Search Results

Search found 857 results on 35 pages for 'scientific notation'.

Page 10/35 | < Previous Page | 6 7 8 9 10 11 12 13 14 15 16 17  | Next Page >

  • Does the mysql Client API Library version have to match the installed MySQL/Percona server version?

    - by William Jamieson
    I'm running Scientific Linux 6.3 (binary compaible with Redhat/CentOS/etc..) as a LAMP stack. I've installed Percona server and client v5.5 from the Percona yum repository. However when I run phpinfo() I notice that under the MySQL and mysqli sections, it lists the Client API Library version as 5.1.66, and not 5.5x. I'm guessing these need to match, at least to major versions, and I have no idea what the possible consequences of such a mismatch could be. Do I need to revert to Percona server and client v5.1? This is for a production environment so it needs to be right. I'd appreciate any input or experience people could offer. I'm running Scientific Linux 6.3 (binary compaible with Redhat/CentOS/etc..) as a LAMP stack. I've installed Percona server and client v5.5 from the Percona yum repository. However when I run phpinfo() I notice that under the MySQL and mysqli sections, it lists the Client API Library version as 5.1.66, and not 5.5x. I'm guessing these need to match, at least to major versions, and I have no idea what the possible consequences of such a mismatch could be. Do I need to revert to Percona server and client v5.1? This is for a production environment so it needs to be right. I'd appreciate any input or experience people could offer. (Note I will also be cross posting this on the Percona forums)

    Read the article

  • DSP - How are frequency amplitudes modified using DFT?

    - by Trap
    I'm trying to implement a DFT-based equalizer (not FFT) for the sole purpose of learning. To check if it works I took an audio signal, analyzed it and then resynthesized it again with no modifications made to the frequency spectrum. So far so good. Now I tried to silence some frequency bands, just by setting their amplitudes to zero before resynthesis, but definitely it's not the way to go. What I get is a rather distorted signal. I'm using the so-called 'standard way of calculating the DFT' which is by correlation. I first tried to modify the real part amplitudes only, then modifying both the real and imaginary part amplitudes. I also tried to convert the DFT output to polar notation, then modifying the magnitude and convert back to rectangular notation, but none of this is working. Can someone show me what I'm doing wrong? I tried to find info on this subject in the internet but couldn't find any. Thanks in advance.

    Read the article

  • Concatenating rows from different tables into one field

    - by Markus
    Hi! In a project using a MSSQL 2005 Database we are required to log all data manipulating actions in a logging table. One field in that table is supposed to contain the row before it was changed. We have a lot of tables so I was trying to write a stored procedure that would gather up all the fields in one row of a table that was given to it, concatenate them somehow and then write a new log entry with that information. I already tried using FOR XML PATH and it worked, but the client doesn't like the XML notation, they want a csv field. Here's what I had with FOR XML PATH: DECLARE @foo varchar(max); SET @foo = (SELECT * FROM table WHERE id = 5775 FOR XML PATH('')); The values for "table", "id" and the actual id (here: 5775) would later be passed in via the call to the stored procedure. Is there any way to do this without getting XML notation and without knowing in advance which fields are going to be returned by the SELECT statement?

    Read the article

  • How to calculate order (big O) for more complex algorithms (ie quicksort)

    - by bangoker
    I know there are quite a bunch of questions about big O notation, I have already checked Plain english explanation of Big O , Big O, how do you calculate/approximate it?, and Big O Notation Homework--Code Fragment Algorithm Analysis?, to name a few. I know by "intuition" how to calculate it for n, n^2, n! and so, however I am completely lost on how to calculate it for algorithms that are log n , n log n, n log log n and so. What I mean is, I know that Quick Sort is n log n (on average).. but, why? Same thing for merge/comb, etc. Could anybody explain me in a not to math-y way how do you calculate this? The main reason is that Im about to have a big interview and I'm pretty sure they'll ask for this kind of stuff. I have researched for a few days now, and everybody seem to have either an explanation of why bubble sort is n^2 or the (for me) unreadable explanation a la wikipedia Thanks!

    Read the article

  • javascript literal initialisation loop

    - by graham.reeds
    I have an object which has several properties that are set when the object is created. This object recently changed to object literal notation, but I've hit a bit of a problem that searching on the net doesn't reveal. Simply stated I need to do this: Star = function(_id, _x, _y, _n, _o, _im, _c, _b, _links) { var self = { id: _id, // other properties links: [], for (var i=0,j=0;i<8;i++) { //<- doesn't like this line var k = parseInt(_links[i]); if (k > 0) { this.links[j++] = k; } }, // other methods }; return self; }; How do I initialise a property in the constructor in object literal notation?

    Read the article

  • Is there a way to redirect ONLY stderr to stdout (not combine the two) so it can be piped to other programs

    - by James K
    I'm working in a Windows CMD.EXE environment and would like to change the output of stdout to match that of stderr so that I can pipe error messages to other programs without the intermediary of a file. I'm aware of the 2>&1 notation, but that combines stdout and stderr into a single stream. What I'm thinking of would be something like this: program.exe 2>&1 | find " " But that combines stdout and stderr just like: program.exe | find " " 2>&1 I realize that I could do... program 2>file type file | find " " del file But this does not have the flexibility and power of a program | find " " sort of notation. Doing this requires that program has finished with it's output before that output can be processed.

    Read the article

  • BNF – how to read syntax?

    - by Piotr Rodak
    A few days ago I read post of Jen McCown (blog) about her idea of blogging about random articles from Books Online. I think this is a great idea, even if Jen says that it’s not exciting or sexy. I noticed that many of the questions that appear on forums and other media arise from pure fact that people asking questions didn’t bother to read and understand the manual – Books Online. Jen came up with a brilliant, concise acronym that describes very well the category of posts about Books Online – RTFM365. I take liberty of tagging this post with the same acronym. I often come across questions of type – ‘Hey, i am trying to create a table, but I am getting an error’. The error often says that the syntax is invalid. 1 CREATE TABLE dbo.Employees 2 (guid uniqueidentifier CONSTRAINT DEFAULT Guid_Default NEWSEQUENTIALID() ROWGUIDCOL, 3 Employee_Name varchar(60) 4 CONSTRAINT Guid_PK PRIMARY KEY (guid) ); 5 The answer is usually(1), ‘Ok, let me check it out.. Ah yes – you have to put name of the DEFAULT constraint before the type of constraint: 1 CREATE TABLE dbo.Employees 2 (guid uniqueidentifier CONSTRAINT Guid_Default DEFAULT NEWSEQUENTIALID() ROWGUIDCOL, 3 Employee_Name varchar(60) 4 CONSTRAINT Guid_PK PRIMARY KEY (guid) ); Why many people stumble on syntax errors? Is the syntax poorly documented? No, the issue is, that correct syntax of the CREATE TABLE statement is documented very well in Books Online and is.. intimidating. Many people can be taken aback by the rather complex block of code that describes all intricacies of the statement. However, I don’t know better way of defining syntax of the statement or command. The notation that is used to describe syntax in Books Online is a form of Backus-Naur notatiion, called BNF for short sometimes. This is a notation that was invented around 50 years ago, and some say that even earlier, around 400 BC – would you believe? Originally it was used to define syntax of, rather ancient now, ALGOL programming language (in 1950’s, not in ancient India). If you look closer at the definition of the BNF, it turns out that the principles of this syntax are pretty simple. Here are a few bullet points: italic_text is a placeholder for your identifier <italic_text_in_angle_brackets> is a definition which is described further. [everything in square brackets] is optional {everything in curly brackets} is obligatory everything | separated | by | operator is an alternative ::= “assigns” definition to an identifier Yes, it looks like these six simple points give you the key to understand even the most complicated syntax definitions in Books Online. Books Online contain an article about syntax conventions – have you ever read it? Let’s have a look at fragment of the CREATE TABLE statement: 1 CREATE TABLE 2 [ database_name . [ schema_name ] . | schema_name . ] table_name 3 ( { <column_definition> | <computed_column_definition> 4 | <column_set_definition> } 5 [ <table_constraint> ] [ ,...n ] ) 6 [ ON { partition_scheme_name ( partition_column_name ) | filegroup 7 | "default" } ] 8 [ { TEXTIMAGE_ON { filegroup | "default" } ] 9 [ FILESTREAM_ON { partition_scheme_name | filegroup 10 | "default" } ] 11 [ WITH ( <table_option> [ ,...n ] ) ] 12 [ ; ] Let’s look at line 2 of the above snippet: This line uses rules 3 and 5 from the list. So you know that you can create table which has specified one of the following. just name – table will be created in default user schema schema name and table name – table will be created in specified schema database name, schema name and table name – table will be created in specified database, in specified schema database name, .., table name – table will be created in specified database, in default schema of the user. Note that this single line of the notation describes each of the naming schemes in deterministic way. The ‘optionality’ of the schema_name element is nested within database_name.. section. You can use either database_name and optional schema name, or just schema name – this is specified by the pipe character ‘|’. The error that user gets with execution of the first script fragment in this post is as follows: Msg 156, Level 15, State 1, Line 2 Incorrect syntax near the keyword 'DEFAULT'. Ok, let’s have a look how to find out the correct syntax. Line number 3 of the BNF fragment above contains reference to <column_definition>. Since column_definition is in angle brackets, we know that this is a reference to notion described further in the code. And indeed, the very next fragment of BNF contains syntax of the column definition. 1 <column_definition> ::= 2 column_name <data_type> 3 [ FILESTREAM ] 4 [ COLLATE collation_name ] 5 [ NULL | NOT NULL ] 6 [ 7 [ CONSTRAINT constraint_name ] DEFAULT constant_expression ] 8 | [ IDENTITY [ ( seed ,increment ) ] [ NOT FOR REPLICATION ] 9 ] 10 [ ROWGUIDCOL ] [ <column_constraint> [ ...n ] ] 11 [ SPARSE ] Look at line 7 in the above fragment. It says, that the column can have a DEFAULT constraint which, if you want to name it, has to be prepended with [CONSTRAINT constraint_name] sequence. The name of the constraint is optional, but I strongly recommend you to make the effort of coming up with some meaningful name yourself. So the correct syntax of the CREATE TABLE statement from the beginning of the article is like this: 1 CREATE TABLE dbo.Employees 2 (guid uniqueidentifier CONSTRAINT Guid_Default DEFAULT NEWSEQUENTIALID() ROWGUIDCOL, 3 Employee_Name varchar(60) 4 CONSTRAINT Guid_PK PRIMARY KEY (guid) ); That is practically everything you should know about BNF. I encourage you to study the syntax definitions for various statements and commands in Books Online, you can find really interesting things hidden there. Technorati Tags: SQL Server,t-sql,BNF,syntax   (1) No, my answer usually is a question – ‘What error message? What does it say?’. You’d be surprised to know how many people think I can go through time and space and look at their screen at the moment they received the error.

    Read the article

  • « BPMN2 : L'essentiel », un e-book pour découvrir les concepts clés du BPMN et modéliser ses processus métier, téléchargeable gratuitement

    « BPMN2 : L'essentiel », un e-book pour découvrir les concepts clés du BPMN et modéliser ses processus métier, téléchargeable gratuitementBPM (Business Process Management) est une discipline qui consiste à considérer la gestion des processus comme un moyen d'améliorer la performance opérationnelle. Les processus métier sont représentés sous forme de modèles graphiques grâce à l'ensemble des conventions graphiques BPMN (BPMN Business Process Model and Notation).BPMN est un standard permettant de...

    Read the article

  • Good abbreviations for XML ... things

    - by Peter Turner
    I've never been very good at maintaining a coherent bunch of variable names for interfacing with XML files because I never name the variables in my interfaces the same way across my source. There are Elements, Attributes, Documents, NodeLists, Nodes, DocumentFragments and other stuff. What's a good scheme for keeping track of this stuff as variables? Is there a standard in regard to Hungarian notation? Do you even put anything signifying that the data is actually XML, is this bad practice?

    Read the article

  • Simple project - make a 3D box tumble and fall to the ground [closed]

    - by Dominic Bou-Samra
    Possible Duplicate: Resources to learn programming rigid body simulation Hi guys, I want to try learning rigid-body dynamic simulation. I have done a fluid and cloth simulation before, but never anything rigid. My maths knowledge is limited in that I don't know the notation that well. Are there any good cliff-notes, tutorials, guides on how I would accomplish a simple task like this? I don't want a super complex pdf that's only a little relevant. Thanks.

    Read the article

  • Musical Movements on the NetBeans Platform

    - by Geertjan
    I came across VirtMus recently, the "modern music stand", on the NetBeans Platform: Its intentions remind me a LOT of Mike Kelly's Chord Maestro, which is also on the NetBeans Platform. Maybe the two should integrate? Speaking of music, I've been in touch with Winston Dehaney who is creating score notation software, named "Acapella Score", also on the NetBeans Platform: That's an app that could be integrated with the JFugue Music NotePad at some stage!

    Read the article

  • passing a font as an argument to a script

    - by josinalvo
    I am trying to use osdSH for notifications. It has a 'font' parameter that receives a curiously formed string. From the man: -f -font Set font (Default: -*-lucidatypewriter- bold-*-*-*-*-240-*-*-*-*-*-*) The manual does not comment on the arguments passed (I assume each * represents a possible argument). It would seem that this notation is (or has someday been) standard, but I've not been able to find anything about it. what is the standard ? what argument specifies letter size ?

    Read the article

  • Computer Networks UNISA - Chap 10 &ndash; In Depth TCP/IP Networking

    - by MarkPearl
    After reading this section you should be able to Understand methods of network design unique to TCP/IP networks, including subnetting, CIDR, and address translation Explain the differences between public and private TCP/IP networks Describe protocols used between mail clients and mail servers, including SMTP, POP3, and IMAP4 Employ multiple TCP/IP utilities for network discovery and troubleshooting Designing TCP/IP-Based Networks The following sections explain how network and host information in an IPv4 address can be manipulated to subdivide networks into smaller segments. Subnetting Subnetting separates a network into multiple logically defined segments, or subnets. Networks are commonly subnetted according to geographic locations, departmental boundaries, or technology types. A network administrator might separate traffic to accomplish the following… Enhance security Improve performance Simplify troubleshooting The challenges of Classful Addressing in IPv4 (No subnetting) The simplest type of IPv4 is known as classful addressing (which was the Class A, Class B & Class C network addresses). Classful addressing has the following limitations. Restriction in the number of usable IPv4 addresses (class C would be limited to 254 addresses) Difficult to separate traffic from various parts of a network Because of the above reasons, subnetting was introduced. IPv4 Subnet Masks Subnetting depends on the use of subnet masks to identify how a network is subdivided. A subnet mask indicates where network information is located in an IPv4 address. The 1 in a subnet mask indicates that corresponding bits in the IPv4 address contain network information (likewise 0 indicates the opposite) Each network class is associated with a default subnet mask… Class A = 255.0.0.0 Class B = 255.255.0.0 Class C = 255.255.255.0 An example of calculating  the network ID for a particular device with a subnet mask is shown below.. IP Address = 199.34.89.127 Subnet Mask = 255.255.255.0 Resultant Network ID = 199.34.89.0 IPv4 Subnetting Techniques Subnetting breaks the rules of classful IPv4 addressing. Read page 490 for a detailed explanation Calculating IPv4 Subnets Read page 491 – 494 for an explanation Important… Subnetting only applies to the devices internal to your network. Everything external looks at the class of the IP address instead of the subnet network ID. This way, traffic directed to your network externally still knows where to go, and once it has entered your internal network it can then be prioritized and segmented. CIDR (classless Interdomain Routing) CIDR is also known as classless routing or supernetting. In CIDR conventional network class distinctions do not exist, a subnet boundary can move to the left, therefore generating more usable IP addresses on your network. A subnet created by moving the subnet boundary to the left is known as a supernet. With CIDR also came new shorthand for denoting the position of subnet boundaries known as CIDR notation or slash notation. CIDR notation takes the form of the network ID followed by a forward slash (/) followed by the number of bits that are used for the extended network prefix. To take advantage of classless routing, your networks routers must be able to interpret IP addresses that don;t adhere to conventional network class parameters. Routers that rely on older routing protocols (i.e. RIP) are not capable of interpreting classless IP addresses. Internet Gateways Gateways are a combination of software and hardware that enable two different network segments to exchange data. A gateway facilitates communication between different networks or subnets. Because on device cannot send data directly to a device on another subnet, a gateway must intercede and hand off the information. Every device on a TCP/IP based network has a default gateway (a gateway that first interprets its outbound requests to other subnets, and then interprets its inbound requests from other subnets). The internet contains a vast number of routers and gateways. If each gateway had to track addressing information for every other gateway on the Internet, it would be overtaxed. Instead, each handles only a relatively small amount of addressing information, which it uses to forward data to another gateway that knows more about the data’s destination. The gateways that make up the internet backbone are called core gateways. Address Translation An organizations default gateway can also be used to “hide” the organizations internal IP addresses and keep them from being recognized on a public network. A public network is one that any user may access with little or no restrictions. On private networks, hiding IP addresses allows network managers more flexibility in assigning addresses. Clients behind a gateway may use any IP addressing scheme, regardless of whether it is recognized as legitimate by the Internet authorities but as soon as those devices need to go on the internet, they must have legitimate IP addresses to exchange data. When a clients transmission reaches the default gateway, the gateway opens the IP datagram and replaces the client’s private IP address with an Internet recognized IP address. This process is known as NAT (Network Address Translation). TCP/IP Mail Services All Internet mail services rely on the same principles of mail delivery, storage, and pickup, though they may use different types of software to accomplish these functions. Email servers and clients communicate through special TCP/IP application layer protocols. These protocols, all of which operate on a variety of operating systems are discussed below… SMTP (Simple Mail transfer Protocol) The protocol responsible for moving messages from one mail server to another over TCP/IP based networks. SMTP belongs to the application layer of the ODI model and relies on TCP as its transport protocol. Operates from port 25 on the SMTP server Simple sub-protocol, incapable of doing anything more than transporting mail or holding it in a queue MIME (Multipurpose Internet Mail Extensions) The standard message format specified by SMTP allows for lines that contain no more than 1000 ascii characters meaning if you relied solely on SMTP you would have very short messages and nothing like pictures included in an email. MIME us a standard for encoding and interpreting binary files, images, video, and non-ascii character sets within an email message. MIME identifies each element of a mail message according to content type. MIME does not replace SMTP but works in conjunction with it. Most modern email clients and servers support MIME POP (Post Office Protocol) POP is an application layer protocol used to retrieve messages from a mail server POP3 relies on TCP and operates over port 110 With POP3 mail is delivered and stored on a mail server until it is downloaded by a user Disadvantage of POP3 is that it typically does not allow users to save their messages on the server because of this IMAP is sometimes used IMAP (Internet Message Access Protocol) IMAP is a retrieval protocol that was developed as a more sophisticated alternative to POP3 The single biggest advantage IMAP4 has over POP3 is that users can store messages on the mail server, rather than having to continually download them Users can retrieve all or only a portion of any mail message Users can review their messages and delete them while the messages remain on the server Users can create sophisticated methods of organizing messages on the server Users can share a mailbox in a central location Disadvantages of IMAP are typically related to the fact that it requires more storage space on the server. Additional TCP/IP Utilities Nearly all TCP/IP utilities can be accessed from the command prompt on any type of server or client running TCP/IP. The syntaxt may differ depending on the OS of the client. Below is a list of additional TCP/IP utilities – research their use on your own! Ipconfig (Windows) & Ifconfig (Linux) Netstat Nbtstat Hostname, Host & Nslookup Dig (Linux) Whois (Linux) Traceroute (Tracert) Mtr (my traceroute) Route

    Read the article

  • ECMA International adopte JSON comme standard, le format d'échange de données continue son ascension

    ECMA International adopte JSON comme standard, le format d'échange de données continue son ascension JSON (JavaScript Object Notation) a été adopté comme standard ECMA suite à un vote de l'Assemblée Générale. Cette nouvelle norme s'est vue attribuer le numéro 404, ce qui ne manque pas de rappeler celui du code d'erreur du protocole de communication HTTP sur le réseau Internet, renvoyé par un serveur HTTP pour indiquer que la ressource demandée (généralement une page web) n'existe pas.Rappelons...

    Read the article

  • What Precalculus knowledge is required before learning Discrete Math Computer Science topics?

    - by Ein Doofus
    Below I've listed the chapters from a Precalculus book as well as the author recommended Computer Science chapters from a Discrete Mathematics book. Although these chapters are from two specific books on these subjects I believe the topics are generally the same between any Precalc or Discrete Math book. What Precalculus topics should one know before starting these Discrete Math Computer Science topics?: Discrete Mathematics CS Chapters 1.1 Propositional Logic 1.2 Propositional Equivalences 1.3 Predicates and Quantifiers 1.4 Nested Quantifiers 1.5 Rules of Inference 1.6 Introduction to Proofs 1.7 Proof Methods and Strategy 2.1 Sets 2.2 Set Operations 2.3 Functions 2.4 Sequences and Summations 3.1 Algorithms 3.2 The Growths of Functions 3.3 Complexity of Algorithms 3.4 The Integers and Division 3.5 Primes and Greatest Common Divisors 3.6 Integers and Algorithms 3.8 Matrices 4.1 Mathematical Induction 4.2 Strong Induction and Well-Ordering 4.3 Recursive Definitions and Structural Induction 4.4 Recursive Algorithms 4.5 Program Correctness 5.1 The Basics of Counting 5.2 The Pigeonhole Principle 5.3 Permutations and Combinations 5.6 Generating Permutations and Combinations 6.1 An Introduction to Discrete Probability 6.4 Expected Value and Variance 7.1 Recurrence Relations 7.3 Divide-and-Conquer Algorithms and Recurrence Relations 7.5 Inclusion-Exclusion 8.1 Relations and Their Properties 8.2 n-ary Relations and Their Applications 8.3 Representing Relations 8.5 Equivalence Relations 9.1 Graphs and Graph Models 9.2 Graph Terminology and Special Types of Graphs 9.3 Representing Graphs and Graph Isomorphism 9.4 Connectivity 9.5 Euler and Hamilton Ptahs 10.1 Introduction to Trees 10.2 Application of Trees 10.3 Tree Traversal 11.1 Boolean Functions 11.2 Representing Boolean Functions 11.3 Logic Gates 11.4 Minimization of Circuits 12.1 Language and Grammars 12.2 Finite-State Machines with Output 12.3 Finite-State Machines with No Output 12.4 Language Recognition 12.5 Turing Machines Precalculus Chapters R.1 The Real-Number System R.2 Integer Exponents, Scientific Notation, and Order of Operations R.3 Addition, Subtraction, and Multiplication of Polynomials R.4 Factoring R.5 Rational Expressions R.6 Radical Notation and Rational Exponents R.7 The Basics of Equation Solving 1.1 Functions, Graphs, Graphers 1.2 Linear Functions, Slope, and Applications 1.3 Modeling: Data Analysis, Curve Fitting, and Linear Regression 1.4 More on Functions 1.5 Symmetry and Transformations 1.6 Variation and Applications 1.7 Distance, Midpoints, and Circles 2.1 Zeros of Linear Functions and Models 2.2 The Complex Numbers 2.3 Zeros of Quadratic Functions and Models 2.4 Analyzing Graphs of Quadratic Functions 2.5 Modeling: Data Analysis, Curve Fitting, and Quadratic Regression 2.6 Zeros and More Equation Solving 2.7 Solving Inequalities 3.1 Polynomial Functions and Modeling 3.2 Polynomial Division; The Remainder and Factor Theorems 3.3 Theorems about Zeros of Polynomial Functions 3.4 Rational Functions 3.5 Polynomial and Rational Inequalities 4.1 Composite and Inverse Functions 4.2 Exponential Functions and Graphs 4.3 Logarithmic Functions and Graphs 4.4 Properties of Logarithmic Functions 4.5 Solving Exponential and Logarithmic Equations 4.6 Applications and Models: Growth and Decay 5.1 Systems of Equations in Two Variables 5.2 System of Equations in Three Variables 5.3 Matrices and Systems of Equations 5.4 Matrix Operations 5.5 Inverses of Matrices 5.6 System of Inequalities and Linear Programming 5.7 Partial Fractions 6.1 The Parabola 6.2 The Circle and Ellipse 6.3 The Hyperbola 6.4 Nonlinear Systems of Equations

    Read the article

  • Microsoft&rsquo;s new technical computing initiative

    - by Randy Walker
    I made a mental note from earlier in the year.  Microsoft literally buys computers by the truckload.  From what I understand, it’s a typical practice amongst large software vendors.  You plug a few wires in, you test it, and you instantly have mega tera tera flops (don’t hold me to that number).  Microsoft has been trying to plug away at their cloud services (named Azure).  Which, for the layman, means Microsoft runs your software on their computers, and as demand increases you can allocate more computing power on the fly. With this in mind, it doesn’t surprise me that I was recently sent an executive email concerning Microsoft’s new technical computing initiative.  I find it to be a great marketing idea with actual substance behind their real work.  From the programmer academic perspective, in college we dreamed about this type of processing power.  This has decades of computer science theory behind it. A copy of the email received.  (note that I almost deleted this email, thinking it was spam due to it’s length) We don't often think about how complex life really is. Take the relatively simple task of commuting to and from work: it is, in fact, a complicated interplay of variables such as weather, train delays, accidents, traffic patterns, road construction, etc. You can however, take steps to shorten your commute - using a good, predictive understanding of a few of these variables. In fact, you probably are already taking these inputs and instinctively building a predictive model that you act on daily to get to your destination more quickly. Now, when we apply the same method to very complex tasks, this modeling approach becomes much more challenging. Recent world events clearly demonstrated our inability to process vast amounts of information and variables that would have helped to more accurately predict the behavior of global financial markets or the occurrence and impact of a volcano eruption in Iceland. To make sense of issues like these, researchers, engineers and analysts create computer models of the almost infinite number of possible interactions in complex systems. But, they need increasingly more sophisticated computer models to better understand how the world behaves and to make fact-based predictions about the future. And, to do this, it requires a tremendous amount of computing power to process and examine the massive data deluge from cameras, digital sensors and precision instruments of all kinds. This is the key to creating more accurate and realistic models that expose the hidden meaning of data, which gives us the kind of insight we need to solve a myriad of challenges. We have made great strides in our ability to build these kinds of computer models, and yet they are still too difficult, expensive and time consuming to manage. Today, even the most complicated data-rich simulations cannot fully capture all of the intricacies and dependencies of the systems they are trying to model. That is why, across the scientific and engineering world, it is so hard to say with any certainty when or where the next volcano will erupt and what flight patterns it might affect, or to more accurately predict something like a global flu pandemic. So far, we just cannot collect, correlate and compute enough data to create an accurate forecast of the real world. But this is about to change. Innovations in technology are transforming our ability to measure, monitor and model how the world behaves. The implication for scientific research is profound, and it will transform the way we tackle global challenges like health care and climate change. It will also have a huge impact on engineering and business, delivering breakthroughs that could lead to the creation of new products, new businesses and even new industries. Because you are a subscriber to executive e-mails from Microsoft, I want you to be the first to know about a new effort focused specifically on empowering millions of the world's smartest problem solvers. Today, I am happy to introduce Microsoft's Technical Computing initiative. Our goal is to unleash the power of pervasive, accurate, real-time modeling to help people and organizations achieve their objectives and realize their potential. We are bringing together some of the brightest minds in the technical computing community across industry, academia and science at www.modelingtheworld.com to discuss trends, challenges and shared opportunities. New advances provide the foundation for tools and applications that will make technical computing more affordable and accessible where mathematical and computational principles are applied to solve practical problems. One day soon, complicated tasks like building a sophisticated computer model that would typically take a team of advanced software programmers months to build and days to run, will be accomplished in a single afternoon by a scientist, engineer or analyst working at the PC on their desktop. And as technology continues to advance, these models will become more complete and accurate in the way they represent the world. This will speed our ability to test new ideas, improve processes and advance our understanding of systems. Our technical computing initiative reflects the best of Microsoft's heritage. Ever since Bill Gates articulated the then far-fetched vision of "a computer on every desktop" in the early 1980's, Microsoft has been at the forefront of expanding the power and reach of computing to benefit the world. As someone who worked closely with Bill for many years at Microsoft, I am happy to share with you that the passion behind that vision is fully alive at Microsoft and is carried out in the creation of our new Technical Computing group. Enabling more people to make better predictions We have seen the impact of making greater computing power more available firsthand through our investments in high performance computing (HPC) over the past five years. Scientists, engineers and analysts in organizations of all sizes and sectors are finding that using distributed computational power creates societal impact, fuels scientific breakthroughs and delivers competitive advantages. For example, we have seen remarkable results from some of our current customers: Malaria strikes 300,000 to 500,000 people around the world each year. To help in the effort to eradicate malaria worldwide, scientists at Intellectual Ventures use software that simulates how the disease spreads and would respond to prevention and control methods, such as vaccines and the use of bed nets. Technical computing allows researchers to model more detailed parameters for more accurate results and receive those results in less than an hour, rather than waiting a full day. Aerospace engineering firm, a.i. solutions, Inc., needed a more powerful computing platform to keep up with the increasingly complex computational needs of its customers: NASA, the Department of Defense and other government agencies planning space flights. To meet that need, it adopted technical computing. Now, a.i. solutions can produce detailed predictions and analysis of the flight dynamics of a given spacecraft, from optimal launch times and orbit determination to attitude control and navigation, up to eight times faster. This enables them to avoid mistakes in any areas that can cause a space mission to fail and potentially result in the loss of life and millions of dollars. Western & Southern Financial Group faced the challenge of running ever larger and more complex actuarial models as its number of policyholders and products grew and regulatory requirements changed. The company chose an actuarial solution that runs on technical computing technology. The solution is easy for the company's IT staff to manage and adjust to meet business needs. The new solution helps the company reduce modeling time by up to 99 percent - letting the team fine-tune its models for more accurate product pricing and financial projections. Our Technical Computing direction Collaborating closely with partners across industry and academia, we must now extend the reach of technical computing even further to help predictive modelers and data explorers make faster, more accurate predictions. As we build the Technical Computing initiative, we will invest in three core areas: Technical computing to the cloud: Microsoft will play a leading role in bringing technical computing power to scientists, engineers and analysts through the cloud. Existing high- performance computing users will benefit from the ability to augment their on-premises systems with cloud resources that enable 'just-in-time' processing. This platform will help ensure processing resources are available whenever they are needed-reliably, consistently and quickly. Simplify parallel development: Today, computers are shipping with more processing power than ever, including multiple cores, but most modern software only uses a small amount of the available processing power. Parallel programs are extremely difficult to write, test and trouble shoot. However, a consistent model for parallel programming can help more developers unlock the tremendous power in today's modern computers and enable a new generation of technical computing. We are delivering new tools to automate and simplify writing software through parallel processing from the desktop... to the cluster... to the cloud. Develop powerful new technical computing tools and applications: We know scientists, engineers and analysts are pushing common tools (i.e., spreadsheets and databases) to the limits with complex, data-intensive models. They need easy access to more computing power and simplified tools to increase the speed of their work. We are building a platform to do this. Our development efforts will yield new, easy-to-use tools and applications that automate data acquisition, modeling, simulation, visualization, workflow and collaboration. This will allow them to spend more time on their work and less time wrestling with complicated technology. Thinking bigger There is so much left to be discovered and so many questions yet to be answered in the fascinating world around us. We believe the technical computing community will show us that we have not seen anything yet. Imagine just some of the breakthroughs this community could make possible: Better predictions to help improve the understanding of pandemics, contagion and global health trends. Climate change models that predict environmental, economic and human impact, accessible in real-time during key discussions and debates. More accurate prediction of natural disasters and their impact to develop more effective emergency response plans. With an ambitious charter in hand, this new team is ready to build on our progress to-date and execute Microsoft's technical computing vision over the months and years ahead. We will steadily invest in the right technologies, tools and talent, and work to bring together the technical computing community. I invite you to visit www.modelingtheworld.com today. We welcome your ideas and feedback. I look forward to making this journey with you and others who want to answer the world's biggest questions, discover solutions to problems that seem impossible and uncover a host of new opportunities to change the world we live in for the better. Bob

    Read the article

  • Shell wrong encoding

    - by csch
    Somehow I managed to screw up my shell-encoding. An example: root§server:ç£ cat --help Usage: cat ¡OPTION¿... ¡FILE¿... Concatenate FILE(s), or standard input, to standard output. -A, --show-all equivalent to -vET -b, --number-nonblank number nonempty output lines -e equivalent to -vE -E, --show-ends display $ at end of each line -n, --number number all output lines -s, --squeeze-blank suppress repeated empty output lines -t equivalent to -vT -T, --show-tabs display TAB characters as ^I -u (ignored) -v, --show-nonprinting use ^ and M- notation, except for LFD and TAB --help display this help and exit --version output version information and exit With no FILE, or when FILE is -, read standard input. Examples: cat f - g Output f's contents, then standard input, then g's contents. cat Copy standard input to standard output. Report cat bugs to bug-coreutils§gnu.org GNU coreutils home page: <http://www.gnu.org/software/coreutils/> General help using GNU software: <http://www.gnu.org/gethelp/> For complete documentation, run: info coreutils 'cat invocation' root§server:ç£ It should look like: root@server:~# cat --help Usage: cat [OPTION]... [FILE]... Concatenate FILE(s), or standard input, to standard output. -A, --show-all equivalent to -vET -b, --number-nonblank number nonempty output lines -e equivalent to -vE -E, --show-ends display $ at end of each line -n, --number number all output lines -s, --squeeze-blank suppress repeated empty output lines -t equivalent to -vT -T, --show-tabs display TAB characters as ^I -u (ignored) -v, --show-nonprinting use ^ and M- notation, except for LFD and TAB --help display this help and exit --version output version information and exit With no FILE, or when FILE is -, read standard input. Examples: cat f - g Output f's contents, then standard input, then g's contents. cat Copy standard input to standard output. Report cat bugs to [email protected] GNU coreutils home page: <http://www.gnu.org/software/coreutils/> General help using GNU software: <http://www.gnu.org/gethelp/> For complete documentation, run: info coreutils 'cat invocation' root@server:~# I have no clue what went wrong, do you have any ideas?

    Read the article

  • Converting Openfire IM datetime values in SQL Server to / from VARCHAR(15) and DATETIME data types

    - by Brian Biales
    A client is using Openfire IM for their users, and would like some custom queries to audit user conversations (which are stored by Openfire in tables in the SQL Server database). Because Openfire supports multiple database servers and multiple platforms, the designers chose to store all date/time stamps in the database as 15 character strings, which get converted to Java Date objects in their code (Openfire is written in Java).  I did some digging around, and, so I don't forget and in case someone else will find this useful, I will put the simple algorithms here for converting back and forth between SQL DATETIME and the Java string representation. The Java string representation is the number of milliseconds since 1/1/1970.  SQL Server's DATETIME is actually represented as a float, the value being the number of days since 1/1/1900, the portion after the decimal point representing the hours/minutes/seconds/milliseconds... as a fractional part of a day.  Try this and you will see this is true:     SELECT CAST(0 AS DATETIME) and you will see it returns the date 1/1/1900. The difference in days between SQL Server's 0 date of 1/1/1900 and the Java representation's 0 date of 1/1/1970 is found easily using the following SQL:   SELECT DATEDIFF(D, '1900-01-01', '1970-01-01') which returns 25567.  There are 25567 days between these dates. So to convert from the Java string to SQL Server's date time, we need to convert the number of milliseconds to a floating point representation of the number of days since 1/1/1970, then add the 25567 to change this to the number of days since 1/1/1900.  To convert to days, you need to divide the number by 1000 ms/s, then by  60 seconds/minute, then by 60 minutes/hour, then by 24 hours/day.  Or simply divide by 1000*60*60*24, or 86400000.   So, to summarize, we need to cast this string as a float, divide by 86400000 milliseconds/day, then add 25567 days, and cast the resulting value to a DateTime.  Here is an example:   DECLARE @tmp as VARCHAR(15)   SET @tmp = '1268231722123'   SELECT @tmp as JavaTime, CAST((CAST(@tmp AS FLOAT) / 86400000) + 25567 AS DATETIME) as SQLTime   To convert from SQL datetime back to the Java time format is not quite as simple, I found, because floats of that size do not convert nicely to strings, they end up in scientific notation using the CONVERT function or CAST function.  But I found a couple ways around that problem. You can convert a date to the number of  seconds since 1/1/1970 very easily using the DATEDIFF function, as this value fits in an Int.  If you don't need to worry about the milliseconds, simply cast this integer as a string, and then concatenate '000' at the end, essentially multiplying this number by 1000, and making it milliseconds since 1/1/1970.  If, however, you do care about the milliseconds, you will need to use DATEPART to get the milliseconds part of the date, cast this integer to a string, and then pad zeros on the left to make sure this is three digits, and concatenate these three digits to the number of seconds string above.  And finally, I discovered by casting to DECIMAL(15,0) then to VARCHAR(15), I avoid the scientific notation issue.  So here are all my examples, pick the one you like best... First, here is the simple approach if you don't care about the milliseconds:   DECLARE @tmp as VARCHAR(15)   DECLARE @dt as DATETIME   SET @dt = '2010-03-10 14:35:22.123'   SET @tmp = CAST(DATEDIFF(s, '1970-01-01 00:00:00' , @dt) AS VARCHAR(15)) + '000'   SELECT @tmp as JavaTime, @dt as SQLTime If you want to keep the milliseconds:   DECLARE @tmp as VARCHAR(15)   DECLARE @dt as DATETIME   DECLARE @ms as int   SET @dt = '2010-03-10 14:35:22.123'   SET @ms as DATEPART(ms, @dt)   SET @tmp = CAST(DATEDIFF(s, '1970-01-01 00:00:00' , @dt) AS VARCHAR(15))           + RIGHT('000' + CAST(@ms AS VARCHAR(3)), 3)   SELECT @tmp as JavaTime, @dt as SQLTime Or, in one fell swoop:   DECLARE @dt as DATETIME   SET @dt = '2010-03-10 14:35:22.123'   SELECT @dt as SQLTime     , CAST(DATEDIFF(s, '1970-01-01 00:00:00' , @dt) AS VARCHAR(15))           + RIGHT('000' + CAST( DATEPART(ms, @dt) AS VARCHAR(3)), 3) as JavaTime   And finally, a way to simply reverse the math used converting from Java date to SQL date. Note the parenthesis - watch out for operator precedence, you want to subtract, then multiply:   DECLARE @dt as DATETIME   SET @dt = '2010-03-10 14:35:22.123'   SELECT @dt as SQLTime     , CAST(CAST((CAST(@dt as Float) - 25567.0) * 86400000.0 as DECIMAL(15,0)) as VARCHAR(15)) as JavaTime Interestingly, I found that converting to SQL Date time can lose some accuracy, when I converted the time above to Java time then converted  that back to DateTime, the number of milliseconds is 120, not 123.  As I am not interested in the milliseconds, this is ok for me.  But you may want to look into using DateTime2 in SQL Server 2008 for more accuracy.

    Read the article

  • Comparing Apples and Pairs

    - by Tony Davis
    A recent study, High Costs and Negative Value of Pair Programming, by Capers Jones, pulls no punches in its assessment of the costs-to- benefits ratio of pair programming, two programmers working together, at a single computer, rather than separately. He implies that pair programming is a method rushed into production on a wave of enthusiasm for Agile or Extreme Programming, without any real regard for its effectiveness. Despite admitting that his data represented a far from complete study of the economics of pair programming, his conclusions were stark: it was 2.5 times more expensive, resulted in a 15% drop in productivity, and offered no significant quality benefits. The author provides a more scientific analysis than Jon Evans’ Pair Programming Considered Harmful, but the theme is the same. In terms of upfront-coding costs, pair programming is surely more expensive. The claim of productivity loss is dubious and contested by other studies. The third claim, though, did surprise me. The author’s data suggests that if both the pair and the individual programmers employ static code analysis and testing, then there is no measurable difference in the resulting code quality, in terms of defects per function point. In other words, pair programming incurs a massive extra cost for no tangible return in investment. There were, inevitably, many criticisms of his data and his conclusions, a few of which are persuasive. Firstly, that the driver/observer model of pair programming, on which the study bases its findings, is far from the most effective. For example, many find Ping-Pong pairing, based on use of test-driven development, far more productive. Secondly, that it doesn’t distinguish between “expert” and “novice” pair programmers– that is, independently of other programming skills, how skilled was an individual at pair programming. Thirdly, that his measure of quality is too narrow. This point rings true, certainly at Red Gate, where developers don’t pair program all the time, but use the method in short bursts, while tackling a tricky problem and needing a fresh perspective on the best approach, or more in-depth knowledge in a particular domain. All of them argue that pair programming, and collective code ownership, offers significant rewards, if not in terms of immediate “bug reduction”, then in removing the likelihood of single points of failure, and improving the overall quality and longer-term adaptability/maintainability of the design. There is also a massive learning benefit for both participants. One developer told me how he once worked in the same team over consecutive summers, the first time with no pair programming and the second time pair-programming two-thirds of the time, and described the increased rate of learning the second time as “phenomenal”. There are a great many theories on how we should develop software (Scrum, XP, Lean, etc.), but woefully little scientific research in their effectiveness. For a group that spends so much time crunching other people’s data, I wonder if developers spend enough time crunching data about themselves. Capers Jones’ data may be incomplete, but should cause a pause for thought, especially for any large IT departments, supporting commerce and industry, who are considering pair programming. It certainly shouldn’t discourage teams from exploring new ways of developing software, as long as they also think about how to gather hard data to gauge their effectiveness.

    Read the article

  • Investigating Strategies For Functional Decomposition

    - by Liam McLennan
    Introducing Functional Decomposition Before I begin I must apologise. I think I am using the term ‘functional decomposition’ loosely, and probably incorrectly. For the purpose of this article I use functional decomposition to mean the recursive splitting of a large problem into increasingly smaller ones, so that the one large problem may be solved by solving a set of smaller problems. The justification for functional decomposition is that the decomposed problem is more easily solved. As software developers we recognise that the smaller pieces are more easily tested, since they do less and are more cohesive. Functional decomposition is important to all scientific pursuits. Once we understand natural selection we can start to look for humanities ancestral species, once we understand the big bang we can trace our expanding universe back to its origin. Isaac Newton acknowledged the compositional nature of his scientific achievements: If I have seen further than others, it is by standing upon the shoulders of giants   The Two Strategies For Functional Decomposition of Computer Programs Private Methods When I was working on my undergraduate degree I was taught to functionally decompose problems by using private methods. Consider the problem of painting a house. The obvious solution is to solve the problem as a single unit: public void PaintAHouse() { // all the things required to paint a house ... } We decompose the problem by breaking it into parts: public void PaintAHouse() { PaintUndercoat(); PaintTopcoat(); } private void PaintUndercoat() { // everything required to paint the undercoat } private void PaintTopcoat() { // everything required to paint the topcoat } The problem can be recursively decomposed until a sufficiently granular level of detail is reached: public void PaintAHouse() { PaintUndercoat(); PaintTopcoat(); } private void PaintUndercoat() { prepareSurface(); fetchUndercoat(); paintUndercoat(); } private void PaintTopcoat() { fetchPaint(); paintTopcoat(); } According to Wikipedia, at least one computer programmer has referred to this process as “the art of subroutining”. The practical issues that I have encountered when using private methods for decomposition are: To preserve the top level API all of the steps must be private. This means that they can’t easily be tested. The private methods often have little cohesion except that they form part of the same solution. Decomposing to Classes The alternative is to decompose large problems into multiple classes, effectively using a class instead of each private method. The API delegates to related classes, so the API is not polluted by the sub-steps of the problem, and the steps can be easily tested because they are each in their own highly cohesive class. Additionally, I think that this technique facilitates better adherence to the Single Responsibility Principle, since each class can be decomposed until it has precisely one responsibility. Revisiting my previous example using class composition: public class HousePainter { private undercoatPainter = new UndercoatPainter(); private topcoatPainter = new TopcoatPainter(); public void PaintAHouse() { undercoatPainter.Paint(); topcoatPainter.Paint(); } } Summary When decomposing a problem there is more than one way to represent the sub-problems. Using private methods keeps the logic in one place and prevents a proliferation of classes (thereby following the four rules of simple design) but the class decomposition is more easily testable and more compatible with the Single Responsibility Principle.

    Read the article

  • Can aptitude for learning Programming paradigms be influenced by culture or native language's gramma

    - by DVK
    It is well known that different people have different aptitudes regarding various programming paradigms (e.g. some people have trouble learning non-procedural, especially functional languages. Some people have trouble understanding pointers - see Joel Spolsky's blog for musings on that. Some people have trouble grasping recursion). I was recently reading about a study that looked at how the grammar of someone's native language affected their speed of learning math. Can't find that article now but a quick googling found this reference. That led me to wondering whether someone's native culture or first language might affect their aptitude towards various programming paradigms. I'm more curious about positive influences - e.g. some trait that make it easier/faster for someone to learn a particular paradigm, for example native language grammar being very recursion-oriented. To be clear, I'm looking for how culture/language grammare may affect the difference between aptitude of the same person towards various paradigms as opposed to how it affects overall aptitude towards programming between different persons. Important: the only answers I'm interested in are either references to scientific studies, or personal observations from someone intimately familiar with a particular culture/language, including from their own experience. E.g. I'm not interested in your opinion of how Chinese being your first language affects anything unless you speak Chinese or worked with extremely large set of Chinese-native programmers extensively. I'm OK with your guesstimates not based on scientific studies, but please be sure to supply your reasoning about plausible causes of your observation. I'm not interested in culture-bashing (any such commends will be deleted or flagged for deletion). I'm also not particularly interested in culture-building - we all know Linus is from Finland and Tetris was written in Russia and Larry Wall is an American. Any culture/nation can produce a brilliant mind in any discipline. I'm interested in averages.

    Read the article

  • Stop Excel from changing cell contents, ever

    - by Enable Manual-Correct
    I work with card numbers, like credit card and ID numbers. We do not do any calculations with card numbers, obviously. They are "text." I format them as text, I type them like text. I know how that works. Excel doesn't care. 16 digit card numbers get their last digit turned into a zero, changed into scientific notation, stupid stuff that I did not tell Excel to do. I need to do things like Find/Remove spaces from cells in files downloaded from our currently imperfect web-system. The system sends me files with 16 digit numbers, cells formatted as text, but due to bugs there are spaces at the end. I do Find/Remove all spaces and all my card numbers are transformed into scientific notation and the last digit turned into a 0. THEY ARE TEXT, they are formatted as text, I yelled into the screen that they are text, why does Excel refuse to acknowledge that they are text? (I would rather find a way to stop Excel's action than find a way to tell our programmers to put an apostrophe in every cell) How do I make it so that Excel just STOPS doing anything that I didn't tell it to do? Or at least stop it from doing anything to numbers it doesn't like. Maybe I can write a macro for whenever it discovers "Uhoh I should change that number to something different!" I'll make it format that cell to text a thousand times instead. Give me an error when I try calculating with a number larger than 15 digits, make my computer explode violently, that's fine. Just stop changing the numbers. Is it possible? I have many thousands of numbers that need changing in many different scenarios. I just want to stop it from trying to help. I can't understand why that would be difficult. I have 2007, but answers for other versions would be great as well. Thank you!

    Read the article

  • format, iomanip, c++

    - by Crystal
    I'm trying to learn to use namespaces declarations more definitive than not just say "using namespace std". I'm trying to format my data to 2 decimal places, and set the format to be fixed and not scientific. This is my main file: #include <iostream> #include <iomanip> #include "SavingsAccount.h" using std::cout; using std::setprecision; using std::ios_base; int main() { SavingsAccount *saver1 = new SavingsAccount(2000.00); SavingsAccount *saver2 = new SavingsAccount(3000.00); SavingsAccount::modifyInterestRate(.03); saver1->calculateMonthlyInterest(); saver2->calculateMonthlyInterest(); cout << ios_base::fixed << "saver1\n" << "monthlyInterestRate: " << saver1->getMonthlyInterest() << '\n' << "savingsBalance: " << saver1->getSavingsBalance() << '\n'; cout << "saver2\n" << "monthlyInterestRate: " << saver2->getMonthlyInterest() << '\n' << "savingsBalance: " << saver2->getSavingsBalance() << '\n'; } On Visual Studio 2008, when I run my program, I get an output of "8192" before the data I want. Is there a reason for that? Also, I don't think I am setting the fixed part or 2 decimal places correctly since I seem to get scientific notation once I added the setprecision(2). Thanks.

    Read the article

< Previous Page | 6 7 8 9 10 11 12 13 14 15 16 17  | Next Page >