string of text": memcached: CentOS 5.3/python-2.4.3-24.el5_3.6, libevent 1.4.12-stable, memcached 1.4.2 with default settings, 1 gig memory, 14,000 inserts per second, 16,000 seconds to read. No real optimization, nice. memcachedb claims on the order of 17,000 to 23,000 inserts per second, 44,000 to 64,000 reads per second. I'm also wondering how the others stack up speed wise.

    Read the article

  • Has anybody used the WB B-tree library?

    - by Chris B
    I stumbled across the WB on-disk B-tree library: http://people.csail.mit.edu/jaffer/WB It seems like it could be useful for my purposes (swapping data to disk during very large statistical calculations that do not fit in memory), but I was wondering how stable it is. Reading the manual, it seems worringly 'researchy' - there are sections labelled [NOT IMPLEMENTED] etc. But maybe the manual is just out-of-date. So, is this library useable? Am I better off looking at Tokyo Cabinet, MemcacheDB, etc.? By the way I am working in Java.

    Read the article

  • What scalability problems have you solved using a NoSQL data store?

    - by knorv
    NoSQL refers to non-relational data stores that break with the history of relational databases and ACID guarantees. Popular open source NoSQL data stores include: Cassandra (tabular, written in Java, used by Facebook, Twitter, Digg, Rackspace, Mahalo and Reddit) CouchDB (document, written in Erlang, used by Engine Yard and BBC) Dynomite (key-value, written in C++, used by Powerset) HBase (key-value, written in Java, used by Bing) Hypertable (tabular, written in C++, used by Baidu) Kai (key-value, written in Erlang) MemcacheDB (key-value, written in C, used by Reddit) MongoDB (document, written in C++, used by Sourceforge, Github, Electronic Arts and NY Times) Neo4j (graph, written in Java, used by Swedish Universities) Project Voldemort (key-value, written in Java, used by LinkedIn) Redis (key-value, written in C, used by Engine Yard, Github and Craigslist) Riak (key-value, written in Erlang, used by Comcast and Mochi Media) Ringo (key-value, written in Erlang, used by Nokia) Scalaris (key-value, written in Erlang, used by OnScale) ThruDB (document, written in C++, used by JunkDepot.com) Tokyo Cabinet/Tokyo Tyrant (key-value, written in C, used by Mixi.jp (Japanese social networking site)) I'd like to know about specific problems you - the SO reader - have solved using data stores and what NoSQL data store you used. Questions: What scalability problems have you used NoSQL data stores to solve? What NoSQL data store did you use? What database did you use before switching to a NoSQL data store? I'm looking for first-hand experiences, so please do not answer unless you have that.

    Read the article

  • Which key value store is the most promising/stable?

    - by Mike Trpcic
    I'm looking to start using a key/value store for some side projects (mostly as a learning experience), but so many have popped up in the recent past that I've got no idea where to begin. Just listing from memory, I can think of: CouchDB MongoDB Riak Redis Tokyo Cabinet Berkeley DB Cassandra MemcacheDB And I'm sure that there are more out there that have slipped through my search efforts. With all the information out there, it's hard to find solid comparisons between all of the competitors. My criteria and questions are: (Most Important) Which do you recommend, and why? Which one is the fastest? Which one is the most stable? Which one is the easiest to set up and install? Which ones have bindings for Python and/or Ruby? Edit: So far it looks like Redis is the best solution, but that's only because I've gotten one solid response (from ardsrk). I'm looking for more answers like his, because they point me in the direction of useful, quantitative information. Which Key-Value store do you use, and why? Edit 2: If anyone has experience with CouchDB, Riak, or MongoDB, I'd love to hear your experiences with them (and even more so if you can offer a comparative analysis of several of them)

    Read the article

  • Alternative or succesor to GDBM

    - by Anon Guy
    We a have a GDBM key-value database as the backend to a load-balanced web-facing application that is in implemented in C++. The data served by the application has grown very large, so our admins have moved the GDBM files from "local" storage (on the webservers, or very close by) to a large, shared, remote, NFS-mounted filesystem. This has affected performance. Our performance tests (in a test environment) show page load times jumping from hundreds of milliseconds (for local disk) to several seconds (over NFS, local network), and sometimes getting as high as 30 seconds. I believe a large part of the problem is that the application makes lots of random reads from the GDBM files, and that these are slow over NFS, and this will be even worse in production (where the front-end and back-end have even more network hardware between them) and as our database gets even bigger. While this is not a critical application, I would like to improve performance, and have some resources available, including the application developer time and Unix admins. My main constraint is time only have the resources for a few weeks. As I see it, my options are: Improve NFS performance by tuning parameters. My instinct is we wont get much out of this, but I have been wrong before, and I don't really know very much about NFS tuning. Move to a different key-value database, such as memcachedb or Tokyo Cabinet. Replace NFS with some other protocol (iSCSI has been mentioned, but i am not familiar with it). How should I approach this problem?

    Read the article

  • Is Berkeley DB a NoSQL solution?

    - by Gregory Burd
    Berkeley DB is a library. To use it to store data you must link the library into your application. You can use most programming languages to access the API, the calls across these APIs generally mimic the Berkeley DB C-API which makes perfect sense because Berkeley DB is written in C. The inspiration for Berkeley DB was the DBM library, a part of the earliest versions of UNIX written by AT&T's Ken Thompson in 1979. DBM was a simple key/value hashtable-based storage library. In the early 1990s as BSD UNIX was transitioning from version 4.3 to 4.4 and retrofitting commercial code owned by AT&T with unencumbered code, it was the future founders of Sleepycat Software who wrote libdb (aka Berkeley DB) as the replacement for DBM. The problem it addressed was fast, reliable local key/value storage. At that time databases almost always lived on a single node, even the most sophisticated databases only had simple fail-over two node solutions. If you had a lot of data to store you would choose between the few commercial RDBMS solutions or to write your own custom solution. Berkeley DB took the headache out of the custom approach. These basic market forces inspired other DBM implementations. There was the "New DBM" (ndbm) and the "GNU DBM" (GDBM) and a few others, but the theme was the same. Even today TokyoCabinet calls itself "a modern implementation of DBM" mimicking, and improving on, something first created over thirty years ago. In the mid-1990s, DBM was the name for what you needed if you were looking for fast, reliable local storage. Fast forward to today. What's changed? Systems are connected over fast, very reliable networks. Disks are cheep, fast, and capable of storing huge amounts of data. CPUs continued to follow Moore's Law, processing power that filled a room in 1990 now fits in your pocket. PCs, servers, and other computers proliferated both in business and the personal markets. In addition to the new hardware entire markets, social systems, and new modes of interpersonal communication moved onto the web and started evolving rapidly. These changes cause a massive explosion of data and a need to analyze and understand that data. Taken together this resulted in an entirely different landscape for database storage, new solutions were needed. A number of novel solutions stepped up and eventually a category called NoSQL emerged. The new market forces inspired the CAP theorem and the heated debate of BASE vs. ACID. But in essence this was simply the market looking at what to trade off to meet these new demands. These new database systems shared many qualities in common. There were designed to address massive amounts of data, millions of requests per second, and scale out across multiple systems. The first large-scale and successful solution was Dynamo, Amazon's distributed key/value database. Dynamo essentially took the next logical step and added a twist. Dynamo was to be the database of record, it would be distributed, data would be partitioned across many nodes, and it would tolerate failure by avoiding single points of failure. Amazon did this because they recognized that the majority of the dynamic content they provided to customers visiting their web store front didn't require the services of an RDBMS. The queries were simple, key/value look-ups or simple range queries with only a few queries that required more complex joins. They set about to use relational technology only in places where it was the best solution for the task, places like accounting and order fulfillment, but not in the myriad of other situations. The success of Dynamo, and it's design, inspired the next generation of Non-SQL, distributed database solutions including Cassandra, Riak and Voldemort. The problem their designers set out to solve was, "reliability at massive scale" so the first focal point was distributed database algorithms. Underneath Dynamo there is a local transactional database; either Berkeley DB, Berkeley DB Java Edition, MySQL or an in-memory key/value data structure. Dynamo was an evolution of local key/value storage onto networks. Cassandra, Riak, and Voldemort all faced similar design decisions and one, Voldemort, choose Berkeley DB Java Edition for it's node-local storage. Riak at first was entirely in-memory, but has recently added write-once, append-only log-based on-disk storage similar type of storage as Berkeley DB except that it is based on a hash table which must reside entirely in-memory rather than a btree which can live in-memory or on disk. Berkeley DB evolved too, we added high availability (HA) and a replication manager that makes it easy to setup replica groups. Berkeley DB's replication doesn't partitioned the data, every node keeps an entire copy of the database. For consistency, there is a single node where writes are committed first - a master - then those changes are delivered to the replica nodes as log records. Applications can choose to wait until all nodes are consistent, or fire and forget allowing Berkeley DB to eventually become consistent. Berkeley DB's HA scales-out quite well for read-intensive applications and also effectively eliminates the central point of failure by allowing replica nodes to be elected (using a PAXOS algorithm) to mastership if the master should fail. This implementation covers a wide variety of use cases. MemcacheDB is a server that implements the Memcache network protocol but uses Berkeley DB for storage and HA to replicate the cache state across all the nodes in the cache group. Google Accounts, the user authentication layer for all Google properties, was until recently running Berkeley DB HA. That scaled to a globally distributed system. That said, most NoSQL solutions try to partition (shard) data across nodes in the replication group and some allow writes as well as reads at any node, Berkeley DB HA does not. So, is Berkeley DB a "NoSQL" solution? Not really, but it certainly is a component of many of the existing NoSQL solutions out there. Forgetting all the noise about how NoSQL solutions are complex distributed databases when you boil them down to a single node you still have to store the data to some form of stable local storage. DBMs solved that problem a long time ago. NoSQL has more to do with the layers on top of the DBM; the distributed, sometimes-consistent, partitioned, scale-out storage that manage key/value or document sets and generally have some form of simple HTTP/REST-style network API. Does Berkeley DB do that? Not really. Is Berkeley DB a "NoSQL" solution today? Nope, but it's the most robust solution on which to build such a system. Re-inventing the node-local data storage isn't easy. A lot of people are starting to come to appreciate the sophisticated features found in Berkeley DB, even mimic them in some cases. Could Berkeley DB grow into a NoSQL solution? Absolutely. Our key/value API could be extended over the net using any of a number of existing network protocols such as memcache or HTTP/REST. We could adapt our node-local data partitioning out over replicated nodes. We even have a nice query language and cost-based query optimizer in our BDB XML product that we could reuse were we to build out a document-based NoSQL-style product. XML and JSON are not so different that we couldn't adapt one to work with the other interchangeably. Without too much effort we could add what's missing, we could jump into this No SQL market withing a single product development cycle. Why isn't Berkeley DB already a NoSQL solution? Why aren't we working on it? Why indeed...

    Read the article

1