Search Results

Search found 49453 results on 1979 pages for 'memory mapped files'.

Page 1/1979 | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • SQL Server and Hyper-V Dynamic Memory Part 2

    - by SQLOS Team
    Part 1 of this series was an introduction and overview of Hyper-V Dynamic Memory. This part looks at SQL Server memory management and how the SQL engine responds to changing OS memory conditions.   Part 2: SQL Server Memory Management As with any Windows process, sqlserver.exe has a virtual address space (VAS) of 4GB on 32-bit and 8TB in 64-bit editions. Pages in its VAS are mapped to pages in physical memory when the memory is committed and referenced for the first time. The collection of VAS pages that have been recently referenced is known as the Working Set. How and when SQL Server allocates virtual memory and grows its working set depends on the memory model it uses. SQL Server supports three basic memory models:   1. Conventional Memory Model   The Conventional model is the default SQL Server memory model and has the following properties: - Dynamic - can grow or shrink its working set in response to load and external (operating system) memory conditions. - OS uses 4K pages – (not to be confused with SQL Server “pages” which are 8K regions of committed memory).- Pageable - Can be paged out to disk by the operating system.   2. Locked Page Model The locked page memory model is set when SQL Server is started with "Lock Pages in Memory" privilege*. It has the following characteristics: - Dynamic - can grow or shrink its working set in the same way as the Conventional model.- OS uses 4K pages - Non-Pageable – When memory is committed it is locked in memory, meaning that it will remain backed by physical memory and will not be paged out by the operating system. A common misconception is to interpret "locked" as non-dynamic. A SQL Server instance using the locked page memory model will grow and shrink (allocate memory and release memory) in response to changing workload and OS memory conditions in the same way as it does with the conventional model.   This is an important consideration when we look at Hyper-V Dynamic Memory – “locked” memory works perfectly well with “dynamic” memory.   * Note in “Denali” (Standard Edition and above), and in SQL 2008 R2 64-bit (Enterprise and above editions) the Lock Pages in Memory privilege is all that is required to set this model. In 2008 R2 64-Bit standard edition it also requires trace flag 845 to be set, in 2008 R2 32-bit editions it requires sp_configure 'awe enabled' 1.   3. Large Page Model The Large page model is set using trace flag 834 and potentially offers a small performance boost for systems that are configured with large pages. It is characterized by: - Static - memory is allocated at startup and does not change. - OS uses large (>2MB) pages - Non-Pageable The large page model is supported with Hyper-V Dynamic Memory (and Hyper-V also supports large pages), but you get no benefit from using Dynamic Memory with this model since SQL Server memory does not grow or shrink. The rest of this article will focus on the locked and conventional SQL Server memory models.   When does SQL Server grow? For “dynamic” configurations (Conventional and Locked memory models), the sqlservr.exe process grows – allocates and commits memory from the OS – in response to a workload. As much memory is allocated as is required to optimally run the query and buffer data for future queries, subject to limitations imposed by:   - SQL Server max server memory setting. If this configuration option is set, the buffer pool is not allowed to grow to more than this value. In SQL Server 2008 this value represents single page allocations, and in “Denali” it represents any size page allocations and also managed CLR procedure allocations.   - Memory signals from OS. The operating system sets a signal on memory resource notification objects to indicate whether it has memory available or whether it is low on available memory. If there is only 32MB free for every 4GB of memory a low memory signal is set, which continues until 64MB/4GB is free. If there is 96MB/4GB free the operating system sets a high memory signal. SQL Server only allocates memory when the high memory signal is set.   To summarize, for SQL Server to grow you need three conditions: a workload, max server memory setting higher than the current allocation, high memory signals from the OS.    When does SQL Server shrink caches? SQL Server as a rule does not like to return memory to the OS, but it will shrink its caches in response to memory pressure. Memory pressure can be divided into “internal” and “external”.   - External memory pressure occurs when the operating system is running low on memory and low memory signals are set. The SQL Server Resource Monitor checks for low memory signals approximately every 5 seconds and it will attempt to free memory until the signals stop.   To free memory SQL Server does the following: ·         Frees unused memory. ·         Notifies Memory Manager Clients to release memory o   Caches – Free unreferenced cache objects. o   Buffer pool - Based on oldest access times.   The freed memory is released back to the operating system. This process continues until the low memory resource notifications stop.    - Internal memory pressure occurs when the size of different caches and allocations increase but the SQL Server process needs to keep its total memory within a target value. For example if max server memory is set and certain caches are growing large, it will cause SQL to free memory for re-use internally, but not to release memory back to the OS. If you lower the value of max server memory you will generate internal memory pressure that will cause SQL to release memory back to the OS.    Memory pressure handling has not changed much since SQL 2005 and it was described in detail in a blog post by Slava Oks.   Note that SQL Server Express is an exception to the above behavior. Unlike other editions it does not assume it is the most important process running on the system but tries to be more “desktop” friendly. It will empty its working set after a period of inactivity.   How does SQL Server respond to changing OS memory?    In SQL Server 2005 support for Hot-Add memory was introduced. This feature, available in Enterprise and above editions, allows the server to make use of any extra physical memory that was added after SQL Server started. Being able to add physical memory when the system is running is limited to specialized hardware, but with the Hyper-V Dynamic Memory feature, when new memory is allocated to a guest virtual machine, it looks like hot-add physical memory to the guest. What this means is that thanks to the hot-add memory feature, SQL Server 2005 and higher can dynamically grow if more “physical” memory is granted to a guest VM by Hyper-V dynamic memory.   SQL Server checks OS memory every second and dynamically adjusts its “target” (based on available OS memory and max server memory) accordingly.   In “Denali” Standard Edition will also have sqlserver.exe support for hot-add memory when running virtualized (i.e. detecting and acting on Hyper-V Dynamic Memory allocations).   How does a SQL Server workload in a guest VM impact Hyper-V dynamic memory scheduling?   When a SQL workload causes the sqlserver.exe process to grow its working set, the Hyper-V memory scheduler will detect memory pressure in the guest VM and add memory to it. SQL Server will then detect the extra memory and grow according to workload demand. In our tests we have seen this feedback process cause a guest VM to grow quickly in response to SQL workload - we are still working on characterizing this ramp-up.    How does SQL Server respond when Hyper-V removes memory from a guest VM through ballooning?   If pressure from other VM's cause Hyper-V Dynamic Memory to take memory away from a VM through ballooning (allocating memory with a virtual device driver and returning it to the host OS), Windows Memory Manager will page out unlocked portions of memory and signal low resource notification events. When SQL Server detects these events it will shrink memory until the low memory notifications stop (see cache shrinking description above).    This raises another question. Can we make SQL Server release memory more readily and hence behave more "dynamically" without compromising performance? In certain circumstances where the application workload is predictable it may be possible to have a job which varies "max server memory" according to need, lowering it when the engine is inactive and raising it before a period of activity. This would have limited applicaability but it is something we're looking into.   What Memory Management changes are there in SQL Server “Denali”?   In SQL Server “Denali” (aka SQL11) the Memory Manager has been re-written to be more efficient. The main changes are summarized in this post. An important change with respect to Hyper-V Dynamic Memory support is that now the max server memory setting includes any size page allocations and managed CLR procedure allocations it now represents a closer approximation to total sqlserver.exe memory usage. This makes it easier to calculate a value for max server memory, which becomes important when configuring virtual machines to work well with Hyper-V Dynamic Memory Startup and Maximum RAM settings.   Another important change is no more AWE or hot-add support for 32-bit edition. This means if you're running a 32-bit edition of Denali you're limited to a 4GB address space and will not be able to take advantage of dynamically added OS memory that wasn't present when SQL Server started (though Hyper-V Dynamic Memory is still a supported configuration).   In part 3 we’ll develop some best practices for configuring and using SQL Server with Dynamic Memory. Originally posted at http://blogs.msdn.com/b/sqlosteam/

    Read the article

  • SQL Server and Hyper-V Dynamic Memory - Part 1

    - by SQLOS Team
    SQL and Dynamic Memory Blog Post Series   Hyper-V Dynamic Memory is a new feature in Windows Server 2008 R2 SP1 that allows the memory assigned to guest virtual machines to vary according to demand. Using this feature with SQL Server is supported, but how well does it work in an environment where available memory can vary dynamically, especially since SQL Server likes memory, and is not very eager to let go of it? The next three posts will look at this question in detail. In Part 1 Serdar Sutay, a program manager in the Windows Hyper-V team, introduces Dynamic Memory with an overview of the basic architecture, configuration and monitoring concepts. In subsequent parts we will look at SQL Server memory handling, and develop some guidelines on using SQL Server with Dynamic Memory.   Part 1: Dynamic Memory Introduction   In virtualized environments memory is often the bottleneck for reaching higher VM densities. In Windows Server 2008 R2 SP1 Hyper-V introduced a new feature “Dynamic Memory” to improve VM densities on Hyper-V hosts. Dynamic Memory increases the memory utilization in virtualized environments by enabling VM memory to be changed dynamically when the VM is running.   This brings up the question of how to utilize this feature with SQL Server VMs as SQL Server performance is very sensitive to the memory being used. In the next three posts we’ll discuss the internals of Dynamic Memory, SQL Server Memory Management and how to use Dynamic Memory with SQL Server VMs.   Memory Utilization Efficiency in Virtualized Environments   The primary reason memory is usually the bottleneck for higher VM densities is that users tend to be generous when assigning memory to their VMs. Here are some memory sizing practices we’ve heard from customers:   ·         I assign 4 GB of memory to my VMs. I don’t know if all of it is being used by the applications but no one complains. ·         I take the minimum system requirements and add 50% more. ·         I go with the recommendations provided by my software vendor.   In reality correctly sizing a virtual machine requires significant effort to monitor the memory usage of the applications. Since this is not done in most environments, VMs are usually over-provisioned in terms of memory. In other words, a SQL Server VM that is assigned 4 GB of memory may not need to use 4 GB.   How does Dynamic Memory help?   Dynamic Memory improves the memory utilization by removing the requirement to determine the memory need for an application. Hyper-V determines the memory needed by applications in the VM by evaluating the memory usage information in the guest with Dynamic Memory. VMs can start with a small amount of memory and they can be assigned more memory dynamically based on the workload of applications running inside.   Overview of Dynamic Memory Concepts   ·         Startup Memory: Startup Memory is the starting amount of memory when Dynamic Memory is enabled for a VM. Dynamic Memory will make sure that this amount of memory is always assigned to the VMs by default.   ·         Maximum Memory: Maximum Memory specifies the maximum amount of memory that a VM can grow to with Dynamic Memory. ·         Memory Demand: Memory Demand is the amount determined by Dynamic Memory as the memory needed by the applications in the VM. In Windows Server 2008 R2 SP1, this is equal to the total amount of committed memory of the VM. ·         Memory Buffer: Memory Buffer is the amount of memory assigned to the VMs in addition to their memory demand to satisfy immediate memory requirements and file cache needs.   Once Dynamic Memory is enabled for a VM, it will start with the “Startup Memory”. After the boot process Dynamic Memory will determine the “Memory Demand” of the VM. Based on this memory demand it will determine the amount of “Memory Buffer” that needs to be assigned to the VM. Dynamic Memory will assign the total of “Memory Demand” and “Memory Buffer” to the VM as long as this value is less than “Maximum Memory” and as long as physical memory is available on the host.   What happens when there is not enough physical memory available on the host?   Once there is not enough physical memory on the host to satisfy VM needs, Dynamic Memory will assign less than needed amount of memory to the VMs based on their importance. A concept known as “Memory Weight” is used to determine how much VMs should be penalized based on their needed amount of memory. “Memory Weight” is a configuration setting on the VM. It can be configured to be higher for the VMs with high performance requirements. Under high memory pressure on the host, the “Memory Weight” of the VMs are evaluated in a relative manner and the VMs with lower relative “Memory Weight” will be penalized more than the ones with higher “Memory Weight”.   Dynamic Memory Configuration   Based on these concepts “Startup Memory”, “Maximum Memory”, “Memory Buffer” and “Memory Weight” can be configured as shown below in Windows Server 2008 R2 SP1 Hyper-V Manager. Memory Demand is automatically calculated by Dynamic Memory once VMs start running.     Dynamic Memory Monitoring    In Windows Server 2008 R2 SP1, Hyper-V Manager displays the memory status of VMs in the following three columns:         ·         Assigned Memory represents the current physical memory assigned to the VM. In regular conditions this will be equal to the sum of “Memory Demand” and “Memory Buffer” assigned to the VM. When there is not enough memory on the host, this value can go below the Memory Demand determined for the VM. ·         Memory Demand displays the current “Memory Demand” determined for the VM. ·         Memory Status displays the current memory status of the VM. This column can represent three values for a VM: o   OK: In this condition the VM is assigned the total of Memory Demand and Memory Buffer it needs. o   Low: In this condition the VM is assigned all the Memory Demand and a certain percentage of the Memory Buffer it needs. o   Warning: In this condition the VM is assigned a lower memory than its Memory Demand. When VMs are running in this condition, it’s likely that they will exhibit performance problems due to internal paging happening in the VM.    So far so good! But how does it work with SQL Server?   SQL Server is aggressive in terms of memory usage for good reasons. This raises the question: How do SQL Server and Dynamic Memory work together? To understand the full story, we’ll first need to understand how SQL Server Memory Management works. This will be covered in our second post in “SQL and Dynamic Memory” series. Meanwhile if you want to dive deeper into Dynamic Memory you can check the below posts from the Windows Virtualization Team Blog:   http://blogs.technet.com/virtualization/archive/2010/03/18/dynamic-memory-coming-to-hyper-v.aspx   http://blogs.technet.com/virtualization/archive/2010/03/25/dynamic-memory-coming-to-hyper-v-part-2.aspx   http://blogs.technet.com/virtualization/archive/2010/04/07/dynamic-memory-coming-to-hyper-v-part-3.aspx   http://blogs.technet.com/b/virtualization/archive/2010/04/21/dynamic-memory-coming-to-hyper-v-part-4.aspx   http://blogs.technet.com/b/virtualization/archive/2010/05/20/dynamic-memory-coming-to-hyper-v-part-5.aspx   http://blogs.technet.com/b/virtualization/archive/2010/07/12/dynamic-memory-coming-to-hyper-v-part-6.aspx   - Serdar Sutay   Originally posted at http://blogs.msdn.com/b/sqlosteam/

    Read the article

  • SQL Server and Hyper-V Dynamic Memory - Part 1

    - by SQLOS Team
    SQL and Dynamic Memory Blog Post Series   Hyper-V Dynamic Memory is a new feature in Windows Server 2008 R2 SP1 that allows the memory assigned to guest virtual machines to vary according to demand. Using this feature with SQL Server is supported, but how well does it work in an environment where available memory can vary dynamically, especially since SQL Server likes memory, and is not very eager to let go of it? The next three posts will look at this question in detail. In Part 1 Serdar Sutay, a program manager in the Windows Hyper-V team, introduces Dynamic Memory with an overview of the basic architecture, configuration and monitoring concepts. In subsequent parts we will look at SQL Server memory handling, and develop some guidelines on using SQL Server with Dynamic Memory.   Part 1: Dynamic Memory Introduction   In virtualized environments memory is often the bottleneck for reaching higher VM densities. In Windows Server 2008 R2 SP1 Hyper-V introduced a new feature “Dynamic Memory” to improve VM densities on Hyper-V hosts. Dynamic Memory increases the memory utilization in virtualized environments by enabling VM memory to be changed dynamically when the VM is running.   This brings up the question of how to utilize this feature with SQL Server VMs as SQL Server performance is very sensitive to the memory being used. In the next three posts we’ll discuss the internals of Dynamic Memory, SQL Server Memory Management and how to use Dynamic Memory with SQL Server VMs.   Memory Utilization Efficiency in Virtualized Environments   The primary reason memory is usually the bottleneck for higher VM densities is that users tend to be generous when assigning memory to their VMs. Here are some memory sizing practices we’ve heard from customers:   ·         I assign 4 GB of memory to my VMs. I don’t know if all of it is being used by the applications but no one complains. ·         I take the minimum system requirements and add 50% more. ·         I go with the recommendations provided by my software vendor.   In reality correctly sizing a virtual machine requires significant effort to monitor the memory usage of the applications. Since this is not done in most environments, VMs are usually over-provisioned in terms of memory. In other words, a SQL Server VM that is assigned 4 GB of memory may not need to use 4 GB.   How does Dynamic Memory help?   Dynamic Memory improves the memory utilization by removing the requirement to determine the memory need for an application. Hyper-V determines the memory needed by applications in the VM by evaluating the memory usage information in the guest with Dynamic Memory. VMs can start with a small amount of memory and they can be assigned more memory dynamically based on the workload of applications running inside.   Overview of Dynamic Memory Concepts   ·         Startup Memory: Startup Memory is the starting amount of memory when Dynamic Memory is enabled for a VM. Dynamic Memory will make sure that this amount of memory is always assigned to the VMs by default.   ·         Maximum Memory: Maximum Memory specifies the maximum amount of memory that a VM can grow to with Dynamic Memory. ·         Memory Demand: Memory Demand is the amount determined by Dynamic Memory as the memory needed by the applications in the VM. In Windows Server 2008 R2 SP1, this is equal to the total amount of committed memory of the VM. ·         Memory Buffer: Memory Buffer is the amount of memory assigned to the VMs in addition to their memory demand to satisfy immediate memory requirements and file cache needs.   Once Dynamic Memory is enabled for a VM, it will start with the “Startup Memory”. After the boot process Dynamic Memory will determine the “Memory Demand” of the VM. Based on this memory demand it will determine the amount of “Memory Buffer” that needs to be assigned to the VM. Dynamic Memory will assign the total of “Memory Demand” and “Memory Buffer” to the VM as long as this value is less than “Maximum Memory” and as long as physical memory is available on the host.   What happens when there is not enough physical memory available on the host?   Once there is not enough physical memory on the host to satisfy VM needs, Dynamic Memory will assign less than needed amount of memory to the VMs based on their importance. A concept known as “Memory Weight” is used to determine how much VMs should be penalized based on their needed amount of memory. “Memory Weight” is a configuration setting on the VM. It can be configured to be higher for the VMs with high performance requirements. Under high memory pressure on the host, the “Memory Weight” of the VMs are evaluated in a relative manner and the VMs with lower relative “Memory Weight” will be penalized more than the ones with higher “Memory Weight”.   Dynamic Memory Configuration   Based on these concepts “Startup Memory”, “Maximum Memory”, “Memory Buffer” and “Memory Weight” can be configured as shown below in Windows Server 2008 R2 SP1 Hyper-V Manager. Memory Demand is automatically calculated by Dynamic Memory once VMs start running.     Dynamic Memory Monitoring    In Windows Server 2008 R2 SP1, Hyper-V Manager displays the memory status of VMs in the following three columns:         ·         Assigned Memory represents the current physical memory assigned to the VM. In regular conditions this will be equal to the sum of “Memory Demand” and “Memory Buffer” assigned to the VM. When there is not enough memory on the host, this value can go below the Memory Demand determined for the VM. ·         Memory Demand displays the current “Memory Demand” determined for the VM. ·         Memory Status displays the current memory status of the VM. This column can represent three values for a VM: o   OK: In this condition the VM is assigned the total of Memory Demand and Memory Buffer it needs. o   Low: In this condition the VM is assigned all the Memory Demand and a certain percentage of the Memory Buffer it needs. o   Warning: In this condition the VM is assigned a lower memory than its Memory Demand. When VMs are running in this condition, it’s likely that they will exhibit performance problems due to internal paging happening in the VM.    So far so good! But how does it work with SQL Server?   SQL Server is aggressive in terms of memory usage for good reasons. This raises the question: How do SQL Server and Dynamic Memory work together? To understand the full story, we’ll first need to understand how SQL Server Memory Management works. This will be covered in our second post in “SQL and Dynamic Memory” series. Meanwhile if you want to dive deeper into Dynamic Memory you can check the below posts from the Windows Virtualization Team Blog:   http://blogs.technet.com/virtualization/archive/2010/03/18/dynamic-memory-coming-to-hyper-v.aspx   http://blogs.technet.com/virtualization/archive/2010/03/25/dynamic-memory-coming-to-hyper-v-part-2.aspx   http://blogs.technet.com/virtualization/archive/2010/04/07/dynamic-memory-coming-to-hyper-v-part-3.aspx   http://blogs.technet.com/b/virtualization/archive/2010/04/21/dynamic-memory-coming-to-hyper-v-part-4.aspx   http://blogs.technet.com/b/virtualization/archive/2010/05/20/dynamic-memory-coming-to-hyper-v-part-5.aspx   http://blogs.technet.com/b/virtualization/archive/2010/07/12/dynamic-memory-coming-to-hyper-v-part-6.aspx   - Serdar Sutay   Originally posted at http://blogs.msdn.com/b/sqlosteam/

    Read the article

  • How do i delete these files?

    - by user107277
    I ran this command sudo find / -type d -name '*Trash*' | sudo xargs du -h | sort This was the output: 100M /root/.local/share/Trash/files/recup_dir.2.30 100M /root/.local/share/Trash/files/recup_dir.2.72 100M /root/.local/share/Trash/files/recup_dir.32 101M /root/.local/share/Trash/files/recup_dir.2.27 101M /root/.local/share/Trash/files/recup_dir.29 103M /root/.local/share/Trash/files/recup_dir.2.7 103M /root/.local/share/Trash/files/recup_dir.9 103M /root/.local/share/Trash/files/recup_dir.93 106M /root/.local/share/Trash/files/recup_dir.187 106M /root/.local/share/Trash/files/recup_dir.71 107M /root/.local/share/Trash/files/recup_dir.131 107M /root/.local/share/Trash/files/recup_dir.136 107M /root/.local/share/Trash/files/recup_dir.2.46 107M /root/.local/share/Trash/files/recup_dir.51 108M /root/.local/share/Trash/files/recup_dir.106 108M /root/.local/share/Trash/files/recup_dir.2.78 108M /root/.local/share/Trash/files/recup_dir.52 109M /root/.local/share/Trash/files/recup_dir.2.32 109M /root/.local/share/Trash/files/recup_dir.34 110M /root/.local/share/Trash/files/recup_dir.2.28 110M /root/.local/share/Trash/files/recup_dir.2.53 110M /root/.local/share/Trash/files/recup_dir.30 110M /root/.local/share/Trash/files/recup_dir.55 110M /root/.local/share/Trash/files/recup_dir.89 112M /root/.local/share/Trash/files/recup_dir.2.31 112M /root/.local/share/Trash/files/recup_dir.33 114M /root/.local/share/Trash/files/recup_dir.2.29 114M /root/.local/share/Trash/files/recup_dir.2.74 114M /root/.local/share/Trash/files/recup_dir.31 115M /root/.local/share/Trash/files/recup_dir.125 117M /root/.local/share/Trash/files/recup_dir.83 118M /root/.local/share/Trash/files/recup_dir.105 118M /root/.local/share/Trash/files/recup_dir.2.70 119M /root/.local/share/Trash/files/recup_dir.133 1.1G /root/.local/share/Trash/files/recup_dir.148 11M /root/.local/share/Trash/files/recup_dir.179 1.1M /root/.local/share/Trash/info 122M /root/.local/share/Trash/files/recup_dir.80 124M /root/.local/share/Trash/files/recup_dir.137 125G /root/.local/share/Trash 125G /root/.local/share/Trash/files 125M /root/.local/share/Trash/files/recup_dir.2.49 129M /root/.local/share/Trash/files/recup_dir.153 1.2G /root/.local/share/Trash/files/recup_dir.165 1.2G /root/.local/share/Trash/files/recup_dir.166 12K /media/A80E1DE60E1DAE76/.Trash-1000/files 12M /root/.local/share/Trash/files/recup_dir.178 12M /root/.local/share/Trash/files/recup_dir.180 12M /root/.local/share/Trash/files/recup_dir.181 130M /root/.local/share/Trash/files/recup_dir.85 137M /root/.local/share/Trash/files/recup_dir.2.5 137M /root/.local/share/Trash/files/recup_dir.7 137M /root/.local/share/Trash/files/recup_dir.76 13M /root/.local/share/Trash/files/recup_dir.143 13M /root/.local/share/Trash/files/recup_dir.18 13M /root/.local/share/Trash/files/recup_dir.182 13M /root/.local/share/Trash/files/recup_dir.2.16 13M /root/.local/share/Trash/files/recup_dir.2.2 13M /root/.local/share/Trash/files/recup_dir.4 140M /root/.local/share/Trash/files/recup_dir.2.77 145M /root/.local/share/Trash/files/recup_dir.2.63 147M /root/.local/share/Trash/files/recup_dir.2.43 147M /root/.local/share/Trash/files/recup_dir.45 148M /root/.local/share/Trash/files/recup_dir.84 149M /root/.local/share/Trash/files/recup_dir.160 149M /root/.local/share/Trash/files/recup_dir.2.79 1.4G /root/.local/share/Trash/files/recup_dir.191 150M /root/.local/share/Trash/files/recup_dir.2.26 150M /root/.local/share/Trash/files/recup_dir.28 153M /root/.local/share/Trash/files/recup_dir.64 153M /root/.local/share/Trash/files/recup_dir.78 154M /root/.local/share/Trash/files/recup_dir.107 155M /root/.local/share/Trash/files/recup_dir.2.80 155M /root/.local/share/Trash/files/recup_dir.79 15M /root/.local/share/Trash/files/recup_dir.151 162M /root/.local/share/Trash/files/recup_dir.65 163M /root/.local/share/Trash/files/recup_dir.82 164M /root/.local/share/Trash/files/recup_dir.104 165M /root/.local/share/Trash/files/recup_dir.2.39 165M /root/.local/share/Trash/files/recup_dir.41 168M /root/.local/share/Trash/files/recup_dir.2.62 16M /root/.local/share/Trash/files/recup_dir.171 170M /root/.local/share/Trash/files/recup_dir.135 170M /root/.local/share/Trash/files/recup_dir.159 171M /root/.local/share/Trash/files/recup_dir.91 172M /root/.local/share/Trash/files/recup_dir.2.41 172M /root/.local/share/Trash/files/recup_dir.43 175M /root/.local/share/Trash/files/recup_dir.2.33 175M /root/.local/share/Trash/files/recup_dir.35 176M /root/.local/share/Trash/files/recup_dir.2.76 179M /root/.local/share/Trash/files/recup_dir.2.38 179M /root/.local/share/Trash/files/recup_dir.40 179M /root/.local/share/Trash/files/recup_dir.61 1.7G /root/.local/share/Trash/files/recup_dir.167 17M /root/.local/share/Trash/files/recup_dir.172 180M /root/.local/share/Trash/files/recup_dir.186 181M /root/.local/share/Trash/files/recup_dir.2.71 182M /root/.local/share/Trash/files/recup_dir.158 183M /root/.local/share/Trash/files/recup_dir.2.59 185M /root/.local/share/Trash/files/recup_dir.123 189M /root/.local/share/Trash/files/recup_dir.92 18M /root/.local/share/Trash/files/recup_dir.142 18M /root/.local/share/Trash/files/recup_dir.149 18M /root/.local/share/Trash/files/recup_dir.150 18M /root/.local/share/Trash/files/recup_dir.152 18M /root/.local/share/Trash/files/recup_dir.173 18M /root/.local/share/Trash/files/recup_dir.177 191M /root/.local/share/Trash/files/recup_dir.147 193M /root/.local/share/Trash/files/recup_dir.102 195M /root/.local/share/Trash/files/recup_dir.73 196M /root/.local/share/Trash/files/recup_dir.94 198M /root/.local/share/Trash/files/recup_dir.2.58 19M /root/.local/share/Trash/files/recup_dir.175 19M /root/.local/share/Trash/files/recup_dir.176 205M /root/.local/share/Trash/files/recup_dir.108 206M /root/.local/share/Trash/files/recup_dir.56 206M /root/.local/share/Trash/files/recup_dir.60 207M /root/.local/share/Trash/files/recup_dir.2.55 209M /root/.local/share/Trash/files/recup_dir.90 2.0G /root/.local/share/Trash/files/recup_dir.190 20K /media/A80E1DE60E1DAE76/.Trash-1000/info 20M /root/.local/share/Trash/files/recup_dir.17 20M /root/.local/share/Trash/files/recup_dir.2.15 210M /root/.local/share/Trash/files/recup_dir.121 211M /root/.local/share/Trash/files/recup_dir.134 212M /root/.local/share/Trash/files/recup_dir.57 21M /root/.local/share/Trash/files/recup_dir.174 223M /root/.local/share/Trash/files/recup_dir.88 225M /root/.local/share/Trash/files/recup_dir.118 230M /root/.local/share/Trash/files/recup_dir.87 232M /root/.local/share/Trash/files/recup_dir.66 235M /root/.local/share/Trash/files/recup_dir.139 236M /root/.local/share/Trash/files/recup_dir.97 238M /root/.local/share/Trash/files/recup_dir.2.54 240M /root/.local/share/Trash/files/recup_dir.163 241M /root/.local/share/Trash/files/recup_dir.126 242M /root/.local/share/Trash/files/recup_dir.2.81 243M /root/.local/share/Trash/files/recup_dir.156 244M /root/.local/share/Trash/files/recup_dir.2.37 244M /root/.local/share/Trash/files/recup_dir.39 248M /root/.local/share/Trash/files/recup_dir.110 249M /root/.local/share/Trash/files/recup_dir.75 256M /root/.local/share/Trash/files/recup_dir.2.73 257M /root/.local/share/Trash/files/recup_dir.2.64 25M /root/.local/share/Trash/files/recup_dir.10 25M /root/.local/share/Trash/files/recup_dir.2.8 262M /root/.local/share/Trash/files/recup_dir.86 266M /root/.local/share/Trash/files/recup_dir.144 27M /root/.local/share/Trash/files/recup_dir.99 282M /root/.local/share/Trash/files/recup_dir.127 29M /root/.local/share/Trash/files/recup_dir.183 29M /root/.local/share/Trash/files/recup_dir.22 29M /root/.local/share/Trash/files/recup_dir.2.20 316M /root/.local/share/Trash/files/recup_dir.124 31M /root/.local/share/Trash/files/recup_dir.2.21 31M /root/.local/share/Trash/files/recup_dir.23 320M /root/.local/share/Trash/files/recup_dir.168 32M /root/.local/share/Trash/files/recup_dir.12 32M /root/.local/share/Trash/files/recup_dir.2.10 334M /root/.local/share/Trash/files/recup_dir.140 338M /root/.local/share/Trash/files/recup_dir.69 33M /root/.local/share/Trash/files/recup_dir.21 33M /root/.local/share/Trash/files/recup_dir.2.19 340M /root/.local/share/Trash/files/recup_dir.2.57 341M /root/.local/share/Trash/files/recup_dir.185 342M /root/.local/share/Trash/files/recup_dir.169 343M /root/.local/share/Trash/files/recup_dir.129 346M /root/.local/share/Trash/files/recup_dir.111 348M /root/.local/share/Trash/files/recup_dir.103 351M /root/.local/share/Trash/files/recup_dir.2.34 351M /root/.local/share/Trash/files/recup_dir.36 352M /root/.local/share/Trash/files/recup_dir.155 358M /root/.local/share/Trash/files/recup_dir.59 36G /root/.local/share/Trash/files/recup_dir.1 36G /root/.local/share/Trash/files/recup_dir.2 36M /root/.local/share/Trash/files/recup_dir.120 36M /root/.local/share/Trash/files/recup_dir.2.24 36M /root/.local/share/Trash/files/recup_dir.2.51 36M /root/.local/share/Trash/files/recup_dir.26 37M /root/.local/share/Trash/files/recup_dir.112 390M /root/.local/share/Trash/files/recup_dir.162 398M /root/.local/share/Trash/files/recup_dir.2.67 39M /root/.local/share/Trash/files/recup_dir.145 401M /root/.local/share/Trash/files/recup_dir.2.52 402M /root/.local/share/Trash/files/recup_dir.54 408M /root/.local/share/Trash/files/recup_dir.2.40 408M /root/.local/share/Trash/files/recup_dir.42 4.0K /home/daniel/.local/share/Trash 40K /media/A80E1DE60E1DAE76/.Trash-1000 41M /root/.local/share/Trash/files/recup_dir.13 41M /root/.local/share/Trash/files/recup_dir.2.11 428M /root/.local/share/Trash/files/recup_dir.2.61 434M /root/.local/share/Trash/files/recup_dir.2.36 434M /root/.local/share/Trash/files/recup_dir.38 43M /root/.local/share/Trash/files/recup_dir.19 43M /root/.local/share/Trash/files/recup_dir.2.17 43M /root/.local/share/Trash/files/recup_dir.53 440M /root/.local/share/Trash/files/recup_dir.157 448M /root/.local/share/Trash/files/recup_dir.2.35 448M /root/.local/share/Trash/files/recup_dir.37 44M /root/.local/share/Trash/files/recup_dir.20 44M /root/.local/share/Trash/files/recup_dir.2.18 454M /root/.local/share/Trash/files/recup_dir.116 47M /root/.local/share/Trash/files/recup_dir.11 47M /root/.local/share/Trash/files/recup_dir.2.9 48M /root/.local/share/Trash/files/recup_dir.2.48 495M /root/.local/share/Trash/files/recup_dir.192 49M /root/.local/share/Trash/files/recup_dir.114 49M /root/.local/share/Trash/files/recup_dir.50 52M /root/.local/share/Trash/files/recup_dir.3 538M /root/.local/share/Trash/files/recup_dir.2.68 53M /root/.local/share/Trash/files/recup_dir.95 54M /root/.local/share/Trash/files/recup_dir.98 551M /root/.local/share/Trash/files/recup_dir.63 57M /root/.local/share/Trash/files/recup_dir.101 5.7M /root/.local/share/Trash/files/recup_dir.119 57M /root/.local/share/Trash/files/recup_dir.14 57M /root/.local/share/Trash/files/recup_dir.2.12 581M /root/.local/share/Trash/files/recup_dir.70 586M /root/.local/share/Trash/files/recup_dir.170 588M /root/.local/share/Trash/files/recup_dir.62 58M /root/.local/share/Trash/files/recup_dir.2.4 58M /root/.local/share/Trash/files/recup_dir.2.42 58M /root/.local/share/Trash/files/recup_dir.44 58M /root/.local/share/Trash/files/recup_dir.6 59M /root/.local/share/Trash/files/recup_dir.2.22 59M /root/.local/share/Trash/files/recup_dir.24 603M /root/.local/share/Trash/files/recup_dir.109 60M /root/.local/share/Trash/files/recup_dir.15 60M /root/.local/share/Trash/files/recup_dir.2.13 619M /root/.local/share/Trash/files/recup_dir.154 61M /root/.local/share/Trash/files/recup_dir.2.23 61M /root/.local/share/Trash/files/recup_dir.25 626M /root/.local/share/Trash/files/recup_dir.138 62M /root/.local/share/Trash/files/recup_dir.2.3 62M /root/.local/share/Trash/files/recup_dir.5 63M /root/.local/share/Trash/files/recup_dir.188 64M /root/.local/share/Trash/files/recup_dir.2.1 65M /root/.local/share/Trash/files/recup_dir.113 65M /root/.local/share/Trash/files/recup_dir.146 69M /root/.local/share/Trash/files/recup_dir.122 701M /root/.local/share/Trash/files/recup_dir.2.60 71M /root/.local/share/Trash/files/recup_dir.130 71M /root/.local/share/Trash/files/recup_dir.141 72M /root/.local/share/Trash/files/recup_dir.132 72M /root/.local/share/Trash/files/recup_dir.2.47 74M /root/.local/share/Trash/files/recup_dir.16 74M /root/.local/share/Trash/files/recup_dir.2.14 74M /root/.local/share/Trash/files/recup_dir.2.25 74M /root/.local/share/Trash/files/recup_dir.2.45 74M /root/.local/share/Trash/files/recup_dir.27 74M /root/.local/share/Trash/files/recup_dir.47 751M /root/.local/share/Trash/files/recup_dir.164 752M /root/.local/share/Trash/files/recup_dir.128 76M /root/.local/share/Trash/files/recup_dir.49 77M /root/.local/share/Trash/files/recup_dir.115 77M /root/.local/share/Trash/files/recup_dir.77 8.0K /media/A80E1DE60E1DAE76/.Trash-1000/expunged 810M /root/.local/share/Trash/files/recup_dir.58 815M /root/.local/share/Trash/files/recup_dir.2.66 818M /root/.local/share/Trash/files/recup_dir.2.56 82M /root/.local/share/Trash/files/recup_dir.2.44 82M /root/.local/share/Trash/files/recup_dir.46 835M /root/.local/share/Trash/files/recup_dir.68 84M /root/.local/share/Trash/files/recup_dir.189 860M /root/.local/share/Trash/files/recup_dir.161 86M /root/.local/share/Trash/files/recup_dir.117 86M /root/.local/share/Trash/files/recup_dir.2.69 86M /root/.local/share/Trash/files/recup_dir.2.75 90M /root/.local/share/Trash/files/recup_dir.74 924M /root/.local/share/Trash/files/recup_dir.184 94M /root/.local/share/Trash/files/recup_dir.81 95M /root/.local/share/Trash/files/recup_dir.100 96M /root/.local/share/Trash/files/recup_dir.2.6 96M /root/.local/share/Trash/files/recup_dir.2.65 96M /root/.local/share/Trash/files/recup_dir.8 97M /root/.local/share/Trash/files/recup_dir.2.50 97M /root/.local/share/Trash/files/recup_dir.67 97M /root/.local/share/Trash/files/recup_dir.72 98M /root/.local/share/Trash/files/recup_dir.96 99M /root/.local/share/Trash/files/recup_dir.48 How do I delete these files?

    Read the article

  • SQL Server and Hyper-V Dynamic Memory Part 3

    - by SQLOS Team
    In parts 1 and 2 of this series we looked at the basics of Hyper-V Dynamic Memory and SQL Server memory management. In this part Serdar looks at configuration guidelines for SQL Server memory management. Part 3: Configuration Guidelines for Hyper-V Dynamic Memory and SQL Server Now that we understand SQL Server Memory Management and Hyper-V Dynamic Memory basics, let’s take a look at general configuration guidelines in order to utilize benefits of Hyper-V Dynamic Memory in your SQL Server VMs. Requirements Host Operating System Requirements Hyper-V Dynamic Memory feature is introduced with Windows Server 2008 R2 SP1. Therefore in order to use Dynamic Memory for your virtual machines, you need to have Windows Server 2008 R2 SP1 or Microsoft Hyper-V Server 2008 R2 SP1 in your Hyper-V host. Guest Operating System Requirements In addition to this Dynamic Memory is only supported in Standard, Web, Enterprise and Datacenter editions of windows running inside VMs. Make sure that your VM is running one of these editions. For additional requirements on each operating system see “Dynamic Memory Configuration Guidelines” here. SQL Server Requirements All versions of SQL Server support Hyper-V Dynamic Memory. However, only certain editions of SQL Server are aware of dynamically changing system memory. To have a truly dynamic environment for your SQL Server VMs make sure that you are running one of the SQL Server editions listed below: ·         SQL Server 2005 Enterprise ·         SQL Server 2008 Enterprise / Datacenter Editions ·         SQL Server 2008 R2 Enterprise / Datacenter Editions Configuration guidelines for other versions of SQL Server are covered below in the FAQ section. Guidelines for configuring Dynamic Memory Parameters Here is how to configure Dynamic Memory for your SQL VMs in a nutshell: Hyper-V Dynamic Memory Parameter Recommendation Startup RAM 1 GB + SQL Min Server Memory Maximum RAM > SQL Max Server Memory Memory Buffer % 5 Memory Weight Based on performance needs   Startup RAM In order to ensure that your SQL Server VMs can start correctly, ensure that Startup RAM is higher than configured SQL Min Server Memory for your VMs. Otherwise SQL Server service will need to do paging in order to start since it will not be able to see enough memory during startup. Also note that Startup Memory will always be reserved for your VMs. This will guarantee a certain level of performance for your SQL Servers, however setting this too high will limit the consolidation benefits you’ll get out of your virtualization environment. Maximum RAM This one is obvious. If you’ve configured SQL Max Server Memory for your SQL Server, make sure that Dynamic Memory Maximum RAM configuration is higher than this value. Otherwise your SQL Server will not grow to memory values higher than the value configured for Dynamic Memory. Memory Buffer % Memory buffer configuration is used to provision file cache to virtual machines in order to improve performance. Due to the fact that SQL Server is managing its own buffer pool, Memory Buffer setting should be configured to the lowest value possible, 5%. Configuring a higher memory buffer will prevent low resource notifications from Windows Memory Manager and it will prevent reclaiming memory from SQL Server VMs. Memory Weight Memory weight configuration defines the importance of memory to a VM. Configure higher values for the VMs that have higher performance requirements. VMs with higher memory weight will have more memory under high memory pressure conditions on your host. Questions and Answers Q1 – Which SQL Server memory model is best for Dynamic Memory? The best SQL Server model for Dynamic Memory is “Locked Page Memory Model”. This memory model ensures that SQL Server memory is never paged out and it’s also adaptive to dynamically changing memory in the system. This will be extremely useful when Dynamic Memory is attempting to remove memory from SQL Server VMs ensuring no SQL Server memory is paged out. You can find instructions on configuring “Locked Page Memory Model” for your SQL Servers here. Q2 – What about other SQL Server Editions, how should I configure Dynamic Memory for them? Other editions of SQL Server do not adapt to dynamically changing environments. They will determine how much memory they should allocate during startup and don’t change this value afterwards. Therefore make sure that you configure a higher startup memory for your VM because that will be all the memory that SQL Server utilize Tune Maximum Memory and Memory Buffer based on the other workloads running on the system. If there are no other workloads consider using Static Memory for these editions. Q3 – What if I have multiple SQL Server instances in a VM? Having multiple SQL Server instances in a VM is not a general recommendation for predictable performance, manageability and isolation. In order to achieve a predictable behavior make sure that you configure SQL Min Server Memory and SQL Max Server Memory for each instance in the VM. And make sure that: ·         Dynamic Memory Startup Memory is greater than the sum of SQL Min Server Memory values for the instances in the VM ·         Dynamic Memory Maximum Memory is greater than the sum of SQL Max Server Memory values for the instances in the VM Q4 – I’m using Large Page Memory Model for my SQL Server. Can I still use Dynamic Memory? The short answer is no. SQL Server does not dynamically change its memory size when configured with Large Page Memory Model. In virtualized environments Hyper-V provides large page support by default. Most of the time, Large Page Memory Model doesn’t bring any benefits to a SQL Server if it’s running in virtualized environments. Q5 – How do I monitor SQL performance when I’m trying Dynamic Memory on my VMs? Use the performance counters below to monitor memory performance for SQL Server: Process - Working Set: This counter is available in the VM via process performance counters. It represents the actual amount of physical memory being used by SQL Server process in the VM. SQL Server – Buffer Cache Hit Ratio: This counter is available in the VM via SQL Server counters. This represents the paging being done by SQL Server. A rate of 90% or higher is desirable. Conclusion These blog posts are a quick start to a story that will be developing more in the near future. We’re still continuing our testing and investigations to provide more detailed configuration guidelines with example performance numbers with a white paper in the upcoming months. Now it’s time to give SQL Server and Hyper-V Dynamic Memory a try. Use this guidelines to kick-start your environment. See what you think about it and let us know of your experiences. - Serdar Sutay Originally posted at http://blogs.msdn.com/b/sqlosteam/

    Read the article

  • Zen and the Art of File and Folder Organization

    - by Mark Virtue
    Is your desk a paragon of neatness, or does it look like a paper-bomb has gone off? If you’ve been putting off getting organized because the task is too huge or daunting, or you don’t know where to start, we’ve got 40 tips to get you on the path to zen mastery of your filing system. For all those readers who would like to get their files and folders organized, or, if they’re already organized, better organized—we have compiled a complete guide to getting organized and staying organized, a comprehensive article that will hopefully cover every possible tip you could want. Signs that Your Computer is Poorly Organized If your computer is a mess, you’re probably already aware of it.  But just in case you’re not, here are some tell-tale signs: Your Desktop has over 40 icons on it “My Documents” contains over 300 files and 60 folders, including MP3s and digital photos You use the Windows’ built-in search facility whenever you need to find a file You can’t find programs in the out-of-control list of programs in your Start Menu You save all your Word documents in one folder, all your spreadsheets in a second folder, etc Any given file that you’re looking for may be in any one of four different sets of folders But before we start, here are some quick notes: We’re going to assume you know what files and folders are, and how to create, save, rename, copy and delete them The organization principles described in this article apply equally to all computer systems.  However, the screenshots here will reflect how things look on Windows (usually Windows 7).  We will also mention some useful features of Windows that can help you get organized. Everyone has their own favorite methodology of organizing and filing, and it’s all too easy to get into “My Way is Better than Your Way” arguments.  The reality is that there is no perfect way of getting things organized.  When I wrote this article, I tried to keep a generalist and objective viewpoint.  I consider myself to be unusually well organized (to the point of obsession, truth be told), and I’ve had 25 years experience in collecting and organizing files on computers.  So I’ve got a lot to say on the subject.  But the tips I have described here are only one way of doing it.  Hopefully some of these tips will work for you too, but please don’t read this as any sort of “right” way to do it. At the end of the article we’ll be asking you, the reader, for your own organization tips. Why Bother Organizing At All? For some, the answer to this question is self-evident. And yet, in this era of powerful desktop search software (the search capabilities built into the Windows Vista and Windows 7 Start Menus, and third-party programs like Google Desktop Search), the question does need to be asked, and answered. I have a friend who puts every file he ever creates, receives or downloads into his My Documents folder and doesn’t bother filing them into subfolders at all.  He relies on the search functionality built into his Windows operating system to help him find whatever he’s looking for.  And he always finds it.  He’s a Search Samurai.  For him, filing is a waste of valuable time that could be spent enjoying life! It’s tempting to follow suit.  On the face of it, why would anyone bother to take the time to organize their hard disk when such excellent search software is available?  Well, if all you ever want to do with the files you own is to locate and open them individually (for listening, editing, etc), then there’s no reason to ever bother doing one scrap of organization.  But consider these common tasks that are not achievable with desktop search software: Find files manually.  Often it’s not convenient, speedy or even possible to utilize your desktop search software to find what you want.  It doesn’t work 100% of the time, or you may not even have it installed.  Sometimes its just plain faster to go straight to the file you want, if you know it’s in a particular sub-folder, rather than trawling through hundreds of search results. Find groups of similar files (e.g. all your “work” files, all the photos of your Europe holiday in 2008, all your music videos, all the MP3s from Dark Side of the Moon, all your letters you wrote to your wife, all your tax returns).  Clever naming of the files will only get you so far.  Sometimes it’s the date the file was created that’s important, other times it’s the file format, and other times it’s the purpose of the file.  How do you name a collection of files so that they’re easy to isolate based on any of the above criteria?  Short answer, you can’t. Move files to a new computer.  It’s time to upgrade your computer.  How do you quickly grab all the files that are important to you?  Or you decide to have two computers now – one for home and one for work.  How do you quickly isolate only the work-related files to move them to the work computer? Synchronize files to other computers.  If you have more than one computer, and you need to mirror some of your files onto the other computer (e.g. your music collection), then you need a way to quickly determine which files are to be synced and which are not.  Surely you don’t want to synchronize everything? Choose which files to back up.  If your backup regime calls for multiple backups, or requires speedy backups, then you’ll need to be able to specify which files are to be backed up, and which are not.  This is not possible if they’re all in the same folder. Finally, if you’re simply someone who takes pleasure in being organized, tidy and ordered (me! me!), then you don’t even need a reason.  Being disorganized is simply unthinkable. Tips on Getting Organized Here we present our 40 best tips on how to get organized.  Or, if you’re already organized, to get better organized. Tip #1.  Choose Your Organization System Carefully The reason that most people are not organized is that it takes time.  And the first thing that takes time is deciding upon a system of organization.  This is always a matter of personal preference, and is not something that a geek on a website can tell you.  You should always choose your own system, based on how your own brain is organized (which makes the assumption that your brain is, in fact, organized). We can’t instruct you, but we can make suggestions: You may want to start off with a system based on the users of the computer.  i.e. “My Files”, “My Wife’s Files”, My Son’s Files”, etc.  Inside “My Files”, you might then break it down into “Personal” and “Business”.  You may then realize that there are overlaps.  For example, everyone may want to share access to the music library, or the photos from the school play.  So you may create another folder called “Family”, for the “common” files. You may decide that the highest-level breakdown of your files is based on the “source” of each file.  In other words, who created the files.  You could have “Files created by ME (business or personal)”, “Files created by people I know (family, friends, etc)”, and finally “Files created by the rest of the world (MP3 music files, downloaded or ripped movies or TV shows, software installation files, gorgeous desktop wallpaper images you’ve collected, etc).”  This system happens to be the one I use myself.  See below:  Mark is for files created by meVC is for files created by my company (Virtual Creations)Others is for files created by my friends and familyData is the rest of the worldAlso, Settings is where I store the configuration files and other program data files for my installed software (more on this in tip #34, below). Each folder will present its own particular set of requirements for further sub-organization.  For example, you may decide to organize your music collection into sub-folders based on the artist’s name, while your digital photos might get organized based on the date they were taken.  It can be different for every sub-folder! Another strategy would be based on “currentness”.  Files you have yet to open and look at live in one folder.  Ones that have been looked at but not yet filed live in another place.  Current, active projects live in yet another place.  All other files (your “archive”, if you like) would live in a fourth folder. (And of course, within that last folder you’d need to create a further sub-system based on one of the previous bullet points). Put some thought into this – changing it when it proves incomplete can be a big hassle!  Before you go to the trouble of implementing any system you come up with, examine a wide cross-section of the files you own and see if they will all be able to find a nice logical place to sit within your system. Tip #2.  When You Decide on Your System, Stick to It! There’s nothing more pointless than going to all the trouble of creating a system and filing all your files, and then whenever you create, receive or download a new file, you simply dump it onto your Desktop.  You need to be disciplined – forever!  Every new file you get, spend those extra few seconds to file it where it belongs!  Otherwise, in just a month or two, you’ll be worse off than before – half your files will be organized and half will be disorganized – and you won’t know which is which! Tip #3.  Choose the Root Folder of Your Structure Carefully Every data file (document, photo, music file, etc) that you create, own or is important to you, no matter where it came from, should be found within one single folder, and that one single folder should be located at the root of your C: drive (as a sub-folder of C:\).  In other words, do not base your folder structure in standard folders like “My Documents”.  If you do, then you’re leaving it up to the operating system engineers to decide what folder structure is best for you.  And every operating system has a different system!  In Windows 7 your files are found in C:\Users\YourName, whilst on Windows XP it was C:\Documents and Settings\YourName\My Documents.  In UNIX systems it’s often /home/YourName. These standard default folders tend to fill up with junk files and folders that are not at all important to you.  “My Documents” is the worst offender.  Every second piece of software you install, it seems, likes to create its own folder in the “My Documents” folder.  These folders usually don’t fit within your organizational structure, so don’t use them!  In fact, don’t even use the “My Documents” folder at all.  Allow it to fill up with junk, and then simply ignore it.  It sounds heretical, but: Don’t ever visit your “My Documents” folder!  Remove your icons/links to “My Documents” and replace them with links to the folders you created and you care about! Create your own file system from scratch!  Probably the best place to put it would be on your D: drive – if you have one.  This way, all your files live on one drive, while all the operating system and software component files live on the C: drive – simply and elegantly separated.  The benefits of that are profound.  Not only are there obvious organizational benefits (see tip #10, below), but when it comes to migrate your data to a new computer, you can (sometimes) simply unplug your D: drive and plug it in as the D: drive of your new computer (this implies that the D: drive is actually a separate physical disk, and not a partition on the same disk as C:).  You also get a slight speed improvement (again, only if your C: and D: drives are on separate physical disks). Warning:  From tip #12, below, you will see that it’s actually a good idea to have exactly the same file system structure – including the drive it’s filed on – on all of the computers you own.  So if you decide to use the D: drive as the storage system for your own files, make sure you are able to use the D: drive on all the computers you own.  If you can’t ensure that, then you can still use a clever geeky trick to store your files on the D: drive, but still access them all via the C: drive (see tip #17, below). If you only have one hard disk (C:), then create a dedicated folder that will contain all your files – something like C:\Files.  The name of the folder is not important, but make it a single, brief word. There are several reasons for this: When creating a backup regime, it’s easy to decide what files should be backed up – they’re all in the one folder! If you ever decide to trade in your computer for a new one, you know exactly which files to migrate You will always know where to begin a search for any file If you synchronize files with other computers, it makes your synchronization routines very simple.   It also causes all your shortcuts to continue to work on the other machines (more about this in tip #24, below). Once you’ve decided where your files should go, then put all your files in there – Everything!  Completely disregard the standard, default folders that are created for you by the operating system (“My Music”, “My Pictures”, etc).  In fact, you can actually relocate many of those folders into your own structure (more about that below, in tip #6). The more completely you get all your data files (documents, photos, music, etc) and all your configuration settings into that one folder, then the easier it will be to perform all of the above tasks. Once this has been done, and all your files live in one folder, all the other folders in C:\ can be thought of as “operating system” folders, and therefore of little day-to-day interest for us. Here’s a screenshot of a nicely organized C: drive, where all user files are located within the \Files folder:   Tip #4.  Use Sub-Folders This would be our simplest and most obvious tip.  It almost goes without saying.  Any organizational system you decide upon (see tip #1) will require that you create sub-folders for your files.  Get used to creating folders on a regular basis. Tip #5.  Don’t be Shy About Depth Create as many levels of sub-folders as you need.  Don’t be scared to do so.  Every time you notice an opportunity to group a set of related files into a sub-folder, do so.  Examples might include:  All the MP3s from one music CD, all the photos from one holiday, or all the documents from one client. It’s perfectly okay to put files into a folder called C:\Files\Me\From Others\Services\WestCo Bank\Statements\2009.  That’s only seven levels deep.  Ten levels is not uncommon.  Of course, it’s possible to take this too far.  If you notice yourself creating a sub-folder to hold only one file, then you’ve probably become a little over-zealous.  On the other hand, if you simply create a structure with only two levels (for example C:\Files\Work) then you really haven’t achieved any level of organization at all (unless you own only six files!).  Your “Work” folder will have become a dumping ground, just like your Desktop was, with most likely hundreds of files in it. Tip #6.  Move the Standard User Folders into Your Own Folder Structure Most operating systems, including Windows, create a set of standard folders for each of its users.  These folders then become the default location for files such as documents, music files, digital photos and downloaded Internet files.  In Windows 7, the full list is shown below: Some of these folders you may never use nor care about (for example, the Favorites folder, if you’re not using Internet Explorer as your browser).  Those ones you can leave where they are.  But you may be using some of the other folders to store files that are important to you.  Even if you’re not using them, Windows will still often treat them as the default storage location for many types of files.  When you go to save a standard file type, it can become annoying to be automatically prompted to save it in a folder that’s not part of your own file structure. But there’s a simple solution:  Move the folders you care about into your own folder structure!  If you do, then the next time you go to save a file of the corresponding type, Windows will prompt you to save it in the new, moved location. Moving the folders is easy.  Simply drag-and-drop them to the new location.  Here’s a screenshot of the default My Music folder being moved to my custom personal folder (Mark): Tip #7.  Name Files and Folders Intelligently This is another one that almost goes without saying, but we’ll say it anyway:  Do not allow files to be created that have meaningless names like Document1.doc, or folders called New Folder (2).  Take that extra 20 seconds and come up with a meaningful name for the file/folder – one that accurately divulges its contents without repeating the entire contents in the name. Tip #8.  Watch Out for Long Filenames Another way to tell if you have not yet created enough depth to your folder hierarchy is that your files often require really long names.  If you need to call a file Johnson Sales Figures March 2009.xls (which might happen to live in the same folder as Abercrombie Budget Report 2008.xls), then you might want to create some sub-folders so that the first file could be simply called March.xls, and living in the Clients\Johnson\Sales Figures\2009 folder. A well-placed file needs only a brief filename! Tip #9.  Use Shortcuts!  Everywhere! This is probably the single most useful and important tip we can offer.  A shortcut allows a file to be in two places at once. Why would you want that?  Well, the file and folder structure of every popular operating system on the market today is hierarchical.  This means that all objects (files and folders) always live within exactly one parent folder.  It’s a bit like a tree.  A tree has branches (folders) and leaves (files).  Each leaf, and each branch, is supported by exactly one parent branch, all the way back to the root of the tree (which, incidentally, is exactly why C:\ is called the “root folder” of the C: drive). That hard disks are structured this way may seem obvious and even necessary, but it’s only one way of organizing data.  There are others:  Relational databases, for example, organize structured data entirely differently.  The main limitation of hierarchical filing structures is that a file can only ever be in one branch of the tree – in only one folder – at a time.  Why is this a problem?  Well, there are two main reasons why this limitation is a problem for computer users: The “correct” place for a file, according to our organizational rationale, is very often a very inconvenient place for that file to be located.  Just because it’s correctly filed doesn’t mean it’s easy to get to.  Your file may be “correctly” buried six levels deep in your sub-folder structure, but you may need regular and speedy access to this file every day.  You could always move it to a more convenient location, but that would mean that you would need to re-file back to its “correct” location it every time you’d finished working on it.  Most unsatisfactory. A file may simply “belong” in two or more different locations within your file structure.  For example, say you’re an accountant and you have just completed the 2009 tax return for John Smith.  It might make sense to you to call this file 2009 Tax Return.doc and file it under Clients\John Smith.  But it may also be important to you to have the 2009 tax returns from all your clients together in the one place.  So you might also want to call the file John Smith.doc and file it under Tax Returns\2009.  The problem is, in a purely hierarchical filing system, you can’t put it in both places.  Grrrrr! Fortunately, Windows (and most other operating systems) offers a way for you to do exactly that:  It’s called a “shortcut” (also known as an “alias” on Macs and a “symbolic link” on UNIX systems).  Shortcuts allow a file to exist in one place, and an icon that represents the file to be created and put anywhere else you please.  In fact, you can create a dozen such icons and scatter them all over your hard disk.  Double-clicking on one of these icons/shortcuts opens up the original file, just as if you had double-clicked on the original file itself. Consider the following two icons: The one on the left is the actual Word document, while the one on the right is a shortcut that represents the Word document.  Double-clicking on either icon will open the same file.  There are two main visual differences between the icons: The shortcut will have a small arrow in the lower-left-hand corner (on Windows, anyway) The shortcut is allowed to have a name that does not include the file extension (the “.docx” part, in this case) You can delete the shortcut at any time without losing any actual data.  The original is still intact.  All you lose is the ability to get to that data from wherever the shortcut was. So why are shortcuts so great?  Because they allow us to easily overcome the main limitation of hierarchical file systems, and put a file in two (or more) places at the same time.  You will always have files that don’t play nice with your organizational rationale, and can’t be filed in only one place.  They demand to exist in two places.  Shortcuts allow this!  Furthermore, they allow you to collect your most often-opened files and folders together in one spot for convenient access.  The cool part is that the original files stay where they are, safe forever in their perfectly organized location. So your collection of most often-opened files can – and should – become a collection of shortcuts! If you’re still not convinced of the utility of shortcuts, consider the following well-known areas of a typical Windows computer: The Start Menu (and all the programs that live within it) The Quick Launch bar (or the Superbar in Windows 7) The “Favorite folders” area in the top-left corner of the Windows Explorer window (in Windows Vista or Windows 7) Your Internet Explorer Favorites or Firefox Bookmarks Each item in each of these areas is a shortcut!  Each of those areas exist for one purpose only:  For convenience – to provide you with a collection of the files and folders you access most often. It should be easy to see by now that shortcuts are designed for one single purpose:  To make accessing your files more convenient.  Each time you double-click on a shortcut, you are saved the hassle of locating the file (or folder, or program, or drive, or control panel icon) that it represents. Shortcuts allow us to invent a golden rule of file and folder organization: “Only ever have one copy of a file – never have two copies of the same file.  Use a shortcut instead” (this rule doesn’t apply to copies created for backup purposes, of course!) There are also lesser rules, like “don’t move a file into your work area – create a shortcut there instead”, and “any time you find yourself frustrated with how long it takes to locate a file, create a shortcut to it and place that shortcut in a convenient location.” So how to we create these massively useful shortcuts?  There are two main ways: “Copy” the original file or folder (click on it and type Ctrl-C, or right-click on it and select Copy):  Then right-click in an empty area of the destination folder (the place where you want the shortcut to go) and select Paste shortcut: Right-drag (drag with the right mouse button) the file from the source folder to the destination folder.  When you let go of the mouse button at the destination folder, a menu pops up: Select Create shortcuts here. Note that when shortcuts are created, they are often named something like Shortcut to Budget Detail.doc (windows XP) or Budget Detail – Shortcut.doc (Windows 7).   If you don’t like those extra words, you can easily rename the shortcuts after they’re created, or you can configure Windows to never insert the extra words in the first place (see our article on how to do this). And of course, you can create shortcuts to folders too, not just to files! Bottom line: Whenever you have a file that you’d like to access from somewhere else (whether it’s convenience you’re after, or because the file simply belongs in two places), create a shortcut to the original file in the new location. Tip #10.  Separate Application Files from Data Files Any digital organization guru will drum this rule into you.  Application files are the components of the software you’ve installed (e.g. Microsoft Word, Adobe Photoshop or Internet Explorer).  Data files are the files that you’ve created for yourself using that software (e.g. Word Documents, digital photos, emails or playlists). Software gets installed, uninstalled and upgraded all the time.  Hopefully you always have the original installation media (or downloaded set-up file) kept somewhere safe, and can thus reinstall your software at any time.  This means that the software component files are of little importance.  Whereas the files you have created with that software is, by definition, important.  It’s a good rule to always separate unimportant files from important files. So when your software prompts you to save a file you’ve just created, take a moment and check out where it’s suggesting that you save the file.  If it’s suggesting that you save the file into the same folder as the software itself, then definitely don’t follow that suggestion.  File it in your own folder!  In fact, see if you can find the program’s configuration option that determines where files are saved by default (if it has one), and change it. Tip #11.  Organize Files Based on Purpose, Not on File Type If you have, for example a folder called Work\Clients\Johnson, and within that folder you have two sub-folders, Word Documents and Spreadsheets (in other words, you’re separating “.doc” files from “.xls” files), then chances are that you’re not optimally organized.  It makes little sense to organize your files based on the program that created them.  Instead, create your sub-folders based on the purpose of the file.  For example, it would make more sense to create sub-folders called Correspondence and Financials.  It may well be that all the files in a given sub-folder are of the same file-type, but this should be more of a coincidence and less of a design feature of your organization system. Tip #12.  Maintain the Same Folder Structure on All Your Computers In other words, whatever organizational system you create, apply it to every computer that you can.  There are several benefits to this: There’s less to remember.  No matter where you are, you always know where to look for your files If you copy or synchronize files from one computer to another, then setting up the synchronization job becomes very simple Shortcuts can be copied or moved from one computer to another with ease (assuming the original files are also copied/moved).  There’s no need to find the target of the shortcut all over again on the second computer Ditto for linked files (e.g Word documents that link to data in a separate Excel file), playlists, and any files that reference the exact file locations of other files. This applies even to the drive that your files are stored on.  If your files are stored on C: on one computer, make sure they’re stored on C: on all your computers.  Otherwise all your shortcuts, playlists and linked files will stop working! Tip #13.  Create an “Inbox” Folder Create yourself a folder where you store all files that you’re currently working on, or that you haven’t gotten around to filing yet.  You can think of this folder as your “to-do” list.  You can call it “Inbox” (making it the same metaphor as your email system), or “Work”, or “To-Do”, or “Scratch”, or whatever name makes sense to you.  It doesn’t matter what you call it – just make sure you have one! Once you have finished working on a file, you then move it from the “Inbox” to its correct location within your organizational structure. You may want to use your Desktop as this “Inbox” folder.  Rightly or wrongly, most people do.  It’s not a bad place to put such files, but be careful:  If you do decide that your Desktop represents your “to-do” list, then make sure that no other files find their way there.  In other words, make sure that your “Inbox”, wherever it is, Desktop or otherwise, is kept free of junk – stray files that don’t belong there. So where should you put this folder, which, almost by definition, lives outside the structure of the rest of your filing system?  Well, first and foremost, it has to be somewhere handy.  This will be one of your most-visited folders, so convenience is key.  Putting it on the Desktop is a great option – especially if you don’t have any other folders on your Desktop:  the folder then becomes supremely easy to find in Windows Explorer: You would then create shortcuts to this folder in convenient spots all over your computer (“Favorite Links”, “Quick Launch”, etc). Tip #14.  Ensure You have Only One “Inbox” Folder Once you’ve created your “Inbox” folder, don’t use any other folder location as your “to-do list”.  Throw every incoming or created file into the Inbox folder as you create/receive it.  This keeps the rest of your computer pristine and free of randomly created or downloaded junk.  The last thing you want to be doing is checking multiple folders to see all your current tasks and projects.  Gather them all together into one folder. Here are some tips to help ensure you only have one Inbox: Set the default “save” location of all your programs to this folder. Set the default “download” location for your browser to this folder. If this folder is not your desktop (recommended) then also see if you can make a point of not putting “to-do” files on your desktop.  This keeps your desktop uncluttered and Zen-like: (the Inbox folder is in the bottom-right corner) Tip #15.  Be Vigilant about Clearing Your “Inbox” Folder This is one of the keys to staying organized.  If you let your “Inbox” overflow (i.e. allow there to be more than, say, 30 files or folders in there), then you’re probably going to start feeling like you’re overwhelmed:  You’re not keeping up with your to-do list.  Once your Inbox gets beyond a certain point (around 30 files, studies have shown), then you’ll simply start to avoid it.  You may continue to put files in there, but you’ll be scared to look at it, fearing the “out of control” feeling that all overworked, chaotic or just plain disorganized people regularly feel. So, here’s what you can do: Visit your Inbox/to-do folder regularly (at least five times per day). Scan the folder regularly for files that you have completed working on and are ready for filing.  File them immediately. Make it a source of pride to keep the number of files in this folder as small as possible.  If you value peace of mind, then make the emptiness of this folder one of your highest (computer) priorities If you know that a particular file has been in the folder for more than, say, six weeks, then admit that you’re not actually going to get around to processing it, and move it to its final resting place. Tip #16.  File Everything Immediately, and Use Shortcuts for Your Active Projects As soon as you create, receive or download a new file, store it away in its “correct” folder immediately.  Then, whenever you need to work on it (possibly straight away), create a shortcut to it in your “Inbox” (“to-do”) folder or your desktop.  That way, all your files are always in their “correct” locations, yet you still have immediate, convenient access to your current, active files.  When you finish working on a file, simply delete the shortcut. Ideally, your “Inbox” folder – and your Desktop – should contain no actual files or folders.  They should simply contain shortcuts. Tip #17.  Use Directory Symbolic Links (or Junctions) to Maintain One Unified Folder Structure Using this tip, we can get around a potential hiccup that we can run into when creating our organizational structure – the issue of having more than one drive on our computer (C:, D:, etc).  We might have files we need to store on the D: drive for space reasons, and yet want to base our organized folder structure on the C: drive (or vice-versa). Your chosen organizational structure may dictate that all your files must be accessed from the C: drive (for example, the root folder of all your files may be something like C:\Files).  And yet you may still have a D: drive and wish to take advantage of the hundreds of spare Gigabytes that it offers.  Did you know that it’s actually possible to store your files on the D: drive and yet access them as if they were on the C: drive?  And no, we’re not talking about shortcuts here (although the concept is very similar). By using the shell command mklink, you can essentially take a folder that lives on one drive and create an alias for it on a different drive (you can do lots more than that with mklink – for a full rundown on this programs capabilities, see our dedicated article).  These aliases are called directory symbolic links (and used to be known as junctions).  You can think of them as “virtual” folders.  They function exactly like regular folders, except they’re physically located somewhere else. For example, you may decide that your entire D: drive contains your complete organizational file structure, but that you need to reference all those files as if they were on the C: drive, under C:\Files.  If that was the case you could create C:\Files as a directory symbolic link – a link to D:, as follows: mklink /d c:\files d:\ Or it may be that the only files you wish to store on the D: drive are your movie collection.  You could locate all your movie files in the root of your D: drive, and then link it to C:\Files\Media\Movies, as follows: mklink /d c:\files\media\movies d:\ (Needless to say, you must run these commands from a command prompt – click the Start button, type cmd and press Enter) Tip #18. Customize Your Folder Icons This is not strictly speaking an organizational tip, but having unique icons for each folder does allow you to more quickly visually identify which folder is which, and thus saves you time when you’re finding files.  An example is below (from my folder that contains all files downloaded from the Internet): To learn how to change your folder icons, please refer to our dedicated article on the subject. Tip #19.  Tidy Your Start Menu The Windows Start Menu is usually one of the messiest parts of any Windows computer.  Every program you install seems to adopt a completely different approach to placing icons in this menu.  Some simply put a single program icon.  Others create a folder based on the name of the software.  And others create a folder based on the name of the software manufacturer.  It’s chaos, and can make it hard to find the software you want to run. Thankfully we can avoid this chaos with useful operating system features like Quick Launch, the Superbar or pinned start menu items. Even so, it would make a lot of sense to get into the guts of the Start Menu itself and give it a good once-over.  All you really need to decide is how you’re going to organize your applications.  A structure based on the purpose of the application is an obvious candidate.  Below is an example of one such structure: In this structure, Utilities means software whose job it is to keep the computer itself running smoothly (configuration tools, backup software, Zip programs, etc).  Applications refers to any productivity software that doesn’t fit under the headings Multimedia, Graphics, Internet, etc. In case you’re not aware, every icon in your Start Menu is a shortcut and can be manipulated like any other shortcut (copied, moved, deleted, etc). With the Windows Start Menu (all version of Windows), Microsoft has decided that there be two parallel folder structures to store your Start Menu shortcuts.  One for you (the logged-in user of the computer) and one for all users of the computer.  Having two parallel structures can often be redundant:  If you are the only user of the computer, then having two parallel structures is totally redundant.  Even if you have several users that regularly log into the computer, most of your installed software will need to be made available to all users, and should thus be moved out of the “just you” version of the Start Menu and into the “all users” area. To take control of your Start Menu, so you can start organizing it, you’ll need to know how to access the actual folders and shortcut files that make up the Start Menu (both versions of it).  To find these folders and files, click the Start button and then right-click on the All Programs text (Windows XP users should right-click on the Start button itself): The Open option refers to the “just you” version of the Start Menu, while the Open All Users option refers to the “all users” version.  Click on the one you want to organize. A Windows Explorer window then opens with your chosen version of the Start Menu selected.  From there it’s easy.  Double-click on the Programs folder and you’ll see all your folders and shortcuts.  Now you can delete/rename/move until it’s just the way you want it. Note:  When you’re reorganizing your Start Menu, you may want to have two Explorer windows open at the same time – one showing the “just you” version and one showing the “all users” version.  You can drag-and-drop between the windows. Tip #20.  Keep Your Start Menu Tidy Once you have a perfectly organized Start Menu, try to be a little vigilant about keeping it that way.  Every time you install a new piece of software, the icons that get created will almost certainly violate your organizational structure. So to keep your Start Menu pristine and organized, make sure you do the following whenever you install a new piece of software: Check whether the software was installed into the “just you” area of the Start Menu, or the “all users” area, and then move it to the correct area. Remove all the unnecessary icons (like the “Read me” icon, the “Help” icon (you can always open the help from within the software itself when it’s running), the “Uninstall” icon, the link(s)to the manufacturer’s website, etc) Rename the main icon(s) of the software to something brief that makes sense to you.  For example, you might like to rename Microsoft Office Word 2010 to simply Word Move the icon(s) into the correct folder based on your Start Menu organizational structure And don’t forget:  when you uninstall a piece of software, the software’s uninstall routine is no longer going to be able to remove the software’s icon from the Start Menu (because you moved and/or renamed it), so you’ll need to remove that icon manually. Tip #21.  Tidy C:\ The root of your C: drive (C:\) is a common dumping ground for files and folders – both by the users of your computer and by the software that you install on your computer.  It can become a mess. There’s almost no software these days that requires itself to be installed in C:\.  99% of the time it can and should be installed into C:\Program Files.  And as for your own files, well, it’s clear that they can (and almost always should) be stored somewhere else. In an ideal world, your C:\ folder should look like this (on Windows 7): Note that there are some system files and folders in C:\ that are usually and deliberately “hidden” (such as the Windows virtual memory file pagefile.sys, the boot loader file bootmgr, and the System Volume Information folder).  Hiding these files and folders is a good idea, as they need to stay where they are and are almost never needed to be opened or even seen by you, the user.  Hiding them prevents you from accidentally messing with them, and enhances your sense of order and well-being when you look at your C: drive folder. Tip #22.  Tidy Your Desktop The Desktop is probably the most abused part of a Windows computer (from an organization point of view).  It usually serves as a dumping ground for all incoming files, as well as holding icons to oft-used applications, plus some regularly opened files and folders.  It often ends up becoming an uncontrolled mess.  See if you can avoid this.  Here’s why… Application icons (Word, Internet Explorer, etc) are often found on the Desktop, but it’s unlikely that this is the optimum place for them.  The “Quick Launch” bar (or the Superbar in Windows 7) is always visible and so represents a perfect location to put your icons.  You’ll only be able to see the icons on your Desktop when all your programs are minimized.  It might be time to get your application icons off your desktop… You may have decided that the Inbox/To-do folder on your computer (see tip #13, above) should be your Desktop.  If so, then enough said.  Simply be vigilant about clearing it and preventing it from being polluted by junk files (see tip #15, above).  On the other hand, if your Desktop is not acting as your “Inbox” folder, then there’s no reason for it to have any data files or folders on it at all, except perhaps a couple of shortcuts to often-opened files and folders (either ongoing or current projects).  Everything else should be moved to your “Inbox” folder. In an ideal world, it might look like this: Tip #23.  Move Permanent Items on Your Desktop Away from the Top-Left Corner When files/folders are dragged onto your desktop in a Windows Explorer window, or when shortcuts are created on your Desktop from Internet Explorer, those icons are always placed in the top-left corner – or as close as they can get.  If you have other files, folders or shortcuts that you keep on the Desktop permanently, then it’s a good idea to separate these permanent icons from the transient ones, so that you can quickly identify which ones the transients are.  An easy way to do this is to move all your permanent icons to the right-hand side of your Desktop.  That should keep them separated from incoming items. Tip #24.  Synchronize If you have more than one computer, you’ll almost certainly want to share files between them.  If the computers are permanently attached to the same local network, then there’s no need to store multiple copies of any one file or folder – shortcuts will suffice.  However, if the computers are not always on the same network, then you will at some point need to copy files between them.  For files that need to permanently live on both computers, the ideal way to do this is to synchronize the files, as opposed to simply copying them. We only have room here to write a brief summary of synchronization, not a full article.  In short, there are several different types of synchronization: Where the contents of one folder are accessible anywhere, such as with Dropbox Where the contents of any number of folders are accessible anywhere, such as with Windows Live Mesh Where any files or folders from anywhere on your computer are synchronized with exactly one other computer, such as with the Windows “Briefcase”, Microsoft SyncToy, or (much more powerful, yet still free) SyncBack from 2BrightSparks.  This only works when both computers are on the same local network, at least temporarily. A great advantage of synchronization solutions is that once you’ve got it configured the way you want it, then the sync process happens automatically, every time.  Click a button (or schedule it to happen automatically) and all your files are automagically put where they’re supposed to be. If you maintain the same file and folder structure on both computers, then you can also sync files depend upon the correct location of other files, like shortcuts, playlists and office documents that link to other office documents, and the synchronized files still work on the other computer! Tip #25.  Hide Files You Never Need to See If you have your files well organized, you will often be able to tell if a file is out of place just by glancing at the contents of a folder (for example, it should be pretty obvious if you look in a folder that contains all the MP3s from one music CD and see a Word document in there).  This is a good thing – it allows you to determine if there are files out of place with a quick glance.  Yet sometimes there are files in a folder that seem out of place but actually need to be there, such as the “folder art” JPEGs in music folders, and various files in the root of the C: drive.  If such files never need to be opened by you, then a good idea is to simply hide them.  Then, the next time you glance at the folder, you won’t have to remember whether that file was supposed to be there or not, because you won’t see it at all! To hide a file, simply right-click on it and choose Properties: Then simply tick the Hidden tick-box:   Tip #26.  Keep Every Setup File These days most software is downloaded from the Internet.  Whenever you download a piece of software, keep it.  You’ll never know when you need to reinstall the software. Further, keep with it an Internet shortcut that links back to the website where you originally downloaded it, in case you ever need to check for updates. See tip #33 below for a full description of the excellence of organizing your setup files. Tip #27.  Try to Minimize the Number of Folders that Contain Both Files and Sub-folders Some of the folders in your organizational structure will contain only files.  Others will contain only sub-folders.  And you will also have some folders that contain both files and sub-folders.  You will notice slight improvements in how long it takes you to locate a file if you try to avoid this third type of folder.  It’s not always possible, of course – you’ll always have some of these folders, but see if you can avoid it. One way of doing this is to take all the leftover files that didn’t end up getting stored in a sub-folder and create a special “Miscellaneous” or “Other” folder for them. Tip #28.  Starting a Filename with an Underscore Brings it to the Top of a List Further to the previous tip, if you name that “Miscellaneous” or “Other” folder in such a way that its name begins with an underscore “_”, then it will appear at the top of the list of files/folders. The screenshot below is an example of this.  Each folder in the list contains a set of digital photos.  The folder at the top of the list, _Misc, contains random photos that didn’t deserve their own dedicated folder: Tip #29.  Clean Up those CD-ROMs and (shudder!) Floppy Disks Have you got a pile of CD-ROMs stacked on a shelf of your office?  Old photos, or files you archived off onto CD-ROM (or even worse, floppy disks!) because you didn’t have enough disk space at the time?  In the meantime have you upgraded your computer and now have 500 Gigabytes of space you don’t know what to do with?  If so, isn’t it time you tidied up that stack of disks and filed them into your gorgeous new folder structure? So what are you waiting for?  Bite the bullet, copy them all back onto your computer, file them in their appropriate folders, and then back the whole lot up onto a shiny new 1000Gig external hard drive! Useful Folders to Create This next section suggests some useful folders that you might want to create within your folder structure.  I’ve personally found them to be indispensable. The first three are all about convenience – handy folders to create and then put somewhere that you can always access instantly.  For each one, it’s not so important where the actual folder is located, but it’s very important where you put the shortcut(s) to the folder.  You might want to locate the shortcuts: On your Desktop In your “Quick Launch” area (or pinned to your Windows 7 Superbar) In your Windows Explorer “Favorite Links” area Tip #30.  Create an “Inbox” (“To-Do”) Folder This has already been mentioned in depth (see tip #13), but we wanted to reiterate its importance here.  This folder contains all the recently created, received or downloaded files that you have not yet had a chance to file away properly, and it also may contain files that you have yet to process.  In effect, it becomes a sort of “to-do list”.  It doesn’t have to be called “Inbox” – you can call it whatever you want. Tip #31.  Create a Folder where Your Current Projects are Collected Rather than going hunting for them all the time, or dumping them all on your desktop, create a special folder where you put links (or work folders) for each of the projects you’re currently working on. You can locate this folder in your “Inbox” folder, on your desktop, or anywhere at all – just so long as there’s a way of getting to it quickly, such as putting a link to it in Windows Explorer’s “Favorite Links” area: Tip #32.  Create a Folder for Files and Folders that You Regularly Open You will always have a few files that you open regularly, whether it be a spreadsheet of your current accounts, or a favorite playlist.  These are not necessarily “current projects”, rather they’re simply files that you always find yourself opening.  Typically such files would be located on your desktop (or even better, shortcuts to those files).  Why not collect all such shortcuts together and put them in their own special folder? As with the “Current Projects” folder (above), you would want to locate that folder somewhere convenient.  Below is an example of a folder called “Quick links”, with about seven files (shortcuts) in it, that is accessible through the Windows Quick Launch bar: See tip #37 below for a full explanation of the power of the Quick Launch bar. Tip #33.  Create a “Set-ups” Folder A typical computer has dozens of applications installed on it.  For each piece of software, there are often many different pieces of information you need to keep track of, including: The original installation setup file(s).  This can be anything from a simple 100Kb setup.exe file you downloaded from a website, all the way up to a 4Gig ISO file that you copied from a DVD-ROM that you purchased. The home page of the software manufacturer (in case you need to look up something on their support pages, their forum or their online help) The page containing the download link for your actual file (in case you need to re-download it, or download an upgraded version) The serial number Your proof-of-purchase documentation Any other template files, plug-ins, themes, etc that also need to get installed For each piece of software, it’s a great idea to gather all of these files together and put them in a single folder.  The folder can be the name of the software (plus possibly a very brief description of what it’s for – in case you can’t remember what the software does based in its name).  Then you would gather all of these folders together into one place, and call it something like “Software” or “Setups”. If you have enough of these folders (I have several hundred, being a geek, collected over 20 years), then you may want to further categorize them.  My own categorization structure is based on “platform” (operating system): The last seven folders each represents one platform/operating system, while _Operating Systems contains set-up files for installing the operating systems themselves.  _Hardware contains ROMs for hardware I own, such as routers. Within the Windows folder (above), you can see the beginnings of the vast library of software I’ve compiled over the years: An example of a typical application folder looks like this: Tip #34.  Have a “Settings” Folder We all know that our documents are important.  So are our photos and music files.  We save all of these files into folders, and then locate them afterwards and double-click on them to open them.  But there are many files that are important to us that can’t be saved into folders, and then searched for and double-clicked later on.  These files certainly contain important information that we need, but are often created internally by an application, and saved wherever that application feels is appropriate. A good example of this is the “PST” file that Outlook creates for us and uses to store all our emails, contacts, appointments and so forth.  Another example would be the collection of Bookmarks that Firefox stores on your behalf. And yet another example would be the customized settings and configuration files of our all our software.  Granted, most Windows programs store their configuration in the Registry, but there are still many programs that use configuration files to store their settings. Imagine if you lost all of the above files!  And yet, when people are backing up their computers, they typically only back up the files they know about – those that are stored in the “My Documents” folder, etc.  If they had a hard disk failure or their computer was lost or stolen, their backup files would not include some of the most vital files they owned.  Also, when migrating to a new computer, it’s vital to ensure that these files make the journey. It can be a very useful idea to create yourself a folder to store all your “settings” – files that are important to you but which you never actually search for by name and double-click on to open them.  Otherwise, next time you go to set up a new computer just the way you want it, you’ll need to spend hours recreating the configuration of your previous computer! So how to we get our important files into this folder?  Well, we have a few options: Some programs (such as Outlook and its PST files) allow you to place these files wherever you want.  If you delve into the program’s options, you will find a setting somewhere that controls the location of the important settings files (or “personal storage” – PST – when it comes to Outlook) Some programs do not allow you to change such locations in any easy way, but if you get into the Registry, you can sometimes find a registry key that refers to the location of the file(s).  Simply move the file into your Settings folder and adjust the registry key to refer to the new location. Some programs stubbornly refuse to allow their settings files to be placed anywhere other then where they stipulate.  When faced with programs like these, you have three choices:  (1) You can ignore those files, (2) You can copy the files into your Settings folder (let’s face it – settings don’t change very often), or (3) you can use synchronization software, such as the Windows Briefcase, to make synchronized copies of all your files in your Settings folder.  All you then have to do is to remember to run your sync software periodically (perhaps just before you run your backup software!). There are some other things you may decide to locate inside this new “Settings” folder: Exports of registry keys (from the many applications that store their configurations in the Registry).  This is useful for backup purposes or for migrating to a new computer Notes you’ve made about all the specific customizations you have made to a particular piece of software (so that you’ll know how to do it all again on your next computer) Shortcuts to webpages that detail how to tweak certain aspects of your operating system or applications so they are just the way you like them (such as how to remove the words “Shortcut to” from the beginning of newly created shortcuts).  In other words, you’d want to create shortcuts to half the pages on the How-To Geek website! Here’s an example of a “Settings” folder: Windows Features that Help with Organization This section details some of the features of Microsoft Windows that are a boon to anyone hoping to stay optimally organized. Tip #35.  Use the “Favorite Links” Area to Access Oft-Used Folders Once you’ve created your great new filing system, work out which folders you access most regularly, or which serve as great starting points for locating the rest of the files in your folder structure, and then put links to those folders in your “Favorite Links” area of the left-hand side of the Windows Explorer window (simply called “Favorites” in Windows 7):   Some ideas for folders you might want to add there include: Your “Inbox” folder (or whatever you’ve called it) – most important! The base of your filing structure (e.g. C:\Files) A folder containing shortcuts to often-accessed folders on other computers around the network (shown above as Network Folders) A folder containing shortcuts to your current projects (unless that folder is in your “Inbox” folder) Getting folders into this area is very simple – just locate the folder you’re interested in and drag it there! Tip #36.  Customize the Places Bar in the File/Open and File/Save Boxes Consider the screenshot below: The highlighted icons (collectively known as the “Places Bar”) can be customized to refer to any folder location you want, allowing instant access to any part of your organizational structure. Note:  These File/Open and File/Save boxes have been superseded by new versions that use the Windows Vista/Windows 7 “Favorite Links”, but the older versions (shown above) are still used by a surprisingly large number of applications. The easiest way to customize these icons is to use the Group Policy Editor, but not everyone has access to this program.  If you do, open it up and navigate to: User Configuration > Administrative Templates > Windows Components > Windows Explorer > Common Open File Dialog If you don’t have access to the Group Policy Editor, then you’ll need to get into the Registry.  Navigate to: HKEY_CURRENT_USER \ Software \ Microsoft  \ Windows \ CurrentVersion \ Policies \ comdlg32 \ Placesbar It should then be easy to make the desired changes.  Log off and log on again to allow the changes to take effect. Tip #37.  Use the Quick Launch Bar as a Application and File Launcher That Quick Launch bar (to the right of the Start button) is a lot more useful than people give it credit for.  Most people simply have half a dozen icons in it, and use it to start just those programs.  But it can actually be used to instantly access just about anything in your filing system: For complete instructions on how to set this up, visit our dedicated article on this topic. Tip #38.  Put a Shortcut to Windows Explorer into Your Quick Launch Bar This is only necessary in Windows Vista and Windows XP.  The Microsoft boffins finally got wise and added it to the Windows 7 Superbar by default. Windows Explorer – the program used for managing your files and folders – is one of the most useful programs in Windows.  Anyone who considers themselves serious about being organized needs instant access to this program at any time.  A great place to create a shortcut to this program is in the Windows XP and Windows Vista “Quick Launch” bar: To get it there, locate it in your Start Menu (usually under “Accessories”) and then right-drag it down into your Quick Launch bar (and create a copy). Tip #39.  Customize the Starting Folder for Your Windows 7 Explorer Superbar Icon If you’re on Windows 7, your Superbar will include a Windows Explorer icon.  Clicking on the icon will launch Windows Explorer (of course), and will start you off in your “Libraries” folder.  Libraries may be fine as a starting point, but if you have created yourself an “Inbox” folder, then it would probably make more sense to start off in this folder every time you launch Windows Explorer. To change this default/starting folder location, then first right-click the Explorer icon in the Superbar, and then right-click Properties:Then, in Target field of the Windows Explorer Properties box that appears, type %windir%\explorer.exe followed by the path of the folder you wish to start in.  For example: %windir%\explorer.exe C:\Files If that folder happened to be on the Desktop (and called, say, “Inbox”), then you would use the following cleverness: %windir%\explorer.exe shell:desktop\Inbox Then click OK and test it out. Tip #40.  Ummmmm…. No, that’s it.  I can’t think of another one.  That’s all of the tips I can come up with.  I only created this one because 40 is such a nice round number… Case Study – An Organized PC To finish off the article, I have included a few screenshots of my (main) computer (running Vista).  The aim here is twofold: To give you a sense of what it looks like when the above, sometimes abstract, tips are applied to a real-life computer, and To offer some ideas about folders and structure that you may want to steal to use on your own PC. Let’s start with the C: drive itself.  Very minimal.  All my files are contained within C:\Files.  I’ll confine the rest of the case study to this folder: That folder contains the following: Mark: My personal files VC: My business (Virtual Creations, Australia) Others contains files created by friends and family Data contains files from the rest of the world (can be thought of as “public” files, usually downloaded from the Net) Settings is described above in tip #34 The Data folder contains the following sub-folders: Audio:  Radio plays, audio books, podcasts, etc Development:  Programmer and developer resources, sample source code, etc (see below) Humour:  Jokes, funnies (those emails that we all receive) Movies:  Downloaded and ripped movies (all legal, of course!), their scripts, DVD covers, etc. Music:  (see below) Setups:  Installation files for software (explained in full in tip #33) System:  (see below) TV:  Downloaded TV shows Writings:  Books, instruction manuals, etc (see below) The Music folder contains the following sub-folders: Album covers:  JPEG scans Guitar tabs:  Text files of guitar sheet music Lists:  e.g. “Top 1000 songs of all time” Lyrics:  Text files MIDI:  Electronic music files MP3 (representing 99% of the Music folder):  MP3s, either ripped from CDs or downloaded, sorted by artist/album name Music Video:  Video clips Sheet Music:  usually PDFs The Data\Writings folder contains the following sub-folders: (all pretty self-explanatory) The Data\Development folder contains the following sub-folders: Again, all pretty self-explanatory (if you’re a geek) The Data\System folder contains the following sub-folders: These are usually themes, plug-ins and other downloadable program-specific resources. The Mark folder contains the following sub-folders: From Others:  Usually letters that other people (friends, family, etc) have written to me For Others:  Letters and other things I have created for other people Green Book:  None of your business Playlists:  M3U files that I have compiled of my favorite songs (plus one M3U playlist file for every album I own) Writing:  Fiction, philosophy and other musings of mine Mark Docs:  Shortcut to C:\Users\Mark Settings:  Shortcut to C:\Files\Settings\Mark The Others folder contains the following sub-folders: The VC (Virtual Creations, my business – I develop websites) folder contains the following sub-folders: And again, all of those are pretty self-explanatory. Conclusion These tips have saved my sanity and helped keep me a productive geek, but what about you? What tips and tricks do you have to keep your files organized?  Please share them with us in the comments.  Come on, don’t be shy… Similar Articles Productive Geek Tips Fix For When Windows Explorer in Vista Stops Showing File NamesWhy Did Windows Vista’s Music Folder Icon Turn Yellow?Print or Create a Text File List of the Contents in a Directory the Easy WayCustomize the Windows 7 or Vista Send To MenuAdd Copy To / Move To on Windows 7 or Vista Right-Click Menu TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Acronis Online Backup DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows Track Daily Goals With 42Goals Video Toolbox is a Superb Online Video Editor Fun with 47 charts and graphs Tomorrow is Mother’s Day Check the Average Speed of YouTube Videos You’ve Watched OutlookStatView Scans and Displays General Usage Statistics

    Read the article

  • SQL SERVER – SSMS: Memory Usage By Memory Optimized Objects Report

    - by Pinal Dave
    At conferences and at speaking engagements at the local UG, there is one question that keeps on coming which I wish were never asked. The question around, “Why is SQL Server using up all the memory and not releasing even when idle?” Well, the answer can be long and with the release of SQL Server 2014, this got even more complicated. This release of SQL Server 2014 has the option of introducing In-Memory OLTP which is completely new concept and our dependency on memory has increased multifold. In reality, nothing much changes but we have memory optimized objects (Tables and Stored Procedures) additional which are residing completely in memory and improving performance. As a DBA, it is humanly impossible to get a hang of all the innovations and the new features introduced in the next version. So today’s blog is around the report added to SSMS which gives a high level view of this new feature addition. This reports is available only from SQL Server 2014 onwards because the feature was introduced in SQL Server 2014. Earlier versions of SQL Server Management Studio would not show the report in the list. If we try to launch the report on the database which is not having In-Memory File group defined, then we would see the message in report. To demonstrate, I have created new fresh database called MemoryOptimizedDB with no special file group. Here is the query used to identify whether a database has memory-optimized file group or not. SELECT TOP(1) 1 FROM sys.filegroups FG WHERE FG.[type] = 'FX' Once we add filegroup using below command, we would see different version of report. USE [master] GO ALTER DATABASE [MemoryOptimizedDB] ADD FILEGROUP [IMO_FG] CONTAINS MEMORY_OPTIMIZED_DATA GO The report is still empty because we have not defined any Memory Optimized table in the database.  Total allocated size is shown as 0 MB. Now, let’s add the folder location into the filegroup and also created few in-memory tables. We have used the nomenclature of IMO to denote “InMemory Optimized” objects. USE [master] GO ALTER DATABASE [MemoryOptimizedDB] ADD FILE ( NAME = N'MemoryOptimizedDB_IMO', FILENAME = N'E:\Program Files\Microsoft SQL Server\MSSQL12.SQL2014\MSSQL\DATA\MemoryOptimizedDB_IMO') TO FILEGROUP [IMO_FG] GO You may have to change the path based on your SQL Server configuration. Below is the script to create the table. USE MemoryOptimizedDB GO --Drop table if it already exists. IF OBJECT_ID('dbo.SQLAuthority','U') IS NOT NULL DROP TABLE dbo.SQLAuthority GO CREATE TABLE dbo.SQLAuthority ( ID INT IDENTITY NOT NULL, Name CHAR(500)  COLLATE Latin1_General_100_BIN2 NOT NULL DEFAULT 'Pinal', CONSTRAINT PK_SQLAuthority_ID PRIMARY KEY NONCLUSTERED (ID), INDEX hash_index_sample_memoryoptimizedtable_c2 HASH (Name) WITH (BUCKET_COUNT = 131072) ) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA) GO As soon as above script is executed, table and index both are created. If we run the report again, we would see something like below. Notice that table memory is zero but index is using memory. This is due to the fact that hash index needs memory to manage the buckets created. So even if table is empty, index would consume memory. More about the internals of how In-Memory indexes and tables work will be reserved for future posts. Now, use below script to populate the table with 10000 rows INSERT INTO SQLAuthority VALUES (DEFAULT) GO 10000 Here is the same report after inserting 1000 rows into our InMemory table.    There are total three sections in the whole report. Total Memory consumed by In-Memory Objects Pie chart showing memory distribution based on type of consumer – table, index and system. Details of memory usage by each table. The information about all three is taken from one single DMV, sys.dm_db_xtp_table_memory_stats This DMV contains memory usage statistics for both user and system In-Memory tables. If we query the DMV and look at data, we can easily notice that the system tables have negative object IDs.  So, to look at user table memory usage, below is the over-simplified version of query. USE MemoryOptimizedDB GO SELECT OBJECT_NAME(OBJECT_ID), * FROM sys.dm_db_xtp_table_memory_stats WHERE OBJECT_ID > 0 GO This report would help DBA to identify which in-memory object taking lot of memory which can be used as a pointer for designing solution. I am sure in future we will discuss at lengths the whole concept of In-Memory tables in detail over this blog. To read more about In-Memory OLTP, have a look at In-Memory OLTP Series at Balmukund’s Blog. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Server Management Studio, SQL Tips and Tricks, T SQL Tagged: SQL Memory, SQL Reports

    Read the article

  • Python Memory leak - Solved, but still puzzled

    - by disappearedng
    Dear everyone, I have successfully debugged my own memory leak problems. However, I have noticed some very strange occurence. for fid, fv in freqDic.iteritems(): outf.write(fid+"\t") #ID for i, term in enumerate(domain): #Vector tfidf = self.tf(term, fv) * self.idf( term, docFreqDic) if i == len(domain) - 1: outf.write("%f\n" % tfidf) else: outf.write("%f\t" % tfidf) outf.flush() print "Memory increased by", int(self.memory_mon.usage()) - startMemory outf.close() def tf(self, term, freqVector): total = freqVector[TOTAL] if total == 0: return 0 if term not in freqVector: ## When you don't have these lines memory leaks occurs return 0 ## return float(freqVector[term]) / freqVector[TOTAL] def idf(self, term, docFrequencyPerTerm): if term not in docFrequencyPerTerm: return 0 return math.log( float(docFrequencyPerTerm[TOTAL])/docFrequencyPerTerm[term]) Basically let me describe my problem: 1) I am doing tfidf calculations 2) I traced that the source of memory leaks is coming from defaultdict. 3) I am using the memory_mon from http://stackoverflow.com/questions/276052/how-to-get-current-cpu-and-ram-usage-in-python 4) The reason for my memory leaks is as follows: a) in self.tf, if the lines: if term not in freqVector: return 0 are not added that will cause the memory leak. (I verified this myself using memory_mon and noticed a sharp increase in memory that kept on increasing) The solution to my problem was 1) since fv is a defaultdict, any reference to it that are not found in fv will create an entry. Over a very large domain, this will cause memory leaks. I decided to use dict instead of default dict and the memory problem did go away. My only puzzle is: since fv is created in "for fid, fv in freqDic.iteritems():" shouldn't fv be destroyed at the end of every for loop? I tried putting gc.collect() at the end of the for loop but gc was not able to collect everything (returns 0). Yes, the hypothesis is right, but the memory should stay fairly consistent with ever for loop if for loops do destroy all temp variables. This is what it looks like with that two line in self.tf: Memory increased by 12 Memory increased by 948 Memory increased by 28 Memory increased by 36 Memory increased by 36 Memory increased by 32 Memory increased by 28 Memory increased by 32 Memory increased by 32 Memory increased by 32 Memory increased by 40 Memory increased by 32 Memory increased by 32 Memory increased by 28 and without the the two line: Memory increased by 1652 Memory increased by 3576 Memory increased by 4220 Memory increased by 5760 Memory increased by 7296 Memory increased by 8840 Memory increased by 10456 Memory increased by 12824 Memory increased by 13460 Memory increased by 15000 Memory increased by 17448 Memory increased by 18084 Memory increased by 19628 Memory increased by 22080 Memory increased by 22708 Memory increased by 24248 Memory increased by 26704 Memory increased by 27332 Memory increased by 28864 Memory increased by 30404 Memory increased by 32856 Memory increased by 33552 Memory increased by 35024 Memory increased by 36564 Memory increased by 39016 Memory increased by 39924 Memory increased by 42104 Memory increased by 42724 Memory increased by 44268 Memory increased by 46720 Memory increased by 47352 Memory increased by 48952 Memory increased by 50428 Memory increased by 51964 Memory increased by 53508 Memory increased by 55960 Memory increased by 56584 Memory increased by 58404 Memory increased by 59668 Memory increased by 61208 Memory increased by 62744 Memory increased by 64400 I look forward to your answer

    Read the article

  • Memory mapped files causes low physical memory

    - by harik
    I have a 2GB RAM and running a memory intensive application and going to low available physical memory state and system is not responding to user actions, like opening any application or menu invocation etc. How do I trigger or tell the system to swap the memory to pagefile and free physical memory? I'm using Windows XP. If I run the same application on 4GB RAM machine it is not the case, system response is good. After getting choked of available physical memory system automatically swaps to pagefile and free physical memory, not that bad as 2GB system. To overcome this problem (on 2GB machine) attempted to use memory mapped files for large dataset which are allocated by application. In this case virtual memory of the application(process) is fine but system cache is high and same problem as above that physical memory is less. Even though memory mapped file is not mapped to process virtual memory system cache is high. why???!!! :( Any help is appreciated. Thanks.

    Read the article

  • Increase the size of a memory mapped file

    - by sandun dhammika
    I am maintaning a memory mapped file to store my tree like datastructure. When I'm updating the datastructure ,I got this problem. The file is limited on it's size and can't be too long or too small. I have a methods like void mapfile_insert_record(RECORD* /* record*/); void mapfile_modify_record(RECORD* /* record*/); Both operations could lead to exceed the space which is free on memory file. How do I overcome this? What strategy I should use. calculate whether it requires to exceed the file as a pre-condition on both methods. Dynamically exceed it , for a example manage a timer and constantly polling file for it's free avaliable size and then automatically extend it. Any ideas or patterns to overcome this problem?

    Read the article

  • Ubuntu virtual memory caches suck up memory

    - by Tom
    Hey all, I've got an Ubuntu 9.10 64-bit server that seems to use up all available memory. According to my munin graphs, almost all of the memory used up is in the swap cache, cache, and slab cache. (I take this to mean virtual memory caches, am I right in assuming this?) Once memory usage approaches 100%, some (although not all) system services such as SSH become sluggish and unresponsive. After rebooting the system, performance and memory usage become normal for a time. Some interesting tidbits: The system runs Apache 2, MySQL, Munin, and sshd. The memory usage spikes happen at the same time every night (at 10 PM sharp.) There appears to be nothing in the crontab for any of the users, and nothing in /etc/cron.d/* out of the ordinary, let alone something that would occur at 10 PM. My question is, how do I figure out what is causing the memory suckage? I've tried the usual utilities (e.g. ps, top, etc) but I can't seem to find anything unusual. Any ideas? Thanks in advance!

    Read the article

  • Oracle’s New Memory-Optimized x86 Servers: Getting the Most Out of Oracle Database In-Memory

    - by Josh Rosen, x86 Product Manager-Oracle
    With the launch of Oracle Database In-Memory, it is now possible to perform real-time analytics operations on your business data as it exists at that moment – in the DRAM of the server – and immediately return completely current and consistent data. The Oracle Database In-Memory option dramatically accelerates the performance of analytics queries by storing data in a highly optimized columnar in-memory format.  This is a truly exciting advance in database technology.As Larry Ellison mentioned in his recent webcast about Oracle Database In-Memory, queries run 100 times faster simply by throwing a switch.  But in order to get the most from the Oracle Database In-Memory option, the underlying server must also be memory-optimized. This week Oracle announced new 4-socket and 8-socket x86 servers, the Sun Server X4-4 and Sun Server X4-8, both of which have been designed specifically for Oracle Database In-Memory.  These new servers use the fastest Intel® Xeon® E7 v2 processors and each subsystem has been designed to be the best for Oracle Database, from the memory, I/O and flash technologies right down to the system firmware.Amongst these subsystems, one of the most important aspects we have optimized with the Sun Server X4-4 and Sun Server X4-8 are their memory subsystems.  The new In-Memory option makes it possible to select which parts of the database should be memory optimized.  You can choose to put a single column or table in memory or, if you can, put the whole database in memory.  The more, the better.  With 3 TB and 6 TB total memory capacity on the Sun Server X4-4 and Sun Server X4-8, respectively, you can memory-optimize more, if not your entire database.   Sun Server X4-8 CMOD with 24 DIMM slots per socket (up to 192 DIMM slots per server) But memory capacity is not the only important factor in selecting the best server platform for Oracle Database In-Memory.  As you put more of your database in memory, a critical performance metric known as memory bandwidth comes into play.  The total memory bandwidth for the server will dictate the rate in which data can be stored and retrieved from memory.  In order to achieve real-time analysis of your data using Oracle Database In-Memory, even under heavy load, the server must be able to handle extreme memory workloads.  With that in mind, the Sun Server X4-8 was designed with the maximum possible memory bandwidth, providing over a terabyte per second of total memory bandwidth.  Likewise, the Sun Server X4-4 also provides extreme memory bandwidth in an even more compact form factor with over half a terabyte per second, providing customers with scalability and choice depending on the size of the database.Beyond the memory subsystem, Oracle’s Sun Server X4-4 and Sun Server X4-8 systems provide other key technologies that enable Oracle Database to run at its best.  The Sun Server X4-4 allows for up 4.8 TB of internal, write-optimized PCIe flash while the Sun Server X4-8 allows for up to 6.4 TB of PCIe flash.  This enables dramatic acceleration of data inserts and updates to Oracle Database.  And with the new elastic computing capability of Oracle’s new x86 servers, server performance can be adapted to your specific Oracle Database workload to ensure that every last bit of processing power is utilized.Because Oracle designs and tests its x86 servers specifically for Oracle workloads, we provide the highest possible performance and reliability when running Oracle Database.  To learn more about Sun Server X4-4 and Sun Server X4-8, you can find more details including data sheets and white papers here. Josh Rosen is a Principal Product Manager for Oracle’s x86 servers, focusing on Oracle’s operating systems and software.  He previously spent more than a decade as a developer and architect of system management software. Josh has worked on system management for many of Oracle's hardware products ranging from the earliest blade systems to the latest Oracle x86 servers. 

    Read the article

  • How to disable Mac OS X from using swap when there still is "Inactive" memory?

    - by Motin
    A common phenomena in my day to day usage (and several other's according to various posts throughout the internet) of OS X, the system seems to become slow whenever there is no more "Free" memory available. Supposedly, this is due to swapping, since heavy disk activity is apparent and that vm_stat reports many pageouts. (Correct me from wrong) However, the amount of "Inactive" ram is typically around 12.5%-25% of all available memory (^1.) when swapping starts/occurs/ends. According to http://support.apple.com/kb/ht1342 : Inactive memory This information in memory is not actively being used, but was recently used. For example, if you've been using Mail and then quit it, the RAM that Mail was using is marked as Inactive memory. This Inactive memory is available for use by another application, just like Free memory. However, if you open Mail before its Inactive memory is used by a different application, Mail will open quicker because its Inactive memory is converted to Active memory, instead of loading Mail from the slower hard disk. And according to http://developer.apple.com/library/mac/#documentation/Performance/Conceptual/ManagingMemory/Articles/AboutMemory.html : The inactive list contains pages that are currently resident in physical memory but have not been accessed recently. These pages contain valid data but may be released from memory at any time. So, basically: When a program has quit, it's memory becomes marked as Inactive and should be claimable at any time. Still, OS X will prefer to start swapping out memory to the Swap file instead of just claiming this memory, whenever the "Free" memory gets to low. Why? What is the advantage of this behavior over, say, instantly releasing Inactive memory and not even touch the swap file? Some sources (^2.) indicate that OS X would page out the "Inactive" memory to swap before releasing it, but that doesn't make sense now does it if the memory may be released from memory at any time? Swapping is expensive, releasing is cheap, right? Can this behavior be changed using some preference or known hack? (Preferably one that doesn't include disabling swap/dynamic_pager altogether and restarting...) I do appreciate the purge command, as well as the concept of Repairing disk permissions to force some Free memory, but those are ways to painfully force more Free memory than to actually fixing the swap/release decision logic... Btw a similar question was asked here: http://forums.macnn.com/90/mac-os-x/434650/why-does-os-x-swap-when/ and here: http://hintsforums.macworld.com/showthread.php?t=87688 but even though the OPs re-asked the core question, none of the replies addresses an answer to it... ^1. UPDATE 17-mar-2012 Since I first posted this question, I have gone from 4gb to 8gb of installed ram, and the problem remains. The amount of "Inactive" ram was 0.5gb-1.0gb before and is now typically around 1.0-2.0GB when swapping starts/occurs/ends, ie it seems that around 12.5%-25% of the ram is preserved as Inactive by osx kernel logic. ^2. For instance http://apple.stackexchange.com/questions/4288/what-does-it-mean-if-i-have-lots-of-inactive-memory-at-the-end-of-a-work-day : Once all your memory is used (free memory is 0), the OS will write out inactive memory to the swapfile to make more room in active memory. UPDATE 17-mar-2012 Here is a round-up of the methods that have been suggested to help so far: The purge command "Used to approximate initial boot conditions with a cold disk buffer cache for performance analysis. It does not affect anonymous memory that has been allocated through malloc, vm_allocate, etc". This is useful to prevent osx to swap-out the disk cache (which is ridiculous that osx actually does so in the first place), but with the downside that the disk cache is released, meaning that if the disk cache was not about to be swapped out, one would simply end up with a cold disk buffer cache, probably affecting performance negatively. The FreeMemory app and/or Repairing disk permissions to force some Free memory Doesn't help releasing any memory, only moving some gigabytes of memory contents from ram to the hd. In the end, this causes lots of swap-ins when I attempt to use the applications that were open while freeing memory, as a lot of its vm is now on swap. Speeding up swap-allocation using dynamicpagerwrapper Seems a good thing to do in order to speed up swap-usage, but does not address the problem of osx swapping in the first place while there is still inactive memory. Disabling swap by disabling dynamicpager and restarting This will force osx not to use swap to the price of the system hanging when all memory is used. Not a viable alternative... Disabling swap using a hacked dynamicpager Similar to disabling dynamicpager above, some excerpts from the comments to the blog post indicate that this is not a viable solution: "The Inactive Memory is high as usual". "when your system is running out of memory, the whole os hangs...", "if you consume the whole amount of memory of the mac, the machine will likely hang" To sum up, I am still unaware of a way of disabling Mac OS X from using swap when there still is "Inactive" memory. If it isn't possible, maybe at least there is an explanation somewhere of why osx prefers to swap out memory that may be released from memory at any time?

    Read the article

  • dpkg: warning: files list file for package 'x' missing

    - by Mark
    I get this warning for several packages every time I install any package or perform apt-get upgrade. Not sure what is causing it; it's a fresh Debian install on my OpenVZ server and I haven't changed any dpkg settings. Here's an example: root@debian:~# apt-get install cowsay Reading package lists... Done Building dependency tree Reading state information... Done Suggested packages: filters The following NEW packages will be installed: cowsay 0 upgraded, 1 newly installed, 0 to remove and 0 not upgraded. Need to get 21.9 kB of archives. After this operation, 91.1 kB of additional disk space will be used. Get:1 http://ftp.us.debian.org/debian/ unstable/main cowsay all 3.03+dfsg1-4 [21.9 kB] Fetched 21.9 kB in 0s (70.2 kB/s) Selecting previously unselected package cowsay. dpkg: warning: files list file for package 'libssh2-1:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libkrb5-3:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libwrap0:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libcap2:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libpam-ck-connector:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libc6:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libtalloc2:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libselinux1:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libp11-kit0:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libavahi-client3:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libbz2-1.0:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libpcre3:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libgpm2:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libgnutls26:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libavahi-common3:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libcroco3:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'liblzma5:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libpaper1:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libsensors4:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libbsd0:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libavahi-common-data:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libss2:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libblkid1:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libslang2:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libacl1:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libcomerr2:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libkrb5support0:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'e2fslibs:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'librtmp0:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libidn11:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libpcap0.8:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libattr1:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libdevmapper1.02.1:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'odbcinst1debian2:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libexpat1:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libltdl7:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libkeyutils1:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libcups2:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libsqlite3-0:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libck-connector0:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'zlib1g:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libnl1:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libfontconfig1:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libudev0:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libsepol1:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libmagic1:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libk5crypto3:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libunistring0:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libgpg-error0:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libusb-0.1-4:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libpam0g:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libpopt0:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libgssapi-krb5-2:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libgeoip1:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libcurl3-gnutls:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libtasn1-3:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libuuid1:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libgcrypt11:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libgdbm3:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libdbus-1-3:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libsysfs2:amd64' missing; assuming package has no files currently installed dpkg: warning: files list file for package 'libfreetype6:amd64' missing; assuming package has no files currently installed (Reading database ... 21908 files and directories currently installed.) Unpacking cowsay (from .../cowsay_3.03+dfsg1-4_all.deb) ... Processing triggers for man-db ... Setting up cowsay (3.03+dfsg1-4) ... root@debian:~# Everything works fine, but these warning messages are pretty annoying. Does anyone know how I can fix this?

    Read the article

  • Video memory buswidth vs video memory Bandwidth

    - by Mixxiphoid
    My current video card (9600GT) is dying and I'm searching for a new video card. Between acquiring my current one and now, I got a lot more knowledge about hardware and I want to use that to pick my new card. So I decided to not just buy some popular card blindly, but to search for a card able to handle my hardware requirements. I searched the specs at the NVidia site for the GT640 and was confused by the memory section and some questions raised. My current card's memory bus width is 256bit and has 1GB of memory. I checked Google about the importance of bus width. And all the links basically said the same 'The higher the number the more potential simultaneously traffic can be transferred'. This was already clear to me, yet there are currently a lot of new cards which are considered better than my current one with a lower bus width. To go in more detail about my question I copied the memory info from the NVidia site: GT 640 GT640 GDDR5 Memory Specs: Memory Clock 1.8 Gbps 5.0 Gbps Standard Memory Config 2048 MB 1024 MB Memory Interface DDR3 GDDR5 Memory Interface Width 128-bit 64-bit Memory Bandwidth (GB/sec) 28.5 40.0 What puzzled me is that the Memory Bandwidth seems to me the most important part, yet the lower bus width has the higher 'performance'. Is this due to the fact the memory interface is GDDR5 and is therefore able to have a higher memory clock speed (5Gbps)? If I am to buy a new video card, should I check the bus width? Memory clock? Bandwith? Amount of memory? My current card ahs 1GB memory, so I was searching for a 2GB memory card, but now I'm not so sure any more whether that is really 'better'. My main question: To me it seems that memory performance is made up by the combination of bus width and frequency. Is this true? If yes, why are there so many sites telling me I need to get a card with a high bus width? If no, then what IS important when it goes about memory performance on a video card. NOTE: The memory bandwidth is (almost) never displayed on vendor sites. How can I determine which card is better without knowing the bandwith?

    Read the article

  • Dynamic Memory Allocation and Memory Management

    - by Bunkai.Satori
    In an average game, there are hundreds or maybe thousands of objects in the scene. Is it completely correct to allocate memory for all objects, including gun shots (bullets), dynamically via default new()? Should I create any memory pool for dynamic allocation, or is there no need to bother with this? What if the target platform are mobile devices? Is there a need for a memory manager in a mobile game, please? Thank you. Language Used: C++; Currently developed under Windows, but planned to be ported later.

    Read the article

  • Unable to create linen from mapped file console error

    - by TheLearner
    Does anyone know what the following logged error messages from console is all about - I am trying to track down the cause of a kernal panic I experienced yesterday: 13/01/2011 09:59:26 SpringBoard[2048] Unable to create linen from mapped file 13/01/2011 09:59:26 SpringBoard[2048] Unable to create linen from mapped file 13/01/2011 09:59:26 SpringBoard[2048] Unable to create linen from mapped file 13/01/2011 09:59:26 SpringBoard[2048] Unable to create linen from mapped file 13/01/2011 09:59:26 SpringBoard[2048] Unable to create linen from mapped file 13/01/2011 09:59:26 SpringBoard[2048] Unable to create linen from mapped file 13/01/2011 09:59:26 SpringBoard[2048] Unable to create linen from mapped file 13/01/2011 09:59:27 SpringBoard[2048] Unable to create linen from mapped file 13/01/2011 09:59:27 SpringBoard[2048] Unable to create linen from mapped file 13/01/2011 09:59:27 SpringBoard[2048] Unable to create linen from mapped file 13/01/2011 09:59:27 SpringBoard[2048] Unable to create linen from mapped file 13/01/2011 09:59:27 SpringBoard[2048] Unable to create linen from mapped file 13/01/2011 09:59:27 SpringBoard[2048] Unable to create linen from mapped file 13/01/2011 09:59:27 SpringBoard[2048] Unable to create linen from mapped file 13/01/2011 09:59:27 SpringBoard[2048] Unable to create linen from mapped file 13/01/2011 09:59:27 SpringBoard[2048] Unable to create linen from mapped file 13/01/2011 09:59:27 SpringBoard[2048] Unable to create linen from mapped file 13/01/2011 09:59:27 SpringBoard[2048] Unable to create linen from mapped file 13/01/2011 09:59:27 SpringBoard[2048] Unable to create linen from mapped file 13/01/2011 09:59:27 SpringBoard[2048] Unable to create linen from mapped file 13/01/2011 09:59:27 SpringBoard[2048] Unable to create linen from mapped file 13/01/2011 09:59:27 SpringBoard[2048] Unable to create linen from mapped file

    Read the article

  • Coldfusion on VPS, how much JVM heap memory?

    - by Steven Filipowicz
    Recently I got a VPS server and I'm running Coldfusion, the website was running fine until it got more and more traffic and I started to encounter 'OutOfMemory' exceptions. I thought simply to rise the memory of the VPS server, but this didn't help. After doing some Google searches I found a setting in de CF Admin settings to set the JVM Heap memory. It was on the standard: Max Heap size 512MB and Min Heap size was empty. After playing around a bit I have now set it to Min 50MB and Max 200MB, good things is that I'm not getting the 'OutOfMemory' exceptions anymore. So far so good! But with about 50 active visitors on the website, the website starts to get slow. The CPU usage is only about 8% (Windows Taskmanager), also the taskmanager show only about 30% of the 3GB RAM in use. So I'm thinking that my values could be tweaked to use more of the RAM. Honestly I don't understand these JVM Memory heap settings, so I have no clue what is a good setting for me. I found a CF script that displays the memory usage, the details are: Heap Memory Usage - Committed 194 MB Heap Memory Usage - Initial 50.0 MB Heap Memory Usage - Max 194 MB Heap Memory Usage - Used 163 MB JVM - Free Memory 31.2 MB JVM - Max Memory 194 MB JVM - Total Memory 194 MB JVM - Used Memory 163 MB Memory Pool - Code Cache - Used 13.0 MB Memory Pool - PS Eden Space - Used 6.75 MB Memory Pool - PS Old Gen - Used 155 MB Memory Pool - PS Perm Gen - Used 64.2 MB Memory Pool - PS Survivor Space - Used 1.07 MB Non-Heap Memory Usage - Committed 77.4 MB Non-Heap Memory Usage - Initial 18.3 MB Non-Heap Memory Usage - Max 240 MB Non-Heap Memory Usage - Used 77.2 MB Free Allocated Memory: 30mb Total Memory Allocated: 194mb Max Memory Available to JVM: 194mb % of Free Allocated Memory: 16% % of Available Memory Allocated: 100% My JVM arguments are: -server -Dsun.io.useCanonCaches=false -XX:MaxPermSize=192m -XX:+UseParallelGC - Dcoldfusion.rootDir={application.home}/../ -Dcoldfusion.libPath={application.home}/../lib Can I give the JVM more memory? If so, what settings should I use? Thanks very much!!

    Read the article

  • Java / Tomcat memory leak in RedHat Linux?

    - by black-rocky
    Hi, I've got a Red Hat box with 6G memory running Tomcat and I'm trying to figure out how much memory I have left on the box. Problem is, top & jconsole is showing one figure (around 200M), and system monitor is showing a different figure (around 2G). Does anybody know what the difference is? I'm not sure if there is a memory leak happenning here, but the highest memory consumer is a tomcat process that's taking 2.2G of memory. Screenshots below:

    Read the article

  • iPad receiving memory warning with low memory use

    - by Fer
    I have an UIWebKit with a HTML, this HTML have several images and text, but just displaying it gives me the memory warning. So I did some tests: The same HTML with different images, fullsize, and after the same images but reduced 50% from it's original size, for the 50% reduced images, I went to preview and reduced all images in 50% The surprising part is the 50% test, you can see that even with 16 images, the memory peak is 4.90MB. That's really surprising. Notice that these values are not always the same, they change but there's not a huge difference between the tests. In the 50% issue, in the 8 and 16 images, although the memory is low, sometimes a memory warning appears, but the performance enhance is noticeable compared to the full size images standing still = memory after scrolling all article 1 Image = [standing still 5MB] [rotating 5.6MB] 2 Images = [standing still 6.99MB] [rotating 7.7MB] 3 Images = [standing still 9.04MB] [rotating 10.9MB] 4 Images = [standing still 10.89MB] [rotating 13.20MB] 8 Images = [standing still 23.14MB] [rotating 25.20MB] (sometimes crashes) 16 Images = [standing still 27.14MB and app crashes] 50% 1 Image = [standing still 3.2MB] [rotating 3.67MB] 2 Image = [standing still 3.2MB] [rotating 3.70MB] 3 Image = [standing still 3.3MB] [rotating 3.79MB] 4 Image = [standing still 3.3MB] [rotating 3.80MB] 8 Images = [standing still 4.29MB] [rotating 4,63MB] (sometimes crashes) 16 Images = [standing still 4.79MB] [rotating 4,90MB] (sometimes crashes) My question is: The app sometimes crashed with 16 small images. Why? The memory was much lower. What is the limit of memory use? These numbers are helpful if you also tell us the maximum. But, the maximum seemed different with the 50% size images. 13.2MB works for large images and 3.8 for small images. Anything higher sometimes crashes. That makes no sense.

    Read the article

  • release does not free up memory in low-memory condidtion

    - by user322945
    I am trying to follow the Apple's recommendation to handle low-memory warnings (found in Session 416 of WWDC 2009 videos) by freeing up resources used by freeing up my dataController object (referenced in my app delegate) that contains a large number of strings for read from a plist: - (void)applicationDidReceiveMemoryWarning:(UIApplication *)application { [_dataController release]; _dataController = nil; NSLog([NSString stringWithFormat:@"applicationDidReceiveMemoryWarning bottom... retain count:%i", [_dataController retainCount]]); } But when I run ObjectAlloc within Instruments and simulate a Low-Memory Condition, I don't see a decrease in the memory used by my app even though I see the NSLog statements written out and the retain count is zero for the object. I do pass references to the app delegate around to some of the view controllers. But the code above releases the reference to the _dataController object (containing the plist data) so I would expect the memory to be freed. Any help would be appreciated.

    Read the article

  • The Ideal Platform for Oracle Database 12c In-Memory and in-memory Applications

    - by Michael Palmeter (Engineered Systems Product Management)
    Oracle SuperCluster, Oracle's SPARC M6 and T5 servers, Oracle Solaris, Oracle VM Server for SPARC, and Oracle Enterprise Manager have been co-engineered with Oracle Database and Oracle applications to provide maximum In-Memory performance, scalability, efficiency and reliability for the most critical and demanding enterprise deployments. The In-Memory option for the Oracle Database 12c, which has just been released, has been specifically optimized for SPARC servers running Oracle Solaris. The unique combination of Oracle's M6 32 Terabytes Big Memory Machine and Oracle Database 12c In-Memory demonstrates 2X increase in OLTP performance and 100X increase in analytics response times, allowing complex analysis of incredibly large data sets at the speed of thought. Numerous unique enhancements, including the large cache on the SPARC M6 processor, massive 32 TB of memory, uniform memory access architecture, Oracle Solaris high-performance kernel, and Oracle Database SGA optimization, result in orders of magnitude better transaction processing speeds across a range of in-memory workloads. Oracle Database 12c In-Memory The Power of Oracle SuperCluster and In-Memory Applications (Video, 3:13) Oracle’s In-Memory applications Oracle E-Business Suite In-Memory Cost Management on the Oracle SuperCluster M6-32 (PDF) Oracle JD Edwards Enterprise One In-Memory Applications on Oracle SuperCluster M6-32 (PDF) Oracle JD Edwards Enterprise One In-Memory Sales Advisor on the SuperCluster M6-32 (PDF) Oracle JD Edwards Enterprise One Project Portfolio Management on the SuperCluster M6-32 (PDF)

    Read the article

  • Disable Memory Modules In BIOS for Testing Purposes (Optimize Nehalem/Gulftown Memory Performance)

    - by Bob
    I recently acquired an HP Z800 with two Intel Xeon X5650 (Gulftown) 6 core processors. The person that configured the system chose 16GB (8 x 2GB DDR3-1333). I'm assuming this person was unaware these processors have 3 memory channels and to optimize memory performance one should choose memory in multiples of three. Based on this information, I have a question: By entering the BIOS, can I disable the bank on each processor that has the single memory module? If so, will this have any adverse effects or behave differently than physically removing the modules? I ask due to the fact that I prefer to store the extra memory in the system if it truly behaves as if the memory is not even there. Also, I see this as an opportunity to test 12GB vs. 16GB to see if there is a noticeable difference. Note: According to http://www.delltechcenter.com/page/04-08-2009+-+Nehalem+and+Memory+Configurations?t=anon, the current configuration reduces the overall data transfer speed to 1066 and in addition, the memory bandwidth goes down by about 23%.

    Read the article

  • How can I configure Firefox to assume I have less memory?

    - by WoLpH
    Firefox has a few different settings that automatically get tuned based on the system ram. This is all great if you're running nothing besides Firefox, but when you're running half a dozen apps at the same time and they all assume that they can take a decent chunk of mem it just kills the box. Example settings: http://kb.mozillazine.org/Browser.sessionhistory.max_total_viewers http://kb.mozillazine.org/Browser.cache.memory.capacity How can I make Firefox automatically configure all these settings with the assumption that I only have 512MB of memory instead of 4GB (or whatever number, but you get the idea). I am running Ubuntu 12.04 with Firefox 14 Current workarounds: Running a Windows XP virtual machine with 512MB of ram. It actually runs smooth and takes less memory (including Windows) to run than having Firefox (or Chrome for that matter) run standalone. Install the 32 bit version of Firefox By installing the 32 bit version of firefox (apt-get install firefox:i386) the base memory usage is only about 50% of what it is with the 64 bit.

    Read the article

  • How to find number of memory accesses

    - by Sharat Chandra
    Can anybody tell me a unix command that can be used to find the number of memory accesses that took place in a given interval. vmstat, top and sar only give the amount of physical memory space occupied/available .. But do not give the number of memory of accesses in a given interval

    Read the article

1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >