Search Results

Search found 85 results on 4 pages for 'nonclustered'.

Page 1/4 | 1 2 3 4  | Next Page >

  • When SQL Server Nonclustered Indexes Are Faster Than Clustered Indexes

    SQL Server Clustered indexes can have enormous implications for performance of operations on a table. But are there times when a SQL Server non-clustered index would perform better than a clustered index for the same operation? Are there any trade-offs to consider? Check out this tip to learn more. Deployment Manager 2 is now free!The new version includes tons of new features and we've launched a completely free Starter Edition! Get Deployment Manager here

    Read the article

  • How to create nonclustered index in Create Table.

    - by isthatacode
    Create table FavoriteDish ( FavID int identity (1,1) primary key not null, DishID int references Dishes(DishID) not null , CelebrityName nvarchar(100) nonclustered not null ) This results in - Incorrect syntax near the keyword 'nonclustered'. I referred the MSDN help for create table syntax. I am not sure whats wrong here? Thanks for reading.

    Read the article

  • What noncluster index would be better to create on SQL Server?

    - by Junior Mayhé
    Here I am studying nonclustered indexes on SQL Server Management Studio. I've created a table with more than 1 million records. This table has a primary key. SELECT CustomerName FROM Customers Which leads the execution plan to show me: I/O cost = 3.45646 Operator cost = 4.57715 For the first attempt to improve performance, I've created a nonclustered index for this table: CREATE NONCLUSTERED INDEX [IX_CustomerID_CustomerName] ON [dbo].[Customers] ( [CustomerId] ASC, [CustomerName] ASC )WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF, IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY] GO With this first try, I've executed the select statement and the execution plan shows me: I/O cost = 2.79942 Operator cost = 3.92001 Now the second try, I've deleted this nonclustered index in order to create a new one. CREATE NONCLUSTERED INDEX [IX_CategoryName] ON [dbo].[Categories] ( [CategoryId] ASC ) INCLUDE ( [CategoryName]) WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF, IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY] GO With this second try, I've executed the select statement and the execution plan shows me the same result: I/O cost = 2.79942 Operator cost = 3.92001 Am I doing something wrong or this is expected? Shall I use the first nonclustered index with two fields, or the second nonclustered with one field (CategoryID) including the second field (CategoryName)?

    Read the article

  • Which non-clustered index should I use?

    - by Junior Mayhé
    Here I am studying nonclustered indexes on SQL Server Management Studio. I've created a table with more than 1 million records. This table has a primary key. CREATE TABLE [dbo].[Customers]( [CustomerId] [int] IDENTITY(1,1) NOT NULL, [CustomerName] [varchar](100) NOT NULL, [Deleted] [bit] NOT NULL, [Active] [bit] NOT NULL, CONSTRAINT [PK_Customers] PRIMARY KEY CLUSTERED ( [CustomerId] ASC )WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY] ) ON [PRIMARY] This is the query I'll be using to see what execution plan is showing: SELECT CustomerName FROM Customers Well, executing this command with no additional non-clustered index, it leads the execution plan to show me: I/O cost = 3.45646 Operator cost = 4.57715 Now I'm trying to see if it's possible to improve performance, so I've created a non-clustered index for this table: 1) First non-clustered index CREATE NONCLUSTERED INDEX [IX_CustomerID_CustomerName] ON [dbo].[Customers] ( [CustomerId] ASC, [CustomerName] ASC )WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF, IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY] GO Executing again the select against Customers table, the execution plan shows me: I/O cost = 2.79942 Operator cost = 3.92001 It seems better. Now I've deleted this just created non-clustered index, in order to create a new one: 2) First non-clustered index CREATE NONCLUSTERED INDEX [IX_CustomerIDIncludeCustomerName] ON [dbo].[Customers] ( [CustomerId] ASC ) INCLUDE ( [CustomerName]) WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF, IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY] GO With this new non-clustered index, I've executed the select statement again and the execution plan shows me the same result: I/O cost = 2.79942 Operator cost = 3.92001 So, which non-clustered index should I use? Why the costs are the same on execution plan for I/O and Operator? Am I doing something wrong or this is expected? thank you

    Read the article

  • Improve SQL Server 2005 Query Performance

    - by user366810
    I have a course search engine and when I try to do a search, it takes too long to show search results. You can try to do a search here http://76.12.87.164/cpd/testperformance.cfm At that page you can also see the database tables and indexes, if any. I'm not using Stored Procedures - the queries are inline using Coldfusion. I think I need to create some indexes but I'm not sure what kind (clustered, non-clustered) and on what columns. Thanks

    Read the article

  • Rebuilding indexes does not change the fragmentation % for nonclustered indexes.

    - by Noddy
    For starters, I am no DBA and I am working on rebuilding the indexes. I made use of the amazing TSQL script from msdn to alter index based onthe fragmente percent returned by dm_db_index_physical_stats and if the fragment percent is more than 30 then do a REBUILD or do a REORGANISE. What I found out was, in the first iteration, there were 87 records which needed defrag.I ran the script and all the 87 indexes (clustered & nonclustered) were rebuilt or reindexed. When I got the stats from dm_db_index_physical_stats , there were still 27 records which needed defrag and all of theses were NON CLUSTERED Indexes. All the Clustered indexes were fixed. No matter how many times I run the script to defrag these records, I still have the same indexes to be defraged and most of them with the same fragmentation %. Nothing seems to change after this. Note: I did not perform any inserts/ updates/ deletes to the tables during these iterations. Still the Rebuild/reorganise did not result in any change. More information: Using SQL 2008 Script as available in msdn http://msdn.microsoft.com/en-us/library/ms188917.aspx Could you please explain why these 27 records of non clustered indexes are not being changed/ modified ? Any help on this would be highly appreciated. Nod

    Read the article

  • SQL SERVER – Understanding ALTER INDEX ALL REBUILD with Disabled Clustered Index

    - by pinaldave
    This blog is in response to the ongoing communication with the reader who had earlier asked the question of SQL SERVER – Disable Clustered Index and Data Insert. The same reader has asked me the difference between ALTER INDEX ALL REBUILD and ALTER INDEX REBUILD along with disabled clustered index. Instead of writing a big theory, we will go over the demo right away. Here are the steps that we intend to follow. 1) Create Clustered and Nonclustered Index 2) Disable Clustered and Nonclustered Index 3) Enable – a) All Indexes, b) Clustered Index USE tempdb GO -- Drop Table if Exists IF EXISTS (SELECT * FROM sys.objects WHERE OBJECT_ID = OBJECT_ID(N'[dbo].[TableName]') AND type IN (N'U')) DROP TABLE [dbo].[TableName] GO -- Create Table CREATE TABLE [dbo].[TableName]( [ID] [int] NOT NULL, [FirstCol] [varchar](50) NULL ) GO -- Create Clustered Index ALTER TABLE [TableName] ADD CONSTRAINT [PK_TableName] PRIMARY KEY CLUSTERED ([ID] ASC) GO -- Create Nonclustered Index CREATE UNIQUE NONCLUSTERED INDEX [IX_NonClustered_TableName] ON [dbo].[TableName] ([FirstCol] ASC) GO -- Check that all the indexes are enabled SELECT OBJECT_NAME(OBJECT_ID), Name, type_desc, is_disabled FROM sys.indexes WHERE OBJECT_NAME(OBJECT_ID) = 'TableName' GO Now let us disable both the indexes. -- Disable Indexes -- Disable Nonclustered Index ALTER INDEX [IX_NonClustered_TableName] ON [dbo].[TableName] DISABLE GO -- Disable Clustered Index ALTER INDEX [PK_TableName] ON [dbo].[TableName] DISABLE GO -- Check that all the indexes are disabled SELECT OBJECT_NAME(OBJECT_ID), Name, type_desc, is_disabled FROM sys.indexes WHERE OBJECT_NAME(OBJECT_ID) = 'TableName' GO Next, let us rebuild all the indexes and see the output. -- Test 1: ALTER INDEX ALL REBUILD -- Rebuliding should work fine ALTER INDEX ALL ON [dbo].[TableName] REBUILD GO -- Check that all the indexes are enabled SELECT OBJECT_NAME(OBJECT_ID), Name, type_desc, is_disabled FROM sys.indexes WHERE OBJECT_NAME(OBJECT_ID) = 'TableName' GO Now, once again disable indexes for the second test. -- Disable Indexes -- Disable Nonclustered Index ALTER INDEX [IX_NonClustered_TableName] ON [dbo].[TableName] DISABLE GO -- Disable Clustered Index ALTER INDEX [PK_TableName] ON [dbo].[TableName] DISABLE GO -- Check that all the indexes are disabled SELECT OBJECT_NAME(OBJECT_ID), Name, type_desc, is_disabled FROM sys.indexes WHERE OBJECT_NAME(OBJECT_ID) = 'TableName' GO Next, let us build only the clustered index and see the output of all the indexes. -- Test 2: ALTER INDEX REBUILD -- Rebuliding should work fine ALTER INDEX [PK_TableName] ON [dbo].[TableName] REBUILD GO -- Check that only clustered index is enabled SELECT OBJECT_NAME(OBJECT_ID), Name, type_desc, is_disabled FROM sys.indexes WHERE OBJECT_NAME(OBJECT_ID) = 'TableName' GO Let us do final clean up. -- Clean up DROP TABLE [TableName] GO From the example, it is very clear that if you have built only clustered index when the nonclustered index is disabled, it still remains disabled. Do let me know if the idea is clear. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Index, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Beware Sneaky Reads with Unique Indexes

    - by Paul White NZ
    A few days ago, Sandra Mueller (twitter | blog) asked a question using twitter’s #sqlhelp hash tag: “Might SQL Server retrieve (out-of-row) LOB data from a table, even if the column isn’t referenced in the query?” Leaving aside trivial cases (like selecting a computed column that does reference the LOB data), one might be tempted to say that no, SQL Server does not read data you haven’t asked for.  In general, that’s quite correct; however there are cases where SQL Server might sneakily retrieve a LOB column… Example Table Here’s a T-SQL script to create that table and populate it with 1,000 rows: CREATE TABLE dbo.LOBtest ( pk INTEGER IDENTITY NOT NULL, some_value INTEGER NULL, lob_data VARCHAR(MAX) NULL, another_column CHAR(5) NULL, CONSTRAINT [PK dbo.LOBtest pk] PRIMARY KEY CLUSTERED (pk ASC) ); GO DECLARE @Data VARCHAR(MAX); SET @Data = REPLICATE(CONVERT(VARCHAR(MAX), 'x'), 65540);   WITH Numbers (n) AS ( SELECT ROW_NUMBER() OVER (ORDER BY (SELECT 0)) FROM master.sys.columns C1, master.sys.columns C2 ) INSERT LOBtest WITH (TABLOCKX) ( some_value, lob_data ) SELECT TOP (1000) N.n, @Data FROM Numbers N WHERE N.n <= 1000; Test 1: A Simple Update Let’s run a query to subtract one from every value in the some_value column: UPDATE dbo.LOBtest WITH (TABLOCKX) SET some_value = some_value - 1; As you might expect, modifying this integer column in 1,000 rows doesn’t take very long, or use many resources.  The STATITICS IO and TIME output shows a total of 9 logical reads, and 25ms elapsed time.  The query plan is also very simple: Looking at the Clustered Index Scan, we can see that SQL Server only retrieves the pk and some_value columns during the scan: The pk column is needed by the Clustered Index Update operator to uniquely identify the row that is being changed.  The some_value column is used by the Compute Scalar to calculate the new value.  (In case you are wondering what the Top operator is for, it is used to enforce SET ROWCOUNT). Test 2: Simple Update with an Index Now let’s create a nonclustered index keyed on the some_value column, with lob_data as an included column: CREATE NONCLUSTERED INDEX [IX dbo.LOBtest some_value (lob_data)] ON dbo.LOBtest (some_value) INCLUDE ( lob_data ) WITH ( FILLFACTOR = 100, MAXDOP = 1, SORT_IN_TEMPDB = ON ); This is not a useful index for our simple update query; imagine that someone else created it for a different purpose.  Let’s run our update query again: UPDATE dbo.LOBtest WITH (TABLOCKX) SET some_value = some_value - 1; We find that it now requires 4,014 logical reads and the elapsed query time has increased to around 100ms.  The extra logical reads (4 per row) are an expected consequence of maintaining the nonclustered index. The query plan is very similar to before (click to enlarge): The Clustered Index Update operator picks up the extra work of maintaining the nonclustered index. The new Compute Scalar operators detect whether the value in the some_value column has actually been changed by the update.  SQL Server may be able to skip maintaining the nonclustered index if the value hasn’t changed (see my previous post on non-updating updates for details).  Our simple query does change the value of some_data in every row, so this optimization doesn’t add any value in this specific case. The output list of columns from the Clustered Index Scan hasn’t changed from the one shown previously: SQL Server still just reads the pk and some_data columns.  Cool. Overall then, adding the nonclustered index hasn’t had any startling effects, and the LOB column data still isn’t being read from the table.  Let’s see what happens if we make the nonclustered index unique. Test 3: Simple Update with a Unique Index Here’s the script to create a new unique index, and drop the old one: CREATE UNIQUE NONCLUSTERED INDEX [UQ dbo.LOBtest some_value (lob_data)] ON dbo.LOBtest (some_value) INCLUDE ( lob_data ) WITH ( FILLFACTOR = 100, MAXDOP = 1, SORT_IN_TEMPDB = ON ); GO DROP INDEX [IX dbo.LOBtest some_value (lob_data)] ON dbo.LOBtest; Remember that SQL Server only enforces uniqueness on index keys (the some_data column).  The lob_data column is simply stored at the leaf-level of the non-clustered index.  With that in mind, we might expect this change to make very little difference.  Let’s see: UPDATE dbo.LOBtest WITH (TABLOCKX) SET some_value = some_value - 1; Whoa!  Now look at the elapsed time and logical reads: Scan count 1, logical reads 2016, physical reads 0, read-ahead reads 0, lob logical reads 36015, lob physical reads 0, lob read-ahead reads 15992.   CPU time = 172 ms, elapsed time = 16172 ms. Even with all the data and index pages in memory, the query took over 16 seconds to update just 1,000 rows, performing over 52,000 LOB logical reads (nearly 16,000 of those using read-ahead). Why on earth is SQL Server reading LOB data in a query that only updates a single integer column? The Query Plan The query plan for test 3 looks a bit more complex than before: In fact, the bottom level is exactly the same as we saw with the non-unique index.  The top level has heaps of new stuff though, which I’ll come to in a moment. You might be expecting to find that the Clustered Index Scan is now reading the lob_data column (for some reason).  After all, we need to explain where all the LOB logical reads are coming from.  Sadly, when we look at the properties of the Clustered Index Scan, we see exactly the same as before: SQL Server is still only reading the pk and some_value columns – so what’s doing the LOB reads? Updates that Sneakily Read Data We have to go as far as the Clustered Index Update operator before we see LOB data in the output list: [Expr1020] is a bit flag added by an earlier Compute Scalar.  It is set true if the some_value column has not been changed (part of the non-updating updates optimization I mentioned earlier). The Clustered Index Update operator adds two new columns: the lob_data column, and some_value_OLD.  The some_value_OLD column, as the name suggests, is the pre-update value of the some_value column.  At this point, the clustered index has already been updated with the new value, but we haven’t touched the nonclustered index yet. An interesting observation here is that the Clustered Index Update operator can read a column into the data flow as part of its update operation.  SQL Server could have read the LOB data as part of the initial Clustered Index Scan, but that would mean carrying the data through all the operations that occur prior to the Clustered Index Update.  The server knows it will have to go back to the clustered index row to update it, so it delays reading the LOB data until then.  Sneaky! Why the LOB Data Is Needed This is all very interesting (I hope), but why is SQL Server reading the LOB data?  For that matter, why does it need to pass the pre-update value of the some_value column out of the Clustered Index Update? The answer relates to the top row of the query plan for test 3.  I’ll reproduce it here for convenience: Notice that this is a wide (per-index) update plan.  SQL Server used a narrow (per-row) update plan in test 2, where the Clustered Index Update took care of maintaining the nonclustered index too.  I’ll talk more about this difference shortly. The Split/Sort/Collapse combination is an optimization, which aims to make per-index update plans more efficient.  It does this by breaking each update into a delete/insert pair, reordering the operations, removing any redundant operations, and finally applying the net effect of all the changes to the nonclustered index. Imagine we had a unique index which currently holds three rows with the values 1, 2, and 3.  If we run a query that adds 1 to each row value, we would end up with values 2, 3, and 4.  The net effect of all the changes is the same as if we simply deleted the value 1, and added a new value 4. By applying net changes, SQL Server can also avoid false unique-key violations.  If we tried to immediately update the value 1 to a 2, it would conflict with the existing value 2 (which would soon be updated to 3 of course) and the query would fail.  You might argue that SQL Server could avoid the uniqueness violation by starting with the highest value (3) and working down.  That’s fine, but it’s not possible to generalize this logic to work with every possible update query. SQL Server has to use a wide update plan if it sees any risk of false uniqueness violations.  It’s worth noting that the logic SQL Server uses to detect whether these violations are possible has definite limits.  As a result, you will often receive a wide update plan, even when you can see that no violations are possible. Another benefit of this optimization is that it includes a sort on the index key as part of its work.  Processing the index changes in index key order promotes sequential I/O against the nonclustered index. A side-effect of all this is that the net changes might include one or more inserts.  In order to insert a new row in the index, SQL Server obviously needs all the columns – the key column and the included LOB column.  This is the reason SQL Server reads the LOB data as part of the Clustered Index Update. In addition, the some_value_OLD column is required by the Split operator (it turns updates into delete/insert pairs).  In order to generate the correct index key delete operation, it needs the old key value. The irony is that in this case the Split/Sort/Collapse optimization is anything but.  Reading all that LOB data is extremely expensive, so it is sad that the current version of SQL Server has no way to avoid it. Finally, for completeness, I should mention that the Filter operator is there to filter out the non-updating updates. Beating the Set-Based Update with a Cursor One situation where SQL Server can see that false unique-key violations aren’t possible is where it can guarantee that only one row is being updated.  Armed with this knowledge, we can write a cursor (or the WHILE-loop equivalent) that updates one row at a time, and so avoids reading the LOB data: SET NOCOUNT ON; SET STATISTICS XML, IO, TIME OFF;   DECLARE @PK INTEGER, @StartTime DATETIME; SET @StartTime = GETUTCDATE();   DECLARE curUpdate CURSOR LOCAL FORWARD_ONLY KEYSET SCROLL_LOCKS FOR SELECT L.pk FROM LOBtest L ORDER BY L.pk ASC;   OPEN curUpdate;   WHILE (1 = 1) BEGIN FETCH NEXT FROM curUpdate INTO @PK;   IF @@FETCH_STATUS = -1 BREAK; IF @@FETCH_STATUS = -2 CONTINUE;   UPDATE dbo.LOBtest SET some_value = some_value - 1 WHERE CURRENT OF curUpdate; END;   CLOSE curUpdate; DEALLOCATE curUpdate;   SELECT DATEDIFF(MILLISECOND, @StartTime, GETUTCDATE()); That completes the update in 1280 milliseconds (remember test 3 took over 16 seconds!) I used the WHERE CURRENT OF syntax there and a KEYSET cursor, just for the fun of it.  One could just as well use a WHERE clause that specified the primary key value instead. Clustered Indexes A clustered index is the ultimate index with included columns: all non-key columns are included columns in a clustered index.  Let’s re-create the test table and data with an updatable primary key, and without any non-clustered indexes: IF OBJECT_ID(N'dbo.LOBtest', N'U') IS NOT NULL DROP TABLE dbo.LOBtest; GO CREATE TABLE dbo.LOBtest ( pk INTEGER NOT NULL, some_value INTEGER NULL, lob_data VARCHAR(MAX) NULL, another_column CHAR(5) NULL, CONSTRAINT [PK dbo.LOBtest pk] PRIMARY KEY CLUSTERED (pk ASC) ); GO DECLARE @Data VARCHAR(MAX); SET @Data = REPLICATE(CONVERT(VARCHAR(MAX), 'x'), 65540);   WITH Numbers (n) AS ( SELECT ROW_NUMBER() OVER (ORDER BY (SELECT 0)) FROM master.sys.columns C1, master.sys.columns C2 ) INSERT LOBtest WITH (TABLOCKX) ( pk, some_value, lob_data ) SELECT TOP (1000) N.n, N.n, @Data FROM Numbers N WHERE N.n <= 1000; Now here’s a query to modify the cluster keys: UPDATE dbo.LOBtest SET pk = pk + 1; The query plan is: As you can see, the Split/Sort/Collapse optimization is present, and we also gain an Eager Table Spool, for Halloween protection.  In addition, SQL Server now has no choice but to read the LOB data in the Clustered Index Scan: The performance is not great, as you might expect (even though there is no non-clustered index to maintain): Table 'LOBtest'. Scan count 1, logical reads 2011, physical reads 0, read-ahead reads 0, lob logical reads 36015, lob physical reads 0, lob read-ahead reads 15992.   Table 'Worktable'. Scan count 1, logical reads 2040, physical reads 0, read-ahead reads 0, lob logical reads 34000, lob physical reads 0, lob read-ahead reads 8000.   SQL Server Execution Times: CPU time = 483 ms, elapsed time = 17884 ms. Notice how the LOB data is read twice: once from the Clustered Index Scan, and again from the work table in tempdb used by the Eager Spool. If you try the same test with a non-unique clustered index (rather than a primary key), you’ll get a much more efficient plan that just passes the cluster key (including uniqueifier) around (no LOB data or other non-key columns): A unique non-clustered index (on a heap) works well too: Both those queries complete in a few tens of milliseconds, with no LOB reads, and just a few thousand logical reads.  (In fact the heap is rather more efficient). There are lots more fun combinations to try that I don’t have space for here. Final Thoughts The behaviour shown in this post is not limited to LOB data by any means.  If the conditions are met, any unique index that has included columns can produce similar behaviour – something to bear in mind when adding large INCLUDE columns to achieve covering queries, perhaps. Paul White Email: [email protected] Twitter: @PaulWhiteNZ

    Read the article

  • SQL SERVER – Disabled Index and Update Statistics

    - by pinaldave
    When we try to update the statistics, it throws an error as if the clustered index is disabled. Now let us enable the clustered index only and attempt to update the statistics of the table right after that. Have you ever come across the situation where a conversation never gets over and it continues even though original point of discussion has passed. I am facing the same situation in the case of Disabled Index. Here is the link to original conversations. SQL SERVER – Disable Clustered Index and Data Insert – Reader had a issue here with Disabled Index SQL SERVER – Understanding ALTER INDEX ALL REBUILD with Disabled Clustered Index – Reader asked the effect of Rebuilding Indexes The same reader asked me today – “I understood what the disabled indexes do; what is their effect on statistics. Is it true that even though indexes are disabled, they continue updating the statistics?“ The answer is very interesting: If you have disabled clustered index, you will be not able to update the statistics at all for any index. If you have enabled clustered index and disabled non clustered index when you update the statistics of the table, it automatically updates the statistics of the ALL (disabled and enabled – both) the indexes on the table. If you are not satisfied with the answer, let us go over a simple example. I have written necessary comments in the code itself to have a clear idea. USE tempdb GO -- Drop Table if Exists IF EXISTS (SELECT * FROM sys.objects WHERE OBJECT_ID = OBJECT_ID(N'[dbo].[TableName]') AND type IN (N'U')) DROP TABLE [dbo].[TableName] GO -- Create Table CREATE TABLE [dbo].[TableName]( [ID] [int] NOT NULL, [FirstCol] [varchar](50) NULL ) GO -- Insert Some data INSERT INTO TableName SELECT 1, 'First' UNION ALL SELECT 2, 'Second' UNION ALL SELECT 3, 'Third' UNION ALL SELECT 4, 'Fourth' UNION ALL SELECT 5, 'Five' GO -- Create Clustered Index ALTER TABLE [TableName] ADD CONSTRAINT [PK_TableName] PRIMARY KEY CLUSTERED ([ID] ASC) GO -- Create Nonclustered Index CREATE UNIQUE NONCLUSTERED INDEX [IX_NonClustered_TableName] ON [dbo].[TableName] ([FirstCol] ASC) GO -- Check that all the indexes are enabled SELECT OBJECT_NAME(OBJECT_ID), Name, type_desc, is_disabled FROM sys.indexes WHERE OBJECT_NAME(OBJECT_ID) = 'TableName' GO Now let us update the statistics of the table and check the statistics update date. -- Update the stats of table UPDATE STATISTICS TableName WITH FULLSCAN GO -- Check Statistics Last Updated Datetime SELECT name AS index_name, STATS_DATE(OBJECT_ID, index_id) AS StatsUpdated FROM sys.indexes WHERE OBJECT_ID = OBJECT_ID('TableName') GO Now let us disable the indexes and check if they are disabled using sys.indexes. -- Disable Indexes -- Disable Nonclustered Index ALTER INDEX [IX_NonClustered_TableName] ON [dbo].[TableName] DISABLE GO -- Disable Clustered Index ALTER INDEX [PK_TableName] ON [dbo].[TableName] DISABLE GO -- Check that all the indexes are disabled SELECT OBJECT_NAME(OBJECT_ID), Name, type_desc, is_disabled FROM sys.indexes WHERE OBJECT_NAME(OBJECT_ID) = 'TableName' GO Let us try to update the statistics of the table. -- Update the stats of table UPDATE STATISTICS TableName WITH FULLSCAN GO /* -- Above operation should thrown following error Msg 1974, Level 16, State 1, Line 1 Cannot perform the specified operation on table 'TableName' because its clustered index 'PK_TableName' is disabled. */ When we try to update the statistics it throws an error as it clustered index is disabled. Now let us enable the clustered index only and attempt to update the statistics of the table right after that. -- Now let us rebuild clustered index only ALTER INDEX [PK_TableName] ON [dbo].[TableName] REBUILD GO -- Check that all the indexes status SELECT OBJECT_NAME(OBJECT_ID), Name, type_desc, is_disabled FROM sys.indexes WHERE OBJECT_NAME(OBJECT_ID) = 'TableName' GO -- Check Statistics Last Updated Datetime SELECT name AS index_name, STATS_DATE(OBJECT_ID, index_id) AS StatsUpdated FROM sys.indexes WHERE OBJECT_ID = OBJECT_ID('TableName') GO -- Update the stats of table UPDATE STATISTICS TableName WITH FULLSCAN GO -- Check Statistics Last Updated Datetime SELECT name AS index_name, STATS_DATE(OBJECT_ID, index_id) AS StatsUpdated FROM sys.indexes WHERE OBJECT_ID = OBJECT_ID('TableName') GO We can clearly see that even though the nonclustered index is disabled it is also updated. If you do not need a nonclustered index, I suggest you to drop it as keeping them disabled is an overhead on your system. This is because every time the statistics are updated for system all the statistics for disabled indexesare also updated. -- Clean up DROP TABLE [TableName] GO The complete script is given below for easy reference. USE tempdb GO -- Drop Table if Exists IF EXISTS (SELECT * FROM sys.objects WHERE OBJECT_ID = OBJECT_ID(N'[dbo].[TableName]') AND type IN (N'U')) DROP TABLE [dbo].[TableName] GO -- Create Table CREATE TABLE [dbo].[TableName]( [ID] [int] NOT NULL, [FirstCol] [varchar](50) NULL ) GO -- Insert Some data INSERT INTO TableName SELECT 1, 'First' UNION ALL SELECT 2, 'Second' UNION ALL SELECT 3, 'Third' UNION ALL SELECT 4, 'Fourth' UNION ALL SELECT 5, 'Five' GO -- Create Clustered Index ALTER TABLE [TableName] ADD CONSTRAINT [PK_TableName] PRIMARY KEY CLUSTERED ([ID] ASC) GO -- Create Nonclustered Index CREATE UNIQUE NONCLUSTERED INDEX [IX_NonClustered_TableName] ON [dbo].[TableName] ([FirstCol] ASC) GO -- Check that all the indexes are enabled SELECT OBJECT_NAME(OBJECT_ID), Name, type_desc, is_disabled FROM sys.indexes WHERE OBJECT_NAME(OBJECT_ID) = 'TableName' GO -- Update the stats of table UPDATE STATISTICS TableName WITH FULLSCAN GO -- Check Statistics Last Updated Datetime SELECT name AS index_name, STATS_DATE(OBJECT_ID, index_id) AS StatsUpdated FROM sys.indexes WHERE OBJECT_ID = OBJECT_ID('TableName') GO -- Disable Indexes -- Disable Nonclustered Index ALTER INDEX [IX_NonClustered_TableName] ON [dbo].[TableName] DISABLE GO -- Disable Clustered Index ALTER INDEX [PK_TableName] ON [dbo].[TableName] DISABLE GO -- Check that all the indexes are disabled SELECT OBJECT_NAME(OBJECT_ID), Name, type_desc, is_disabled FROM sys.indexes WHERE OBJECT_NAME(OBJECT_ID) = 'TableName' GO -- Update the stats of table UPDATE STATISTICS TableName WITH FULLSCAN GO /* -- Above operation should thrown following error Msg 1974, Level 16, State 1, Line 1 Cannot perform the specified operation on table 'TableName' because its clustered index 'PK_TableName' is disabled. */ -- Now let us rebuild clustered index only ALTER INDEX [PK_TableName] ON [dbo].[TableName] REBUILD GO -- Check that all the indexes status SELECT OBJECT_NAME(OBJECT_ID), Name, type_desc, is_disabled FROM sys.indexes WHERE OBJECT_NAME(OBJECT_ID) = 'TableName' GO -- Check Statistics Last Updated Datetime SELECT name AS index_name, STATS_DATE(OBJECT_ID, index_id) AS StatsUpdated FROM sys.indexes WHERE OBJECT_ID = OBJECT_ID('TableName') GO -- Update the stats of table UPDATE STATISTICS TableName WITH FULLSCAN GO -- Check Statistics Last Updated Datetime SELECT name AS index_name, STATS_DATE(OBJECT_ID, index_id) AS StatsUpdated FROM sys.indexes WHERE OBJECT_ID = OBJECT_ID('TableName') GO -- Clean up DROP TABLE [TableName] GO Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Index, SQL Optimization, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: SQL Statistics

    Read the article

  • Advanced TSQL Tuning: Why Internals Knowledge Matters

    - by Paul White
    There is much more to query tuning than reducing logical reads and adding covering nonclustered indexes.  Query tuning is not complete as soon as the query returns results quickly in the development or test environments.  In production, your query will compete for memory, CPU, locks, I/O and other resources on the server.  Today’s entry looks at some tuning considerations that are often overlooked, and shows how deep internals knowledge can help you write better TSQL. As always, we’ll need some example data.  In fact, we are going to use three tables today, each of which is structured like this: Each table has 50,000 rows made up of an INTEGER id column and a padding column containing 3,999 characters in every row.  The only difference between the three tables is in the type of the padding column: the first table uses CHAR(3999), the second uses VARCHAR(MAX), and the third uses the deprecated TEXT type.  A script to create a database with the three tables and load the sample data follows: USE master; GO IF DB_ID('SortTest') IS NOT NULL DROP DATABASE SortTest; GO CREATE DATABASE SortTest COLLATE LATIN1_GENERAL_BIN; GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest', SIZE = 3GB, MAXSIZE = 3GB ); GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest_log', SIZE = 256MB, MAXSIZE = 1GB, FILEGROWTH = 128MB ); GO ALTER DATABASE SortTest SET ALLOW_SNAPSHOT_ISOLATION OFF ; ALTER DATABASE SortTest SET AUTO_CLOSE OFF ; ALTER DATABASE SortTest SET AUTO_CREATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_SHRINK OFF ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS_ASYNC ON ; ALTER DATABASE SortTest SET PARAMETERIZATION SIMPLE ; ALTER DATABASE SortTest SET READ_COMMITTED_SNAPSHOT OFF ; ALTER DATABASE SortTest SET MULTI_USER ; ALTER DATABASE SortTest SET RECOVERY SIMPLE ; USE SortTest; GO CREATE TABLE dbo.TestCHAR ( id INTEGER IDENTITY (1,1) NOT NULL, padding CHAR(3999) NOT NULL,   CONSTRAINT [PK dbo.TestCHAR (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestMAX ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAX (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestTEXT ( id INTEGER IDENTITY (1,1) NOT NULL, padding TEXT NOT NULL,   CONSTRAINT [PK dbo.TestTEXT (id)] PRIMARY KEY CLUSTERED (id), ) ; -- ============= -- Load TestCHAR (about 3s) -- ============= INSERT INTO dbo.TestCHAR WITH (TABLOCKX) ( padding ) SELECT padding = REPLICATE(CHAR(65 + (Data.n % 26)), 3999) FROM ( SELECT TOP (50000) n = ROW_NUMBER() OVER (ORDER BY (SELECT 0)) - 1 FROM master.sys.columns C1, master.sys.columns C2, master.sys.columns C3 ORDER BY n ASC ) AS Data ORDER BY Data.n ASC ; -- ============ -- Load TestMAX (about 3s) -- ============ INSERT INTO dbo.TestMAX WITH (TABLOCKX) ( padding ) SELECT CONVERT(VARCHAR(MAX), padding) FROM dbo.TestCHAR ORDER BY id ; -- ============= -- Load TestTEXT (about 5s) -- ============= INSERT INTO dbo.TestTEXT WITH (TABLOCKX) ( padding ) SELECT CONVERT(TEXT, padding) FROM dbo.TestCHAR ORDER BY id ; -- ========== -- Space used -- ========== -- EXECUTE sys.sp_spaceused @objname = 'dbo.TestCHAR'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAX'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestTEXT'; ; CHECKPOINT ; That takes around 15 seconds to run, and shows the space allocated to each table in its output: To illustrate the points I want to make today, the example task we are going to set ourselves is to return a random set of 150 rows from each table.  The basic shape of the test query is the same for each of the three test tables: SELECT TOP (150) T.id, T.padding FROM dbo.Test AS T ORDER BY NEWID() OPTION (MAXDOP 1) ; Test 1 – CHAR(3999) Running the template query shown above using the TestCHAR table as the target, we find that the query takes around 5 seconds to return its results.  This seems slow, considering that the table only has 50,000 rows.  Working on the assumption that generating a GUID for each row is a CPU-intensive operation, we might try enabling parallelism to see if that speeds up the response time.  Running the query again (but without the MAXDOP 1 hint) on a machine with eight logical processors, the query now takes 10 seconds to execute – twice as long as when run serially. Rather than attempting further guesses at the cause of the slowness, let’s go back to serial execution and add some monitoring.  The script below monitors STATISTICS IO output and the amount of tempdb used by the test query.  We will also run a Profiler trace to capture any warnings generated during query execution. DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TC.id, TC.padding FROM dbo.TestCHAR AS TC ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; Let’s take a closer look at the statistics and query plan generated from this: Following the flow of the data from right to left, we see the expected 50,000 rows emerging from the Clustered Index Scan, with a total estimated size of around 191MB.  The Compute Scalar adds a column containing a random GUID (generated from the NEWID() function call) for each row.  With this extra column in place, the size of the data arriving at the Sort operator is estimated to be 192MB. Sort is a blocking operator – it has to examine all of the rows on its input before it can produce its first row of output (the last row received might sort first).  This characteristic means that Sort requires a memory grant – memory allocated for the query’s use by SQL Server just before execution starts.  In this case, the Sort is the only memory-consuming operator in the plan, so it has access to the full 243MB (248,696KB) of memory reserved by SQL Server for this query execution. Notice that the memory grant is significantly larger than the expected size of the data to be sorted.  SQL Server uses a number of techniques to speed up sorting, some of which sacrifice size for comparison speed.  Sorts typically require a very large number of comparisons, so this is usually a very effective optimization.  One of the drawbacks is that it is not possible to exactly predict the sort space needed, as it depends on the data itself.  SQL Server takes an educated guess based on data types, sizes, and the number of rows expected, but the algorithm is not perfect. In spite of the large memory grant, the Profiler trace shows a Sort Warning event (indicating that the sort ran out of memory), and the tempdb usage monitor shows that 195MB of tempdb space was used – all of that for system use.  The 195MB represents physical write activity on tempdb, because SQL Server strictly enforces memory grants – a query cannot ‘cheat’ and effectively gain extra memory by spilling to tempdb pages that reside in memory.  Anyway, the key point here is that it takes a while to write 195MB to disk, and this is the main reason that the query takes 5 seconds overall. If you are wondering why using parallelism made the problem worse, consider that eight threads of execution result in eight concurrent partial sorts, each receiving one eighth of the memory grant.  The eight sorts all spilled to tempdb, resulting in inefficiencies as the spilled sorts competed for disk resources.  More importantly, there are specific problems at the point where the eight partial results are combined, but I’ll cover that in a future post. CHAR(3999) Performance Summary: 5 seconds elapsed time 243MB memory grant 195MB tempdb usage 192MB estimated sort set 25,043 logical reads Sort Warning Test 2 – VARCHAR(MAX) We’ll now run exactly the same test (with the additional monitoring) on the table using a VARCHAR(MAX) padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TM.id, TM.padding FROM dbo.TestMAX AS TM ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query takes around 8 seconds to complete (3 seconds longer than Test 1).  Notice that the estimated row and data sizes are very slightly larger, and the overall memory grant has also increased very slightly to 245MB.  The most marked difference is in the amount of tempdb space used – this query wrote almost 391MB of sort run data to the physical tempdb file.  Don’t draw any general conclusions about VARCHAR(MAX) versus CHAR from this – I chose the length of the data specifically to expose this edge case.  In most cases, VARCHAR(MAX) performs very similarly to CHAR – I just wanted to make test 2 a bit more exciting. MAX Performance Summary: 8 seconds elapsed time 245MB memory grant 391MB tempdb usage 193MB estimated sort set 25,043 logical reads Sort warning Test 3 – TEXT The same test again, but using the deprecated TEXT data type for the padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TT.id, TT.padding FROM dbo.TestTEXT AS TT ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query runs in 500ms.  If you look at the metrics we have been checking so far, it’s not hard to understand why: TEXT Performance Summary: 0.5 seconds elapsed time 9MB memory grant 5MB tempdb usage 5MB estimated sort set 207 logical reads 596 LOB logical reads Sort warning SQL Server’s memory grant algorithm still underestimates the memory needed to perform the sorting operation, but the size of the data to sort is so much smaller (5MB versus 193MB previously) that the spilled sort doesn’t matter very much.  Why is the data size so much smaller?  The query still produces the correct results – including the large amount of data held in the padding column – so what magic is being performed here? TEXT versus MAX Storage The answer lies in how columns of the TEXT data type are stored.  By default, TEXT data is stored off-row in separate LOB pages – which explains why this is the first query we have seen that records LOB logical reads in its STATISTICS IO output.  You may recall from my last post that LOB data leaves an in-row pointer to the separate storage structure holding the LOB data. SQL Server can see that the full LOB value is not required by the query plan until results are returned, so instead of passing the full LOB value down the plan from the Clustered Index Scan, it passes the small in-row structure instead.  SQL Server estimates that each row coming from the scan will be 79 bytes long – 11 bytes for row overhead, 4 bytes for the integer id column, and 64 bytes for the LOB pointer (in fact the pointer is rather smaller – usually 16 bytes – but the details of that don’t really matter right now). OK, so this query is much more efficient because it is sorting a very much smaller data set – SQL Server delays retrieving the LOB data itself until after the Sort starts producing its 150 rows.  The question that normally arises at this point is: Why doesn’t SQL Server use the same trick when the padding column is defined as VARCHAR(MAX)? The answer is connected with the fact that if the actual size of the VARCHAR(MAX) data is 8000 bytes or less, it is usually stored in-row in exactly the same way as for a VARCHAR(8000) column – MAX data only moves off-row into LOB storage when it exceeds 8000 bytes.  The default behaviour of the TEXT type is to be stored off-row by default, unless the ‘text in row’ table option is set suitably and there is room on the page.  There is an analogous (but opposite) setting to control the storage of MAX data – the ‘large value types out of row’ table option.  By enabling this option for a table, MAX data will be stored off-row (in a LOB structure) instead of in-row.  SQL Server Books Online has good coverage of both options in the topic In Row Data. The MAXOOR Table The essential difference, then, is that MAX defaults to in-row storage, and TEXT defaults to off-row (LOB) storage.  You might be thinking that we could get the same benefits seen for the TEXT data type by storing the VARCHAR(MAX) values off row – so let’s look at that option now.  This script creates a fourth table, with the VARCHAR(MAX) data stored off-row in LOB pages: CREATE TABLE dbo.TestMAXOOR ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAXOOR (id)] PRIMARY KEY CLUSTERED (id), ) ; EXECUTE sys.sp_tableoption @TableNamePattern = N'dbo.TestMAXOOR', @OptionName = 'large value types out of row', @OptionValue = 'true' ; SELECT large_value_types_out_of_row FROM sys.tables WHERE [schema_id] = SCHEMA_ID(N'dbo') AND name = N'TestMAXOOR' ; INSERT INTO dbo.TestMAXOOR WITH (TABLOCKX) ( padding ) SELECT SPACE(0) FROM dbo.TestCHAR ORDER BY id ; UPDATE TM WITH (TABLOCK) SET padding.WRITE (TC.padding, NULL, NULL) FROM dbo.TestMAXOOR AS TM JOIN dbo.TestCHAR AS TC ON TC.id = TM.id ; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAXOOR' ; CHECKPOINT ; Test 4 – MAXOOR We can now re-run our test on the MAXOOR (MAX out of row) table: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) MO.id, MO.padding FROM dbo.TestMAXOOR AS MO ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; TEXT Performance Summary: 0.3 seconds elapsed time 245MB memory grant 0MB tempdb usage 193MB estimated sort set 207 logical reads 446 LOB logical reads No sort warning The query runs very quickly – slightly faster than Test 3, and without spilling the sort to tempdb (there is no sort warning in the trace, and the monitoring query shows zero tempdb usage by this query).  SQL Server is passing the in-row pointer structure down the plan and only looking up the LOB value on the output side of the sort. The Hidden Problem There is still a huge problem with this query though – it requires a 245MB memory grant.  No wonder the sort doesn’t spill to tempdb now – 245MB is about 20 times more memory than this query actually requires to sort 50,000 records containing LOB data pointers.  Notice that the estimated row and data sizes in the plan are the same as in test 2 (where the MAX data was stored in-row). The optimizer assumes that MAX data is stored in-row, regardless of the sp_tableoption setting ‘large value types out of row’.  Why?  Because this option is dynamic – changing it does not immediately force all MAX data in the table in-row or off-row, only when data is added or actually changed.  SQL Server does not keep statistics to show how much MAX or TEXT data is currently in-row, and how much is stored in LOB pages.  This is an annoying limitation, and one which I hope will be addressed in a future version of the product. So why should we worry about this?  Excessive memory grants reduce concurrency and may result in queries waiting on the RESOURCE_SEMAPHORE wait type while they wait for memory they do not need.  245MB is an awful lot of memory, especially on 32-bit versions where memory grants cannot use AWE-mapped memory.  Even on a 64-bit server with plenty of memory, do you really want a single query to consume 0.25GB of memory unnecessarily?  That’s 32,000 8KB pages that might be put to much better use. The Solution The answer is not to use the TEXT data type for the padding column.  That solution happens to have better performance characteristics for this specific query, but it still results in a spilled sort, and it is hard to recommend the use of a data type which is scheduled for removal.  I hope it is clear to you that the fundamental problem here is that SQL Server sorts the whole set arriving at a Sort operator.  Clearly, it is not efficient to sort the whole table in memory just to return 150 rows in a random order. The TEXT example was more efficient because it dramatically reduced the size of the set that needed to be sorted.  We can do the same thing by selecting 150 unique keys from the table at random (sorting by NEWID() for example) and only then retrieving the large padding column values for just the 150 rows we need.  The following script implements that idea for all four tables: SET STATISTICS IO ON ; WITH TestTable AS ( SELECT * FROM dbo.TestCHAR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id = ANY (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAX ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestTEXT ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAXOOR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; All four queries now return results in much less than a second, with memory grants between 6 and 12MB, and without spilling to tempdb.  The small remaining inefficiency is in reading the id column values from the clustered primary key index.  As a clustered index, it contains all the in-row data at its leaf.  The CHAR and VARCHAR(MAX) tables store the padding column in-row, so id values are separated by a 3999-character column, plus row overhead.  The TEXT and MAXOOR tables store the padding values off-row, so id values in the clustered index leaf are separated by the much-smaller off-row pointer structure.  This difference is reflected in the number of logical page reads performed by the four queries: Table 'TestCHAR' logical reads 25511 lob logical reads 000 Table 'TestMAX'. logical reads 25511 lob logical reads 000 Table 'TestTEXT' logical reads 00412 lob logical reads 597 Table 'TestMAXOOR' logical reads 00413 lob logical reads 446 We can increase the density of the id values by creating a separate nonclustered index on the id column only.  This is the same key as the clustered index, of course, but the nonclustered index will not include the rest of the in-row column data. CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestCHAR (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAX (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestTEXT (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAXOOR (id); The four queries can now use the very dense nonclustered index to quickly scan the id values, sort them by NEWID(), select the 150 ids we want, and then look up the padding data.  The logical reads with the new indexes in place are: Table 'TestCHAR' logical reads 835 lob logical reads 0 Table 'TestMAX' logical reads 835 lob logical reads 0 Table 'TestTEXT' logical reads 686 lob logical reads 597 Table 'TestMAXOOR' logical reads 686 lob logical reads 448 With the new index, all four queries use the same query plan (click to enlarge): Performance Summary: 0.3 seconds elapsed time 6MB memory grant 0MB tempdb usage 1MB sort set 835 logical reads (CHAR, MAX) 686 logical reads (TEXT, MAXOOR) 597 LOB logical reads (TEXT) 448 LOB logical reads (MAXOOR) No sort warning I’ll leave it as an exercise for the reader to work out why trying to eliminate the Key Lookup by adding the padding column to the new nonclustered indexes would be a daft idea Conclusion This post is not about tuning queries that access columns containing big strings.  It isn’t about the internal differences between TEXT and MAX data types either.  It isn’t even about the cool use of UPDATE .WRITE used in the MAXOOR table load.  No, this post is about something else: Many developers might not have tuned our starting example query at all – 5 seconds isn’t that bad, and the original query plan looks reasonable at first glance.  Perhaps the NEWID() function would have been blamed for ‘just being slow’ – who knows.  5 seconds isn’t awful – unless your users expect sub-second responses – but using 250MB of memory and writing 200MB to tempdb certainly is!  If ten sessions ran that query at the same time in production that’s 2.5GB of memory usage and 2GB hitting tempdb.  Of course, not all queries can be rewritten to avoid large memory grants and sort spills using the key-lookup technique in this post, but that’s not the point either. The point of this post is that a basic understanding of execution plans is not enough.  Tuning for logical reads and adding covering indexes is not enough.  If you want to produce high-quality, scalable TSQL that won’t get you paged as soon as it hits production, you need a deep understanding of execution plans, and as much accurate, deep knowledge about SQL Server as you can lay your hands on.  The advanced database developer has a wide range of tools to use in writing queries that perform well in a range of circumstances. By the way, the examples in this post were written for SQL Server 2008.  They will run on 2005 and demonstrate the same principles, but you won’t get the same figures I did because 2005 had a rather nasty bug in the Top N Sort operator.  Fair warning: if you do decide to run the scripts on a 2005 instance (particularly the parallel query) do it before you head out for lunch… This post is dedicated to the people of Christchurch, New Zealand. © 2011 Paul White email: @[email protected] twitter: @SQL_Kiwi

    Read the article

  • recursive delete trigger and ON DELETE CASCADE contraints are not deleting everything

    - by bitbonk
    I have a very simple datamodel that represents a tree structure: The RootEntity is the root of such a tree, it can contain children of type ContainerEntity and of type AtomEntity. The type ContainerEntity again can contain children of type ContainerEntity and of type AtomEntity but can not contain children of type RootEntity. Children are referenced in a well known order. The DB model for this is below. My problem now is that when I delete a RootEntity I want all children to be deleted recursively. I have create foreign key with CASCADE DELETE and two delete triggers for this. But it is not deleting everything, it always leaves some items in the ContainerEntity, AtomEntity, ContainerEntity_Children and AtomEntity_Children tables. Seemling beginning with the recursionlevel of 3. CREATE TABLE RootEntity ( Id UNIQUEIDENTIFIER NOT NULL, Name VARCHAR(500) NOT NULL, CONSTRAINT PK_RootEntity PRIMARY KEY NONCLUSTERED (Id), ); CREATE TABLE ContainerEntity ( Id UNIQUEIDENTIFIER NOT NULL, Name VARCHAR(500) NOT NULL, CONSTRAINT PK_ContainerEntity PRIMARY KEY NONCLUSTERED (Id), ); CREATE TABLE AtomEntity ( Id UNIQUEIDENTIFIER NOT NULL, Name VARCHAR(500) NOT NULL, CONSTRAINT PK_AtomEntity PRIMARY KEY NONCLUSTERED (Id), ); CREATE TABLE RootEntity_Children ( ParentId UNIQUEIDENTIFIER NOT NULL, OrderIndex INT NOT NULL, ChildContainerEntityId UNIQUEIDENTIFIER NULL, ChildAtomEntityId UNIQUEIDENTIFIER NULL, ChildIsContainerEntity BIT NOT NULL, CONSTRAINT PK_RootEntity_Children PRIMARY KEY NONCLUSTERED (ParentId, OrderIndex), -- foreign key to parent RootEntity CONSTRAINT FK_RootEntiry_Children__RootEntity FOREIGN KEY (ParentId) REFERENCES RootEntity (Id) ON DELETE CASCADE, -- foreign key to referenced (child) ContainerEntity CONSTRAINT FK_RootEntiry_Children__ContainerEntity FOREIGN KEY (ChildContainerEntityId) REFERENCES ContainerEntity (Id) ON DELETE CASCADE, -- foreign key to referenced (child) AtomEntity CONSTRAINT FK_RootEntiry_Children__AtomEntity FOREIGN KEY (ChildAtomEntityId) REFERENCES AtomEntity (Id) ON DELETE CASCADE, ); CREATE TABLE ContainerEntity_Children ( ParentId UNIQUEIDENTIFIER NOT NULL, OrderIndex INT NOT NULL, ChildContainerEntityId UNIQUEIDENTIFIER NULL, ChildAtomEntityId UNIQUEIDENTIFIER NULL, ChildIsContainerEntity BIT NOT NULL, CONSTRAINT PK_ContainerEntity_Children PRIMARY KEY NONCLUSTERED (ParentId, OrderIndex), -- foreign key to parent ContainerEntity CONSTRAINT FK_ContainerEntity_Children__RootEntity FOREIGN KEY (ParentId) REFERENCES ContainerEntity (Id) ON DELETE CASCADE, -- foreign key to referenced (child) ContainerEntity CONSTRAINT FK_ContainerEntity_Children__ContainerEntity FOREIGN KEY (ChildContainerEntityId) REFERENCES ContainerEntity (Id) ON DELETE CASCADE, -- foreign key to referenced (child) AtomEntity CONSTRAINT FK_ContainerEntity_Children__AtomEntity FOREIGN KEY (ChildAtomEntityId) REFERENCES AtomEntity (Id) ON DELETE CASCADE, ); CREATE TRIGGER Delete_RootEntity_Children ON RootEntity_Children FOR DELETE AS DELETE FROM ContainerEntity WHERE Id IN (SELECT ChildContainerEntityId FROM deleted) DELETE FROM AtomEntity WHERE Id IN (SELECT ChildAtomEntityId FROM deleted) GO CREATE TRIGGER Delete_ContainerEntiy_Children ON ContainerEntity_Children FOR DELETE AS DELETE FROM ContainerEntity WHERE Id IN (SELECT ChildContainerEntityId FROM deleted) DELETE FROM AtomEntity WHERE Id IN (SELECT ChildAtomEntityId FROM deleted) GO

    Read the article

  • MERGE Bug with Filtered Indexes

    - by Paul White
    A MERGE statement can fail, and incorrectly report a unique key violation when: The target table uses a unique filtered index; and No key column of the filtered index is updated; and A column from the filtering condition is updated; and Transient key violations are possible Example Tables Say we have two tables, one that is the target of a MERGE statement, and another that contains updates to be applied to the target.  The target table contains three columns, an integer primary key, a single character alternate key, and a status code column.  A filtered unique index exists on the alternate key, but is only enforced where the status code is ‘a’: CREATE TABLE #Target ( pk integer NOT NULL, ak character(1) NOT NULL, status_code character(1) NOT NULL,   PRIMARY KEY (pk) );   CREATE UNIQUE INDEX uq1 ON #Target (ak) INCLUDE (status_code) WHERE status_code = 'a'; The changes table contains just an integer primary key (to identify the target row to change) and the new status code: CREATE TABLE #Changes ( pk integer NOT NULL, status_code character(1) NOT NULL,   PRIMARY KEY (pk) ); Sample Data The sample data for the example is: INSERT #Target (pk, ak, status_code) VALUES (1, 'A', 'a'), (2, 'B', 'a'), (3, 'C', 'a'), (4, 'A', 'd');   INSERT #Changes (pk, status_code) VALUES (1, 'd'), (4, 'a');          Target                     Changes +-----------------------+    +------------------+ ¦ pk ¦ ak ¦ status_code ¦    ¦ pk ¦ status_code ¦ ¦----+----+-------------¦    ¦----+-------------¦ ¦  1 ¦ A  ¦ a           ¦    ¦  1 ¦ d           ¦ ¦  2 ¦ B  ¦ a           ¦    ¦  4 ¦ a           ¦ ¦  3 ¦ C  ¦ a           ¦    +------------------+ ¦  4 ¦ A  ¦ d           ¦ +-----------------------+ The target table’s alternate key (ak) column is unique, for rows where status_code = ‘a’.  Applying the changes to the target will change row 1 from status ‘a’ to status ‘d’, and row 4 from status ‘d’ to status ‘a’.  The result of applying all the changes will still satisfy the filtered unique index, because the ‘A’ in row 1 will be deleted from the index and the ‘A’ in row 4 will be added. Merge Test One Let’s now execute a MERGE statement to apply the changes: MERGE #Target AS t USING #Changes AS c ON c.pk = t.pk WHEN MATCHED AND c.status_code <> t.status_code THEN UPDATE SET status_code = c.status_code; The MERGE changes the two target rows as expected.  The updated target table now contains: +-----------------------+ ¦ pk ¦ ak ¦ status_code ¦ ¦----+----+-------------¦ ¦  1 ¦ A  ¦ d           ¦ <—changed from ‘a’ ¦  2 ¦ B  ¦ a           ¦ ¦  3 ¦ C  ¦ a           ¦ ¦  4 ¦ A  ¦ a           ¦ <—changed from ‘d’ +-----------------------+ Merge Test Two Now let’s repopulate the changes table to reverse the updates we just performed: TRUNCATE TABLE #Changes;   INSERT #Changes (pk, status_code) VALUES (1, 'a'), (4, 'd'); This will change row 1 back to status ‘a’ and row 4 back to status ‘d’.  As a reminder, the current state of the tables is:          Target                        Changes +-----------------------+    +------------------+ ¦ pk ¦ ak ¦ status_code ¦    ¦ pk ¦ status_code ¦ ¦----+----+-------------¦    ¦----+-------------¦ ¦  1 ¦ A  ¦ d           ¦    ¦  1 ¦ a           ¦ ¦  2 ¦ B  ¦ a           ¦    ¦  4 ¦ d           ¦ ¦  3 ¦ C  ¦ a           ¦    +------------------+ ¦  4 ¦ A  ¦ a           ¦ +-----------------------+ We execute the same MERGE statement: MERGE #Target AS t USING #Changes AS c ON c.pk = t.pk WHEN MATCHED AND c.status_code <> t.status_code THEN UPDATE SET status_code = c.status_code; However this time we receive the following message: Msg 2601, Level 14, State 1, Line 1 Cannot insert duplicate key row in object 'dbo.#Target' with unique index 'uq1'. The duplicate key value is (A). The statement has been terminated. Applying the changes using UPDATE Let’s now rewrite the MERGE to use UPDATE instead: UPDATE t SET status_code = c.status_code FROM #Target AS t JOIN #Changes AS c ON t.pk = c.pk WHERE c.status_code <> t.status_code; This query succeeds where the MERGE failed.  The two rows are updated as expected: +-----------------------+ ¦ pk ¦ ak ¦ status_code ¦ ¦----+----+-------------¦ ¦  1 ¦ A  ¦ a           ¦ <—changed back to ‘a’ ¦  2 ¦ B  ¦ a           ¦ ¦  3 ¦ C  ¦ a           ¦ ¦  4 ¦ A  ¦ d           ¦ <—changed back to ‘d’ +-----------------------+ What went wrong with the MERGE? In this test, the MERGE query execution happens to apply the changes in the order of the ‘pk’ column. In test one, this was not a problem: row 1 is removed from the unique filtered index by changing status_code from ‘a’ to ‘d’ before row 4 is added.  At no point does the table contain two rows where ak = ‘A’ and status_code = ‘a’. In test two, however, the first change was to change row 1 from status ‘d’ to status ‘a’.  This change means there would be two rows in the filtered unique index where ak = ‘A’ (both row 1 and row 4 meet the index filtering criteria ‘status_code = a’). The storage engine does not allow the query processor to violate a unique key (unless IGNORE_DUP_KEY is ON, but that is a different story, and doesn’t apply to MERGE in any case).  This strict rule applies regardless of the fact that if all changes were applied, there would be no unique key violation (row 4 would eventually be changed from ‘a’ to ‘d’, removing it from the filtered unique index, and resolving the key violation). Why it went wrong The query optimizer usually detects when this sort of temporary uniqueness violation could occur, and builds a plan that avoids the issue.  I wrote about this a couple of years ago in my post Beware Sneaky Reads with Unique Indexes (you can read more about the details on pages 495-497 of Microsoft SQL Server 2008 Internals or in Craig Freedman’s blog post on maintaining unique indexes).  To summarize though, the optimizer introduces Split, Filter, Sort, and Collapse operators into the query plan to: Split each row update into delete followed by an inserts Filter out rows that would not change the index (due to the filter on the index, or a non-updating update) Sort the resulting stream by index key, with deletes before inserts Collapse delete/insert pairs on the same index key back into an update The effect of all this is that only net changes are applied to an index (as one or more insert, update, and/or delete operations).  In this case, the net effect is a single update of the filtered unique index: changing the row for ak = ‘A’ from pk = 4 to pk = 1.  In case that is less than 100% clear, let’s look at the operation in test two again:          Target                     Changes                   Result +-----------------------+    +------------------+    +-----------------------+ ¦ pk ¦ ak ¦ status_code ¦    ¦ pk ¦ status_code ¦    ¦ pk ¦ ak ¦ status_code ¦ ¦----+----+-------------¦    ¦----+-------------¦    ¦----+----+-------------¦ ¦  1 ¦ A  ¦ d           ¦    ¦  1 ¦ d           ¦    ¦  1 ¦ A  ¦ a           ¦ ¦  2 ¦ B  ¦ a           ¦    ¦  4 ¦ a           ¦    ¦  2 ¦ B  ¦ a           ¦ ¦  3 ¦ C  ¦ a           ¦    +------------------+    ¦  3 ¦ C  ¦ a           ¦ ¦  4 ¦ A  ¦ a           ¦                            ¦  4 ¦ A  ¦ d           ¦ +-----------------------+                            +-----------------------+ From the filtered index’s point of view (filtered for status_code = ‘a’ and shown in nonclustered index key order) the overall effect of the query is:   Before           After +---------+    +---------+ ¦ pk ¦ ak ¦    ¦ pk ¦ ak ¦ ¦----+----¦    ¦----+----¦ ¦  4 ¦ A  ¦    ¦  1 ¦ A  ¦ ¦  2 ¦ B  ¦    ¦  2 ¦ B  ¦ ¦  3 ¦ C  ¦    ¦  3 ¦ C  ¦ +---------+    +---------+ The single net change there is a change of pk from 4 to 1 for the nonclustered index entry ak = ‘A’.  This is the magic performed by the split, sort, and collapse.  Notice in particular how the original changes to the index key (on the ‘ak’ column) have been transformed into an update of a non-key column (pk is included in the nonclustered index).  By not updating any nonclustered index keys, we are guaranteed to avoid transient key violations. The Execution Plans The estimated MERGE execution plan that produces the incorrect key-violation error looks like this (click to enlarge in a new window): The successful UPDATE execution plan is (click to enlarge in a new window): The MERGE execution plan is a narrow (per-row) update.  The single Clustered Index Merge operator maintains both the clustered index and the filtered nonclustered index.  The UPDATE plan is a wide (per-index) update.  The clustered index is maintained first, then the Split, Filter, Sort, Collapse sequence is applied before the nonclustered index is separately maintained. There is always a wide update plan for any query that modifies the database. The narrow form is a performance optimization where the number of rows is expected to be relatively small, and is not available for all operations.  One of the operations that should disallow a narrow plan is maintaining a unique index where intermediate key violations could occur. Workarounds The MERGE can be made to work (producing a wide update plan with split, sort, and collapse) by: Adding all columns referenced in the filtered index’s WHERE clause to the index key (INCLUDE is not sufficient); or Executing the query with trace flag 8790 set e.g. OPTION (QUERYTRACEON 8790). Undocumented trace flag 8790 forces a wide update plan for any data-changing query (remember that a wide update plan is always possible).  Either change will produce a successfully-executing wide update plan for the MERGE that failed previously. Conclusion The optimizer fails to spot the possibility of transient unique key violations with MERGE under the conditions listed at the start of this post.  It incorrectly chooses a narrow plan for the MERGE, which cannot provide the protection of a split/sort/collapse sequence for the nonclustered index maintenance. The MERGE plan may fail at execution time depending on the order in which rows are processed, and the distribution of data in the database.  Worse, a previously solid MERGE query may suddenly start to fail unpredictably if a filtered unique index is added to the merge target table at any point. Connect bug filed here Tests performed on SQL Server 2012 SP1 CUI (build 11.0.3321) x64 Developer Edition © 2012 Paul White – All Rights Reserved Twitter: @SQL_Kiwi Email: [email protected]

    Read the article

  • Help on understanding multiple columns on an index?

    - by Xaisoft
    Assume I have a table called "table" and I have 3 columns, a, b, and c. What does it mean to have a non-clustered index on columns a,b? Is a nonclustered index on columns a,b the same as a nonclustered index on columns b,a? (Note the order). Also, Is a nonclustered index on column a the same as a nonclustered index on a,c? I was looking at the website sqlserver performance and they had these dmv scripts where it would tell you if you had overlapping indexes and I believe it was saying that having an index on a is the same as a,b, so it is redundant. Is this true about indexes? One last question is why is the clustered index put on the primary key. Most of the time the primary key is not queried against, so shouldn't the clustered index be on the most queried column. I am probably missing something here like having it on the primary key speeds up joins? Great explanations. Should I turn this into a wiki and change the title index explanation?

    Read the article

  • Rejuvenated: Script Creates and Drops for Candidate Keys and Referencing Foreign Keys

    - by Adam Machanic
    Once upon a time it was 2004, and I wrote what I have to say was a pretty cool little script . (Yes, I know the post is dated 2006, but that's because I dropped the ball and failed to back-date the posts when I moved them over here from my prior blog space.) The impetus for creating this script was (and is) simple: Changing keys can be a painful experience. Sometimes you want to make a clustered key nonclustered, or a nonclustered key clustered. Or maybe you want to add a column to the key. Or remove...(read more)

    Read the article

  • T-SQL Tuesday: What kind of Bookmark are you using?

    - by Kalen Delaney
    I’m glad there is no minimum length requirement for T-SQL Tuesday blog posts , because this one will be short. I was in the classroom for almost 11 hours today, and I need to be back tomorrow morning at 7:30. Way long ago, back in SQL 2000 (or was it earlier?) when a query indicated that SQL Server was going to use a nonclustered index to get row pointers, and then look up those rows in the underlying table, the plan just had a very linear look to it. The operator that indicated going from the nonclustered...(read more)

    Read the article

  • SQL SERVER – Introduction to SQL Server 2014 In-Memory OLTP

    - by Pinal Dave
    In SQL Server 2014 Microsoft has introduced a new database engine component called In-Memory OLTP aka project “Hekaton” which is fully integrated into the SQL Server Database Engine. It is optimized for OLTP workloads accessing memory resident data. In-memory OLTP helps us create memory optimized tables which in turn offer significant performance improvement for our typical OLTP workload. The main objective of memory optimized table is to ensure that highly transactional tables could live in memory and remain in memory forever without even losing out a single record. The most significant part is that it still supports majority of our Transact-SQL statement. Transact-SQL stored procedures can be compiled to machine code for further performance improvements on memory-optimized tables. This engine is designed to ensure higher concurrency and minimal blocking. In-Memory OLTP alleviates the issue of locking, using a new type of multi-version optimistic concurrency control. It also substantially reduces waiting for log writes by generating far less log data and needing fewer log writes. Points to remember Memory-optimized tables refer to tables using the new data structures and key words added as part of In-Memory OLTP. Disk-based tables refer to your normal tables which we used to create in SQL Server since its inception. These tables use a fixed size 8 KB pages that need to be read from and written to disk as a unit. Natively compiled stored procedures refer to an object Type which is new and is supported by in-memory OLTP engine which convert it into machine code, which can further improve the data access performance for memory –optimized tables. Natively compiled stored procedures can only reference memory-optimized tables, they can’t be used to reference any disk –based table. Interpreted Transact-SQL stored procedures, which is what SQL Server has always used. Cross-container transactions refer to transactions that reference both memory-optimized tables and disk-based tables. Interop refers to interpreted Transact-SQL that references memory-optimized tables. Using In-Memory OLTP In-Memory OLTP engine has been available as part of SQL Server 2014 since June 2013 CTPs. Installation of In-Memory OLTP is part of the SQL Server setup application. The In-Memory OLTP components can only be installed with a 64-bit edition of SQL Server 2014 hence they are not available with 32-bit editions. Creating Databases Any database that will store memory-optimized tables must have a MEMORY_OPTIMIZED_DATA filegroup. This filegroup is specifically designed to store the checkpoint files needed by SQL Server to recover the memory-optimized tables, and although the syntax for creating the filegroup is almost the same as for creating a regular filestream filegroup, it must also specify the option CONTAINS MEMORY_OPTIMIZED_DATA. Here is an example of a CREATE DATABASE statement for a database that can support memory-optimized tables: CREATE DATABASE InMemoryDB ON PRIMARY(NAME = [InMemoryDB_data], FILENAME = 'D:\data\InMemoryDB_data.mdf', size=500MB), FILEGROUP [SampleDB_mod_fg] CONTAINS MEMORY_OPTIMIZED_DATA (NAME = [InMemoryDB_mod_dir], FILENAME = 'S:\data\InMemoryDB_mod_dir'), (NAME = [InMemoryDB_mod_dir], FILENAME = 'R:\data\InMemoryDB_mod_dir') LOG ON (name = [SampleDB_log], Filename='L:\log\InMemoryDB_log.ldf', size=500MB) COLLATE Latin1_General_100_BIN2; Above example code creates files on three different drives (D:  S: and R:) for the data files and in memory storage so if you would like to run this code kindly change the drive and folder locations as per your convenience. Also notice that binary collation was specified as Windows (non-SQL). BIN2 collation is the only collation support at this point for any indexes on memory optimized tables. It is also possible to add a MEMORY_OPTIMIZED_DATA file group to an existing database, use the below command to achieve the same. ALTER DATABASE AdventureWorks2012 ADD FILEGROUP hekaton_mod CONTAINS MEMORY_OPTIMIZED_DATA; GO ALTER DATABASE AdventureWorks2012 ADD FILE (NAME='hekaton_mod', FILENAME='S:\data\hekaton_mod') TO FILEGROUP hekaton_mod; GO Creating Tables There is no major syntactical difference between creating a disk based table or a memory –optimized table but yes there are a few restrictions and a few new essential extensions. Essentially any memory-optimized table should use the MEMORY_OPTIMIZED = ON clause as shown in the Create Table query example. DURABILITY clause (SCHEMA_AND_DATA or SCHEMA_ONLY) Memory-optimized table should always be defined with a DURABILITY value which can be either SCHEMA_AND_DATA or  SCHEMA_ONLY the former being the default. A memory-optimized table defined with DURABILITY=SCHEMA_ONLY will not persist the data to disk which means the data durability is compromised whereas DURABILITY= SCHEMA_AND_DATA ensures that data is also persisted along with the schema. Indexing Memory Optimized Table A memory-optimized table must always have an index for all tables created with DURABILITY= SCHEMA_AND_DATA and this can be achieved by declaring a PRIMARY KEY Constraint at the time of creating a table. The following example shows a PRIMARY KEY index created as a HASH index, for which a bucket count must also be specified. CREATE TABLE Mem_Table ( [Name] VARCHAR(32) NOT NULL PRIMARY KEY NONCLUSTERED HASH WITH (BUCKET_COUNT = 100000), [City] VARCHAR(32) NULL, [State_Province] VARCHAR(32) NULL, [LastModified] DATETIME NOT NULL, ) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA); Now as you can see in the above query example we have used the clause MEMORY_OPTIMIZED = ON to make sure that it is considered as a memory optimized table and not just a normal table and also used the DURABILITY Clause= SCHEMA_AND_DATA which means it will persist data along with metadata and also you can notice this table has a PRIMARY KEY mentioned upfront which is also a mandatory clause for memory-optimized tables. We will talk more about HASH Indexes and BUCKET_COUNT in later articles on this topic which will be focusing more on Row and Index storage on Memory-Optimized tables. So stay tuned for that as well. Now as we covered the basics of Memory Optimized tables and understood the key things to remember while using memory optimized tables, let’s explore more using examples to understand the Performance gains using memory-optimized tables. I will be using the database which i created earlier in this article i.e. InMemoryDB in the below Demo Exercise. USE InMemoryDB GO -- Creating a disk based table CREATE TABLE dbo.Disktable ( Id INT IDENTITY, Name CHAR(40) ) GO CREATE NONCLUSTERED INDEX IX_ID ON dbo.Disktable (Id) GO -- Creating a memory optimized table with similar structure and DURABILITY = SCHEMA_AND_DATA CREATE TABLE dbo.Memorytable_durable ( Id INT NOT NULL PRIMARY KEY NONCLUSTERED Hash WITH (bucket_count =1000000), Name CHAR(40) ) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA) GO -- Creating an another memory optimized table with similar structure but DURABILITY = SCHEMA_Only CREATE TABLE dbo.Memorytable_nondurable ( Id INT NOT NULL PRIMARY KEY NONCLUSTERED Hash WITH (bucket_count =1000000), Name CHAR(40) ) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_only) GO -- Now insert 100000 records in dbo.Disktable and observe the Time Taken DECLARE @i_t bigint SET @i_t =1 WHILE @i_t<= 100000 BEGIN INSERT INTO dbo.Disktable(Name) VALUES('sachin' + CONVERT(VARCHAR,@i_t)) SET @i_t+=1 END -- Do the same inserts for Memory table dbo.Memorytable_durable and observe the Time Taken DECLARE @i_t bigint SET @i_t =1 WHILE @i_t<= 100000 BEGIN INSERT INTO dbo.Memorytable_durable VALUES(@i_t, 'sachin' + CONVERT(VARCHAR,@i_t)) SET @i_t+=1 END -- Now finally do the same inserts for Memory table dbo.Memorytable_nondurable and observe the Time Taken DECLARE @i_t bigint SET @i_t =1 WHILE @i_t<= 100000 BEGIN INSERT INTO dbo.Memorytable_nondurable VALUES(@i_t, 'sachin' + CONVERT(VARCHAR,@i_t)) SET @i_t+=1 END The above 3 Inserts took 1.20 minutes, 54 secs, and 2 secs respectively to insert 100000 records on my machine with 8 Gb RAM. This proves the point that memory-optimized tables can definitely help businesses achieve better performance for their highly transactional business table and memory- optimized tables with Durability SCHEMA_ONLY is even faster as it does not bother persisting its data to disk which makes it supremely fast. Koenig Solutions is one of the few organizations which offer IT training on SQL Server 2014 and all its updates. Now, I leave the decision on using memory_Optimized tables on you, I hope you like this article and it helped you understand  the fundamentals of IN-Memory OLTP . Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL Tagged: Koenig

    Read the article

  • SQL SERVER – Disable Clustered Index and Data Insert

    - by pinaldave
    Earlier today I received following email. “Dear Pinal, [Removed unrelated content] We looked at your script and found out that in your script of disabling indexes, you have only included non-clustered index during the bulk insert and missed to disabled all the clustered index. Our DBA[name removed] has changed your script a bit and included all the clustered indexes. Since our application is not working. When DBA [name removed] tried to enable clustered indexes again he is facing error incorrect syntax error. We are in deep problem [word replaced] [Removed Identity of organization and few unrelated stuff ]“ I have replied to my client and helped them fixed the problem. What really came to my attention is the concept of disabling clustered index. Let us try to learn a lesson from this experience. In this case, there was no need to disable clustered index at all. I had done necessary work when I was called in to work on tuning project. I had removed unused indexes, created few optimal indexes and wrote a script to disable few selected high cost indexes when bulk insert (and similar) operations are performed. There was another script which rebuild all the indexes as well. The solution worked till they included clustered index in disabling the script. Clustered indexes are in fact original table (or heap) physically ordered (any more things – not scope of this article) according to one or more keys(columns). When clustered index is disabled data rows of the disabled clustered index cannot be accessed. This means there will be no insert possible. When non clustered indexes are disabled all the data related to physically deleted but the definition of the index is kept in the system. Due to the same reason even reorganization of the index is not possible till the clustered index (which was disabled) is rebuild. Now let us come to the second part of the question, regarding receiving the error when clustered index is ‘enabled’. This is very common question I receive on the blog. (The following statement is written keeping the syntax of T-SQL in mind) Clustered indexes can be disabled but can not be enabled, they have to rebuild. It is intuitive to think that something which we have ‘disabled’ can be ‘enabled’ but the syntax for the same is ‘rebuild’. This issue has been explained here: SQL SERVER – How to Enable Index – How to Disable Index – Incorrect syntax near ‘ENABLE’. Let us go over this example where inserting the data is not possible when clustered index is disabled. USE AdventureWorks GO -- Create Table CREATE TABLE [dbo].[TableName]( [ID] [int] NOT NULL, [FirstCol] [varchar](50) NULL, CONSTRAINT [PK_TableName] PRIMARY KEY CLUSTERED ([ID] ASC) ) GO -- Create Nonclustered Index CREATE UNIQUE NONCLUSTERED INDEX [IX_NonClustered_TableName] ON [dbo].[TableName] ([FirstCol] ASC) GO -- Populate Table INSERT INTO [dbo].[TableName] SELECT 1, 'First' UNION ALL SELECT 2, 'Second' UNION ALL SELECT 3, 'Third' GO -- Disable Nonclustered Index ALTER INDEX [IX_NonClustered_TableName] ON [dbo].[TableName] DISABLE GO -- Insert Data should work fine INSERT INTO [dbo].[TableName] SELECT 4, 'Fourth' UNION ALL SELECT 5, 'Fifth' GO -- Disable Clustered Index ALTER INDEX [PK_TableName] ON [dbo].[TableName] DISABLE GO -- Insert Data will fail INSERT INTO [dbo].[TableName] SELECT 6, 'Sixth' UNION ALL SELECT 7, 'Seventh' GO /* Error: Msg 8655, Level 16, State 1, Line 1 The query processor is unable to produce a plan because the index 'PK_TableName' on table or view 'TableName' is disabled. */ -- Reorganizing Index will also throw an error ALTER INDEX [PK_TableName] ON [dbo].[TableName] REORGANIZE GO /* Error: Msg 1973, Level 16, State 1, Line 1 Cannot perform the specified operation on disabled index 'PK_TableName' on table 'dbo.TableName'. */ -- Rebuliding should work fine ALTER INDEX [PK_TableName] ON [dbo].[TableName] REBUILD GO -- Insert Data should work fine INSERT INTO [dbo].[TableName] SELECT 6, 'Sixth' UNION ALL SELECT 7, 'Seventh' GO -- Clean Up DROP TABLE [dbo].[TableName] GO I hope this example is clear enough. There were few additional posts I had written years ago, I am listing them here. SQL SERVER – Enable and Disable Index Non Clustered Indexes Using T-SQL SQL SERVER – Enabling Clustered and Non-Clustered Indexes – Interesting Fact Reference : Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Constraint and Keys, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Question on SQL Grouping

    - by Lijo
    Hi Team, I am trying to achieve the following without using sub query. For a funding, I would like to select the latest Letter created date and the ‘earliest worklist created since letter created’ date for a funding. FundingId Leter (1, 1/1/2009 )(1, 5/5/2009) (1, 8/8/2009) (2, 3/3/2009) FundingId WorkList (1, 5/5/2009 ) (1, 9/9/2009) (1, 10/10/2009) (2, 2/2/2009) Expected Result - FundingId Leter WorkList (1, 8/8/2009, 9/9/2009) I wrote a query as follows. It has a bug. It will omit those FundingId for which the minimum WorkList date is less than latest Letter date (even though it has another worklist with greater than letter created date). CREATE TABLE #Funding( [Funding_ID] [int] IDENTITY(1,1) NOT NULL, [Funding_No] [int] NOT NULL, CONSTRAINT [PK_Center_Center_ID] PRIMARY KEY NONCLUSTERED ([Funding_ID] ASC) ) ON [PRIMARY] CREATE TABLE #Letter( [Letter_ID] [int] IDENTITY(1,1) NOT NULL, [Funding_ID] [int] NOT NULL, [CreatedDt] [SMALLDATETIME], CONSTRAINT [PK_Letter_Letter_ID] PRIMARY KEY NONCLUSTERED ([Letter_ID] ASC) ) ON [PRIMARY] CREATE TABLE #WorkList( [WorkList_ID] [int] IDENTITY(1,1) NOT NULL, [Funding_ID] [int] NOT NULL, [CreatedDt] [SMALLDATETIME], CONSTRAINT [PK_WorkList_WorkList_ID] PRIMARY KEY NONCLUSTERED ([WorkList_ID] ASC) ) ON [PRIMARY] SELECT F.Funding_ID, Funding_No, MAX (L.CreatedDt), MIN(W.CreatedDt) FROM #Funding F INNER JOIN #Letter L ON L.Funding_ID = F.Funding_ID LEFT OUTER JOIN #WorkList W ON W.Funding_ID = F.Funding_ID GROUP BY F.Funding_ID,Funding_No HAVING MIN(W.CreatedDt) MAX (L.CreatedDt) How can I write a correct query without using subquery? Please help Thanks Lijo

    Read the article

  • Dropping duplicate|redundant Unique Constraint from FILESTREAM table

    - by electricsk8
    I have a table with a FILESTREAM column, and it has two unique constraints specified for the same FILESTREAM column, ie: ALTER TABLE [dbo].[TableName] ADD CONSTRAINT [UQ_TableName_33C4988760FC61CA] UNIQUE NONCLUSTERED ([GUID_Column]); GO ALTER TABLE [dbo].[TableName] ADD CONSTRAINT [UQ_TableName_33C49887145C0A3F] UNIQUE NONCLUSTERED ([GUID_Column]); GO I'd like to drop one of the unique constraints, as they are duplicates. However, when I try and drop one of the two duplicate constraints, I receive the following error. "A table with FILESTREAM column(s) must have a non-NULL unique ROWGUID column." Anyone know how to remove one of the two constraints?

    Read the article

  • Why does Sql Server recommends creating an index when it already exist?

    - by Pierre-Alain Vigeant
    I ran a very basic query against one of our table and I noticed that the execution plan query processor is recommending that we create an index on a column The query is SELECT SUM(DATALENGTH(Data)) FROM Item WHERE Namespace = 'http://some_url/some_namespace/' After running, I get the following message // The Query Processor estimates that implementing the following index could improve the query cost by 96.7211%. CREATE NONCLUSTERED INDEX [<Name of Missing Index, sysname,>] ON [dbo].[Item] ([Namespace]) My problem is that I already have such index on that column: CREATE NONCLUSTERED INDEX [IX_ItemNamespace] ON [dbo].[Item] ( [Namespace] ASC )WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, SORT_IN_TEMPDB = OFF, IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY] Why is Sql Server recommending me to create such index when it already exist?

    Read the article

  • SQL Overlapping and Multi-Column Indexes

    - by durilai
    I am attempting to tune some stored procedures and have a question on indexes. I have used the tuning advisor and they recommended two indexes, both for the same table. The issue is one index is for one column and the other is for multiple columns, of which it includes the same column from the first. My question is why and what is the difference? CREATE NONCLUSTERED INDEX [_dta_index_Table1_5_2079723603__K23_K17_K13_K12_K2_K10_K22_K14_K19_K20_K9_K11_5_6_7_15_18] ON [dbo].[Table1] ( [EfctvEndDate] ASC, [StuLangCodeKey] ASC, [StuBirCntryCodeKey] ASC, [StuBirStOrProvncCodeKey] ASC, [StuKey] ASC, [GndrCodeKey] ASC, [EfctvStartDate] ASC, [StuHspncEnctyIndctr] ASC, [StuEnctyMsngIndctr] ASC, [StuRaceMsngIndctr] ASC, [StuBirDate] ASC, [StuBirCityName] ASC ) INCLUDE ( [StuFstNameLgl], [StuLastOrSrnmLgl], [StuMdlNameLgl], [StuIneligSnorImgrntIndctr], [StuExpctdGrdtngClYear] ) WITH (SORT_IN_TEMPDB = OFF, IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF) ON [PRIMARY] go CREATE NONCLUSTERED INDEX [_dta_index_Table1_5_2079723603__K23] ON [dbo].[Table1] ( [EfctvEndDate] ASC )WITH (SORT_IN_TEMPDB = OFF, IGNORE_DUP_KEY = OFF, DROP_EXISTING = OFF, ONLINE = OFF) ON [PRIMARY]

    Read the article

  • SQL SERVER – Quiz and Video – Introduction to Basics of a Query Hint

    - by pinaldave
    This blog post is inspired from SQL Architecture Basics Joes 2 Pros: Core Architecture concepts – SQL Exam Prep Series 70-433 – Volume 3. [Amazon] | [Flipkart] | [Kindle] | [IndiaPlaza] This is follow up blog post of my earlier blog post on the same subject - SQL SERVER – Introduction to Basics of a Query Hint – A Primer. In the article we discussed various basics terminology of the query hints. The article further covers following important concepts of query hints. Expecting Seek and getting a Scan Creating an index for improved optimization Implementing the query hint Above three are the most important concepts related to query hint and SQL Server.  There are many more things one has to learn but without beginners fundamentals one can’t learn the advanced  concepts. Let us have small quiz and check how many of you get the fundamentals right. Quiz 1) You have the following query: DECLARE @UlaChoice TinyInt SET @Type = 1 SELECT * FROM LegalActivity WHERE UlaChoice = @UlaChoice You have a nonclustered index named IX_Legal_Ula on the UlaChoice field. The Primary key is on the ID field and called PK_Legal_ID 99% of the time the value of the @UlaChoice is set to ‘YP101′. What query will achieve the best optimization for this query? SELECT * FROM LegalActivity WHERE UlaChoice = @UlaChoice WITH(INDEX(X_Legal_Ula)) SELECT * FROM LegalActivity WHERE UlaChoice = @UlaChoice WITH(INDEX(PK_Legal_ID)) SELECT * FROM LegalActivity WHERE UlaChoice = @UlaChoice OPTION (Optimize FOR(@UlaChoice = ‘YP101′)) 2) You have the following query: SELECT * FROM CurrentProducts WHERE ShortName = ‘Yoga Trip’ You have a nonclustered index on the ShortName field and the query runs an efficient index seek. You change your query to use a variable for ShortName and now you are using a slow index scan. What query hint can you use to get the same execution time as before? WITH LOCK FAST OPTIMIZE FOR MAXDOP READONLY Now make sure that you write down all the answers on the piece of paper. Watch following video and read earlier article over here. If you want to change the answer you still have chance. Solution 1) 3 2) 4 Now compare let us check the answers and compare your answers to following answers. I am very confident you will get them correct. Available at USA: Amazon India: Flipkart | IndiaPlaza Volume: 1, 2, 3, 4, 5 Please leave your feedback in the comment area for the quiz and video. Did you know all the answers of the quiz? Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Joes 2 Pros, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • SQL Server v.Next ("Denali") : How a columnstore index is not like a normal index

    - by AaronBertrand
    At the end of my Denali presentation at SQL Saturday #65 in Vancouver, a member of the audience asked, "What makes a columnstore index different from a regular nonclustered index?" At the end of a busy day, I was at a loss for an answer, and I'll explain why. First, I'll briefly explain the basic, core, high-level functionality of a columnstore index (you can read a lot more details in this white paper ). Basically, instead of storing index data together on a page, it divvies up the data from each...(read more)

    Read the article

  • Is it possible to have multiple sets of key columns in a table?

    - by Peter Larsson
    Filtered indexes is one of my new favorite things with SQL Server 2008. I am currently working on designing a new datawarehouse. There are two restrictions doing this It has to be fed from the old legacy system with both historical data and new data It has to be fed from the new business system with new data When we incorporate the new business system, we are going to do that for one market only. It means the old legacy business system still will produce new data for other markets (together with historical data for all markets) and the new business system produce new data to that one market only. Sounds interesting this far? To accomplish this I did a thorough research about the business requirements about the business intelligence needs. Then I went on to design the sucker. How does this relate to filtered indexes you ask? I'll give one example, the Stock transaction table. Well, the key columns for the old legacy system are different from the key columns from the new business system. The old legacy system has a key of 5 columns Movement date Movement time Product code Order number Sequence number within shipment And to all thing, I found out that the Movement Time column is not really a time. It starts out like a time HH:MM:SS but seconds are added for each delivery within the shipment, so a Movement Time can look like "12:11:68". The sequence number is ordered over the distributors for shipment. As I said, it is a legacy system. The new business system has one key column, the Movement DateTime (accuracy down to 100th of nanosecond). So how to deal with this? On thing would be to have two stock transaction tables, one for legacy system and one for the new business system. But that would lead to a maintenance overhead and using partitioned views for getting data out of the warehouse. Filtered index will be of a great use here. MovementDate DATETIME2(7) MovementTime CHAR(8) NULL ProductCode VARCHAR(15) NOT NULL OrderNumber VARCHAR(30) NULL SequenceNumber INT NULL The sequence number is not even used in the new system, so I created a clustered index for a new IDENTITY column to make a new identity column which can be shared by both systems. Then I created one unique filtered index for old system like this CREATE UNIQUE NONCLUSTERED INDEX IX_Legacy (MovementDate, MovementTime, ProductCode, SequenceNumber) INCLUDE (OrderNumber, Col5, Col6, ... ) WHERE SequenceNumber IS NOT NULL And then I created a new unique filtered index for the new business system like this CREATE UNIQUE NONCLUSTERED INDEX IX_Business (MovementDate) INCLUDE (ProductCode, OrderNumber, Col12, ... ) WHERE SequenceNumber IS NULL This way I can have multiple sets of key columns on same base table which is shared by both systems.

    Read the article

  • Oracle Index Skip Scan

    - by jchang
    There is a feature, called index skip scan that has been in Oracle since version 9i. When I across this, it seemed like a very clever trick, but not a critical capability. More recently, I have been advocating DW on SSD in approrpiate situations, and I am thinking this is now a valuable feature in keeping the number of nonclustered indexes to a minimum. Briefly, suppose we have an index with key columns: Col1 , Col2 , in that order. Obviously, a query with a search argument (SARG) on Col1 can use...(read more)

    Read the article

1 2 3 4  | Next Page >