Search Results

Search found 244 results on 10 pages for 'disadvantage'.

Page 10/10 | < Previous Page | 6 7 8 9 10 

  • Where do I start ?

    - by Panthe
    Brief History: Just graduated high school, learned a bit of python and C++, have no friends with any helpful computer knowledge at all. Out of anyone i met in my school years I was probably the biggest nerd, but no one really knew. I consider my self to have a vast amount of knowledge on computers and tech then the average person. built/fixed tons of computers, and ability to troubleshoot pretty much any problem I came across. Now that high school is over, Ive really been thinking about my career. Loving, living computers for the past 15 years of my life I decided to take my ability's and try to learn computer programming, why I didn't start earlier I don't know, seems to be big mistake on my part... Doing some research I concluded that Python was the first programming language I should learn, since it was high level and easier to understand then C++ and Java. I also knew that to become good at what I did I needed to know more then just 2 or 3 languages, which didn't seem like a big problem considering once I learned the way Python worked, mainly syntax changed, and the rest would come naturally. I watched a couple of youtube videos, downloaded some book pdf's and snooped around from some tutorials here and there to get the hang of what to do. A two solid weeks had passed of trying to understand the syntax, create small programs that used the basic functions and understanding how it worked, I think i have got the hang of it. It breaks down into what ive been dealing with all this time (although i kinda knew) is that, input,output, loops, functions and other things derived from 0's and 1's storing data and recalling it, ect. (A VERY BASIC IDEA). Ive been able to create small programs, Hangman, file storing, temperature conversion, Caeser Cipher decode/encoding, Fibonacci Sequence and more, which i can create and understand how each work. Being 2 weeks into this, I have learned alot. Nothing at all compared to what i should be learning in the years to come if i get a grip on what I'm doing. While doing these programs I wont stop untill I've done doing a practice problem on a book, which embarresing enough will take me a couple hour depending on the complexity of it. I absolutly will not put aside the challenge until its complete, WHICH CAN BE EXTREMELY DRAINING, ive tried most problems without cheating and reached success, which makes me feel extremely proud of my self after completing something after much trial and error. After all this I have met the demon, alogrithm's which seem to be key to effiecent code. I cant seem to rap my head around some of the computer codes people put out there using numbers, and sometimes even basic functions, I have been able to understand them after a while but i know there are alot more complex things to come, considering my self smart, functions that require complex codes, actually hurt my brain. NOTHING EVER IN LIFE HURT MY BRAIN....... not even math classes in highschool, trying to understand some of the stuff people put out there makes me feel like i have a mental disadvantage lol... i still walk forward though, crossing my fingers that the understanding will come with time. Sorry if is this is long i just wish someone takes all these things into consideration when answering my question. even through all these downsides im still pushing through and continuing to try and get good at this, i know reading these tutorials wont make me any good unless i can become creative and make my own, understand other peoples programs, so this leads me to the simple question i could have asked in the beginning..... WHERE IN THE WORLD DO I START ? Ive been trying to find out how to understand some of the open source projects, how i can work with experianced coders to learn from them and help them, but i dont think thats even possible by the way how far people's knowledge is compared to me, i have no freinds who i can learn from, can someone help me and guide me into the right direction.. i have a huge motivation to get good at coding, anything information would be extremely helpful

    Read the article

  • How do I learn algorithms?

    - by Panthe
    Brief History: Just graduated high school, learned a bit of python and C++, have no friends with any helpful computer knowledge at all. Out of anyone i met in my school years I was probably the biggest nerd, but no one really knew. I consider my self to have a vast amount of knowledge on computers and tech then the average person. built/fixed tons of computers, and ability to troubleshoot pretty much any problem I came across. Now that high school is over, Ive really been thinking about my career. Loving, living computers for the past 15 years of my life I decided to take my ability's and try to learn computer programming, why I didn't start earlier I don't know, seems to be big mistake on my part... Doing some research I concluded that Python was the first programming language I should learn, since it was high level and easier to understand then C++ and Java. I also knew that to become good at what I did I needed to know more then just 2 or 3 languages, which didn't seem like a big problem considering once I learned the way Python worked, mainly syntax changed, and the rest would come naturally. I watched a couple of youtube videos, downloaded some book pdf's and snooped around from some tutorials here and there to get the hang of what to do. A two solid weeks had passed of trying to understand the syntax, create small programs that used the basic functions and understanding how it worked, I think i have got the hang of it. It breaks down into what ive been dealing with all this time (although i kinda knew) is that, input,output, loops, functions and other things derived from 0's and 1's storing data and recalling it, ect. (A VERY BASIC IDEA). Ive been able to create small programs, Hangman, file storing, temperature conversion, Caeser Cipher decode/encoding, Fibonacci Sequence and more, which i can create and understand how each work. Being 2 weeks into this, I have learned alot. Nothing at all compared to what i should be lear ning in the years to come if i get a grip on what I'm doing. While doing these programs I wont stop untill I've done doing a practice problem on a book, which embarresing enough will take me a couple hour depending on the complexity of it. I absolutly will not put aside the challenge until its complete, WHICH CAN BE EXTREMELY DRAINING, ive tried most problems without cheating and reached success, which makes me feel extremely proud of my self after completing something after much trial and error. After all this I have met the demon, alogrithm's which seem to be key to effiecent code. I cant seem to rap my head around some of the computer codes people put out there using numbers, and sometimes even basic functions, I have been able to understand them after a while but i know there are alot more complex things to come, considering my self smart, functions that require complex codes, actually hurt my brain. NOTHING EVER IN LIFE HURT MY BRAIN....... not even math classes in highschool, trying to understand some of the stuff people put out there makes me feel like i have a mental disadvantage lol... i still walk forward though, crossing my fingers that the understanding will come with time. Sorry if is this is long i just wish someone takes all these things into consideration when answering my question. even through all these downsides im still pushing through and continuing to try and get good at this, i know reading these tutorials wont make me any good unless i can become creative and make my own, understand other peoples programs, so this leads me to the simple question i could have asked in the beginning..... WHERE IN THE WORLD DO I START ? Ive been trying to find out how to understand some of the open source projects, how i can work with experianced coders to learn from them and help them, but i dont think thats even possible by the way how far people's knowledge is compared to me, i have no freinds who i can learn from, can someone help me and guide me into the right direction.. i have a huge motivation to get good at coding, anything information would be extremely helpful

    Read the article

  • CSS optimization - extra classes in dom or preprocessor-repetitive styling in css file?

    - by anna.mi
    I'm starting on a fairly large project and I'm considering the option of using LESS for pre-processing my css. the useful thing about LESS is that you can define a mixin that contains for example: .border-radius(@radius) { -webkit-border-radius: @radius; -moz-border-radius: @radius; -o-border-radius: @radius; -ms-border-radius: @radius; border-radius: @radius; } and then use it in a class declaration as .rounded-div { .border-radius(10px); } to get the outputted css as: .rounded-div { -webkit-border-radius: 10px; -moz-border-radius: 10px; -o-border-radius: 10px; -ms-border-radius: 10px; border-radius: 10px; } this is extremely useful in the case of browser prefixes. However this same concept could be used to encapsulate commonly-used css, for example: .column-container { overflow: hidden; display: block; width: 100%; } .column(@width) { float: left; width: @width; } and then use this mixin whenever i need columns in my design: .my-column-outer { .column-container(); background: red; } .my-column-inner { .column(50%); font-color: yellow; } (of course, using the preprocessor we could easily expand this to be much more useful, eg. pass the number of columns and the container width as variables and have LESS determine the width of each column depending on the number of columns and container width!) the problem with this is that when compliled, my final css file would have 100 such declarations, copy&pasted, making the file huge and bloated and repetitive. The alternative to this would be to use a grid system which has predefined classes for each column-layout option, eg .c-50 ( with a "float: left; width:50%;" definition ), .c-33, .c-25 to accomodate for a 2-column, 3-column and 4-column layout and then use these classes to my dom. i really mislike the idea of the extra classes, from experience it results to bloated dom (creating extra divs just to attach the grid classes to). Also the most basic tutorial for html/css would tell you that the dom should be separated from the styling - grid classes are styling related! to me, its the same as attaching a "border-radius-10" class to the .rounded-div example above! on the other hand, the large css file that would result from the repetitive code is also a disadvantage so i guess my question is, which one would you recommend? and which do you use? and, which solution is best for optimization? apart from the larger file size, has there even been any research on whether browser renders multiple classes faster than a large css file, or the other way round? tnx! i'd love to hear your opinion!

    Read the article

  • SQL SERVER – Shrinking NDF and MDF Files – Readers’ Opinion

    - by pinaldave
    Previously, I had written a blog post about SQL SERVER – Shrinking NDF and MDF Files – A Safe Operation. After that, I have written the following blog post that talks about the advantage and disadvantage of Shrinking and why one should not be Shrinking a file SQL SERVER – SHRINKFILE and TRUNCATE Log File in SQL Server 2008. On this subject, SQL Server Expert Imran Mohammed left an excellent comment. I just feel that his comment is worth a big article itself. For everybody to read his wonderful explanation, I am posting this blog post here. Thanks Imran! Shrinking Database always creates performance degradation and increases fragmentation in the database. I suggest that you keep that in mind before you start reading the following comment. If you are going to say Shrinking Database is bad and evil, here I am saying it first and loud. Now, the comment of Imran is written while keeping in mind only the process showing how the Shrinking Database Operation works. Imran has already explained his understanding and requests further explanation. I have removed the Best Practices section from Imran’s comments, as there are a few corrections. Comments from Imran - Before I explain to you the concept of Shrink Database, let us understand the concept of Database Files. When we create a new database inside the SQL Server, it is typical that SQl Server creates two physical files in the Operating System: one with .MDF Extension, and another with .LDF Extension. .MDF is called as Primary Data File. .LDF is called as Transactional Log file. If you add one or more data files to a database, the physical file that will be created in the Operating System will have an extension of .NDF, which is called as Secondary Data File; whereas, when you add one or more log files to a database, the physical file that will be created in the Operating System will have the same extension as .LDF. The questions now are, “Why does a new data file have a different extension (.NDF)?”, “Why is it called as a secondary data file?” and, “Why is .MDF file called as a primary data file?” Answers: Note: The following explanation is based on my limited knowledge of SQL Server, so experts please do comment. A data file with a .MDF extension is called a Primary Data File, and the reason behind it is that it contains Database Catalogs. Catalogs mean Meta Data. Meta Data is “Data about Data”. An example for Meta Data includes system objects that store information about other objects, except the data stored by the users. sysobjects stores information about all objects in that database. sysindexes stores information about all indexes and rows of every table in that database. syscolumns stores information about all columns that each table has in that database. sysusers stores how many users that database has. Although Meta Data stores information about other objects, it is not the transactional data that a user enters; rather, it’s a system data about the data. Because Primary Data File (.MDF) contains important information about the database, it is treated as a special file. It is given the name Primary Data file because it contains the Database Catalogs. This file is present in the Primary File Group. You can always create additional objects (Tables, indexes etc.) in the Primary data file (This file is present in the Primary File group), by mentioning that you want to create this object under the Primary File Group. Any additional data file that you add to the database will have only transactional data but no Meta Data, so that’s why it is called as the Secondary Data File. It is given the extension name .NDF so that the user can easily identify whether a specific data file is a Primary Data File or a Secondary Data File(s). There are many advantages of storing data in different files that are under different file groups. You can put your read only in the tables in one file (file group) and read-write tables in another file (file group) and take a backup of only the file group that has read the write data, so that you can avoid taking the backup of a read-only data that cannot be altered. Creating additional files in different physical hard disks also improves I/O performance. A real-time scenario where we use Files could be this one: Let’s say you have created a database called MYDB in the D-Drive which has a 50 GB space. You also have 1 Database File (.MDF) and 1 Log File on D-Drive and suppose that all of that 50 GB space has been used up and you do not have any free space left but you still want to add an additional space to the database. One easy option would be to add one more physical hard disk to the server, add new data file to MYDB database and create this new data file in a new hard disk then move some of the objects from one file to another, and put the file group under which you added new file as default File group, so that any new object that is created gets into the new files, unless specified. Now that we got a basic idea of what data files are, what type of data they store and why they are named the way they are, let’s move on to the next topic, Shrinking. First of all, I disagree with the Microsoft terminology for naming this feature as “Shrinking”. Shrinking, in regular terms, means to reduce the size of a file by means of compressing it. BUT in SQL Server, Shrinking DOES NOT mean compressing. Shrinking in SQL Server means to remove an empty space from database files and release the empty space either to the Operating System or to SQL Server. Let’s examine this through an example. Let’s say you have a database “MYDB” with a size of 50 GB that has a free space of about 20 GB, which means 30GB in the database is filled with data and the 20 GB of space is free in the database because it is not currently utilized by the SQL Server (Database); it is reserved and not yet in use. If you choose to shrink the database and to release an empty space to Operating System, and MIND YOU, you can only shrink the database size to 30 GB (in our example). You cannot shrink the database to a size less than what is filled with data. So, if you have a database that is full and has no empty space in the data file and log file (you don’t have an extra disk space to set Auto growth option ON), YOU CANNOT issue the SHRINK Database/File command, because of two reasons: There is no empty space to be released because the Shrink command does not compress the database; it only removes the empty space from the database files and there is no empty space. Remember, the Shrink command is a logged operation. When we perform the Shrink operation, this information is logged in the log file. If there is no empty space in the log file, SQL Server cannot write to the log file and you cannot shrink a database. Now answering your questions: (1) Q: What are the USEDPAGES & ESTIMATEDPAGES that appear on the Results Pane after using the DBCC SHRINKDATABASE (NorthWind, 10) ? A: According to Books Online (For SQL Server 2000): UsedPages: the number of 8-KB pages currently used by the file. EstimatedPages: the number of 8-KB pages that SQL Server estimates the file could be shrunk down to. Important Note: Before asking any question, make sure you go through Books Online or search on the Google once. The reasons for doing so have many advantages: 1. If someone else already has had this question before, chances that it is already answered are more than 50 %. 2. This reduces your waiting time for the answer. (2) Q: What is the difference between Shrinking the Database using DBCC command like the one above & shrinking it from the Enterprise Manager Console by Right-Clicking the database, going to TASKS & then selecting SHRINK Option, on a SQL Server 2000 environment? A: As far as my knowledge goes, there is no difference, both will work the same way, one advantage of using this command from query analyzer is, your console won’t be freezed. You can do perform your regular activities using Enterprise Manager. (3) Q: What is this .NDF file that is discussed above? I have never heard of it. What is it used for? Is it used by end-users, DBAs or the SERVER/SYSTEM itself? A: .NDF File is a secondary data file. You never heard of it because when database is created, SQL Server creates database by default with only 1 data file (.MDF) and 1 log file (.LDF) or however your model database has been setup, because a model database is a template used every time you create a new database using the CREATE DATABASE Command. Unless you have added an extra data file, you will not see it. This file is used by the SQL Server to store data which are saved by the users. Hope this information helps. I would like to as the experts to please comment if what I understand is not what the Microsoft guys meant. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Readers Contribution, Readers Question, SQL, SQL Authority, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • July 2013 Release of the Ajax Control Toolkit

    - by Stephen.Walther
    I’m super excited to announce the July 2013 release of the Ajax Control Toolkit. You can download the new version of the Ajax Control Toolkit from CodePlex (http://ajaxControlToolkit.CodePlex.com) or install the Ajax Control Toolkit from NuGet: With this release, we have completely rewritten the way the Ajax Control Toolkit combines, minifies, gzips, and caches JavaScript files. The goal of this release was to improve the performance of the Ajax Control Toolkit and make it easier to create custom Ajax Control Toolkit controls. Improving Ajax Control Toolkit Performance Previous releases of the Ajax Control Toolkit optimized performance for a single page but not multiple pages. When you visited each page in an app, the Ajax Control Toolkit would combine all of the JavaScript files required by the controls in the page into a new JavaScript file. So, even if every page in your app used the exact same controls, visitors would need to download a new combined Ajax Control Toolkit JavaScript file for each page visited. Downloading new scripts for each page that you visit does not lead to good performance. In general, you want to make as few requests for JavaScript files as possible and take maximum advantage of caching. For most apps, you would get much better performance if you could specify all of the Ajax Control Toolkit controls that you need for your entire app and create a single JavaScript file which could be used across your entire app. What a great idea! Introducing Control Bundles With this release of the Ajax Control Toolkit, we introduce the concept of Control Bundles. You define a Control Bundle to indicate the set of Ajax Control Toolkit controls that you want to use in your app. You define Control Bundles in a file located in the root of your application named AjaxControlToolkit.config. For example, the following AjaxControlToolkit.config file defines two Control Bundles: <ajaxControlToolkit> <controlBundles> <controlBundle> <control name="CalendarExtender" /> <control name="ComboBox" /> </controlBundle> <controlBundle name="CalendarBundle"> <control name="CalendarExtender"></control> </controlBundle> </controlBundles> </ajaxControlToolkit> The first Control Bundle in the file above does not have a name. When a Control Bundle does not have a name then it becomes the default Control Bundle for your entire application. The default Control Bundle is used by the ToolkitScriptManager by default. For example, the default Control Bundle is used when you declare the ToolkitScriptManager like this:  <ajaxToolkit:ToolkitScriptManager runat=”server” /> The default Control Bundle defined in the file above includes all of the scripts required for the CalendarExtender and ComboBox controls. All of the scripts required for both of these controls are combined, minified, gzipped, and cached automatically. The AjaxControlToolkit.config file above also defines a second Control Bundle with the name CalendarBundle. Here’s how you would use the CalendarBundle with the ToolkitScriptManager: <ajaxToolkit:ToolkitScriptManager runat="server"> <ControlBundles> <ajaxToolkit:ControlBundle Name="CalendarBundle" /> </ControlBundles> </ajaxToolkit:ToolkitScriptManager> In this case, only the JavaScript files required by the CalendarExtender control, and not the ComboBox, would be downloaded because the CalendarBundle lists only the CalendarExtender control. You can use multiple named control bundles with the ToolkitScriptManager and you will get all of the scripts from both bundles. Support for ControlBundles is a new feature of the ToolkitScriptManager that we introduced with this release. We extended the ToolkitScriptManager to support the Control Bundles that you can define in the AjaxControlToolkit.config file. Let me be explicit about the rules for Control Bundles: 1. If you do not create an AjaxControlToolkit.config file then the ToolkitScriptManager will download all of the JavaScript files required for all of the controls in the Ajax Control Toolkit. This is the easy but low performance option. 2. If you create an AjaxControlToolkit.config file and create a ControlBundle without a name then the ToolkitScriptManager uses that Control Bundle by default. For example, if you plan to use only the CalendarExtender and ComboBox controls in your application then you should create a default bundle that lists only these two controls. 3. If you create an AjaxControlToolkit.config file and create one or more named Control Bundles then you can use these named Control Bundles with the ToolkitScriptManager. For example, you might want to use different subsets of the Ajax Control Toolkit controls in different sections of your app. I should also mention that you can use the AjaxControlToolkit.config file with custom Ajax Control Toolkit controls – new controls that you write. For example, here is how you would register a set of custom controls from an assembly named MyAssembly: <ajaxControlToolkit> <controlBundles> <controlBundle name="CustomBundle"> <control name="MyAssembly.MyControl1" assembly="MyAssembly" /> <control name="MyAssembly.MyControl2" assembly="MyAssembly" /> </controlBundle> </ajaxControlToolkit> What about ASP.NET Bundling and Minification? The idea of Control Bundles is similar to the idea of Script Bundles used in ASP.NET Bundling and Minification. You might be wondering why we didn’t simply use Script Bundles with the Ajax Control Toolkit. There were several reasons. First, ASP.NET Bundling does not work with scripts embedded in an assembly. Because all of the scripts used by the Ajax Control Toolkit are embedded in the AjaxControlToolkit.dll assembly, ASP.NET Bundling was not an option. Second, Web Forms developers typically think at the level of controls and not at the level of individual scripts. We believe that it makes more sense for a Web Forms developer to specify the controls that they need in an app (CalendarExtender, ToggleButton) instead of the individual scripts that they need in an app (the 15 or so scripts required by the CalenderExtender). Finally, ASP.NET Bundling does not work with older versions of ASP.NET. The Ajax Control Toolkit needs to support ASP.NET 3.5, ASP.NET 4.0, and ASP.NET 4.5. Therefore, using ASP.NET Bundling was not an option. There is nothing wrong with using Control Bundles and Script Bundles side-by-side. The ASP.NET 4.0 and 4.5 ToolkitScriptManager supports both approaches to bundling scripts. Using the AjaxControlToolkit.CombineScriptsHandler Browsers cache JavaScript files by URL. For example, if you request the exact same JavaScript file from two different URLs then the exact same JavaScript file must be downloaded twice. However, if you request the same JavaScript file from the same URL more than once then it only needs to be downloaded once. With this release of the Ajax Control Toolkit, we have introduced a new HTTP Handler named the AjaxControlToolkit.CombineScriptsHandler. If you register this handler in your web.config file then the Ajax Control Toolkit can cache your JavaScript files for up to one year in the future automatically. You should register the handler in two places in your web.config file: in the <httpHandlers> section and the <system.webServer> section (don’t forget to register the handler for the AjaxFileUpload while you are there!). <httpHandlers> <add verb="*" path="AjaxFileUploadHandler.axd" type="AjaxControlToolkit.AjaxFileUploadHandler, AjaxControlToolkit" /> <add verb="*" path="CombineScriptsHandler.axd" type="AjaxControlToolkit.CombineScriptsHandler, AjaxControlToolkit" /> </httpHandlers> <system.webServer> <validation validateIntegratedModeConfiguration="false" /> <handlers> <add name="AjaxFileUploadHandler" verb="*" path="AjaxFileUploadHandler.axd" type="AjaxControlToolkit.AjaxFileUploadHandler, AjaxControlToolkit" /> <add name="CombineScriptsHandler" verb="*" path="CombineScriptsHandler.axd" type="AjaxControlToolkit.CombineScriptsHandler, AjaxControlToolkit" /> </handlers> <system.webServer> The handler is only used in release mode and not in debug mode. You can enable release mode in your web.config file like this: <compilation debug=”false”> You also can override the web.config setting with the ToolkitScriptManager like this: <act:ToolkitScriptManager ScriptMode=”Release” runat=”server”/> In release mode, scripts are combined, minified, gzipped, and cached with a far future cache header automatically. When the handler is not registered, scripts are requested from the page that contains the ToolkitScriptManager: When the handler is registered in the web.config file, scripts are requested from the handler: If you want the best performance, always register the handler. That way, the Ajax Control Toolkit can cache the bundled scripts across page requests with a far future cache header. If you don’t register the handler then a new JavaScript file must be downloaded whenever you travel to a new page. Dynamic Bundling and Minification Previous releases of the Ajax Control Toolkit used a Visual Studio build task to minify the JavaScript files used by the Ajax Control Toolkit controls. The disadvantage of this approach to minification is that it made it difficult to create custom Ajax Control Toolkit controls. Starting with this release of the Ajax Control Toolkit, we support dynamic minification. The JavaScript files in the Ajax Control Toolkit are minified at runtime instead of at build time. Scripts are minified only when in release mode. You can specify release mode with the web.config file or with the ToolkitScriptManager ScriptMode property. Because of this change, the Ajax Control Toolkit now depends on the Ajax Minifier. You must include a reference to AjaxMin.dll in your Visual Studio project or you cannot take advantage of runtime minification. If you install the Ajax Control Toolkit from NuGet then AjaxMin.dll is added to your project as a NuGet dependency automatically. If you download the Ajax Control Toolkit from CodePlex then the AjaxMin.dll is included in the download. This change means that you no longer need to do anything special to create a custom Ajax Control Toolkit. As an open source project, we hope more people will contribute to the Ajax Control Toolkit (Yes, I am looking at you.) We have been working hard on making it much easier to create new custom controls. More on this subject with the next release of the Ajax Control Toolkit. A Single Visual Studio Solution We also made substantial changes to the Visual Studio solution and projects used by the Ajax Control Toolkit with this release. This change will matter to you only if you need to work directly with the Ajax Control Toolkit source code. In previous releases of the Ajax Control Toolkit, we maintained separate solution and project files for ASP.NET 3.5, ASP.NET 4.0, and ASP.NET 4.5. Starting with this release, we now support a single Visual Studio 2012 solution that takes advantage of multi-targeting to build ASP.NET 3.5, ASP.NET 4.0, and ASP.NET 4.5 versions of the toolkit. This change means that you need Visual Studio 2012 to open the Ajax Control Toolkit project downloaded from CodePlex. For details on how we setup multi-targeting, please see Budi Adiono’s blog post: http://www.budiadiono.com/2013/07/25/visual-studio-2012-multi-targeting-framework-project/ Summary You can take advantage of this release of the Ajax Control Toolkit to significantly improve the performance of your website. You need to do two things: 1) You need to create an AjaxControlToolkit.config file which lists the controls used in your app and 2) You need to register the AjaxControlToolkit.CombineScriptsHandler in the web.config file. We made substantial changes to the Ajax Control Toolkit with this release. We think these changes will result in much better performance for multipage apps and make the process of building custom controls much easier. As always, we look forward to hearing your feedback.

    Read the article

  • Restful Services, oData, and Rest Sharp

    - by jkrebsbach
    After a great presentation by Jason Sheehan at MDC about RestSharp, I decided to implement it. RestSharp is a .Net framework for consuming restful data sources via either Json or XML. My first step was to put together a Restful data source for RestSharp to consume.  Staying entirely withing .Net, I decided to use Microsoft's oData implementation, built on System.Data.Services.DataServices.  Natively, these support Json, or atom+pub xml.  (XML with a few bells and whistles added on) There are three main steps for creating an oData data source: 1)  override CreateDSPMetaData This is where the metadata data is returned.  The meta data defines the structure of the data to return.  The structure contains the relationships between data objects, along with what properties the objects expose.  The meta data can and should be somehow cached so that the structure is not rebuild with every data request. 2) override CreateDataSource The context contains the data the data source will publish.  This method is the conduit which will populate the metadata objects to be returned to the requestor. 3) implement static InitializeService At this point we can set up security, along with setting up properties of the web service (versioning, etc)   Here is a web service which publishes stock prices for various Products (stocks) in various Categories. namespace RestService {     public class RestServiceImpl : DSPDataService<DSPContext>     {         private static DSPContext _context;         private static DSPMetadata _metadata;         /// <summary>         /// Populate traversable data source         /// </summary>         /// <returns></returns>         protected override DSPContext CreateDataSource()         {             if (_context == null)             {                 _context = new DSPContext();                 Category utilities = new Category(0);                 utilities.Name = "Electric";                 Category financials = new Category(1);                 financials.Name = "Financial";                                 IList products = _context.GetResourceSetEntities("Products");                 Product electric = new Product(0, utilities);                 electric.Name = "ABC Electric";                 electric.Description = "Electric Utility";                 electric.Price = 3.5;                 products.Add(electric);                 Product water = new Product(1, utilities);                 water.Name = "XYZ Water";                 water.Description = "Water Utility";                 water.Price = 2.4;                 products.Add(water);                 Product banks = new Product(2, financials);                 banks.Name = "FatCat Bank";                 banks.Description = "A bank that's almost too big";                 banks.Price = 19.9; // This will never get to the client                 products.Add(banks);                 IList categories = _context.GetResourceSetEntities("Categories");                 categories.Add(utilities);                 categories.Add(financials);                 utilities.Products.Add(electric);                 utilities.Products.Add(electric);                 financials.Products.Add(banks);             }             return _context;         }         /// <summary>         /// Setup rules describing published data structure - relationships between data,         /// key field, other searchable fields, etc.         /// </summary>         /// <returns></returns>         protected override DSPMetadata CreateDSPMetadata()         {             if (_metadata == null)             {                 _metadata = new DSPMetadata("DemoService", "DataServiceProviderDemo");                 // Define entity type product                 ResourceType product = _metadata.AddEntityType(typeof(Product), "Product");                 _metadata.AddKeyProperty(product, "ProductID");                 // Only add properties we wish to share with end users                 _metadata.AddPrimitiveProperty(product, "Name");                 _metadata.AddPrimitiveProperty(product, "Description");                 EntityPropertyMappingAttribute att = new EntityPropertyMappingAttribute("Name",                     SyndicationItemProperty.Title, SyndicationTextContentKind.Plaintext, true);                 product.AddEntityPropertyMappingAttribute(att);                 att = new EntityPropertyMappingAttribute("Description",                     SyndicationItemProperty.Summary, SyndicationTextContentKind.Plaintext, true);                 product.AddEntityPropertyMappingAttribute(att);                 // Define products as a set of product entities                 ResourceSet products = _metadata.AddResourceSet("Products", product);                 // Define entity type category                 ResourceType category = _metadata.AddEntityType(typeof(Category), "Category");                 _metadata.AddKeyProperty(category, "CategoryID");                 _metadata.AddPrimitiveProperty(category, "Name");                 _metadata.AddPrimitiveProperty(category, "Description");                 // Define categories as a set of category entities                 ResourceSet categories = _metadata.AddResourceSet("Categories", category);                 att = new EntityPropertyMappingAttribute("Name",                     SyndicationItemProperty.Title, SyndicationTextContentKind.Plaintext, true);                 category.AddEntityPropertyMappingAttribute(att);                 att = new EntityPropertyMappingAttribute("Description",                     SyndicationItemProperty.Summary, SyndicationTextContentKind.Plaintext, true);                 category.AddEntityPropertyMappingAttribute(att);                 // A product has a category, a category has products                 _metadata.AddResourceReferenceProperty(product, "Category", categories);                 _metadata.AddResourceSetReferenceProperty(category, "Products", products);             }             return _metadata;         }         /// <summary>         /// Based on the requesting user, can set up permissions to Read, Write, etc.         /// </summary>         /// <param name="config"></param>         public static void InitializeService(DataServiceConfiguration config)         {             config.SetEntitySetAccessRule("*", EntitySetRights.All);             config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2;             config.DataServiceBehavior.AcceptProjectionRequests = true;         }     } }     The objects prefixed with DSP come from the samples on the oData site: http://www.odata.org/developers The products and categories objects are POCO business objects with no special modifiers. Three main options are available for defining the MetaData of data sources in .Net: 1) Generate Entity Data model (Potentially directly from SQL Server database).  This requires the least amount of manual interaction, and uses the edmx WYSIWYG editor to generate a data model.  This can be directly tied to the SQL Server database and generated from the database if you want a data access layer tightly coupled with your database. 2) Object model decorations.  If you already have a POCO data layer, you can decorate your objects with properties to statically inform the compiler how the objects are related.  The disadvantage is there are now tags strewn about your business layer that need to be updated as the business rules change.  3) Programmatically construct metadata object.  This is the object illustrated above in CreateDSPMetaData.  This puts all relationship information into one central programmatic location.  Here business rules are constructed when the DSPMetaData response object is returned.   Once you have your service up and running, RestSharp is designed for XML / Json, along with the native Microsoft library.  There are currently some differences between how Jason made RestSharp expect XML with how atom+pub works, so I found better results currently with the Json implementation - modifying the RestSharp XML parser to make an atom+pub parser is fairly trivial though, so use what implementation works best for you. I put together a sample console app which calls the RestSvcImpl.svc service defined above (and assumes it to be running on port 2000).  I used both RestSharp as a client, and also the default Microsoft oData client tools. namespace RestConsole {     class Program     {         private static DataServiceContext _ctx;         private enum DemoType         {             Xml,             Json         }         static void Main(string[] args)         {             // Microsoft implementation             _ctx = new DataServiceContext(new System.Uri("http://localhost:2000/RestServiceImpl.svc"));             var msProducts = RunQuery<Product>("Products").ToList();             var msCategory = RunQuery<Category>("/Products(0)/Category").AsEnumerable().Single();             var msFilteredProducts = RunQuery<Product>("/Products?$filter=length(Name) ge 4").ToList();             // RestSharp implementation                          DemoType demoType = DemoType.Json;             var client = new RestClient("http://localhost:2000/RestServiceImpl.svc");             client.ClearHandlers(); // Remove all available handlers             // Set up handler depending on what situation dictates             if (demoType == DemoType.Json)                 client.AddHandler("application/json", new RestSharp.Deserializers.JsonDeserializer());             else if (demoType == DemoType.Xml)             {                 client.AddHandler("application/atom+xml", new RestSharp.Deserializers.XmlDeserializer());             }                          var request = new RestRequest();             if (demoType == DemoType.Json)                 request.RootElement = "d"; // service root element for json             else if (demoType == DemoType.Xml)             {                 request.XmlNamespace = "http://www.w3.org/2005/Atom";             }                              // Return all products             request.Resource = "/Products?$orderby=Name";             RestResponse<List<Product>> productsResp = client.Execute<List<Product>>(request);             List<Product> products = productsResp.Data;             // Find category for product with ProductID = 1             request.Resource = string.Format("/Products(1)/Category");             RestResponse<Category> categoryResp = client.Execute<Category>(request);             Category category = categoryResp.Data;             // Specialized queries             request.Resource = string.Format("/Products?$filter=ProductID eq {0}", 1);             RestResponse<Product> productResp = client.Execute<Product>(request);             Product product = productResp.Data;                          request.Resource = string.Format("/Products?$filter=Name eq '{0}'", "XYZ Water");             productResp = client.Execute<Product>(request);             product = productResp.Data;         }         private static IEnumerable<TElement> RunQuery<TElement>(string queryUri)         {             try             {                 return _ctx.Execute<TElement>(new Uri(queryUri, UriKind.Relative));             }             catch (Exception ex)             {                 throw ex;             }         }              } }   Feel free to step through the code a few times and to attach a debugger to the service as well to see how and where the context and metadata objects are constructed and returned.  Pay special attention to the response object being returned by the oData service - There are several properties of the RestRequest that can be used to help troubleshoot when the structure of the response is not exactly what would be expected.

    Read the article

  • Caching NHibernate Named Queries

    - by TStewartDev
    I recently started a new job and one of my first tasks was to implement a "popular products" design. The parameters were that it be done with NHibernate and be cached for 24 hours at a time because the query will be pretty taxing and the results do not need to be constantly up to date. This ended up being tougher than it sounds. The database schema meant a minimum of four joins with filtering and ordering criteria. I decided to use a stored procedure rather than letting NHibernate create the SQL for me. Here is a summary of what I learned (even if I didn't ultimately use all of it): You can't, at the time of this writing, use Fluent NHibernate to configure SQL named queries or imports You can return persistent entities from a stored procedure and there are a couple ways to do that You can populate POCOs using the results of a stored procedure, but it isn't quite as obvious You can reuse your named query result mapping other places (avoid duplication) Caching your query results is not at all obvious Testing to see if your cache is working is a pain NHibernate does a lot of things right. Having unified, up-to-date, comprehensive, and easy-to-find documentation is not one of them. By the way, if you're new to this, I'll use the terms "named query" and "stored procedure" (from NHibernate's perspective) fairly interchangeably. Technically, a named query can execute any SQL, not just a stored procedure, and a stored procedure doesn't have to be executed from a named query, but for reusability, it seems to me like the best practice. If you're here, chances are good you're looking for answers to a similar problem. You don't want to read about the path, you just want the result. So, here's how to get this thing going. The Stored Procedure NHibernate has some guidelines when using stored procedures. For Microsoft SQL Server, you have to return a result set. The scalar value that the stored procedure returns is ignored as are any result sets after the first. Other than that, it's nothing special. CREATE PROCEDURE GetPopularProducts @StartDate DATETIME, @MaxResults INT AS BEGIN SELECT [ProductId], [ProductName], [ImageUrl] FROM SomeTableWithJoinsEtc END The Result Class - PopularProduct You have two options to transport your query results to your view (or wherever is the final destination): you can populate an existing mapped entity class in your model, or you can create a new entity class. If you go with the existing model, the advantage is that the query will act as a loader and you'll get full proxied access to the domain model. However, this can be a disadvantage if you require access to the related entities that aren't loaded by your results. For example, my PopularProduct has image references. Unless I tie them into the query (thus making it even more complicated and expensive to run), they'll have to be loaded on access, requiring more trips to the database. Since we're trying to avoid trips to the database by using a second-level cache, we should use the second option, which is to create a separate entity for results. This approach is (I believe) in the spirit of the Command-Query Separation principle, and it allows us to flatten our data and optimize our report-generation process from data source to view. public class PopularProduct { public virtual int ProductId { get; set; } public virtual string ProductName { get; set; } public virtual string ImageUrl { get; set; } } The NHibernate Mappings (hbm) Next up, we need to let NHibernate know about the query and where the results will go. Below is the markup for the PopularProduct class. Notice that I'm using the <resultset> element and that it has a name attribute. The name allows us to drop this into our query map and any others, giving us reusability. Also notice the <import> element which lets NHibernate know about our entity class. <?xml version="1.0" encoding="utf-8" ?> <hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"> <import class="PopularProduct, Infrastructure.NHibernate, Version=1.0.0.0"/> <resultset name="PopularProductResultSet"> <return-scalar column="ProductId" type="System.Int32"/> <return-scalar column="ProductName" type="System.String"/> <return-scalar column="ImageUrl" type="System.String"/> </resultset> </hibernate-mapping>  And now the PopularProductsMap: <?xml version="1.0" encoding="utf-8" ?> <hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"> <sql-query name="GetPopularProducts" resultset-ref="PopularProductResultSet" cacheable="true" cache-mode="normal"> <query-param name="StartDate" type="System.DateTime" /> <query-param name="MaxResults" type="System.Int32" /> exec GetPopularProducts @StartDate = :StartDate, @MaxResults = :MaxResults </sql-query> </hibernate-mapping>  The two most important things to notice here are the resultset-ref attribute, which links in our resultset mapping, and the cacheable attribute. The Query Class – PopularProductsQuery So far, this has been fairly obvious if you're familiar with NHibernate. This next part, maybe not so much. You can implement your query however you want to; for me, I wanted a self-encapsulated Query class, so here's what it looks like: public class PopularProductsQuery : IPopularProductsQuery { private static readonly IResultTransformer ResultTransformer; private readonly ISessionBuilder _sessionBuilder;   static PopularProductsQuery() { ResultTransformer = Transformers.AliasToBean<PopularProduct>(); }   public PopularProductsQuery(ISessionBuilder sessionBuilder) { _sessionBuilder = sessionBuilder; }   public IList<PopularProduct> GetPopularProducts(DateTime startDate, int maxResults) { var session = _sessionBuilder.GetSession(); var popularProducts = session .GetNamedQuery("GetPopularProducts") .SetCacheable(true) .SetCacheRegion("PopularProductsCacheRegion") .SetCacheMode(CacheMode.Normal) .SetReadOnly(true) .SetResultTransformer(ResultTransformer) .SetParameter("StartDate", startDate.Date) .SetParameter("MaxResults", maxResults) .List<PopularProduct>();   return popularProducts; } }  Okay, so let's look at each line of the query execution. The first, GetNamedQuery, matches up with our NHibernate mapping for the sql-query. Next, we set it as cacheable (this is probably redundant since our mapping also specified it, but it can't hurt, right?). Then we set the cache region which we'll get to in the next section. Set the cache mode (optional, I believe), and my cache is read-only, so I set that as well. The result transformer is very important. This tells NHibernate how to transform your query results into a non-persistent entity. You can see I've defined ResultTransformer in the static constructor using the AliasToBean transformer. The name is obviously leftover from Java/Hibernate. Finally, set your parameters and then call a result method which will execute the query. Because this is set to cached, you execute this statement every time you run the query and NHibernate will know based on your parameters whether to use its cached version or a fresh version. The Configuration – hibernate.cfg.xml and Web.config You need to explicitly enable second-level caching in your hibernate configuration: <hibernate-configuration xmlns="urn:nhibernate-configuration-2.2"> <session-factory> [...] <property name="dialect">NHibernate.Dialect.MsSql2005Dialect</property> <property name="cache.provider_class">NHibernate.Caches.SysCache.SysCacheProvider,NHibernate.Caches.SysCache</property> <property name="cache.use_query_cache">true</property> <property name="cache.use_second_level_cache">true</property> [...] </session-factory> </hibernate-configuration> Both properties "use_query_cache" and "use_second_level_cache" are necessary. As this is for a web deployement, we're using SysCache which relies on ASP.NET's caching. Be aware of this if you're not deploying to the web! You'll have to use a different cache provider. We also need to tell our cache provider (in this cache, SysCache) about our caching region: <syscache> <cache region="PopularProductsCacheRegion" expiration="86400" priority="5" /> </syscache> Here I've set the cache to be valid for 24 hours. This XML snippet goes in your Web.config (or in a separate file referenced by Web.config, which helps keep things tidy). The Payoff That should be it! At this point, your queries should run once against the database for a given set of parameters and then use the cache thereafter until it expires. You can, of course, adjust settings to work in your particular environment. Testing Testing your application to ensure it is using the cache is a pain, but if you're like me, you want to know that it's actually working. It's a bit involved, though, so I'll create a separate post for it if comments indicate there is interest.

    Read the article

  • SQL SERVER – Weekly Series – Memory Lane – #038

    - by Pinal Dave
    Here is the list of selected articles of SQLAuthority.com across all these years. Instead of just listing all the articles I have selected a few of my most favorite articles and have listed them here with additional notes below it. Let me know which one of the following is your favorite article from memory lane. 2007 CASE Statement in ORDER BY Clause – ORDER BY using Variable This article is as per request from the Application Development Team Leader of my company. His team encountered code where the application was preparing string for ORDER BY clause of the SELECT statement. Application was passing this string as variable to Stored Procedure (SP) and SP was using EXEC to execute the SQL string. This is not good for performance as Stored Procedure has to recompile every time due to EXEC. sp_executesql can do the same task but still not the best performance. SSMS – View/Send Query Results to Text/Grid/Files Results to Text – CTRL + T Results to Grid – CTRL + D Results to File – CTRL + SHIFT + F 2008 Introduction to SPARSE Columns Part 2 I wrote about Introduction to SPARSE Columns Part 1. Let us understand the concept of the SPARSE column in more detail. I suggest you read the first part before continuing reading this article. All SPARSE columns are stored as one XML column in the database. Let us see some of the advantage and disadvantage of SPARSE column. Deferred Name Resolution How come when table name is incorrect SP can be created successfully but when an incorrect column is used SP cannot be created? 2009 Backup Timeline and Understanding of Database Restore Process in Full Recovery Model In general, databases backup in full recovery mode is taken in three different kinds of database files. Full Database Backup Differential Database Backup Log Backup Restore Sequence and Understanding NORECOVERY and RECOVERY While doing RESTORE Operation if you restoring database files, always use NORECOVER option as that will keep the database in a state where more backup file are restored. This will also keep database offline also to prevent any changes, which can create itegrity issues. Once all backup file is restored run RESTORE command with a RECOVERY option to get database online and operational. Four Different Ways to Find Recovery Model for Database Perhaps, the best thing about technical domain is that most of the things can be executed in more than one ways. It is always useful to know about the various methods of performing a single task. Two Methods to Retrieve List of Primary Keys and Foreign Keys of Database When Information Schema is used, we will not be able to discern between primary key and foreign key; we will have both the keys together. In the case of sys schema, we can query the data in our preferred way and can join this table to another table, which can retrieve additional data from the same. Get Last Running Query Based on SPID PID is returns sessions ID of the current user process. The acronym SPID comes from the name of its earlier version, Server Process ID. 2010 SELECT * FROM dual – Dual Equivalent Dual is a table that is created by Oracle together with data dictionary. It consists of exactly one column named “dummy”, and one record. The value of that record is X. You can check the content of the DUAL table using the following syntax. SELECT * FROM dual Identifying Statistics Used by Query Someone asked this question in my training class of query optimization and performance tuning.  “Can I know which statistics were used by my query?” 2011 SQL SERVER – Interview Questions and Answers – Frequently Asked Questions – Day 14 of 31 What are the basic functions for master, msdb, model, tempdb and resource databases? What is the Maximum Number of Index per Table? Explain Few of the New Features of SQL Server 2008 Management Studio Explain IntelliSense for Query Editing Explain MultiServer Query Explain Query Editor Regions Explain Object Explorer Enhancements Explain Activity Monitors SQL SERVER – Interview Questions and Answers – Frequently Asked Questions – Day 15 of 31 What is Service Broker? Where are SQL server Usernames and Passwords Stored in the SQL server? What is Policy Management? What is Database Mirroring? What are Sparse Columns? What does TOP Operator Do? What is CTE? What is MERGE Statement? What is Filtered Index? Which are the New Data Types Introduced in SQL SERVER 2008? SQL SERVER – Interview Questions and Answers – Frequently Asked Questions – Day 16 of 31 What are the Advantages of Using CTE? How can we Rewrite Sub-Queries into Simple Select Statements or with Joins? What is CLR? What are Synonyms? What is LINQ? What are Isolation Levels? What is Use of EXCEPT Clause? What is XPath? What is NOLOCK? What is the Difference between Update Lock and Exclusive Lock? SQL SERVER – Interview Questions and Answers – Frequently Asked Questions – Day 17 of 31 How will you Handle Error in SQL SERVER 2008? What is RAISEERROR? What is RAISEERROR? How to Rebuild the Master Database? What is the XML Datatype? What is Data Compression? What is Use of DBCC Commands? How to Copy the Tables, Schema and Views from one SQL Server to Another? How to Find Tables without Indexes? SQL SERVER – Interview Questions and Answers – Frequently Asked Questions – Day 18 of 31 How to Copy Data from One Table to Another Table? What is Catalog Views? What is PIVOT and UNPIVOT? What is a Filestream? What is SQLCMD? What do you mean by TABLESAMPLE? What is ROW_NUMBER()? What are Ranking Functions? What is Change Data Capture (CDC) in SQL Server 2008? SQL SERVER – Interview Questions and Answers – Frequently Asked Questions – Day 19 of 31 How can I Track the Changes or Identify the Latest Insert-Update-Delete from a Table? What is the CPU Pressure? How can I Get Data from a Database on Another Server? What is the Bookmark Lookup and RID Lookup? What is Difference between ROLLBACK IMMEDIATE and WITH NO_WAIT during ALTER DATABASE? What is Difference between GETDATE and SYSDATETIME in SQL Server 2008? How can I Check that whether Automatic Statistic Update is Enabled or not? How to Find Index Size for Each Index on Table? What is the Difference between Seek Predicate and Predicate? What are Basics of Policy Management? What are the Advantages of Policy Management? SQL SERVER – Interview Questions and Answers – Frequently Asked Questions – Day 20 of 31 What are Policy Management Terms? What is the ‘FILLFACTOR’? Where in MS SQL Server is ’100’ equal to ‘0’? What are Points to Remember while Using the FILLFACTOR Argument? What is a ROLLUP Clause? What are Various Limitations of the Views? What is a Covered index? When I Delete any Data from a Table, does the SQL Server reduce the size of that table? What are Wait Types? How to Stop Log File Growing too Big? If any Stored Procedure is Encrypted, then can we see its definition in Activity Monitor? 2012 Example of Width Sensitive and Width Insensitive Collation Width Sensitive Collation: A single-byte character (half-width) represented as single-byte and the same character represented as a double-byte character (full-width) are when compared are not equal the collation is width sensitive. In this example we have one table with two columns. One column has a collation of width sensitive and the second column has a collation of width insensitive. Find Column Used in Stored Procedure – Search Stored Procedure for Column Name Very interesting conversation about how to find column used in a stored procedure. There are two different characters in the story and both are having a conversation about how to find column in the stored procedure. Here are two part story Part 1 | Part 2 SQL SERVER – 2012 Functions – FORMAT() and CONCAT() – An Interesting Usage Generate Script for Schema and Data – SQL in Sixty Seconds #021 – Video In simple words, in many cases the database move from one place to another place. It is not always possible to back up and restore databases. There are possibilities when only part of the database (with schema and data) has to be moved. In this video we learn that we can easily generate script for schema for data and move from one server to another one. INFORMATION_SCHEMA.COLUMNS and Value Character Maximum Length -1 I often see the value -1 in the CHARACTER_MAXIMUM_LENGTH column of INFORMATION_SCHEMA.COLUMNS table. I understand that the length of any column can be between 0 to large number but I do not get it when I see value in negative (i.e. -1). Any insight on this subject? Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Memory Lane, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Do you play Sudoku ?

    - by Gilles Haro
    Did you know that 11gR2 database could solve a Sudoku puzzle with a single query and, most of the time, and this in less than a second ? The following query shows you how ! Simply pass a flattened Sudoku grid to it a get the result instantaneously ! col "Solution" format a9 col "Problem" format a9 with Iteration( initialSudoku, Step, EmptyPosition ) as ( select initialSudoku, InitialSudoku, instr( InitialSudoku, '-' )        from ( select '--64----2--7-35--1--58-----27---3--4---------4--2---96-----27--7--58-6--3----18--' InitialSudoku from dual )    union all    select initialSudoku        , substr( Step, 1, EmptyPosition - 1 ) || OneDigit || substr( Step, EmptyPosition + 1 )         , instr( Step, '-', EmptyPosition + 1 )      from Iteration         , ( select to_char( rownum ) OneDigit from dual connect by rownum <= 9 ) OneDigit     where EmptyPosition > 0       and not exists          ( select null              from ( select rownum IsPossible from dual connect by rownum <= 9 )             where OneDigit = substr( Step, trunc( ( EmptyPosition - 1 ) / 9 ) * 9 + IsPossible, 1 )   -- One line must contain the 1-9 digits                or OneDigit = substr( Step, mod( EmptyPosition - 1, 9 ) - 8 + IsPossible * 9, 1 )      -- One row must contain the 1-9 digits                or OneDigit = substr( Step, mod( trunc( ( EmptyPosition - 1 ) / 3 ), 3 ) * 3           -- One square must contain the 1-9 digits                            + trunc( ( EmptyPosition - 1 ) / 27 ) * 27 + IsPossible                            + trunc( ( IsPossible - 1 ) / 3 ) * 6 , 1 )          ) ) select initialSudoku "Problem", Step "Solution"    from Iteration  where EmptyPosition = 0 ;   The Magic thing behind this is called Recursive Subquery Factoring. The Oracle documentation gives the following definition: If a subquery_factoring_clause refers to its own query_name in the subquery that defines it, then the subquery_factoring_clause is said to be recursive. A recursive subquery_factoring_clause must contain two query blocks: the first is the anchor member and the second is the recursive member. The anchor member must appear before the recursive member, and it cannot reference query_name. The anchor member can be composed of one or more query blocks combined by the set operators: UNION ALL, UNION, INTERSECT or MINUS. The recursive member must follow the anchor member and must reference query_name exactly once. You must combine the recursive member with the anchor member using the UNION ALL set operator. This new feature is a replacement of this old Hierarchical Query feature that exists in Oracle since the days of Aladdin (well, at least, release 2 of the database in 1977). Everyone remembers the old syntax : select empno, ename, job, mgr, level      from   emp      start with mgr is null      connect by prior empno = mgr; that could/should be rewritten (but not as often as it should) as withT_Emp (empno, name, level) as        ( select empno, ename, job, mgr, level             from   emp             start with mgr is null             connect by prior empno = mgr        ) select * from   T_Emp; which uses the "with" syntax, whose main advantage is to clarify the readability of the query. Although very efficient, this syntax had the disadvantage of being a Non-Ansi Sql Syntax. Ansi-Sql version of Hierarchical Query is called Recursive Subquery Factoring. As of 11gR2, Oracle got compliant with Ansi Sql and introduced Recursive Subquery Factoring. It is basically an extension of the "With" clause that enables recursion. Now, the new syntax for the query would be with T_Emp (empno, name, job, mgr, hierlevel) as       ( select E.empno, E.ename, E.job, E.mgr, 1 from emp E where E.mgr is null         union all         select E.empno, E.ename, E.job, E.mgr, T.hierlevel + 1from emp E                                                                                                            join T_Emp T on ( E.mgr = T.empno ) ) select * from   T_Emp; The anchor member is a replacement for the "start with" The recursive member is processed through iterations. It joins the Source table (EMP) with the result from the Recursive Query itself (T_Emp) Each iteration works with the results of all its preceding iterations.     Iteration 1 works on the results of the first query     Iteration 2 works on the results of Iteration 1 and first query     Iteration 3 works on the results of Iteration 1, Iteration 2 and first query. So, knowing that, the Sudoku query it self-explaining; The anchor member contains the "Problem" : The Initial Sudoku and the Position of the first "hole" in the grid. The recursive member tries to replace the considered hole with any of the 9 digit that would satisfy the 3 rules of sudoku Recursion progress through the grid until it is complete.   Another example :  Fibonaccy Numbers :  un = (un-1) + (un-2) with Fib (u1, u2, depth) as   (select 1, 1, 1 from dual    union all    select u1+u2, u1, depth+1 from Fib where depth<10) select u1 from Fib; Conclusion Oracle brings here a new feature (which, to be honest, already existed on other concurrent systems) and extends the power of the database to new boundaries. It’s now up to developers to try and test it and find more useful application than solving puzzles… But still, solving a Sudoku in less time it takes to say it remains impressive… Interesting links: You might be interested by the following links which cover different aspects of this feature Oracle Documentation Lucas Jellema 's Blog Fibonaci Numbers

    Read the article

  • Adventures in Windows 8: Placing items in a GridView with a ColumnSpan or RowSpan

    - by Laurent Bugnion
    Currently working on a Windows 8 app for an important client, I will be writing about small issues, tips and tricks, ideas and whatever occurs to me during the development and the integration of this app. When working with a GridView, it is quite common to use a VariableSizedWrapGrid as the ItemsPanel. This creates a nice flowing layout which will auto-adapt for various resolutions. This is ideal when you want to build views like the Windows 8 start menu. However immediately we notice that the Start menu allows to place items on one column (Smaller) or two columns (Larger). This switch happens through the AppBar. So how do we implement that in our app? Using ColumnSpan and RowSpan When you use a VariableSizedWrapGrid directly in your XAML, you can attach the VariableSizedWrapGrid.ColumnSpan and VariableSizedWrapGrid.RowSpan attached properties directly to an item to create the desired effect. For instance this code create this output (shown in Blend but it runs just the same): <VariableSizedWrapGrid ItemHeight="100" ItemWidth="100" Width="200" Orientation="Horizontal"> <Rectangle Fill="Purple" /> <Rectangle Fill="Orange" /> <Rectangle Fill="Yellow" VariableSizedWrapGrid.ColumnSpan="2" /> <Rectangle Fill="Red" VariableSizedWrapGrid.ColumnSpan="2" VariableSizedWrapGrid.RowSpan="2" /> <Rectangle Fill="Green" VariableSizedWrapGrid.RowSpan="2" /> <Rectangle Fill="Blue" /> <Rectangle Fill="LightGray" /> </VariableSizedWrapGrid> Using the VariableSizedWrapGrid as ItemsPanel When you use a GridView however, you typically bind the ItemsSource property to a collection, for example in a viewmodel. In that case, you want to be able to switch the ColumnSpan and RowSpan depending on properties on the item. I tried to find a way to bind the VariableSizedWrapGrid.ColumnSpan attached property on the GridView’s ItemContainerStyle template to an observable property on the item, but it didn’t work. Instead, I decided to use a StyleSelector to switch the GridViewItem’s style. Here’s how: First I added my two GridViews to my XAML as follows: <Page.Resources> <local:MainViewModel x:Key="Main" /> <DataTemplate x:Key="DataTemplate1"> <Grid Background="{Binding Brush}"> <TextBlock Text="{Binding BrushCode}" /> </Grid> </DataTemplate> </Page.Resources> <Page.DataContext> <Binding Source="{StaticResource Main}" /> </Page.DataContext> <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}" Margin="20"> <Grid.ColumnDefinitions> <ColumnDefinition Width="Auto" /> <ColumnDefinition Width="*" /> </Grid.ColumnDefinitions> <GridView ItemsSource="{Binding Items}" ItemTemplate="{StaticResource DataTemplate1}" VerticalAlignment="Top"> <GridView.ItemsPanel> <ItemsPanelTemplate> <VariableSizedWrapGrid ItemHeight="150" ItemWidth="150" /> </ItemsPanelTemplate> </GridView.ItemsPanel> </GridView> <GridView Grid.Column="1" ItemsSource="{Binding Items}" ItemTemplate="{StaticResource DataTemplate1}" VerticalAlignment="Top"> <GridView.ItemsPanel> <ItemsPanelTemplate> <VariableSizedWrapGrid ItemHeight="100" ItemWidth="100" /> </ItemsPanelTemplate> </GridView.ItemsPanel> </GridView> </Grid> The MainViewModel looks like this: public class MainViewModel { public IList<Item> Items { get; private set; } public MainViewModel() { Items = new List<Item> { new Item { Brush = new SolidColorBrush(Colors.Red) }, new Item { Brush = new SolidColorBrush(Colors.Blue) }, new Item { Brush = new SolidColorBrush(Colors.Green), }, // And more... }; } } As for the Item class, I am using an MVVM Light ObservableObject but you can use your own simple implementation of INotifyPropertyChanged of course: public class Item : ObservableObject { public const string ColSpanPropertyName = "ColSpan"; private int _colSpan = 1; public int ColSpan { get { return _colSpan; } set { Set(ColSpanPropertyName, ref _colSpan, value); } } public SolidColorBrush Brush { get; set; } public string BrushCode { get { return Brush.Color.ToString(); } } } Then I copied the GridViewItem’s style locally. To do this, I use Expression Blend’s functionality. It has the disadvantage to copy a large portion of XAML to your application, but the HUGE advantage to allow you to change the look and feel of your GridViewItem everywhere in the application. For example, you can change the selection chrome, the item’s alignments and many other properties. Actually everytime I use a ListBox, ListView or any other data control, I typically copy the item style to a resource dictionary in my application and I tweak it. Note that Blend for Windows 8 apps is automatically installed with every edition of Visual Studio 2012 (including Express) so you have no excuses anymore not to use Blend :) Open MainPage.xaml in Expression Blend by right clicking on the MainPage.xaml file in the Solution Explorer and selecting Open in Blend from the context menu. Note that the items do not look very nice! The reason is that the default ItemContainerStyle sets the content’s alignment to “Center” which I never quite understood. Seems to me that you rather want the content to be stretched, but anyway it is easy to change.   Right click on the GridView on the left and select Edit Additional Templates, Edit Generated Item Container (ItemContainerStyle), Edit a Copy. In the Create Style Resource dialog, enter the name “DefaultGridViewItemStyle”, select “Application” and press OK. Side note 1: You need to save in a global resource dictionary because later we will need to retrieve that Style from a global location. Side note 2": I would rather copy the style to an external resource dictionary that I link into the App.xaml file, but I want to keep things simple here. Blend switches in Template edit mode. The template you are editing now is inside the ItemContainerStyle and will govern the appearance of your items. This is where, for instance, the “checked” chrome is defined, and where you can alter it if you need to. Note that you can reuse this style for all your GridViews even if you use a different DataTemplate for your items. Makes sense? I probably need to think about writing another blog post dedicated to the ItemContainerStyle :) In the breadcrumb bar on top of the page, click on the style icon. The property we want to change now can be changed in the Style instead of the Template, which is a better idea. Blend is not in Style edit mode, as you can see in the Objects and Timeline pane. In the Properties pane, in the Search box, enter the word “content”. This will filter all the properties containing that partial string, including the two we are interested in: HorizontalContentAlignment and VerticalContentAlignment. Set these two values to “Stretch” instead of the default “Center”. Using the breadcrumb bar again, set the scope back to the Page (by clicking on the first crumb on the left). Notice how the items are now showing as squares in the first GridView. We will now use the same ItemContainerStyle for the second GridView. To do this, right click on the second GridView and select Edit Additional Templates, Edit Generate Item Container, Apply Resource, DefaultGridViewItemStyle. The page now looks nicer: And now for the ColumnSpan! So now, let’s change the ColumnSpan property. First, let’s define a new Style that inherits the ItemContainerStyle we created before. Make sure that you save everything in Blend by pressing Ctrl-Shift-S. Open App.xaml in Visual Studio. Below the newly created DefaultGridViewItemStyle resource, add the following style: <Style x:Key="WideGridViewItemStyle" TargetType="GridViewItem" BasedOn="{StaticResource DefaultGridViewItemStyle}"> <Setter Property="VariableSizedWrapGrid.ColumnSpan" Value="2" /> </Style> Add a new class to the project, and name it MainItemStyleSelector. Implement the class as follows: public class MainItemStyleSelector : StyleSelector { protected override Style SelectStyleCore(object item, DependencyObject container) { var i = (Item)item; if (i.ColSpan == 2) { return Application.Current.Resources["WideGridViewItemStyle"] as Style; } return Application.Current.Resources["DefaultGridViewItemStyle"] as Style; } } In MainPage.xaml, add a resource to the Page.Resources section: <local:MainItemStyleSelector x:Key="MainItemStyleSelector" /> In MainPage.xaml, replace the ItemContainerStyle property on the first GridView with the ItemContainerStyleSelector property, pointing to the StaticResource we just defined. <GridView ItemsSource="{Binding Items}" ItemTemplate="{StaticResource DataTemplate1}" VerticalAlignment="Top" ItemContainerStyleSelector="{StaticResource MainItemStyleSelector}"> <GridView.ItemsPanel> <ItemsPanelTemplate> <VariableSizedWrapGrid ItemHeight="150" ItemWidth="150" /> </ItemsPanelTemplate> </GridView.ItemsPanel> </GridView> Do the same for the second GridView as well. Finally, in the MainViewModel, change the ColumnSpan property on the 3rd Item to 2. new Item { Brush = new SolidColorBrush(Colors.Green), ColSpan = 2 }, Running the application now creates the following image, which is what we wanted. Notice how the green item is now a “wide tile”. You can also experiment by creating different Styles, all inheriting the DefaultGridViewItemStyle and using different values of RowSpan for instance. This will allow you to create any layout you want, while leaving the heavy lifting of “flowing the layout” to the GridView control. What about changing these values dynamically? Of course as we can see in the Start menu, it would be nice to be able to change the ColumnSpan and maybe even the RowSpan values at runtime. Unfortunately at this time I have not found a good way to do that. I am investigating however and will make sure to post a follow up when I find what I am looking for!   Laurent Bugnion (GalaSoft) Subscribe | Twitter | Facebook | Flickr | LinkedIn

    Read the article

  • Metro: Introduction to CSS 3 Grid Layout

    - by Stephen.Walther
    The purpose of this blog post is to provide you with a quick introduction to the new W3C CSS 3 Grid Layout standard. You can use CSS Grid Layout in Metro style applications written with JavaScript to lay out the content of an HTML page. CSS Grid Layout provides you with all of the benefits of using HTML tables for layout without requiring you to actually use any HTML table elements. Doing Page Layouts without Tables Back in the 1990’s, if you wanted to create a fancy website, then you would use HTML tables for layout. For example, if you wanted to create a standard three-column page layout then you would create an HTML table with three columns like this: <table height="100%"> <tr> <td valign="top" width="300px" bgcolor="red"> Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column </td> <td valign="top" bgcolor="green"> Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column </td> <td valign="top" width="300px" bgcolor="blue"> Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column </td> </tr> </table> When the table above gets rendered out to a browser, you end up with the following three-column layout: The width of the left and right columns is fixed – the width of the middle column expands or contracts depending on the width of the browser. Sometime around the year 2005, everyone decided that using tables for layout was a bad idea. Instead of using tables for layout — it was collectively decided by the spirit of the Web — you should use Cascading Style Sheets instead. Why is using HTML tables for layout bad? Using tables for layout breaks the semantics of the TABLE element. A TABLE element should be used only for displaying tabular information such as train schedules or moon phases. Using tables for layout is bad for accessibility (The Web Content Accessibility Guidelines 1.0 is explicit about this) and using tables for layout is bad for separating content from layout (see http://CSSZenGarden.com). Post 2005, anyone who used HTML tables for layout were encouraged to hold their heads down in shame. That’s all well and good, but the problem with using CSS for layout is that it can be more difficult to work with CSS than HTML tables. For example, to achieve a standard three-column layout, you either need to use absolute positioning or floats. Here’s a three-column layout with floats: <style type="text/css"> #container { min-width: 800px; } #leftColumn { float: left; width: 300px; height: 100%; background-color:red; } #middleColumn { background-color:green; height: 100%; } #rightColumn { float: right; width: 300px; height: 100%; background-color:blue; } </style> <div id="container"> <div id="rightColumn"> Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column </div> <div id="leftColumn"> Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column </div> <div id="middleColumn"> Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column </div> </div> The page above contains four DIV elements: a container DIV which contains a leftColumn, middleColumn, and rightColumn DIV. The leftColumn DIV element is floated to the left and the rightColumn DIV element is floated to the right. Notice that the rightColumn DIV appears in the page before the middleColumn DIV – this unintuitive ordering is necessary to get the floats to work correctly (see http://stackoverflow.com/questions/533607/css-three-column-layout-problem). The page above (almost) works with the most recent versions of most browsers. For example, you get the correct three-column layout in both Firefox and Chrome: And the layout mostly works with Internet Explorer 9 except for the fact that for some strange reason the min-width doesn’t work so when you shrink the width of your browser, you can get the following unwanted layout: Notice how the middle column (the green column) bleeds to the left and right. People have solved these issues with more complicated CSS. For example, see: http://matthewjamestaylor.com/blog/holy-grail-no-quirks-mode.htm But, at this point, no one could argue that using CSS is easier or more intuitive than tables. It takes work to get a layout with CSS and we know that we could achieve the same layout more easily using HTML tables. Using CSS Grid Layout CSS Grid Layout is a new W3C standard which provides you with all of the benefits of using HTML tables for layout without the disadvantage of using an HTML TABLE element. In other words, CSS Grid Layout enables you to perform table layouts using pure Cascading Style Sheets. The CSS Grid Layout standard is still in a “Working Draft” state (it is not finalized) and it is located here: http://www.w3.org/TR/css3-grid-layout/ The CSS Grid Layout standard is only supported by Internet Explorer 10 and there are no signs that any browser other than Internet Explorer will support this standard in the near future. This means that it is only practical to take advantage of CSS Grid Layout when building Metro style applications with JavaScript. Here’s how you can create a standard three-column layout using a CSS Grid Layout: <!DOCTYPE html> <html> <head> <style type="text/css"> html, body, #container { height: 100%; padding: 0px; margin: 0px; } #container { display: -ms-grid; -ms-grid-columns: 300px auto 300px; -ms-grid-rows: 100%; } #leftColumn { -ms-grid-column: 1; background-color:red; } #middleColumn { -ms-grid-column: 2; background-color:green; } #rightColumn { -ms-grid-column: 3; background-color:blue; } </style> </head> <body> <div id="container"> <div id="leftColumn"> Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column </div> <div id="middleColumn"> Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column </div> <div id="rightColumn"> Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column </div> </div> </body> </html> When the page above is rendered in Internet Explorer 10, you get a standard three-column layout: The page above contains four DIV elements: a container DIV which contains a leftColumn DIV, middleColumn DIV, and rightColumn DIV. The container DIV is set to Grid display mode with the following CSS rule: #container { display: -ms-grid; -ms-grid-columns: 300px auto 300px; -ms-grid-rows: 100%; } The display property is set to the value “-ms-grid”. This property causes the container DIV to lay out its child elements in a grid. (Notice that you use “-ms-grid” instead of “grid”. The “-ms-“ prefix is used because the CSS Grid Layout standard is still preliminary. This implementation only works with IE10 and it might change before the final release.) The grid columns and rows are defined with the “-ms-grid-columns” and “-ms-grid-rows” properties. The style rule above creates a grid with three columns and one row. The left and right columns are fixed sized at 300 pixels. The middle column sizes automatically depending on the remaining space available. The leftColumn, middleColumn, and rightColumn DIVs are positioned within the container grid element with the following CSS rules: #leftColumn { -ms-grid-column: 1; background-color:red; } #middleColumn { -ms-grid-column: 2; background-color:green; } #rightColumn { -ms-grid-column: 3; background-color:blue; } The “-ms-grid-column” property is used to specify the column associated with the element selected by the style sheet selector. The leftColumn DIV is positioned in the first grid column, the middleColumn DIV is positioned in the second grid column, and the rightColumn DIV is positioned in the third grid column. I find using CSS Grid Layout to be just as intuitive as using an HTML table for layout. You define your columns and rows and then you position different elements within these columns and rows. Very straightforward. Creating Multiple Columns and Rows In the previous section, we created a super simple three-column layout. This layout contained only a single row. In this section, let’s create a slightly more complicated layout which contains more than one row: The following page contains a header row, a content row, and a footer row. The content row contains three columns: <!DOCTYPE html> <html> <head> <style type="text/css"> html, body, #container { height: 100%; padding: 0px; margin: 0px; } #container { display: -ms-grid; -ms-grid-columns: 300px auto 300px; -ms-grid-rows: 100px 1fr 100px; } #header { -ms-grid-column: 1; -ms-grid-column-span: 3; -ms-grid-row: 1; background-color: yellow; } #leftColumn { -ms-grid-column: 1; -ms-grid-row: 2; background-color:red; } #middleColumn { -ms-grid-column: 2; -ms-grid-row: 2; background-color:green; } #rightColumn { -ms-grid-column: 3; -ms-grid-row: 2; background-color:blue; } #footer { -ms-grid-column: 1; -ms-grid-column-span: 3; -ms-grid-row: 3; background-color: orange; } </style> </head> <body> <div id="container"> <div id="header"> Header, Header, Header </div> <div id="leftColumn"> Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column </div> <div id="middleColumn"> Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column </div> <div id="rightColumn"> Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column </div> <div id="footer"> Footer, Footer, Footer </div> </div> </body> </html> In the page above, the grid layout is created with the following rule which creates a grid with three rows and three columns: #container { display: -ms-grid; -ms-grid-columns: 300px auto 300px; -ms-grid-rows: 100px 1fr 100px; } The header is created with the following rule: #header { -ms-grid-column: 1; -ms-grid-column-span: 3; -ms-grid-row: 1; background-color: yellow; } The header is positioned in column 1 and row 1. Furthermore, notice that the “-ms-grid-column-span” property is used to span the header across three columns. CSS Grid Layout and Fractional Units When you use CSS Grid Layout, you can take advantage of fractional units. Fractional units provide you with an easy way of dividing up remaining space in a page. Imagine, for example, that you want to create a three-column page layout. You want the size of the first column to be fixed at 200 pixels and you want to divide the remaining space among the remaining three columns. The width of the second column is equal to the combined width of the third and fourth columns. The following CSS rule creates four columns with the desired widths: #container { display: -ms-grid; -ms-grid-columns: 200px 2fr 1fr 1fr; -ms-grid-rows: 1fr; } The fr unit represents a fraction. The grid above contains four columns. The second column is two times the size (2fr) of the third (1fr) and fourth (1fr) columns. When you use the fractional unit, the remaining space is divided up using fractional amounts. Notice that the single row is set to a height of 1fr. The single grid row gobbles up the entire vertical space. Here’s the entire HTML page: <!DOCTYPE html> <html> <head> <style type="text/css"> html, body, #container { height: 100%; padding: 0px; margin: 0px; } #container { display: -ms-grid; -ms-grid-columns: 200px 2fr 1fr 1fr; -ms-grid-rows: 1fr; } #firstColumn { -ms-grid-column: 1; background-color:red; } #secondColumn { -ms-grid-column: 2; background-color:green; } #thirdColumn { -ms-grid-column: 3; background-color:blue; } #fourthColumn { -ms-grid-column: 4; background-color:orange; } </style> </head> <body> <div id="container"> <div id="firstColumn"> First Column, First Column, First Column </div> <div id="secondColumn"> Second Column, Second Column, Second Column </div> <div id="thirdColumn"> Third Column, Third Column, Third Column </div> <div id="fourthColumn"> Fourth Column, Fourth Column, Fourth Column </div> </div> </body> </html>   Summary There is more in the CSS 3 Grid Layout standard than discussed in this blog post. My goal was to describe the basics. If you want to learn more than you can read through the entire standard at http://www.w3.org/TR/css3-grid-layout/ In this blog post, I described some of the difficulties that you might encounter when attempting to replace HTML tables with Cascading Style Sheets when laying out a web page. I explained how you can take advantage of the CSS 3 Grid Layout standard to avoid these problems when building Metro style applications using JavaScript. CSS 3 Grid Layout provides you with all of the benefits of using HTML tables for laying out a page without requiring you to use HTML table elements.

    Read the article

  • Metro: Introduction to CSS 3 Grid Layout

    - by Stephen.Walther
    The purpose of this blog post is to provide you with a quick introduction to the new W3C CSS 3 Grid Layout standard. You can use CSS Grid Layout in Metro style applications written with JavaScript to lay out the content of an HTML page. CSS Grid Layout provides you with all of the benefits of using HTML tables for layout without requiring you to actually use any HTML table elements. Doing Page Layouts without Tables Back in the 1990’s, if you wanted to create a fancy website, then you would use HTML tables for layout. For example, if you wanted to create a standard three-column page layout then you would create an HTML table with three columns like this: <table height="100%"> <tr> <td valign="top" width="300px" bgcolor="red"> Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column </td> <td valign="top" bgcolor="green"> Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column </td> <td valign="top" width="300px" bgcolor="blue"> Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column </td> </tr> </table> When the table above gets rendered out to a browser, you end up with the following three-column layout: The width of the left and right columns is fixed – the width of the middle column expands or contracts depending on the width of the browser. Sometime around the year 2005, everyone decided that using tables for layout was a bad idea. Instead of using tables for layout — it was collectively decided by the spirit of the Web — you should use Cascading Style Sheets instead. Why is using HTML tables for layout bad? Using tables for layout breaks the semantics of the TABLE element. A TABLE element should be used only for displaying tabular information such as train schedules or moon phases. Using tables for layout is bad for accessibility (The Web Content Accessibility Guidelines 1.0 is explicit about this) and using tables for layout is bad for separating content from layout (see http://CSSZenGarden.com). Post 2005, anyone who used HTML tables for layout were encouraged to hold their heads down in shame. That’s all well and good, but the problem with using CSS for layout is that it can be more difficult to work with CSS than HTML tables. For example, to achieve a standard three-column layout, you either need to use absolute positioning or floats. Here’s a three-column layout with floats: <style type="text/css"> #container { min-width: 800px; } #leftColumn { float: left; width: 300px; height: 100%; background-color:red; } #middleColumn { background-color:green; height: 100%; } #rightColumn { float: right; width: 300px; height: 100%; background-color:blue; } </style> <div id="container"> <div id="rightColumn"> Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column </div> <div id="leftColumn"> Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column </div> <div id="middleColumn"> Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column </div> </div> The page above contains four DIV elements: a container DIV which contains a leftColumn, middleColumn, and rightColumn DIV. The leftColumn DIV element is floated to the left and the rightColumn DIV element is floated to the right. Notice that the rightColumn DIV appears in the page before the middleColumn DIV – this unintuitive ordering is necessary to get the floats to work correctly (see http://stackoverflow.com/questions/533607/css-three-column-layout-problem). The page above (almost) works with the most recent versions of most browsers. For example, you get the correct three-column layout in both Firefox and Chrome: And the layout mostly works with Internet Explorer 9 except for the fact that for some strange reason the min-width doesn’t work so when you shrink the width of your browser, you can get the following unwanted layout: Notice how the middle column (the green column) bleeds to the left and right. People have solved these issues with more complicated CSS. For example, see: http://matthewjamestaylor.com/blog/holy-grail-no-quirks-mode.htm But, at this point, no one could argue that using CSS is easier or more intuitive than tables. It takes work to get a layout with CSS and we know that we could achieve the same layout more easily using HTML tables. Using CSS Grid Layout CSS Grid Layout is a new W3C standard which provides you with all of the benefits of using HTML tables for layout without the disadvantage of using an HTML TABLE element. In other words, CSS Grid Layout enables you to perform table layouts using pure Cascading Style Sheets. The CSS Grid Layout standard is still in a “Working Draft” state (it is not finalized) and it is located here: http://www.w3.org/TR/css3-grid-layout/ The CSS Grid Layout standard is only supported by Internet Explorer 10 and there are no signs that any browser other than Internet Explorer will support this standard in the near future. This means that it is only practical to take advantage of CSS Grid Layout when building Metro style applications with JavaScript. Here’s how you can create a standard three-column layout using a CSS Grid Layout: <!DOCTYPE html> <html> <head> <style type="text/css"> html, body, #container { height: 100%; padding: 0px; margin: 0px; } #container { display: -ms-grid; -ms-grid-columns: 300px auto 300px; -ms-grid-rows: 100%; } #leftColumn { -ms-grid-column: 1; background-color:red; } #middleColumn { -ms-grid-column: 2; background-color:green; } #rightColumn { -ms-grid-column: 3; background-color:blue; } </style> </head> <body> <div id="container"> <div id="leftColumn"> Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column </div> <div id="middleColumn"> Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column </div> <div id="rightColumn"> Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column </div> </div> </body> </html> When the page above is rendered in Internet Explorer 10, you get a standard three-column layout: The page above contains four DIV elements: a container DIV which contains a leftColumn DIV, middleColumn DIV, and rightColumn DIV. The container DIV is set to Grid display mode with the following CSS rule: #container { display: -ms-grid; -ms-grid-columns: 300px auto 300px; -ms-grid-rows: 100%; } The display property is set to the value “-ms-grid”. This property causes the container DIV to lay out its child elements in a grid. (Notice that you use “-ms-grid” instead of “grid”. The “-ms-“ prefix is used because the CSS Grid Layout standard is still preliminary. This implementation only works with IE10 and it might change before the final release.) The grid columns and rows are defined with the “-ms-grid-columns” and “-ms-grid-rows” properties. The style rule above creates a grid with three columns and one row. The left and right columns are fixed sized at 300 pixels. The middle column sizes automatically depending on the remaining space available. The leftColumn, middleColumn, and rightColumn DIVs are positioned within the container grid element with the following CSS rules: #leftColumn { -ms-grid-column: 1; background-color:red; } #middleColumn { -ms-grid-column: 2; background-color:green; } #rightColumn { -ms-grid-column: 3; background-color:blue; } The “-ms-grid-column” property is used to specify the column associated with the element selected by the style sheet selector. The leftColumn DIV is positioned in the first grid column, the middleColumn DIV is positioned in the second grid column, and the rightColumn DIV is positioned in the third grid column. I find using CSS Grid Layout to be just as intuitive as using an HTML table for layout. You define your columns and rows and then you position different elements within these columns and rows. Very straightforward. Creating Multiple Columns and Rows In the previous section, we created a super simple three-column layout. This layout contained only a single row. In this section, let’s create a slightly more complicated layout which contains more than one row: The following page contains a header row, a content row, and a footer row. The content row contains three columns: <!DOCTYPE html> <html> <head> <style type="text/css"> html, body, #container { height: 100%; padding: 0px; margin: 0px; } #container { display: -ms-grid; -ms-grid-columns: 300px auto 300px; -ms-grid-rows: 100px 1fr 100px; } #header { -ms-grid-column: 1; -ms-grid-column-span: 3; -ms-grid-row: 1; background-color: yellow; } #leftColumn { -ms-grid-column: 1; -ms-grid-row: 2; background-color:red; } #middleColumn { -ms-grid-column: 2; -ms-grid-row: 2; background-color:green; } #rightColumn { -ms-grid-column: 3; -ms-grid-row: 2; background-color:blue; } #footer { -ms-grid-column: 1; -ms-grid-column-span: 3; -ms-grid-row: 3; background-color: orange; } </style> </head> <body> <div id="container"> <div id="header"> Header, Header, Header </div> <div id="leftColumn"> Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column, Left Column </div> <div id="middleColumn"> Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column, Middle Column </div> <div id="rightColumn"> Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column, Right Column </div> <div id="footer"> Footer, Footer, Footer </div> </div> </body> </html> In the page above, the grid layout is created with the following rule which creates a grid with three rows and three columns: #container { display: -ms-grid; -ms-grid-columns: 300px auto 300px; -ms-grid-rows: 100px 1fr 100px; } The header is created with the following rule: #header { -ms-grid-column: 1; -ms-grid-column-span: 3; -ms-grid-row: 1; background-color: yellow; } The header is positioned in column 1 and row 1. Furthermore, notice that the “-ms-grid-column-span” property is used to span the header across three columns. CSS Grid Layout and Fractional Units When you use CSS Grid Layout, you can take advantage of fractional units. Fractional units provide you with an easy way of dividing up remaining space in a page. Imagine, for example, that you want to create a three-column page layout. You want the size of the first column to be fixed at 200 pixels and you want to divide the remaining space among the remaining three columns. The width of the second column is equal to the combined width of the third and fourth columns. The following CSS rule creates four columns with the desired widths: #container { display: -ms-grid; -ms-grid-columns: 200px 2fr 1fr 1fr; -ms-grid-rows: 1fr; } The fr unit represents a fraction. The grid above contains four columns. The second column is two times the size (2fr) of the third (1fr) and fourth (1fr) columns. When you use the fractional unit, the remaining space is divided up using fractional amounts. Notice that the single row is set to a height of 1fr. The single grid row gobbles up the entire vertical space. Here’s the entire HTML page: <!DOCTYPE html> <html> <head> <style type="text/css"> html, body, #container { height: 100%; padding: 0px; margin: 0px; } #container { display: -ms-grid; -ms-grid-columns: 200px 2fr 1fr 1fr; -ms-grid-rows: 1fr; } #firstColumn { -ms-grid-column: 1; background-color:red; } #secondColumn { -ms-grid-column: 2; background-color:green; } #thirdColumn { -ms-grid-column: 3; background-color:blue; } #fourthColumn { -ms-grid-column: 4; background-color:orange; } </style> </head> <body> <div id="container"> <div id="firstColumn"> First Column, First Column, First Column </div> <div id="secondColumn"> Second Column, Second Column, Second Column </div> <div id="thirdColumn"> Third Column, Third Column, Third Column </div> <div id="fourthColumn"> Fourth Column, Fourth Column, Fourth Column </div> </div> </body> </html>   Summary There is more in the CSS 3 Grid Layout standard than discussed in this blog post. My goal was to describe the basics. If you want to learn more than you can read through the entire standard at http://www.w3.org/TR/css3-grid-layout/ In this blog post, I described some of the difficulties that you might encounter when attempting to replace HTML tables with Cascading Style Sheets when laying out a web page. I explained how you can take advantage of the CSS 3 Grid Layout standard to avoid these problems when building Metro style applications using JavaScript. CSS 3 Grid Layout provides you with all of the benefits of using HTML tables for laying out a page without requiring you to use HTML table elements.

    Read the article

  • What strategy do you use for package naming in Java projects and why?

    - by Tim Visher
    I thought about this awhile ago and it recently resurfaced as my shop is doing its first real Java web app. As an intro, I see two main package naming strategies. (To be clear, I'm not referring to the whole 'domain.company.project' part of this, I'm talking about the package convention beneath that.) Anyway, the package naming conventions that I see are as follows: Functional: Naming your packages according to their function architecturally rather than their identity according to the business domain. Another term for this might be naming according to 'layer'. So, you'd have a *.ui package and a *.domain package and a *.orm package. Your packages are horizontal slices rather than vertical. This is much more common than logical naming. In fact, I don't believe I've ever seen or heard of a project that does this. This of course makes me leery (sort of like thinking that you've come up with a solution to an NP problem) as I'm not terribly smart and I assume everyone must have great reasons for doing it the way they do. On the other hand, I'm not opposed to people just missing the elephant in the room and I've never heard a an actual argument for doing package naming this way. It just seems to be the de facto standard. Logical: Naming your packages according to their business domain identity and putting every class that has to do with that vertical slice of functionality into that package. I have never seen or heard of this, as I mentioned before, but it makes a ton of sense to me. I tend to approach systems vertically rather than horizontally. I want to go in and develop the Order Processing system, not the data access layer. Obviously, there's a good chance that I'll touch the data access layer in the development of that system, but the point is that I don't think of it that way. What this means, of course, is that when I receive a change order or want to implement some new feature, it'd be nice to not have to go fishing around in a bunch of packages in order to find all the related classes. Instead, I just look in the X package because what I'm doing has to do with X. From a development standpoint, I see it as a major win to have your packages document your business domain rather than your architecture. I feel like the domain is almost always the part of the system that's harder to grok where as the system's architecture, especially at this point, is almost becoming mundane in its implementation. The fact that I can come to a system with this type of naming convention and instantly from the naming of the packages know that it deals with orders, customers, enterprises, products, etc. seems pretty darn handy. It seems like this would allow you to take much better advantage of Java's access modifiers. This allows you to much more cleanly define interfaces into subsystems rather than into layers of the system. So if you have an orders subsystem that you want to be transparently persistent, you could in theory just never let anything else know that it's persistent by not having to create public interfaces to its persistence classes in the dao layer and instead packaging the dao class in with only the classes it deals with. Obviously, if you wanted to expose this functionality, you could provide an interface for it or make it public. It just seems like you lose a lot of this by having a vertical slice of your system's features split across multiple packages. I suppose one disadvantage that I can see is that it does make ripping out layers a little bit more difficult. Instead of just deleting or renaming a package and then dropping a new one in place with an alternate technology, you have to go in and change all of the classes in all of the packages. However, I don't see this is a big deal. It may be from a lack of experience, but I have to imagine that the amount of times you swap out technologies pales in comparison to the amount of times you go in and edit vertical feature slices within your system. So I guess the question then would go out to you, how do you name your packages and why? Please understand that I don't necessarily think that I've stumbled onto the golden goose or something here. I'm pretty new to all this with mostly academic experience. However, I can't spot the holes in my reasoning so I'm hoping you all can so that I can move on. Thanks in advance!

    Read the article

  • VB.NET - using textfile as source for menus and textboxes

    - by Kenny Bones
    Hi, this is probably a bit tense and I'm not sure if this is possible at all. But basically, I'm trying to create a small application which contains alot of PowerShell-code which I want to run in an easy matter. I've managed to create everything myself and it does work. But all of the PowerShell code is manually hardcoded and this gives me a huge disadvantage. What I was thinking was creating some sort of dynamic structure where I can read a couple of text files (possible a numerous amount of text files) and use these as the source for both the comboboxes and the richtextbox which provovides as the string used to run in PowerShell. I was thinking something like this: Combobox - "Choose cmdlet" - Use "menucode.txt" as source Richtextbox - Use "code.txt" as source But, the thing is, Powershell snippets need a few arguments in order for them to work. So I've got a couple of comboboxes and a few textboxes which provides as input for these arguments. And this is done manually as it is right now. So rewriting this small application should also search the textfile for some keywords and have the comboboxes and textboxes to replace those keywords. And I'm not sure how to do this. So, would this requre a whole lot of textfiles? Or could I use one textfile and separate each PowerShell cmdlet snippets with something? Like some sort of a header? Right now, I've got this code at the eventhandler (ComboBox_SelectedIndexChanged) If ComboBoxFunksjon.Text = "Set attribute" Then TxtBoxUsername.Visible = True End If If chkBoxTextfile.Checked = True Then If txtboxBrowse.Text = "" Then MsgBox("You haven't choses a textfile as input for usernames") End If LabelAttribute.Visible = True LabelUsername.Visible = False ComboBoxAttribute.Visible = True TxtBoxUsername.Visible = False txtBoxCode.Text = "$users = Get-Content " & txtboxBrowse.Text & vbCrLf & "foreach ($a in $users)" & vbCrLf & "{" & vbCrLf & "Set-QADUser -Identity $a -ObjectAttributes @{" & ComboBoxAttribute.SelectedItem & "='" & TxtBoxValue.Text & "'}" & vbCrLf & "}" If ComboBoxAttribute.SelectedItem = "Outlook WebAccess" Then TxtBoxValue.Visible = False CheckBoxValue.Visible = True CheckBoxValue.Text = "OWA Enabled?" txtBoxCode.Text = "$users = Get-Content " & txtboxBrowse.Text & vbCrLf & "foreach ($a in $users)" & vbCrLf & "{" & vbCrLf & "Set-CASMailbox -Identity $a -OWAEnabled" & " " & "$" & CheckBoxValue.Checked & " '}" & vbCrLf & "}" End If If ComboBoxAttribute.SelectedItem = "MobileSync" Then TxtBoxValue.Visible = False CheckBoxValue.Visible = True CheckBoxValue.Text = "MobileSync Enabled?" Dim value If CheckBoxValue.Checked = True Then value = "0" Else value = "7" End If txtBoxCode.Text = "$users = Get-Content " & txtboxBrowse.Text & vbCrLf & "foreach ($a in $users)" & vbCrLf & "{" & vbCrLf & "Set-QADUser -Identity $a -ObjectAttributes @{msExchOmaAdminWirelessEnable='" & value & " '}" & vbCrLf & "}" End If Else LabelAttribute.Visible = True LabelUsername.Visible = True ComboBoxAttribute.Visible = True txtBoxCode.Text = "Set-QADUser -Identity " & TxtBoxUsername.Text & " -ObjectAttributes @{" & ComboBoxAttribute.SelectedItem & "='" & TxtBoxValue.Text & " '}" If ComboBoxAttribute.SelectedItem = "Outlook WebAccess" Then TxtBoxValue.Visible = False CheckBoxValue.Visible = True CheckBoxValue.Text = "OWA Enabled?" txtBoxCode.Text = "Set-CASMailbox " & TxtBoxUsername.Text & " -OWAEnabled " & "$" & CheckBoxValue.Checked End If If ComboBoxAttribute.SelectedItem = "MobileSync" Then TxtBoxValue.Visible = False CheckBoxValue.Visible = True CheckBoxValue.Text = "MobileSync Enabled?" Dim value If CheckBoxValue.Checked = True Then value = "0" Else value = "7" End If txtBoxCode.Text = "Set-QADUser " & TxtBoxUsername.Text & " -ObjectAttributes @{msExchOmaAdminWirelessEnable='" & value & "'}" End If End If Now, this snippet above lets me either use a text file as a source for each username used in the powershell snippet. Just so you know :) And I know, this is probably coded as stupidly as it gets. But it does work! :)

    Read the article

  • Integrating JavaScript Unit Tests with Visual Studio

    - by Stephen Walther
    Modern ASP.NET web applications take full advantage of client-side JavaScript to provide better interactivity and responsiveness. If you are building an ASP.NET application in the right way, you quickly end up with lots and lots of JavaScript code. When writing server code, you should be writing unit tests. One big advantage of unit tests is that they provide you with a safety net that enable you to safely modify your existing code – for example, fix bugs, add new features, and make performance enhancements -- without breaking your existing code. Every time you modify your code, you can execute your unit tests to verify that you have not broken anything. For the same reason that you should write unit tests for your server code, you should write unit tests for your client code. JavaScript is just as susceptible to bugs as C#. There is no shortage of unit testing frameworks for JavaScript. Each of the major JavaScript libraries has its own unit testing framework. For example, jQuery has QUnit, Prototype has UnitTestJS, YUI has YUI Test, and Dojo has Dojo Objective Harness (DOH). The challenge is integrating a JavaScript unit testing framework with Visual Studio. Visual Studio and Visual Studio ALM provide fantastic support for server-side unit tests. You can easily view the results of running your unit tests in the Visual Studio Test Results window. You can set up a check-in policy which requires that all unit tests pass before your source code can be committed to the source code repository. In addition, you can set up Team Build to execute your unit tests automatically. Unfortunately, Visual Studio does not provide “out-of-the-box” support for JavaScript unit tests. MS Test, the unit testing framework included in Visual Studio, does not support JavaScript unit tests. As soon as you leave the server world, you are left on your own. The goal of this blog entry is to describe one approach to integrating JavaScript unit tests with MS Test so that you can execute your JavaScript unit tests side-by-side with your C# unit tests. The goal is to enable you to execute JavaScript unit tests in exactly the same way as server-side unit tests. You can download the source code described by this project by scrolling to the end of this blog entry. Rejected Approach: Browser Launchers One popular approach to executing JavaScript unit tests is to use a browser as a test-driver. When you use a browser as a test-driver, you open up a browser window to execute and view the results of executing your JavaScript unit tests. For example, QUnit – the unit testing framework for jQuery – takes this approach. The following HTML page illustrates how you can use QUnit to create a unit test for a function named addNumbers(). <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <html> <head> <title>Using QUnit</title> <link rel="stylesheet" href="http://github.com/jquery/qunit/raw/master/qunit/qunit.css" type="text/css" /> </head> <body> <h1 id="qunit-header">QUnit example</h1> <h2 id="qunit-banner"></h2> <div id="qunit-testrunner-toolbar"></div> <h2 id="qunit-userAgent"></h2> <ol id="qunit-tests"></ol> <div id="qunit-fixture">test markup, will be hidden</div> <script type="text/javascript" src="http://code.jquery.com/jquery-latest.js"></script> <script type="text/javascript" src="http://github.com/jquery/qunit/raw/master/qunit/qunit.js"></script> <script type="text/javascript"> // The function to test function addNumbers(a, b) { return a+b; } // The unit test test("Test of addNumbers", function () { equals(4, addNumbers(1,3), "1+3 should be 4"); }); </script> </body> </html> This test verifies that calling addNumbers(1,3) returns the expected value 4. When you open this page in a browser, you can see that this test does, in fact, pass. The idea is that you can quickly refresh this QUnit HTML JavaScript test driver page in your browser whenever you modify your JavaScript code. In other words, you can keep a browser window open and keep refreshing it over and over while you are developing your application. That way, you can know very quickly whenever you have broken your JavaScript code. While easy to setup, there are several big disadvantages to this approach to executing JavaScript unit tests: You must view your JavaScript unit test results in a different location than your server unit test results. The JavaScript unit test results appear in the browser and the server unit test results appear in the Visual Studio Test Results window. Because all of your unit test results don’t appear in a single location, you are more likely to introduce bugs into your code without noticing it. Because your unit tests are not integrated with Visual Studio – in particular, MS Test -- you cannot easily include your JavaScript unit tests when setting up check-in policies or when performing automated builds with Team Build. A more sophisticated approach to using a browser as a test-driver is to automate the web browser. Instead of launching the browser and loading the test code yourself, you use a framework to automate this process. There are several different testing frameworks that support this approach: · Selenium – Selenium is a very powerful framework for automating browser tests. You can create your tests by recording a Firefox session or by writing the test driver code in server code such as C#. You can learn more about Selenium at http://seleniumhq.org/. LTAF – The ASP.NET team uses the Lightweight Test Automation Framework to test JavaScript code in the ASP.NET framework. You can learn more about LTAF by visiting the project home at CodePlex: http://aspnet.codeplex.com/releases/view/35501 jsTestDriver – This framework uses Java to automate the browser. jsTestDriver creates a server which can be used to automate multiple browsers simultaneously. This project is located at http://code.google.com/p/js-test-driver/ TestSwam – This framework, created by John Resig, uses PHP to automate the browser. Like jsTestDriver, the framework creates a test server. You can open multiple browsers that are automated by the test server. Learn more about TestSwarm by visiting the following address: https://github.com/jeresig/testswarm/wiki Yeti – This is the framework introduced by Yahoo for automating browser tests. Yeti uses server-side JavaScript and depends on Node.js. Learn more about Yeti at http://www.yuiblog.com/blog/2010/08/25/introducing-yeti-the-yui-easy-testing-interface/ All of these frameworks are great for integration tests – however, they are not the best frameworks to use for unit tests. In one way or another, all of these frameworks depend on executing tests within the context of a “living and breathing” browser. If you create an ASP.NET Unit Test then Visual Studio will launch a web server before executing the unit test. Why is launching a web server so bad? It is not the worst thing in the world. However, it does introduce dependencies that prevent your code from being tested in isolation. One of the defining features of a unit test -- versus an integration test – is that a unit test tests code in isolation. Another problem with launching a web server when performing unit tests is that launching a web server can be slow. If you cannot execute your unit tests quickly, you are less likely to execute your unit tests each and every time you make a code change. You are much more likely to fall into the pit of failure. Launching a browser when performing a JavaScript unit test has all of the same disadvantages as launching a web server when performing an ASP.NET unit test. Instead of testing a unit of JavaScript code in isolation, you are testing JavaScript code within the context of a particular browser. Using the frameworks listed above for integration tests makes perfect sense. However, I want to consider a different approach for creating unit tests for JavaScript code. Using Server-Side JavaScript for JavaScript Unit Tests A completely different approach to executing JavaScript unit tests is to perform the tests outside of any browser. If you really want to test JavaScript then you should test JavaScript and leave the browser out of the testing process. There are several ways that you can execute JavaScript on the server outside the context of any browser: Rhino – Rhino is an implementation of JavaScript written in Java. The Rhino project is maintained by the Mozilla project. Learn more about Rhino at http://www.mozilla.org/rhino/ V8 – V8 is the open-source Google JavaScript engine written in C++. This is the JavaScript engine used by the Chrome web browser. You can download V8 and embed it in your project by visiting http://code.google.com/p/v8/ JScript – JScript is the JavaScript Script Engine used by Internet Explorer (up to but not including Internet Explorer 9), Windows Script Host, and Active Server Pages. Internet Explorer is still the most popular web browser. Therefore, I decided to focus on using the JScript Script Engine to execute JavaScript unit tests. Using the Microsoft Script Control There are two basic ways that you can pass JavaScript to the JScript Script Engine and execute the code: use the Microsoft Windows Script Interfaces or use the Microsoft Script Control. The difficult and proper way to execute JavaScript using the JScript Script Engine is to use the Microsoft Windows Script Interfaces. You can learn more about the Script Interfaces by visiting http://msdn.microsoft.com/en-us/library/t9d4xf28(VS.85).aspx The main disadvantage of using the Script Interfaces is that they are difficult to use from .NET. There is a great series of articles on using the Script Interfaces from C# located at http://www.drdobbs.com/184406028. I picked the easier alternative and used the Microsoft Script Control. The Microsoft Script Control is an ActiveX control that provides a higher level abstraction over the Window Script Interfaces. You can download the Microsoft Script Control from here: http://www.microsoft.com/downloads/en/details.aspx?FamilyID=d7e31492-2595-49e6-8c02-1426fec693ac After you download the Microsoft Script Control, you need to add a reference to it to your project. Select the Visual Studio menu option Project, Add Reference to open the Add Reference dialog. Select the COM tab and add the Microsoft Script Control 1.0. Using the Script Control is easy. You call the Script Control AddCode() method to add JavaScript code to the Script Engine. Next, you call the Script Control Run() method to run a particular JavaScript function. The reference documentation for the Microsoft Script Control is located at the MSDN website: http://msdn.microsoft.com/en-us/library/aa227633%28v=vs.60%29.aspx Creating the JavaScript Code to Test To keep things simple, let’s imagine that you want to test the following JavaScript function named addNumbers() which simply adds two numbers together: MvcApplication1\Scripts\Math.js function addNumbers(a, b) { return 5; } Notice that the addNumbers() method always returns the value 5. Right-now, it will not pass a good unit test. Create this file and save it in your project with the name Math.js in your MVC project’s Scripts folder (Save the file in your actual MVC application and not your MVC test application). Creating the JavaScript Test Helper Class To make it easier to use the Microsoft Script Control in unit tests, we can create a helper class. This class contains two methods: LoadFile() – Loads a JavaScript file. Use this method to load the JavaScript file being tested or the JavaScript file containing the unit tests. ExecuteTest() – Executes the JavaScript code. Use this method to execute a JavaScript unit test. Here’s the code for the JavaScriptTestHelper class: JavaScriptTestHelper.cs   using System; using System.IO; using Microsoft.VisualStudio.TestTools.UnitTesting; using MSScriptControl; namespace MvcApplication1.Tests { public class JavaScriptTestHelper : IDisposable { private ScriptControl _sc; private TestContext _context; /// <summary> /// You need to use this helper with Unit Tests and not /// Basic Unit Tests because you need a Test Context /// </summary> /// <param name="testContext">Unit Test Test Context</param> public JavaScriptTestHelper(TestContext testContext) { if (testContext == null) { throw new ArgumentNullException("TestContext"); } _context = testContext; _sc = new ScriptControl(); _sc.Language = "JScript"; _sc.AllowUI = false; } /// <summary> /// Load the contents of a JavaScript file into the /// Script Engine. /// </summary> /// <param name="path">Path to JavaScript file</param> public void LoadFile(string path) { var fileContents = File.ReadAllText(path); _sc.AddCode(fileContents); } /// <summary> /// Pass the path of the test that you want to execute. /// </summary> /// <param name="testMethodName">JavaScript function name</param> public void ExecuteTest(string testMethodName) { dynamic result = null; try { result = _sc.Run(testMethodName, new object[] { }); } catch { var error = ((IScriptControl)_sc).Error; if (error != null) { var description = error.Description; var line = error.Line; var column = error.Column; var text = error.Text; var source = error.Source; if (_context != null) { var details = String.Format("{0} \r\nLine: {1} Column: {2}", source, line, column); _context.WriteLine(details); } } throw new AssertFailedException(error.Description); } } public void Dispose() { _sc = null; } } }     Notice that the JavaScriptTestHelper class requires a Test Context to be instantiated. For this reason, you can use the JavaScriptTestHelper only with a Visual Studio Unit Test and not a Basic Unit Test (These are two different types of Visual Studio project items). Add the JavaScriptTestHelper file to your MVC test application (for example, MvcApplication1.Tests). Creating the JavaScript Unit Test Next, we need to create the JavaScript unit test function that we will use to test the addNumbers() function. Create a folder in your MVC test project named JavaScriptTests and add the following JavaScript file to this folder: MvcApplication1.Tests\JavaScriptTests\MathTest.js /// <reference path="JavaScriptUnitTestFramework.js"/> function testAddNumbers() { // Act var result = addNumbers(1, 3); // Assert assert.areEqual(4, result, "addNumbers did not return right value!"); }   The testAddNumbers() function takes advantage of another JavaScript library named JavaScriptUnitTestFramework.js. This library contains all of the code necessary to make assertions. Add the following JavaScriptnitTestFramework.js to the same folder as the MathTest.js file: MvcApplication1.Tests\JavaScriptTests\JavaScriptUnitTestFramework.js var assert = { areEqual: function (expected, actual, message) { if (expected !== actual) { throw new Error("Expected value " + expected + " is not equal to " + actual + ". " + message); } } }; There is only one type of assertion supported by this file: the areEqual() assertion. Most likely, you would want to add additional types of assertions to this file to make it easier to write your JavaScript unit tests. Deploying the JavaScript Test Files This step is non-intuitive. When you use Visual Studio to run unit tests, Visual Studio creates a new folder and executes a copy of the files in your project. After you run your unit tests, your Visual Studio Solution will contain a new folder named TestResults that includes a subfolder for each test run. You need to configure Visual Studio to deploy your JavaScript files to the test run folder or Visual Studio won’t be able to find your JavaScript files when you execute your unit tests. You will get an error that looks something like this when you attempt to execute your unit tests: You can configure Visual Studio to deploy your JavaScript files by adding a Test Settings file to your Visual Studio Solution. It is important to understand that you need to add this file to your Visual Studio Solution and not a particular Visual Studio project. Right-click your Solution in the Solution Explorer window and select the menu option Add, New Item. Select the Test Settings item and click the Add button. After you create a Test Settings file for your solution, you can indicate that you want a particular folder to be deployed whenever you perform a test run. Select the menu option Test, Edit Test Settings to edit your test configuration file. Select the Deployment tab and select your MVC test project’s JavaScriptTest folder to deploy. Click the Apply button and the Close button to save the changes and close the dialog. Creating the Visual Studio Unit Test The very last step is to create the Visual Studio unit test (the MS Test unit test). Add a new unit test to your MVC test project by selecting the menu option Add New Item and selecting the Unit Test project item (Do not select the Basic Unit Test project item): The difference between a Basic Unit Test and a Unit Test is that a Unit Test includes a Test Context. We need this Test Context to use the JavaScriptTestHelper class that we created earlier. Enter the following test method for the new unit test: [TestMethod] public void TestAddNumbers() { var jsHelper = new JavaScriptTestHelper(this.TestContext); // Load JavaScript files jsHelper.LoadFile("JavaScriptUnitTestFramework.js"); jsHelper.LoadFile(@"..\..\..\MvcApplication1\Scripts\Math.js"); jsHelper.LoadFile("MathTest.js"); // Execute JavaScript Test jsHelper.ExecuteTest("testAddNumbers"); } This code uses the JavaScriptTestHelper to load three files: JavaScripUnitTestFramework.js – Contains the assert functions. Math.js – Contains the addNumbers() function from your MVC application which is being tested. MathTest.js – Contains the JavaScript unit test function. Next, the test method calls the JavaScriptTestHelper ExecuteTest() method to execute the testAddNumbers() JavaScript function. Running the Visual Studio JavaScript Unit Test After you complete all of the steps described above, you can execute the JavaScript unit test just like any other unit test. You can use the keyboard combination CTRL-R, CTRL-A to run all of the tests in the current Visual Studio Solution. Alternatively, you can use the buttons in the Visual Studio toolbar to run the tests: (Unfortunately, the Run All Impacted Tests button won’t work correctly because Visual Studio won’t detect that your JavaScript code has changed. Therefore, you should use either the Run Tests in Current Context or Run All Tests in Solution options instead.) The results of running the JavaScript tests appear side-by-side with the results of running the server tests in the Test Results window. For example, if you Run All Tests in Solution then you will get the following results: Notice that the TestAddNumbers() JavaScript test has failed. That is good because our addNumbers() function is hard-coded to always return the value 5. If you double-click the failing JavaScript test, you can view additional details such as the JavaScript error message and the line number of the JavaScript code that failed: Summary The goal of this blog entry was to explain an approach to creating JavaScript unit tests that can be easily integrated with Visual Studio and Visual Studio ALM. I described how you can use the Microsoft Script Control to execute JavaScript on the server. By taking advantage of the Microsoft Script Control, we were able to execute our JavaScript unit tests side-by-side with all of our other unit tests and view the results in the standard Visual Studio Test Results window. You can download the code discussed in this blog entry from here: http://StephenWalther.com/downloads/Blog/JavaScriptUnitTesting/JavaScriptUnitTests.zip Before running this code, you need to first install the Microsoft Script Control which you can download from here: http://www.microsoft.com/downloads/en/details.aspx?FamilyID=d7e31492-2595-49e6-8c02-1426fec693ac

    Read the article

  • The broken Promise of the Mobile Web

    - by Rick Strahl
    High end mobile devices have been with us now for almost 7 years and they have utterly transformed the way we access information. Mobile phones and smartphones that have access to the Internet and host smart applications are in the hands of a large percentage of the population of the world. In many places even very remote, cell phones and even smart phones are a common sight. I’ll never forget when I was in India in 2011 I was up in the Southern Indian mountains riding an elephant out of a tiny local village, with an elephant herder in front riding atop of the elephant in front of us. He was dressed in traditional garb with the loin wrap and head cloth/turban as did quite a few of the locals in this small out of the way and not so touristy village. So we’re slowly trundling along in the forest and he’s lazily using his stick to guide the elephant and… 10 minutes in he pulls out his cell phone from his sash and starts texting. In the middle of texting a huge pig jumps out from the side of the trail and he takes a picture running across our path in the jungle! So yeah, mobile technology is very pervasive and it’s reached into even very buried and unexpected parts of this world. Apps are still King Apps currently rule the roost when it comes to mobile devices and the applications that run on them. If there’s something that you need on your mobile device your first step usually is to look for an app, not use your browser. But native app development remains a pain in the butt, with the requirement to have to support 2 or 3 completely separate platforms. There are solutions that try to bridge that gap. Xamarin is on a tear at the moment, providing their cross-device toolkit to build applications using C#. While Xamarin tools are impressive – and also *very* expensive – they only address part of the development madness that is app development. There are still specific device integration isssues, dealing with the different developer programs, security and certificate setups and all that other noise that surrounds app development. There’s also PhoneGap/Cordova which provides a hybrid solution that involves creating local HTML/CSS/JavaScript based applications, and then packaging them to run in a specialized App container that can run on most mobile device platforms using a WebView interface. This allows for using of HTML technology, but it also still requires all the set up, configuration of APIs, security keys and certification and submission and deployment process just like native applications – you actually lose many of the benefits that  Web based apps bring. The big selling point of Cordova is that you get to use HTML have the ability to build your UI once for all platforms and run across all of them – but the rest of the app process remains in place. Apps can be a big pain to create and manage especially when we are talking about specialized or vertical business applications that aren’t geared at the mainstream market and that don’t fit the ‘store’ model. If you’re building a small intra department application you don’t want to deal with multiple device platforms and certification etc. for various public or corporate app stores. That model is simply not a good fit both from the development and deployment perspective. Even for commercial, big ticket apps, HTML as a UI platform offers many advantages over native, from write-once run-anywhere, to remote maintenance, single point of management and failure to having full control over the application as opposed to have the app store overloads censor you. In a lot of ways Web based HTML/CSS/JavaScript applications have so much potential for building better solutions based on existing Web technologies for the very same reasons a lot of content years ago moved off the desktop to the Web. To me the Web as a mobile platform makes perfect sense, but the reality of today’s Mobile Web unfortunately looks a little different… Where’s the Love for the Mobile Web? Yet here we are in the middle of 2014, nearly 7 years after the first iPhone was released and brought the promise of rich interactive information at your fingertips, and yet we still don’t really have a solid mobile Web platform. I know what you’re thinking: “But we have lots of HTML/JavaScript/CSS features that allows us to build nice mobile interfaces”. I agree to a point – it’s actually quite possible to build nice looking, rich and capable Web UI today. We have media queries to deal with varied display sizes, CSS transforms for smooth animations and transitions, tons of CSS improvements in CSS 3 that facilitate rich layout, a host of APIs geared towards mobile device features and lately even a number of JavaScript framework choices that facilitate development of multi-screen apps in a consistent manner. Personally I’ve been working a lot with AngularJs and heavily modified Bootstrap themes to build mobile first UIs and that’s been working very well to provide highly usable and attractive UI for typical mobile business applications. From the pure UI perspective things actually look very good. Not just about the UI But it’s not just about the UI - it’s also about integration with the mobile device. When it comes to putting all those pieces together into what amounts to a consolidated platform to build mobile Web applications, I think we still have a ways to go… there are a lot of missing pieces to make it all work together and integrate with the device more smoothly, and more importantly to make it work uniformly across the majority of devices. I think there are a number of reasons for this. Slow Standards Adoption HTML standards implementations and ratification has been dreadfully slow, and browser vendors all seem to pick and choose different pieces of the technology they implement. The end result is that we have a capable UI platform that’s missing some of the infrastructure pieces to make it whole on mobile devices. There’s lots of potential but what is lacking that final 10% to build truly compelling mobile applications that can compete favorably with native applications. Some of it is the fragmentation of browsers and the slow evolution of the mobile specific HTML APIs. A host of mobile standards exist but many of the standards are in the early review stage and they have been there stuck for long periods of time and seem to move at a glacial pace. Browser vendors seem even slower to implement them, and for good reason – non-ratified standards mean that implementations may change and vendor implementations tend to be experimental and  likely have to be changed later. Neither Vendors or developers are not keen on changing standards. This is the typical chicken and egg scenario, but without some forward momentum from some party we end up stuck in the mud. It seems that either the standards bodies or the vendors need to carry the torch forward and that doesn’t seem to be happening quickly enough. Mobile Device Integration just isn’t good enough Current standards are not far reaching enough to address a number of the use case scenarios necessary for many mobile applications. While not every application needs to have access to all mobile device features, almost every mobile application could benefit from some integration with other parts of the mobile device platform. Integration with GPS, phone, media, messaging, notifications, linking and contacts system are benefits that are unique to mobile applications and could be widely used, but are mostly (with the exception of GPS) inaccessible for Web based applications today. Unfortunately trying to do most of this today only with a mobile Web browser is a losing battle. Aside from PhoneGap/Cordova’s app centric model with its own custom API accessing mobile device features and the token exception of the GeoLocation API, most device integration features are not widely supported by the current crop of mobile browsers. For example there’s no usable messaging API that allows access to SMS or contacts from HTML. Even obvious components like the Media Capture API are only implemented partially by mobile devices. There are alternatives and workarounds for some of these interfaces by using browser specific code, but that’s might ugly and something that I thought we were trying to leave behind with newer browser standards. But it’s not quite working out that way. It’s utterly perplexing to me that mobile standards like Media Capture and Streams, Media Gallery Access, Responsive Images, Messaging API, Contacts Manager API have only minimal or no traction at all today. Keep in mind we’ve had mobile browsers for nearly 7 years now, and yet we still have to think about how to get access to an image from the image gallery or the camera on some devices? Heck Windows Phone IE Mobile just gained the ability to upload images recently in the Windows 8.1 Update – that’s feature that HTML has had for 20 years! These are simple concepts and common problems that should have been solved a long time ago. It’s extremely frustrating to see build 90% of a mobile Web app with relative ease and then hit a brick wall for the remaining 10%, which often can be show stoppers. The remaining 10% have to do with platform integration, browser differences and working around the limitations that browsers and ‘pinned’ applications impose on HTML applications. The maddening part is that these limitations seem arbitrary as they could easily work on all mobile platforms. For example, SMS has a URL Moniker interface that sort of works on Android, works badly with iOS (only works if the address is already in the contact list) and not at all on Windows Phone. There’s no reason this shouldn’t work universally using the same interface – after all all phones have supported SMS since before the year 2000! But, it doesn’t have to be this way Change can happen very quickly. Take the GeoLocation API for example. Geolocation has taken off at the very beginning of the mobile device era and today it works well, provides the necessary security (a big concern for many mobile APIs), and is supported by just about all major mobile and even desktop browsers today. It handles security concerns via prompts to avoid unwanted access which is a model that would work for most other device APIs in a similar fashion. One time approval and occasional re-approval if code changes or caches expire. Simple and only slightly intrusive. It all works well, even though GeoLocation actually has some physical limitations, such as representing the current location when no GPS device is present. Yet this is a solved problem, where other APIs that are conceptually much simpler to implement have failed to gain any traction at all. Technically none of these APIs should be a problem to implement, but it appears that the momentum is just not there. Inadequate Web Application Linking and Activation Another important piece of the puzzle missing is the integration of HTML based Web applications. Today HTML based applications are not first class citizens on mobile operating systems. When talking about HTML based content there’s a big difference between content and applications. Content is great for search engine discovery and plain browser usage. Content is usually accessed intermittently and permanent linking is not so critical for this type of content.  But applications have different needs. Applications need to be started up quickly and must be easily switchable to support a multi-tasking user workflow. Therefore, it’s pretty crucial that mobile Web apps are integrated into the underlying mobile OS and work with the standard task management features. Unfortunately this integration is not as smooth as it should be. It starts with actually trying to find mobile Web applications, to ‘installing’ them onto a phone in an easily accessible manner in a prominent position. The experience of discovering a Mobile Web ‘App’ and making it sticky is by no means as easy or satisfying. Today the way you’d go about this is: Open the browser Search for a Web Site in the browser with your search engine of choice Hope that you find the right site Hope that you actually find a site that works for your mobile device Click on the link and run the app in a fully chrome’d browser instance (read tiny surface area) Pin the app to the home screen (with all the limitations outline above) Hope you pointed at the right URL when you pinned Even for you and me as developers, there are a few steps in there that are painful and annoying, but think about the average user. First figuring out how to search for a specific site or URL? And then pinning the app and hopefully from the right location? You’ve probably lost more than half of your audience at that point. This experience sucks. For developers too this process is painful since app developers can’t control the shortcut creation directly. This problem often gets solved by crazy coding schemes, with annoying pop-ups that try to get people to create shortcuts via fancy animations that are both annoying and add overhead to each and every application that implements this sort of thing differently. And that’s not the end of it - getting the link onto the home screen with an application icon varies quite a bit between browsers. Apple’s non-standard meta tags are prominent and they work with iOS and Android (only more recent versions), but not on Windows Phone. Windows Phone instead requires you to create an actual screen or rather a partial screen be captured for a shortcut in the tile manager. Who had that brilliant idea I wonder? Surprisingly Chrome on recent Android versions seems to actually get it right – icons use pngs, pinning is easy and pinned applications properly behave like standalone apps and retain the browser’s active page state and content. Each of the platforms has a different way to specify icons (WP doesn’t allow you to use an icon image at all), and the most widely used interface in use today is a bunch of Apple specific meta tags that other browsers choose to support. The question is: Why is there no standard implementation for installing shortcuts across mobile platforms using an official format rather than a proprietary one? Then there’s iOS and the crazy way it treats home screen linked URLs using a crazy hybrid format that is neither as capable as a Web app running in Safari nor a WebView hosted application. Moving off the Web ‘app’ link when switching to another app actually causes the browser and preview it to ‘blank out’ the Web application in the Task View (see screenshot on the right). Then, when the ‘app’ is reactivated it ends up completely restarting the browser with the original link. This is crazy behavior that you can’t easily work around. In some situations you might be able to store the application state and restore it using LocalStorage, but for many scenarios that involve complex data sources (like say Google Maps) that’s not a possibility. The only reason for this screwed up behavior I can think of is that it is deliberate to make Web apps a pain in the butt to use and forcing users trough the App Store/PhoneGap/Cordova route. App linking and management is a very basic problem – something that we essentially have solved in every desktop browser – yet on mobile devices where it arguably matters a lot more to have easy access to web content we have to jump through hoops to have even a remotely decent linking/activation experience across browsers. Where’s the Money? It’s not surprising that device home screen integration and Mobile Web support in general is in such dismal shape – the mobile OS vendors benefit financially from App store sales and have little to gain from Web based applications that bypass the App store and the cash cow that it presents. On top of that, platform specific vendor lock-in of both end users and developers who have invested in hardware, apps and consumables is something that mobile platform vendors actually aspire to. Web based interfaces that are cross-platform are the anti-thesis of that and so again it’s no surprise that the mobile Web is on a struggling path. But – that may be changing. More and more we’re seeing operations shifting to services that are subscription based or otherwise collect money for usage, and that may drive more progress into the Web direction in the end . Nothing like the almighty dollar to drive innovation forward. Do we need a Mobile Web App Store? As much as I dislike moderated experiences in today’s massive App Stores, they do at least provide one single place to look for apps for your device. I think we could really use some sort of registry, that could provide something akin to an app store for mobile Web apps, to make it easier to actually find mobile applications. This could take the form of a specialized search engine, or maybe a more formal store/registry like structure. Something like apt-get/chocolatey for Web apps. It could be curated and provide at least some feedback and reviews that might help with the integrity of applications. Coupled to that could be a native application on each platform that would allow searching and browsing of the registry and then also handle installation in the form of providing the home screen linking, plus maybe an initial security configuration that determines what features are allowed access to for the app. I’m not holding my breath. In order for this sort of thing to take off and gain widespread appeal, a lot of coordination would be required. And in order to get enough traction it would have to come from a well known entity – a mobile Web app store from a no name source is unlikely to gain high enough usage numbers to make a difference. In a way this would eliminate some of the freedom of the Web, but of course this would also be an optional search path in addition to the standard open Web search mechanisms to find and access content today. Security Security is a big deal, and one of the perceived reasons why so many IT professionals appear to be willing to go back to the walled garden of deployed apps is that Apps are perceived as safe due to the official review and curation of the App stores. Curated stores are supposed to protect you from malware, illegal and misleading content. It doesn’t always work out that way and all the major vendors have had issues with security and the review process at some time or another. Security is critical, but I also think that Web applications in general pose less of a security threat than native applications, by nature of the sandboxed browser and JavaScript environments. Web applications run externally completely and in the HTML and JavaScript sandboxes, with only a very few controlled APIs allowing access to device specific features. And as discussed earlier – security for any device interaction can be granted the same for mobile applications through a Web browser, as they can for native applications either via explicit policies loaded from the Web, or via prompting as GeoLocation does today. Security is important, but it’s certainly solvable problem for Web applications even those that need to access device hardware. Security shouldn’t be a reason for Web apps to be an equal player in mobile applications. Apps are winning, but haven’t we been here before? So now we’re finding ourselves back in an era of installed app, rather than Web based and managed apps. Only it’s even worse today than with Desktop applications, in that the apps are going through a gatekeeper that charges a toll and censors what you can and can’t do in your apps. Frankly it’s a mystery to me why anybody would buy into this model and why it’s lasted this long when we’ve already been through this process. It’s crazy… It’s really a shame that this regression is happening. We have the technology to make mobile Web apps much more prominent, but yet we’re basically held back by what seems little more than bureaucracy, partisan bickering and self interest of the major parties involved. Back in the day of the desktop it was Internet Explorer’s 98+%  market shareholding back the Web from improvements for many years – now it’s the combined mobile OS market in control of the mobile browsers. If mobile Web apps were allowed to be treated the same as native apps with simple ways to install and run them consistently and persistently, that would go a long way to making mobile applications much more usable and seriously viable alternatives to native apps. But as it is mobile apps have a severe disadvantage in placement and operation. There are a few bright spots in all of this. Mozilla’s FireFoxOs is embracing the Web for it’s mobile OS by essentially building every app out of HTML and JavaScript based content. It supports both packaged and certified package modes (that can be put into the app store), and Open Web apps that are loaded and run completely off the Web and can also cache locally for offline operation using a manifest. Open Web apps are treated as full class citizens in FireFoxOS and run using the same mechanism as installed apps. Unfortunately FireFoxOs is getting a slow start with minimal device support and specifically targeting the low end market. We can hope that this approach will change and catch on with other vendors, but that’s also an uphill battle given the conflict of interest with platform lock in that it represents. Recent versions of Android also seem to be working reasonably well with mobile application integration onto the desktop and activation out of the box. Although it still uses the Apple meta tags to find icons and behavior settings, everything at least works as you would expect – icons to the desktop on pinning, WebView based full screen activation, and reliable application persistence as the browser/app is treated like a real application. Hopefully iOS will at some point provide this same level of rudimentary Web app support. What’s also interesting to me is that Microsoft hasn’t picked up on the obvious need for a solid Web App platform. Being a distant third in the mobile OS war, Microsoft certainly has nothing to lose and everything to gain by using fresh ideas and expanding into areas that the other major vendors are neglecting. But instead Microsoft is trying to beat the market leaders at their own game, fighting on their adversary’s terms instead of taking a new tack. Providing a kick ass mobile Web platform that takes the lead on some of the proposed mobile APIs would be something positive that Microsoft could do to improve its miserable position in the mobile device market. Where are we at with Mobile Web? It sure sounds like I’m really down on the Mobile Web, right? I’ve built a number of mobile apps in the last year and while overall result and response has been very positive to what we were able to accomplish in terms of UI, getting that final 10% that required device integration dialed was an absolute nightmare on every single one of them. Big compromises had to be made and some features were left out or had to be modified for some devices. In two cases we opted to go the Cordova route in order to get the integration we needed, along with the extra pain involved in that process. Unless you’re not integrating with device features and you don’t care deeply about a smooth integration with the mobile desktop, mobile Web development is fraught with frustration. So, yes I’m frustrated! But it’s not for lack of wanting the mobile Web to succeed. I am still a firm believer that we will eventually arrive a much more functional mobile Web platform that allows access to the most common device features in a sensible way. It wouldn't be difficult for device platform vendors to make Web based applications first class citizens on mobile devices. But unfortunately it looks like it will still be some time before this happens. So, what’s your experience building mobile Web apps? Are you finding similar issues? Just giving up on raw Web applications and building PhoneGap apps instead? Completely skipping the Web and going native? Leave a comment for discussion. Resources Rick Strahl on DotNet Rocks talking about Mobile Web© Rick Strahl, West Wind Technologies, 2005-2014Posted in HTML5  Mobile   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • An Honest look at SharePoint Web Services

    - by juanlarios
    INTRODUCTION If you are a SharePoint developer you know that there are two basic ways to develop against SharePoint. 1) The object Model 2) Web services. SharePoint object model has the advantage of being quite rich. Anything you can do through the SharePoint UI as an administrator or end user, you can do through the object model. In fact everything that is done through the UI is done through the object model behind the scenes. The major disadvantage to getting at SharePoint this way is that the code needs to run on the server. This means that all web parts, event receivers, features, etc… all of this is code that is deployed to the server. The second way to get to SharePoint is through the built in web services. There are many articles on how to manipulate web services, how to authenticate to them and interact with them. The basic idea is that a remote application or process can contact SharePoint through a web service. Lots has been written about how great these web services are. This article is written to document the limitations, some of the issues and frustrations with working with SharePoint built in web services. Ultimately, for the tasks I was given to , SharePoint built in web services did not suffice. My evaluation of SharePoint built in services was compared against creating my own WCF Services to do what I needed. The current project I'm working on right now involved several "integration points". A remote application, installed on a separate server was to contact SharePoint and perform an task or operation. So I decided to start up Visual Studio and built a DLL and basically have 2 layers of logic. An integration layer and a data layer. A good friend of mine pointed me to SOLID principles and referred me to some videos and tutorials about it. I decided to implement the methodology (although a lot of the principles are common sense and I already incorporated in my coding practices). I was to deliver this dll to the application team and they would simply call the methods exposed by this dll and voila! it would do some task or operation in SharePoint. SOLUTION My integration layer implemented an interface that defined some of the basic integration tasks that I was to put together. My data layer was about the same, it implemented an interface with some of the tasks that I was going to develop. This gave me the opportunity to develop different data layers, ultimately different ways to get at SharePoint if I needed to. This is a classic SOLID principle. In this case it proved to be quite helpful because I wrote one data layer completely implementing SharePoint built in Web Services and another implementing my own WCF Service that I wrote. I should mention there is another layer underneath the data layer. In referencing SharePoint or WCF services in my visual studio project I created a class for every web service call. So for example, if I used List.asx. I created a class called "DocumentRetreival" this class would do the grunt work to connect to the correct URL, It would perform the basic operation of contacting the service and so on. If I used a view.asmx, I implemented a class called "ViewRetrieval" with the same idea as the last class but it would now interact with all he operations in view.asmx. This gave my data layer the ability to perform multiple calls without really worrying about some of the grunt work each class performs. This again, is a classic SOLID principle. So, in order to compare them side by side we can look at both data layers and with is involved in each. Lets take a look at the "Create Project" task or operation. The integration point is described as , "dll is to provide a way to create a project in SharePoint". Projects , in this case are basically document libraries. I am to implement a way in which a remote application can create a document library in SharePoint. Easy enough right? Use the list.asmx Web service in SharePoint. So here we go! Lets take a look at the code. I added the List.asmx web service reference to my project and this is the class that contacts it:  class DocumentRetrieval     {         private ListsSoapClient _service;      d   private bool _impersonation;         public DocumentRetrieval(bool impersonation, string endpt)         {             _service = new ListsSoapClient();             this.SetEndPoint(string.Format("{0}/{1}", endpt, ConfigurationManager.AppSettings["List"]));             _impersonation = impersonation;             if (_impersonation)             {                 _service.ClientCredentials.Windows.ClientCredential.Password = ConfigurationManager.AppSettings["password"];                 _service.ClientCredentials.Windows.ClientCredential.UserName = ConfigurationManager.AppSettings["username"];                 _service.ClientCredentials.Windows.AllowedImpersonationLevel =                     System.Security.Principal.TokenImpersonationLevel.Impersonation;             }     private void SetEndPoint(string p)          {             _service.Endpoint.Address = new EndpointAddress(p);          }          /// <summary>         /// Creates a document library with specific name and templateID         /// </summary>         /// <param name="listName">New list name</param>         /// <param name="templateID">Template ID</param>         /// <returns></returns>         public XmlElement CreateLibrary(string listName, int templateID, ref ExceptionContract exContract)         {             XmlDocument sample = new XmlDocument();             XmlElement viewCol = sample.CreateElement("Empty");             try             {                 _service.Open();                 viewCol = _service.AddList(listName, "", templateID);             }             catch (Exception ex)             {                 exContract = new ExceptionContract("DocumentRetrieval/CreateLibrary", ex.GetType(), "Connection Error", ex.StackTrace, ExceptionContract.ExceptionCode.error);                             }finally             {                 _service.Close();             }                                      return viewCol;         } } There was a lot more in this class (that I am not including) because i was reusing the grunt work and making other operations with LIst.asmx, For example, updating content types, changing or configuring lists or document libraries. One of the first things I noticed about working with the built in services is that you are really at the mercy of what is available to you. Before creating a document library (Project) I wanted to expose a IsProjectExisting method. This way the integration or data layer could recognize if a library already exists. Well there is no service call or method available to do that check. So this is what I wrote:   public bool DocLibExists(string listName, ref ExceptionContract exContract)         {             try             {                 var allLists = _service.GetListCollection();                                return allLists.ChildNodes.OfType<XmlElement>().ToList().Exists(x => x.Attributes["Title"].Value ==listName);             }             catch (Exception ex)             {                 exContract = new ExceptionContract("DocumentRetrieval/GetList/GetListWSCall", ex.GetType(), "Unable to Retrieve List Collection", ex.StackTrace, ExceptionContract.ExceptionCode.error);             }             return false;         } This really just gets an XMLElement with all the lists. It was then up to me to sift through the clutter and noise and see if Document library already existed. This took a little bit of getting used to. Now instead of working with code, you are working with XMLElement response format from web service. I wrote a LINQ query to go through and find if the attribute "Title" existed and had a value of the listname then it would return True, if not False. I didn't particularly like working this way. Dealing with XMLElement responses and then having to manipulate it to get at the exact data I was looking for. Once the check for the DocLibExists, was done, I would either create the document library or send back an error indicating the document library already existed. Now lets examine the code that actually creates the document library. It does what you are really after, it creates a document library. Notice how the template ID is really an integer. Every document library template in SharePoint has an ID associated with it. Document libraries, Image Library, Custom List, Project Tasks, etc… they all he a unique integer associated with it. Well, that's great but the client came back to me and gave me some specifics that each "project" or document library, should have. They specified they had 3 types of projects. Each project would have unique views, about 10 views for each project. Each Project specified unique configurations (auditing, versioning, content types, etc…) So what turned out to be a simple implementation of creating a document library as a repository for a project, turned out to be quite involved.  The first thing I thought of was to create a template for document library. There are other ways you can do this too. Using the web Service call, you could configure views, versioning, even content types, etc… the only catch is, you have to be working quite extensively with CAML. I am not fond of CAML. I can do it and work with it, I just don't like doing it. It is quite touchy and at times it is quite tough to understand where errors were made with CAML statements. Working with Web Services and CAML proved to be quite annoying. The service call would return a generic error message that did not particularly point me to a CAML statement syntax error, or even a CAML error. I was not sure if it was a security , performance or code based issue. It was quite tough to work with. At times it was difficult to work with because of the way SharePoint handles metadata. There are "Names", "Display Name", and "StaticName" fields. It was quite tough to understand at times, which one to use. So it took a lot of trial and error. There are tools that can help with CAML generation. There is also now intellisense for CAML statements in Visual Studio that might help but ultimately I'm not fond of CAML with Web Services.   So I decided on the template. So my plan was to create create a document library, configure it accordingly and then use The Template Builder that comes with the SharePoint SDK. This tool allows you to create site templates, list template etc… It is quite interesting because it does not generate an STP file, it actually generates an xml definition and a feature you can activate and make that template available on a site or site collection. The first issue I experienced with this is that one of the specifications to this template was that the "All Documents" view was to have 2 web parts on it. Well, it turns out that using the template builder , it did not include the web parts as part of the list template definition it generated. It backed up the settings, the views, the content types but not the custom web parts. I still decided to try this even without the web parts on the page. This new template defined a new Document library definition with a unique ID. The problem was that the service call accepts an int but it only has access to the built in library int definitions. Any new ones added or created will not be available to create. So this made it impossible for me to approach the problem this way.     I should also mention that one of the nice features about SharePoint is the ability to create list templates, back them up and then create lists based on that template. It can all be done by end user administrators. These templates are quite unique because they are saved as an STP file and not an xml definition. I also went this route and tried to see if there was another service call where I could create a document library based no given template name. Nope! none.      After some thinking I decide to implement a WCF service to do this creation for me. I was quite certain that the object model would allow me to create document libraries base on a template in which an ID was required and also templates saved as STP files. Now I don't want to bother with posting the code to contact WCF service because it's self explanatory, but I will post the code that I used to create a list with custom template. public ServiceResult CreateProject(string name, string templateName, string projectId)         {             string siteurl = SPContext.Current.Site.Url;             Guid webguid = SPContext.Current.Web.ID;                        using (SPSite site = new SPSite(siteurl))             {                 using (SPWeb rootweb = site.RootWeb)                 {                     SPListTemplateCollection temps = site.GetCustomListTemplates(rootweb);                     ProcessWeb(siteurl, webguid, web => Act_CreateProject(web, name, templateName, projectId, temps));                 }//SpWeb             }//SPSite              return _globalResult;                   }         private void Act_CreateProject(SPWeb targetsite, string name, string templateName, string projectId, SPListTemplateCollection temps) {                         var temp = temps.Cast<SPListTemplate>().FirstOrDefault(x => x.Name.Equals(templateName));             if (temp != null)             {                             try                 {                                         Guid listGuid = targetsite.Lists.Add(name, "", temp);                     SPList newList = targetsite.Lists[listGuid];                     _globalResult = new ServiceResult(true, "Success", "Success");                 }                 catch (Exception ex)                 {                     _globalResult = new ServiceResult(false, (string.IsNullOrEmpty(ex.Message) ? "None" : ex.Message + " " + templateName), ex.StackTrace.ToString());                 }                                       }        private void ProcessWeb(string siteurl, Guid webguid, Action<SPWeb> action) {                        using (SPSite sitecollection = new SPSite(siteurl)) {                 using (SPWeb web = sitecollection.AllWebs[webguid]) {                     action(web);                 }                     }                  } This code is actually some of the code I implemented for the service. there was a lot more I did on Project Creation which I will cover in my next blog post. I implemented an ACTION method to process the web. This allowed me to properly dispose the SPWEb and SPSite objects and not rewrite this code over and over again. So I implemented a WCF service to create projects for me, this allowed me to do a lot more than just create a document library with a template, it now gave me the flexibility to do just about anything the client wanted at project creation. Once this was implemented , the client came back to me and said, "we reference all our projects with ID's in our application. we want SharePoint to do the same". This has been something I have been doing for a little while now but I do hope that SharePoint 2010 can have more of an answer to this and address it properly. I have been adding metadata to SPWebs through property bag. I believe I have blogged about it before. This time it required metadata added to a document library. No problem!!! I also mentioned these web parts that were to go on the "All Documents" View. I took the opportunity to configure them to the appropriate settings. There were two settings that needed to be set on these web parts. One of them was a Project ID configured in the webpart properties. The following code enhances and replaces the "Act_CreateProject " method above:  private void Act_CreateProject(SPWeb targetsite, string name, string templateName, string projectId, SPListTemplateCollection temps) {                         var temp = temps.Cast<SPListTemplate>().FirstOrDefault(x => x.Name.Equals(templateName));             if (temp != null)             {                 SPLimitedWebPartManager wpmgr = null;                               try                 {                                         Guid listGuid = targetsite.Lists.Add(name, "", temp);                     SPList newList = targetsite.Lists[listGuid];                     SPFolder rootFolder = newList.RootFolder;                     rootFolder.Properties.Add(KEY, projectId);                     rootFolder.Update();                     if (rootFolder.ParentWeb != targetsite)                         rootFolder.ParentWeb.Dispose();                     if (!templateName.Contains("Natural"))                     {                         SPView alldocumentsview = newList.Views.Cast<SPView>().FirstOrDefault(x => x.Title.Equals(ALLDOCUMENTS));                         SPFile alldocfile = targetsite.GetFile(alldocumentsview.ServerRelativeUrl);                         wpmgr = alldocfile.GetLimitedWebPartManager(PersonalizationScope.Shared);                         ConfigureWebPart(wpmgr, projectId, CUSTOMWPNAME);                                              alldocfile.Update();                     }                                        if (newList.ParentWeb != targetsite)                         newList.ParentWeb.Dispose();                     _globalResult = new ServiceResult(true, "Success", "Success");                 }                 catch (Exception ex)                 {                     _globalResult = new ServiceResult(false, (string.IsNullOrEmpty(ex.Message) ? "None" : ex.Message + " " + templateName), ex.StackTrace.ToString());                 }                 finally                 {                     if (wpmgr != null)                     {                         wpmgr.Web.Dispose();                         wpmgr.Dispose();                     }                 }             }                         }       private void ConfigureWebPart(SPLimitedWebPartManager mgr, string prjId, string webpartname)         {             var wp = mgr.WebParts.Cast<System.Web.UI.WebControls.WebParts.WebPart>().FirstOrDefault(x => x.DisplayTitle.Equals(webpartname));             if (wp != null)             {                           (wp as ListRelationshipWebPart.ListRelationshipWebPart).ProjectID = prjId;                 mgr.SaveChanges(wp);             }         }   This Shows you how I was able to set metadata on the document library. It has to be added to the RootFolder of the document library, Unfortunately, the SPList does not have a Property bag that I can add a key\value pair to. It has to be done on the root folder. Now everything in the integration will reference projects by ID's and will not care about names. My, "DocLibExists" will now need to be changed because a web service is not set up to look at property bags.  I had to write another method on the Service to do the equivalent but with ID's instead of names.  The second thing you will notice about the code is the use of the Webpartmanager. I have seen several examples online, and also read a lot about memory leaks, The above code does not produce memory leaks. The web part manager creates an SPWeb, so just dispose it like I did. CONCLUSION This is a long long post so I will stop here for now, I will continue with more comparisons and limitations in my next post. My conclusion for this example is that Web Services will do the trick if you can suffer through CAML and if you are doing some simple operations. For Everything else, there's WCF! **** fireI apologize for the disorganization of this post, I was on a bus on a 12 hour trip to IOWA while I wrote it, I was half asleep and half awake, hopefully it makes enough sense to someone.

    Read the article

  • JMS Step 5 - How to Create an 11g BPEL Process Which Reads a Message Based on an XML Schema from a JMS Queue

    - by John-Brown.Evans
    JMS Step 5 - How to Create an 11g BPEL Process Which Reads a Message Based on an XML Schema from a JMS Queue .jblist{list-style-type:disc;margin:0;padding:0;padding-left:0pt;margin-left:36pt} ol{margin:0;padding:0} .c12_5{vertical-align:top;width:468pt;border-style:solid;background-color:#f3f3f3;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c8_5{vertical-align:top;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 0pt 5pt} .c10_5{vertical-align:top;width:207pt;border-style:solid;border-color:#000000;border-width:1pt;padding:5pt 5pt 5pt 5pt} .c14_5{vertical-align:top;border-style:solid;border-color:#000000;border-width:1pt;padding:0pt 5pt 0pt 5pt} .c21_5{background-color:#ffffff} .c18_5{color:#1155cc;text-decoration:underline} .c16_5{color:#666666;font-size:12pt} .c5_5{background-color:#f3f3f3;font-weight:bold} .c19_5{color:inherit;text-decoration:inherit} .c3_5{height:11pt;text-align:center} .c11_5{font-weight:bold} .c20_5{background-color:#00ff00} .c6_5{font-style:italic} .c4_5{height:11pt} .c17_5{background-color:#ffff00} .c0_5{direction:ltr} .c7_5{font-family:"Courier New"} .c2_5{border-collapse:collapse} .c1_5{line-height:1.0} .c13_5{background-color:#f3f3f3} .c15_5{height:0pt} .c9_5{text-align:center} .title{padding-top:24pt;line-height:1.15;text-align:left;color:#000000;font-size:36pt;font-family:"Arial";font-weight:bold;padding-bottom:6pt} .subtitle{padding-top:18pt;line-height:1.15;text-align:left;color:#666666;font-style:italic;font-size:24pt;font-family:"Georgia";padding-bottom:4pt} li{color:#000000;font-size:10pt;font-family:"Arial"} p{color:#000000;font-size:10pt;margin:0;font-family:"Arial"} h1{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:24pt;font-family:"Arial";font-weight:normal} h2{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:18pt;font-family:"Arial";font-weight:normal} h3{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:14pt;font-family:"Arial";font-weight:normal} h4{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:12pt;font-family:"Arial";font-weight:normal} h5{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:11pt;font-family:"Arial";font-weight:normal} h6{padding-top:0pt;line-height:1.15;text-align:left;color:#888;font-size:10pt;font-family:"Arial";font-weight:normal} Welcome to another post in the series of blogs which demonstrates how to use JMS queues in a SOA context. The previous posts were: JMS Step 1 - How to Create a Simple JMS Queue in Weblogic Server 11g JMS Step 2 - Using the QueueSend.java Sample Program to Send a Message to a JMS Queue JMS Step 3 - Using the QueueReceive.java Sample Program to Read a Message from a JMS Queue JMS Step 4 - How to Create an 11g BPEL Process Which Writes a Message Based on an XML Schema to a JMS Queue Today we will create a BPEL process which will read (dequeue) the message from the JMS queue, which we enqueued in the last example. The JMS adapter will dequeue the full XML payload from the queue. 1. Recap and Prerequisites In the previous examples, we created a JMS Queue, a Connection Factory and a Connection Pool in the WebLogic Server Console. Then we designed and deployed a BPEL composite, which took a simple XML payload and enqueued it to the JMS queue. In this example, we will read that same message from the queue, using a JMS adapter and a BPEL process. As many of the configuration steps required to read from that queue were done in the previous samples, this one will concentrate on the new steps. A summary of the required objects is listed below. To find out how to create them please see the previous samples. They also include instructions on how to verify the objects are set up correctly. WebLogic Server Objects Object Name Type JNDI Name TestConnectionFactory Connection Factory jms/TestConnectionFactory TestJMSQueue JMS Queue jms/TestJMSQueue eis/wls/TestQueue Connection Pool eis/wls/TestQueue Schema XSD File The following XSD file is used for the message format. It was created in the previous example and will be copied to the new process. stringPayload.xsd <?xml version="1.0" encoding="windows-1252" ?> <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"                 xmlns="http://www.example.org"                 targetNamespace="http://www.example.org"                 elementFormDefault="qualified">   <xsd:element name="exampleElement" type="xsd:string">   </xsd:element> </xsd:schema> JMS Message After executing the previous samples, the following XML message should be in the JMS queue located at jms/TestJMSQueue: <?xml version="1.0" encoding="UTF-8" ?><exampleElement xmlns="http://www.example.org">Test Message</exampleElement> JDeveloper Connection You will need a valid Application Server Connection in JDeveloper pointing to the SOA server which the process will be deployed to. 2. Create a BPEL Composite with a JMS Adapter Partner Link In the previous example, we created a composite in JDeveloper called JmsAdapterWriteSchema. In this one, we will create a new composite called JmsAdapterReadSchema. There are probably many ways of incorporating a JMS adapter into a SOA composite for incoming messages. One way is design the process in such a way that the adapter polls for new messages and when it dequeues one, initiates a SOA or BPEL instance. This is possibly the most common use case. Other use cases include mid-flow adapters, which are activated from within the BPEL process. In this example we will use a polling adapter, because it is the most simple to set up and demonstrate. But it has one disadvantage as a demonstrative model. When a polling adapter is active, it will dequeue all messages as soon as they reach the queue. This makes it difficult to monitor messages we are writing to the queue, because they will disappear from the queue as soon as they have been enqueued. To work around this, we will shut down the composite after deploying it and restart it as required. (Another solution for this would be to pause the consumption for the queue and resume consumption again if needed. This can be done in the WLS console JMS-Modules -> queue -> Control -> Consumption -> Pause/Resume.) We will model the composite as a one-way incoming process. Usually, a BPEL process will do something useful with the message after receiving it, such as passing it to a database or file adapter, a human workflow or external web service. But we only want to demonstrate how to dequeue a JMS message using BPEL and a JMS adapter, so we won’t complicate the design with further activities. However, we do want to be able to verify that we have read the message correctly, so the BPEL process will include a small piece of embedded java code, which will print the message to standard output, so we can view it in the SOA server’s log file. Alternatively, you can view the instance in the Enterprise Manager and verify the message. The following steps are all executed in JDeveloper. Create the project in the same JDeveloper application used for the previous examples or create a new one. Create a SOA Project Create a new project and choose SOA Tier > SOA Project as its type. Name it JmsAdapterReadSchema. When prompted for the composite type, choose Empty Composite. Create a JMS Adapter Partner Link In the composite editor, drag a JMS adapter over from the Component Palette to the left-hand swim lane, under Exposed Services. This will start the JMS Adapter Configuration Wizard. Use the following entries: Service Name: JmsAdapterRead Oracle Enterprise Messaging Service (OEMS): Oracle WebLogic JMS AppServer Connection: Use an application server connection pointing to the WebLogic server on which the JMS queue and connection factory mentioned under Prerequisites above are located. Adapter Interface > Interface: Define from operation and schema (specified later) Operation Type: Consume Message Operation Name: Consume_message Consume Operation Parameters Destination Name: Press the Browse button, select Destination Type: Queues, then press Search. Wait for the list to populate, then select the entry for TestJMSQueue , which is the queue created in a previous example. JNDI Name: The JNDI name to use for the JMS connection. As in the previous example, this is probably the most common source of error. This is the JNDI name of the JMS adapter’s connection pool created in the WebLogic Server and which points to the connection factory. JDeveloper does not verify the value entered here. If you enter a wrong value, the JMS adapter won’t find the queue and you will get an error message at runtime, which is very difficult to trace. In our example, this is the value eis/wls/TestQueue . (See the earlier step on how to create a JMS Adapter Connection Pool in WebLogic Server for details.) Messages/Message SchemaURL: We will use the XSD file created during the previous example, in the JmsAdapterWriteSchema project to define the format for the incoming message payload and, at the same time, demonstrate how to import an existing XSD file into a JDeveloper project. Press the magnifying glass icon to search for schema files. In the Type Chooser, press the Import Schema File button. Select the magnifying glass next to URL to search for schema files. Navigate to the location of the JmsAdapterWriteSchema project > xsd and select the stringPayload.xsd file. Check the “Copy to Project” checkbox, press OK and confirm the following Localize Files popup. Now that the XSD file has been copied to the local project, it can be selected from the project’s schema files. Expand Project Schema Files > stringPayload.xsd and select exampleElement: string . Press Next and Finish, which will complete the JMS Adapter configuration.Save the project. Create a BPEL Component Drag a BPEL Process from the Component Palette (Service Components) to the Components section of the composite designer. Name it JmsAdapterReadSchema and select Template: Define Service Later and press OK. Wire the JMS Adapter to the BPEL Component Now wire the JMS adapter to the BPEL process, by dragging the arrow from the adapter to the BPEL process. A Transaction Properties popup will be displayed. Set the delivery mode to async.persist. This completes the steps at the composite level. 3 . Complete the BPEL Process Design Invoke the BPEL Flow via the JMS Adapter Open the BPEL component by double-clicking it in the design view of the composite.xml, or open it from the project navigator by selecting the JmsAdapterReadSchema.bpel file. This will display the BPEL process in the design view. You should see the JmsAdapterRead partner link in the left-hand swim lane. Drag a Receive activity onto the BPEL flow diagram, then drag a wire (left-hand yellow arrow) from it to the JMS adapter. This will open the Receive activity editor. Auto-generate the variable by pressing the green “+” button and check the “Create Instance” checkbox. This will result in a BPEL instance being created when a new JMS message is received. At this point it would actually be OK to compile and deploy the composite and it would pick up any messages from the JMS queue. In fact, you can do that to test it, if you like. But it is very rudimentary and would not be doing anything useful with the message. Also, you could only verify the actual message payload by looking at the instance’s flow in the Enterprise Manager. There are various other possibilities; we could pass the message to another web service, write it to a file using a file adapter or to a database via a database adapter etc. But these will all introduce unnecessary complications to our sample. So, to keep it simple, we will add a small piece of Java code to the BPEL process which will write the payload to standard output. This will be written to the server’s log file, which will be easy to monitor. Add a Java Embedding Activity First get the full name of the process’s input variable, as this will be needed for the Java code. Go to the Structure pane and expand Variables > Process > Variables. Then expand the input variable, for example, "Receive1_Consume_Message_InputVariable > body > ns2:exampleElement”, and note variable’s name and path, if they are different from this one. Drag a Java Embedding activity from the Component Palette (Oracle Extensions) to the BPEL flow, after the Receive activity, then open it to edit. Delete the example code and replace it with the following, replacing the variable parts with those in your sample, if necessary.: System.out.println("JmsAdapterReadSchema process picked up a message"); oracle.xml.parser.v2.XMLElement inputPayload =    (oracle.xml.parser.v2.XMLElement)getVariableData(                           "Receive1_Consume_Message_InputVariable",                           "body",                           "/ns2:exampleElement");   String inputString = inputPayload.getFirstChild().getNodeValue(); System.out.println("Input String is " + inputPayload.getFirstChild().getNodeValue()); Tip. If you are not sure of the exact syntax of the input variable, create an Assign activity in the BPEL process and copy the variable to another, temporary one. Then check the syntax created by the BPEL designer. This completes the BPEL process design in JDeveloper. Save, compile and deploy the process to the SOA server. 3. Test the Composite Shut Down the JmsAdapterReadSchema Composite After deploying the JmsAdapterReadSchema composite to the SOA server it is automatically activated. If there are already any messages in the queue, the adapter will begin polling them. To ease the testing process, we will deactivate the process first Log in to the Enterprise Manager (Fusion Middleware Control) and navigate to SOA > soa-infra (soa_server1) > default (or wherever you deployed your composite to) and click on JmsAdapterReadSchema [1.0] . Press the Shut Down button to disable the composite and confirm the following popup. Monitor Messages in the JMS Queue In a separate browser window, log in to the WebLogic Server Console and navigate to Services > Messaging > JMS Modules > TestJMSModule > TestJMSQueue > Monitoring. This is the location of the JMS queue we created in an earlier sample (see the prerequisites section of this sample). Check whether there are any messages already in the queue. If so, you can dequeue them using the QueueReceive Java program created in an earlier sample. This will ensure that the queue is empty and doesn’t contain any messages in the wrong format, which would cause the JmsAdapterReadSchema to fail. Send a Test Message In the Enterprise Manager, navigate to the JmsAdapterWriteSchema created earlier, press Test and send a test message, for example “Message from JmsAdapterWriteSchema”. Confirm that the message was written correctly to the queue by verifying it via the queue monitor in the WLS Console. Monitor the SOA Server’s Output A program deployed on the SOA server will write its standard output to the terminal window in which the server was started, unless this has been redirected to somewhere else, for example to a file. If it has not been redirected, go to the terminal session in which the server was started, otherwise open and monitor the file to which it was redirected. Re-Enable the JmsAdapterReadSchema Composite In the Enterprise Manager, navigate to the JmsAdapterReadSchema composite again and press Start Up to re-enable it. This should cause the JMS adapter to dequeue the test message and the following output should be written to the server’s standard output: JmsAdapterReadSchema process picked up a message. Input String is Message from JmsAdapterWriteSchema Note that you can also monitor the payload received by the process, by navigating to the the JmsAdapterReadSchema’s Instances tab in the Enterprise Manager. Then select the latest instance and view the flow of the BPEL component. The Receive activity will contain and display the dequeued message too. 4 . Troubleshooting This sample demonstrates how to dequeue an XML JMS message using a BPEL process and no additional functionality. For example, it doesn’t contain any error handling. Therefore, any errors in the payload will result in exceptions being written to the log file or standard output. If you get any errors related to the payload, such as Message handle error ... ORABPEL-09500 ... XPath expression failed to execute. An error occurs while processing the XPath expression; the expression is /ns2:exampleElement. ... etc. check that the variable used in the Java embedding part of the process was entered correctly. Possibly follow the tip mentioned in previous section. If this doesn’t help, you can delete the Java embedding part and simply verify the message via the flow diagram in the Enterprise Manager. Or use a different method, such as writing it to a file via a file adapter. This concludes this example. In the next post, we will begin with an AQ JMS example, which uses JMS to write to an Advanced Queue stored in the database. Best regards John-Brown Evans Oracle Technology Proactive Support Delivery

    Read the article

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

< Previous Page | 6 7 8 9 10