Search Results

Search found 16772 results on 671 pages for 'charles long'.

Page 100/671 | < Previous Page | 96 97 98 99 100 101 102 103 104 105 106 107  | Next Page >

  • CSO Summit @ Executive Edge

    - by Naresh Persaud
    If you are attending the Executive Edge at Open World be sure to check out the sessions at the Chief Security Officer Summit. Former Sr. Counsel for the National Security Agency, Joel Brenner ,  will be speaking about his new book "America the Vulnerable". In addition, PWC will present a panel discussion on "Crisis Management to Business Advantage: Security Leadership". See below for the complete agenda. TUESDAY, October 2, 2012 Chief Security Officer Summit Welcome Dave Profozich, Group Vice President, Oracle 10:00 a.m.–10:15 a.m. America the Vulnerable Joel Brenner, former Senior Counsel, National Security Agency 10:15 a.m.–11:00 a.m. The Threats are Outside, the Risks are Inside Sonny Singh, Senior Vice President, Oracle 11:00 a.m.–11:20 a.m. From Crisis Management to Business Advantage: Security Leadership Moderator: David Burg, Partner, Forensic Technology Solutions, PwC Panelists: Charles Beard, CIO and GM of Cyber Security, SAIC Jim Doggett, Chief Information Technology Risk Officer, Kaiser Permanente Chris Gavin, Vice President, Information Security, Oracle John Woods, Partner, Hunton & Williams 11:20 a.m.–12:20 p.m. Lunch Union Square Tent 12:20 p.m.–1:30 p.m. Securing the New Digital Experience Amit Jasuja, Senior Vice President, Identity Management and Security, Oracle 1:30 p.m.–2:00 p.m. Securing Data at the Source Vipin Samar, Vice President, Database Security, Oracle 2:00 p.m.–2:30 p.m. Security from the Chairman’s Perspective Jeff Henley, Chairman of the Board, Oracle Dave Profozich, Group Vice President, Oracle 2:30 p.m.–3:00 p.m.

    Read the article

  • More Fun with C# Iterators and Generators

    - by James Michael Hare
    In my last post, I talked quite a bit about iterators and how they can be really powerful tools for filtering a list of items down to a subset of items.  This had both pros and cons over returning a full collection, which, in summary, were:   Pros: If traversal is only partial, does not have to visit rest of collection. If evaluation method is costly, only incurs that cost on elements visited. Adds little to no garbage collection pressure.    Cons: Very slight performance impact if you know caller will always consume all items in collection. And as we saw in the last post, that con for the cost was very, very small and only really became evident on very tight loops consuming very large lists completely.    One of the key items to note, though, is the garbage!  In the traditional (return a new collection) method, if you have a 1,000,000 element collection, and wish to transform or filter it in some way, you have to allocate space for that copy of the collection.  That is, say you have a collection of 1,000,000 items and you want to double every item in the collection.  Well, that means you have to allocate a collection to hold those 1,000,000 items to return, which is a lot especially if you are just going to use it once and toss it.   Iterators, though, don't have this problem.  Each time you visit the node, it would return the doubled value of the node (in this example) and not allocate a second collection of 1,000,000 doubled items.  Do you see the distinction?  In both cases, we're consuming 1,000,000 items.  But in one case we pass back each doubled item which is just an int (for example's sake) on the stack and in the other case, we allocate a list containing 1,000,000 items which then must be garbage collected.   So iterators in C# are pretty cool, eh?  Well, here's one more thing a C# iterator can do that a traditional "return a new collection" transformation can't!   It can return **unbounded** collections!   I know, I know, that smells a lot like an infinite loop, eh?  Yes and no.  Basically, you're relying on the caller to put the bounds on the list, and as long as the caller doesn't you keep going.  Consider this example:   public static class Fibonacci {     // returns the infinite fibonacci sequence     public static IEnumerable<int> Sequence()     {         int iteration = 0;         int first = 1;         int second = 1;         int current = 0;         while (true)         {             if (iteration++ < 2)             {                 current = 1;             }             else             {                 current = first + second;                 second = first;                 first = current;             }             yield return current;         }     } }   Whoa, you say!  Yes, that's an infinite loop!  What the heck is going on there?  Yes, that was intentional.  Would it be better to have a fibonacci sequence that returns only a specific number of items?  Perhaps, but that wouldn't give you the power to defer the execution to the caller.   The beauty of this function is it is as infinite as the sequence itself!  The fibonacci sequence is unbounded, and so is this method.  It will continue to return fibonacci numbers for as long as you ask for them.  Now that's not something you can do with a traditional method that would return a collection of ints representing each number.  In that case you would eventually run out of memory as you got to higher and higher numbers.  This method, though, never runs out of memory.   Now, that said, you do have to know when you use it that it is an infinite collection and bound it appropriately.  Fortunately, Linq provides a lot of these extension methods for you!   Let's say you only want the first 10 fibonacci numbers:       foreach(var fib in Fibonacci.Sequence().Take(10))     {         Console.WriteLine(fib);     }   Or let's say you only want the fibonacci numbers that are less than 100:       foreach(var fib in Fibonacci.Sequence().TakeWhile(f => f < 100))     {         Console.WriteLine(fib);     }   So, you see, one of the nice things about iterators is their power to work with virtually any size (even infinite) collections without adding the garbage collection overhead of making new collections.    You can also do fun things like this to make a more "fluent" interface for for loops:   // A set of integer generator extension methods public static class IntExtensions {     // Begins counting to inifity, use To() to range this.     public static IEnumerable<int> Every(this int start)     {         // deliberately avoiding condition because keeps going         // to infinity for as long as values are pulled.         for (var i = start; ; ++i)         {             yield return i;         }     }     // Begins counting to infinity by the given step value, use To() to     public static IEnumerable<int> Every(this int start, int byEvery)     {         // deliberately avoiding condition because keeps going         // to infinity for as long as values are pulled.         for (var i = start; ; i += byEvery)         {             yield return i;         }     }     // Begins counting to inifity, use To() to range this.     public static IEnumerable<int> To(this int start, int end)     {         for (var i = start; i <= end; ++i)         {             yield return i;         }     }     // Ranges the count by specifying the upper range of the count.     public static IEnumerable<int> To(this IEnumerable<int> collection, int end)     {         return collection.TakeWhile(item => item <= end);     } }   Note that there are two versions of each method.  One that starts with an int and one that starts with an IEnumerable<int>.  This is to allow more power in chaining from either an existing collection or from an int.  This lets you do things like:   // count from 1 to 30 foreach(var i in 1.To(30)) {     Console.WriteLine(i); }     // count from 1 to 10 by 2s foreach(var i in 0.Every(2).To(10)) {     Console.WriteLine(i); }     // or, if you want an infinite sequence counting by 5s until something inside breaks you out... foreach(var i in 0.Every(5)) {     if (someCondition)     {         break;     }     ... }     Yes, those are kinda play functions and not particularly useful, but they show some of the power of generators and extension methods to form a fluid interface.   So what do you think?  What are some of your favorite generators and iterators?

    Read the article

  • JPA behaviour...

    - by Marcel
    Hi I have some trouble understanding a JPA behaviour. Mabye someone could give me a hint. Situation: Product entity: @Entity public class Product implements Serializable { ... @OneToMany(mappedBy="product", fetch=FetchType.EAGER) private List<ProductResource> productResources = new ArrayList<ProductResource>(); .... public List<ProductResource> getProductResources() { return productResources; } public boolean equals(Object obj) { if (obj == this) return true; if (obj == null) return false; if (!(obj instanceof Product)) return false; Product p = (Product) obj; return p.productId == productId; } } Resource entity: @Entity public class Resource implements Serializable { ... @OneToMany(mappedBy="resource", fetch=FetchType.EAGER) private List<ProductResource> productResources = new ArrayList<ProductResource>(); ... public void setProductResource(List<ProductResource> productResource) { this.productResources = productResource; } public List<ProductResource> getProductResources() { return productResources; } public boolean equals(Object obj) { if (obj == this) return true; if (obj == null) return false; if (!(obj instanceof Resource)) return false; Resource r = (Resource) obj; return (long)resourceId==(long)r.resourceId; } } ProductResource Entity: This is a JoinTable (association class) with additional properties (amount). It maps Product and Resources. @Entity public class ProductResource implements Serializable { ... @JoinColumn(nullable=false, updatable=false) @ManyToOne(fetch=FetchType.EAGER, cascade=CascadeType.PERSIST) private Product product; @JoinColumn(nullable=false, updatable=false) @ManyToOne(fetch=FetchType.EAGER, cascade=CascadeType.PERSIST) private Resource resource; private int amount; public void setProduct(Product product) { this.product = product; if(!product.getProductResources().contains((this))){ product.getProductResources().add(this); } } public Product getProduct() { return product; } public void setResource(Resource resource) { this.resource = resource; if(!resource.getProductResources().contains((this))){ resource.getProductResources().add(this); } } public Resource getResource() { return resource; } ... public boolean equals(Object obj) { if (obj == this) return true; if (obj == null) return false; if (!(obj instanceof ProductResource)) return false; ProductResource pr = (ProductResource) obj; return (long)pr.productResourceId == (long)productResourceId; } } This is the Session Bean (running on glassfish). @Stateless(mappedName="PersistenceManager") public class PersistenceManagerBean implements PersistenceManager { @PersistenceContext(unitName = "local_mysql") private EntityManager em; public Object create(Object entity) { em.persist(entity); return entity; } public void delete(Object entity) { em.remove(em.merge(entity)); } public Object retrieve(Class entityClass, Long id) { Object entity = em.find(entityClass, id); return entity; } public void update(Object entity) { em.merge(entity); } } I call the session Bean from a java client: public class Start { public static void main(String[] args) throws NamingException { PersistenceManager pm = (PersistenceManager) new InitialContext().lookup("java:global/BackITServer/PersistenceManagerBean"); ProductResource pr = new ProductResource(); Product p = new Product(); Resource r = new Resource(); pr.setProduct(p); pr.setResource(r); ProductResource pr_stored = (ProductResource) pm.create(pr); pm.delete(pr_stored); Product p_ret = (Product) pm.retrieve(Product.class, pr_stored.getProduct().getProductId()); // prints out true ???????????????????????????????????? System.out.println(p_ret.getProductResources().contains(pr_stored)); } } So here comes my problem. Why is the ProductResource entity still in the List productResources(see code above). The productResource tuple in the db is gone after the deletion and I do newly retrieve the Product entity. If I understood right every method call of the client happens in a new persistence context, but here i obviously get back the non-refreshed product object!? Any help is appreciated Thanks Marcel

    Read the article

  • Découvrir la solution d'exploration de données structuré et non structuré

    - by David lefranc
    Explorer et découvrir l’information… Nous vous proposons un atelier découverte pour vous permettre d’explorer toute type de données grâce à la solution Oracle Endeca . Quand : 7 Décembre 2012 De 9h30 à 12h30  Lieu : Oracle 15 Boulevard Charles de gaulle 92715 Colombes Pour s'inscrire : [email protected] Réalisé pour des utilisateurs métiers, cet atelier vous permettera en une demi journée , de découvrir Oracle Endeca Information Discovery afin de : Comprendre et explorer toute information venant de différents horizons ( Big Data, réseaux sociaux, forums, sondages, blogs..) Découvrir en quoi et comment OEID est un complément à des solutions de BI classiques Par une navigation simple et rapide, vous découvrirez combien il est facile de trouver des réponses à des questions imprévues en utilisant OEID sans formation préalable. Utilisez la recherche et la navigation guidée pour voir comment les informations structurées et non structurées peuvent être rapidement réunies pour dégager la valeur cachée. Explorer toutes vos données dans n'importe quel format et à partir de n'importe quelle source, y compris les médias sociaux, documents, fichiers,…. Pouvoir découvrir et explorer vos données sans référentiel pour permettre aux utilisateurs d’être autonome et d’analyser leurs propres données de manière rapide Élaborer une stratégie visant à accroître la valeur des données de l'entreprise tout en réduisant le coût total de possession Découvrez l'incroyable performance d’ Endeca sur Oracle Exalytics la machine In Memory AgendaAprès une introduction sur la solution Oracle information Endeca, suivi d’un atelier, vous verrez comment il est facile de: Utiliser la navigation guidée et le moteur de recherche pour explorer les données structurées et non structurées intégrer rapidement les nouvelles sources de données comme les médias sociaux Construire de nouvelles interfaces utilisateur tout en découvrant l’information répondre rapidement aux besoins changeants des entreprises et des environnements de données

    Read the article

  • So, whats the best book on C#?

    - by mbcrump
    I see this question several times a day from newbie’s to professionals. I have listed the best C# books that I have read so far.   ECMA-334 C# Language Specification. – FREE book. This is probably the best place to start. Read it backwards and forwards and you can even request a hard copy. Absolute Beginners Guide to C Sharp 2nd Edition – Used this early on and found it very useful even if its game programming. C-Sharp 2.0 - The Complete Reference, 2nd Edition (McGraw-Hill, 2006) – One of the most useful books that is always with me. It contains short example code and is very well written. Dot Net Zero - Charles Petzold  - FREE book and you should definately give it a read. C Sharp in Depth by Jon Skeet -  Probably one of the most in depth books on C Sharp and definitely not for beginners. Jon Skeet knows C# like no other. I would consider this book the Bible of C#. If you understand 50% of this book, you have a good understanding of the language.  CLR via C Sharp 3rd Edition – I just started reading this book and it is another book thats not for beginners. If you really want to understand the CLR then give this book a try. Well, thats it. I hope you enjoy the books as I have spent a lot of time researching different C# books.

    Read the article

  • How to add correct cancellation when downloading a file with the example in the samples of the new P

    - by Mike
    Hello everybody, I have downloaded the last samples of the Parallel Programming team, and I don't succeed in adding correctly the possibility to cancel the download of a file. Here is the code I ended to have: var wreq = (HttpWebRequest)WebRequest.Create(uri); // Fire start event DownloadStarted(this, new DownloadStartedEventArgs(remoteFilePath)); long totalBytes = 0; wreq.DownloadDataInFileAsync(tmpLocalFile, cancellationTokenSource.Token, allowResume, totalBytesAction => { totalBytes = totalBytesAction; }, readBytes => { Log.Debug("Progression : {0} / {1} => {2}%", readBytes, totalBytes, 100 * (double)readBytes / totalBytes); DownloadProgress(this, new DownloadProgressEventArgs(remoteFilePath, readBytes, totalBytes, (int)(100 * readBytes / totalBytes))); }) .ContinueWith( (antecedent ) => { if (antecedent.IsFaulted) Log.Debug(antecedent.Exception.Message); //Fire end event SetEndDownload(antecedent.IsCanceled, antecedent.Exception, tmpLocalFile, 0); }, cancellationTokenSource.Token); I want to fire an end event after the download is finished, hence the ContinueWith. I slightly changed the code of the samples to add the CancellationToken and the 2 delegates to get the size of the file to download, and the progression of the download: return webRequest.GetResponseAsync() .ContinueWith(response => { if (totalBytesAction != null) totalBytesAction(response.Result.ContentLength); response.Result.GetResponseStream().WriteAllBytesAsync(filePath, ct, resumeDownload, progressAction).Wait(ct); }, ct); I had to add the call to the Wait function, because if I don't, the method exits and the end event is fired too early. Here are the modified method extensions (lot of code, apologies :p) public static Task WriteAllBytesAsync(this Stream stream, string filePath, CancellationToken ct, bool resumeDownload = false, Action<long> progressAction = null) { if (stream == null) throw new ArgumentNullException("stream"); // Copy from the source stream to the memory stream and return the copied data return stream.CopyStreamToFileAsync(filePath, ct, resumeDownload, progressAction); } public static Task CopyStreamToFileAsync(this Stream source, string destinationPath, CancellationToken ct, bool resumeDownload = false, Action<long> progressAction = null) { if (source == null) throw new ArgumentNullException("source"); if (destinationPath == null) throw new ArgumentNullException("destinationPath"); // Open the output file for writing var destinationStream = FileAsync.OpenWrite(destinationPath); // Copy the source to the destination stream, then close the output file. return CopyStreamToStreamAsync(source, destinationStream, ct, progressAction).ContinueWith(t => { var e = t.Exception; destinationStream.Close(); if (e != null) throw e; }, ct, TaskContinuationOptions.ExecuteSynchronously, TaskScheduler.Current); } public static Task CopyStreamToStreamAsync(this Stream source, Stream destination, CancellationToken ct, Action<long> progressAction = null) { if (source == null) throw new ArgumentNullException("source"); if (destination == null) throw new ArgumentNullException("destination"); return Task.Factory.Iterate(CopyStreamIterator(source, destination, ct, progressAction)); } private static IEnumerable<Task> CopyStreamIterator(Stream input, Stream output, CancellationToken ct, Action<long> progressAction = null) { // Create two buffers. One will be used for the current read operation and one for the current // write operation. We'll continually swap back and forth between them. byte[][] buffers = new byte[2][] { new byte[BUFFER_SIZE], new byte[BUFFER_SIZE] }; int filledBufferNum = 0; Task writeTask = null; int readBytes = 0; // Until there's no more data to be read or cancellation while (true) { ct.ThrowIfCancellationRequested(); // Read from the input asynchronously var readTask = input.ReadAsync(buffers[filledBufferNum], 0, buffers[filledBufferNum].Length); // If we have no pending write operations, just yield until the read operation has // completed. If we have both a pending read and a pending write, yield until both the read // and the write have completed. yield return writeTask == null ? readTask : Task.Factory.ContinueWhenAll(new[] { readTask, writeTask }, tasks => tasks.PropagateExceptions()); // If no data was read, nothing more to do. if (readTask.Result <= 0) break; readBytes += readTask.Result; if (progressAction != null) progressAction(readBytes); // Otherwise, write the written data out to the file writeTask = output.WriteAsync(buffers[filledBufferNum], 0, readTask.Result); // Swap buffers filledBufferNum ^= 1; } } So basically, at the end of the chain of called methods, I let the CancellationToken throw an OperationCanceledException if a Cancel has been requested. What I hoped was to get IsFaulted == true in the appealing code and to fire the end event with the canceled flags and the correct exception. But what I get is an unhandled exception on the line response.Result.GetResponseStream().WriteAllBytesAsync(filePath, ct, resumeDownload, progressAction).Wait(ct); telling me that I don't catch an AggregateException. I've tried various things, but I don't succeed to make the whole thing work properly. Does anyone of you have played enough with that library and may help me? Thanks in advance Mike

    Read the article

  • Refactoring Part 1 : Intuitive Investments

    - by Wes McClure
    Fear, it’s what turns maintaining applications into a nightmare.  Technology moves on, teams move on, someone is left to operate the application, what was green is now perceived brown.  Eventually the business will evolve and changes will need to be made.  The approach to those changes often dictates the long term viability of the application.  Fear of change, lack of passion and a lack of interest in understanding the domain often leads to a paranoia to do anything that doesn’t involve duct tape and bailing twine.  Don’t get me wrong, those have a place in the short term viability of a project but they don’t have a place in the long term.  Add to it “us versus them” in regards to the original team and those that maintain it, internal politics and other factors and you have a recipe for disaster.  This results in code that quickly becomes unmanageable.  Even the most clever of designs will eventually become sub optimal and debt will amount that exponentially makes changes difficult.  This is where refactoring comes in, and it’s something I’m very passionate about.  Refactoring is about improving the process whereby we make change, it’s an exponential investment in the process of change. Without it we will incur exponential complexity that halts productivity. Investments, especially in the long term, require intuition and reflection.  How can we tackle new development effectively via evolving the original design and paying off debt that has been incurred? The longer we wait to ask and answer this question, the more it will cost us.  Small requests don’t warrant big changes, but realizing when changes now will pay off in the long term, and especially in the short term, is valuable. I have done my fair share of maintaining applications and continuously refactoring as needed, but recently I’ve begun work on a project that hasn’t had much debt, if any, paid down in years.  This is the first in a series of blog posts to try to capture the process which is largely driven by intuition of smaller refactorings from other projects. Signs that refactoring could help: Testability How can decreasing test time not pay dividends? One of the first things I found was that a very important piece often takes 30+ minutes to test.  I can only imagine how much time this has cost historically, but more importantly the time it might cost in the coming weeks: I estimate at least 10-20 hours per person!  This is simply unacceptable for almost any situation.  As it turns out, about 6 hours of working with this part of the application and I was able to cut the time down to under 30 seconds!  In less than the lost time of one week, I was able to fix the problem for all future weeks! If we can’t test fast then we can’t change fast, nor with confidence. Code is used by end users and it’s also used by developers, consider your own needs in terms of the code base.  Adding logic to enable/disable features during testing can help decouple parts of an application and lead to massive improvements.  What exactly is so wrong about test code in real code?  Often, these become features for operators and sometimes end users.  If you cannot run an integration test within a test runner in your IDE, it’s time to refactor. Readability Are variables named meaningfully via a ubiquitous language? Is the code segmented functionally or behaviorally so as to minimize the complexity of any one area? Are aspects properly segmented to avoid confusion (security, logging, transactions, translations, dependency management etc) Is the code declarative (what) or imperative (how)?  What matters, not how.  LINQ is a great abstraction of the what, not how, of collection manipulation.  The Reactive framework is a great example of the what, not how, of managing streams of data. Are constants abstracted and named, or are they just inline? Do people constantly bitch about the code/design? If the code is hard to understand, it will be hard to change with confidence.  It’s a large undertaking if the original designers didn’t pay much attention to readability and as such will never be done to “completion.”  Make sure not to go over board, instead use this as you change an application, not in lieu of changes (like with testability). Complexity Simplicity will never be achieved, it’s highly subjective.  That said, a lot of code can be significantly simplified, tidy it up as you go.  Refactoring will often converge upon a simplification step after enough time, keep an eye out for this. Understandability In the process of changing code, one often gains a better understanding of it.  Refactoring code is a good way to learn how it works.  However, it’s usually best in combination with other reasons, in effect killing two birds with one stone.  Often this is done when readability is poor, in which case understandability is usually poor as well.  In the large undertaking we are making with this legacy application, we will be replacing it.  Therefore, understanding all of its features is important and this refactoring technique will come in very handy. Unused code How can deleting things not help? This is a freebie in refactoring, it’s very easy to detect with modern tools, especially in statically typed languages.  We have VCS for a reason, if in doubt, delete it out (ok that was cheesy)! If you don’t know where to start when refactoring, this is an excellent starting point! Duplication Do not pray and sacrifice to the anti-duplication gods, there are excellent examples where consolidated code is a horrible idea, usually with divergent domains.  That said, mediocre developers live by copy/paste.  Other times features converge and aren’t combined.  Tools for finding similar code are great in the example of copy/paste problems.  Knowledge of the domain helps identify convergent concepts that often lead to convergent solutions and will give intuition for where to look for conceptual repetition. 80/20 and the Boy Scouts It’s often said that 80% of the time 20% of the application is used most.  These tend to be the parts that are changed.  There are also parts of the code where 80% of the time is spent changing 20% (probably for all the refactoring smells above).  I focus on these areas any time I make a change and follow the philosophy of the Boy Scout in cleaning up more than I messed up.  If I spend 2 hours changing an application, in the 20%, I’ll always spend at least 15 minutes cleaning it or nearby areas. This gives a huge productivity edge on developers that don’t. Ironically after a short period of time the 20% shrinks enough that we don’t have to spend 80% of our time there and can move on to other areas.   Refactoring is highly subjective, never attempt to refactor to completion!  Learn to be comfortable with leaving one part of the application in a better state than others.  It’s an evolution, not a revolution.  These are some simple areas to look into when making changes and can help get one started in the process.  I’ve often found that refactoring is a convergent process towards simplicity that sometimes spans a few hours but often can lead to massive simplifications over the timespan of weeks and months of regular development.

    Read the article

  • Whats the greatest most impressive programing feat you ever witnessed? [closed]

    - by David Reis
    Everyone knows of the old adage that the best programmers can be orders of magnitude better than the average. I've personally seen good code and programmers, but never something so absurd. So the questions is, what is the most impressive feat of programming you ever witnessed or heard of? You can define impressive by: The scope of the task at hand e.g. John single handedly developed the framework for his company, a work comparable in scope to what the other 200 employed were doing combined. Speed e.g. Stu programmed an entire real time multi-tasking app OS on an weekened including its own C compiler and shell command line tools Complexity e.g. Jane rearchitected our entire 10 millon LOC app to work in a cluster of servers. And she did it in an afternoon. Quality e.g. Charles's code had a rate of defects per LOC 100 times lesser than the company average. Furthermore he code was clean and understandable by all. Obviously, the more of these characteristics combined, and the more extreme each of them, the more impressive is the feat. So, let me have it. What's the most absurd feat you can recount? Please provide as much detail as possible and try to avoid urban legends or exaggerations. Post only what you can actually vouch for. Bonus questions: Was the herculean task a one-of, or did the individual regularly amazed people? How do you explain such impressive performance? How was the programmer recognized for such awesome work?

    Read the article

  • Best of OTN - Week of August 17th

    - by CassandraClark-OTN
    Architect CommunityThe Top 3 most popular OTN ArchBeat video interviews of all time: Oracle Coherence Community on Java.net | Brian Oliver and Randy Stafford [October 24, 2013] Brian Oliver (Senior Principal Solutions Architect, Oracle Coherence) and Randy Stafford (Architect At-Large, Oracle Coherence Product Development) discuss the evolution of the Oracle Coherence Community on Java.net and how developers can actively participate in product development through Coherence Community open projects. Visit the Coherence Community at: https://java.net/projects/coherence. The Raspberry Pi Java Carputer and Other Wonders | Simon Ritter [February 13, 2014] Oracle lead Java evangelist Simon Ritter talks about his Raspberry Pi-based Java Carputer IoT project and other topics he presented at QCon London 2014. Hot Features in Oracle APEX 5.0 | Joel Kallman [May 14, 2014] Joel Kallman (Director, Software Development, Oracle) shares key points from his Great Lakes Oracle Conference 2014 session on new features in Oracle APEX 5.0. Friday Funny from OTN Architect Community Manager Bob Rhubart: Comedy legend Steve Martin entertains dogs in this 1976 clip from the Carol Burnette show. Database Community OTN Database Community Home Page - See all tech articles, downloads etc. related to Oracle Database for DBA's and Developers. Java Community JavaOne Blog - JRuby and JVM Languages at JavaOne!  In this video interview, Charles shared the JRuby features he presented at the JVM Language Summit. He'll be at JavaOne read the blog to see all the sessions. Java Source Blog - IoT: Wearables! Wearables are a subset of the Internet of Things that has gained a lot of attention. Learn More. I love Java FaceBook - Java Advanced Management Console demo - Watch as Jim Weaver, Java Technology Ambassador at Oracle, walks through a demonstration of the new Java Advanced Management Console (AMC) tool. Systems Community OTN Garage Blog - Why Wouldn't Root Be Able to Change a Zone's IP Address in Oracle Solaris 11? - Read and learn the answer. OTN Garage FaceBook - Securing Your Cloud-Based Data Center with Oracle Solaris 11 - Overview of the security precautions a sysadmin needs to take to secure data in a cloud infrastructure, and how to implement them with the security features in Oracle Solaris 11.

    Read the article

  • Applications: The mathematics of movement, Part 1

    - by TechTwaddle
    Before you continue reading this post, a suggestion; if you haven’t read “Programming Windows Phone 7 Series” by Charles Petzold, go read it. Now. If you find 150+ pages a little too long, at least go through Chapter 5, Principles of Movement, especially the section “A Brief Review of Vectors”. This post is largely inspired from this chapter. At this point I assume you know what vectors are, how they are represented using the pair (x, y), what a unit vector is, and given a vector how you would normalize the vector to get a unit vector. Our task in this post is simple, a marble is drawn at a point on the screen, the user clicks at a random point on the device, say (destX, destY), and our program makes the marble move towards that point and stop when it is reached. The tricky part of this task is the word “towards”, it adds a direction to our problem. Making a marble bounce around the screen is simple, all you have to do is keep incrementing the X and Y co-ordinates by a certain amount and handle the boundary conditions. Here, however, we need to find out exactly how to increment the X and Y values, so that the marble appears to move towards the point where the user clicked. And this is where vectors can be so helpful. The code I’ll show you here is not ideal, we’ll be working with C# on Windows Mobile 6.x, so there is no built-in vector class that I can use, though I could have written one and done all the math inside the class. I think it is trivial to the actual problem that we are trying to solve and can be done pretty easily once you know what’s going on behind the scenes. In other words, this is an excuse for me being lazy. The first approach, uses the function Atan2() to solve the “towards” part of the problem. Atan2() takes a point (x, y) as input, Atan2(y, x), note that y goes first, and then it returns an angle in radians. What angle you ask. Imagine a line from the origin (0, 0), to the point (x, y). The angle which Atan2 returns is the angle the positive X-axis makes with that line, measured clockwise. The figure below makes it clear, wiki has good details about Atan2(), give it a read. The pair (x, y) also denotes a vector. A vector whose magnitude is the length of that line, which is Sqrt(x*x + y*y), and a direction ?, as measured from positive X axis clockwise. If you’ve read that chapter from Charles Petzold’s book, this much should be clear. Now Sine and Cosine of the angle ? are special. Cosine(?) divides x by the vectors length (adjacent by hypotenuse), thus giving us a unit vector along the X direction. And Sine(?) divides y by the vectors length (opposite by hypotenuse), thus giving us a unit vector along the Y direction. Therefore the vector represented by the pair (cos(?), sin(?)), is the unit vector (or normalization) of the vector (x, y). This unit vector has a length of 1 (remember sin2(?) + cos2(?) = 1 ?), and a direction which is the same as vector (x, y). Now if I multiply this unit vector by some amount, then I will always get a point which is a certain distance away from the origin, but, more importantly, the point will always be on that line. For example, if I multiply the unit vector with the length of the line, I get the point (x, y). Thus, all we have to do to move the marble towards our destination point, is to multiply the unit vector by a certain amount each time and draw the marble, and the marble will magically move towards the click point. Now time for some code. The application, uses a timer based frame draw method to draw the marble on the screen. The timer is disabled initially and whenever the user clicks on the screen, the timer is enabled. The callback function for the timer follows the standard Update and Draw cycle. private double totLenToTravelSqrd = 0; private double startPosX = 0, startPosY = 0; private double destX = 0, destY = 0; private void Form1_MouseUp(object sender, MouseEventArgs e) {     destX = e.X;     destY = e.Y;     double x = marble1.x - destX;     double y = marble1.y - destY;     //calculate the total length to be travelled     totLenToTravelSqrd = x * x + y * y;     //store the start position of the marble     startPosX = marble1.x;     startPosY = marble1.y;     timer1.Enabled = true; } private void timer1_Tick(object sender, EventArgs e) {     UpdatePosition();     DrawMarble(); } Form1_MouseUp() method is called when ever the user touches and releases the screen. In this function we save the click point in destX and destY, this is the destination point for the marble and we also enable the timer. We store a few more values which we will use in the UpdatePosition() method to detect when the marble has reached the destination and stop the timer. So we store the start position of the marble and the square of the total length to be travelled. I’ll leave out the term ‘sqrd’ when speaking of lengths from now on. The time out interval of the timer is set to 40ms, thus giving us a frame rate of about ~25fps. In the timer callback, we update the marble position and draw the marble. We know what DrawMarble() does, so here, we’ll only look at how UpdatePosition() is implemented; private void UpdatePosition() {     //the vector (x, y)     double x = destX - marble1.x;     double y = destY - marble1.y;     double incrX=0, incrY=0;     double distanceSqrd=0;     double speed = 6;     //distance between destination and current position, before updating marble position     distanceSqrd = x * x + y * y;     double angle = Math.Atan2(y, x);     //Cos and Sin give us the unit vector, 6 is the value we use to magnify the unit vector along the same direction     incrX = speed * Math.Cos(angle);     incrY = speed * Math.Sin(angle);     marble1.x += incrX;     marble1.y += incrY;     //check for bounds     if ((int)marble1.x < MinX + marbleWidth / 2)     {         marble1.x = MinX + marbleWidth / 2;     }     else if ((int)marble1.x > (MaxX - marbleWidth / 2))     {         marble1.x = MaxX - marbleWidth / 2;     }     if ((int)marble1.y < MinY + marbleHeight / 2)     {         marble1.y = MinY + marbleHeight / 2;     }     else if ((int)marble1.y > (MaxY - marbleHeight / 2))     {         marble1.y = MaxY - marbleHeight / 2;     }     //distance between destination and current point, after updating marble position     x = destX - marble1.x;     y = destY - marble1.y;     double newDistanceSqrd = x * x + y * y;     //length from start point to current marble position     x = startPosX - (marble1.x);     y = startPosY - (marble1.y);     double lenTraveledSqrd = x * x + y * y;     //check for end conditions     if ((int)lenTraveledSqrd >= (int)totLenToTravelSqrd)     {         System.Console.WriteLine("Stopping because destination reached");         timer1.Enabled = false;     }     else if (Math.Abs((int)distanceSqrd - (int)newDistanceSqrd) < 4)     {         System.Console.WriteLine("Stopping because no change in Old and New position");         timer1.Enabled = false;     } } Ok, so in this function, first we subtract the current marble position from the destination point to give us a vector. The first three lines of the function construct this vector (x, y). The vector (x, y) has the same length as the line from (marble1.x, marble1.y) to (destX, destY) and is in the direction pointing from (marble1.x, marble1.y) to (destX, destY). Note that marble1.x and marble1.y denote the center point of the marble. Then we use Atan2() to get the angle which this vector makes with the positive X axis and use Cosine() and Sine() of that angle to get the unit vector along that same direction. We multiply this unit vector with 6, to get the values which the position of the marble should be incremented by. This variable, speed, can be experimented with and determines how fast the marble moves towards the destination. After this, we check for bounds to make sure that the marble stays within the screen limits and finally we check for the end condition and stop the timer. The end condition has two parts to it. The first case is the normal case, where the user clicks well inside the screen. Here, we stop when the total length travelled by the marble is greater than or equal to the total length to be travelled. Simple enough. The second case is when the user clicks on the very corners of the screen. Like I said before, the values marble1.x and marble1.y denote the center point of the marble. When the user clicks on the corner, the marble moves towards the point, and after some time tries to go outside of the screen, this is when the bounds checking comes into play and corrects the marble position so that the marble stays inside the screen. In this case the marble will never travel a distance of totLenToTravelSqrd, because of the correction is its position. So here we detect the end condition when there is not much change in marbles position. I use the value 4 in the second condition above. After experimenting with a few values, 4 seemed to work okay. There is a small thing missing in the code above. In the normal case, case 1, when the update method runs for the last time, marble position over shoots the destination point. This happens because the position is incremented in steps (which are not small enough), so in this case too, we should have corrected the marble position, so that the center point of the marble sits exactly on top of the destination point. I’ll add this later and update the post. This has been a pretty long post already, so I’ll leave you with a video of how this program looks while running. Notice in the video that the marble moves like a bot, without any grace what so ever. And that is because the speed of the marble is fixed at 6. In the next post we will see how to make the marble move a little more elegantly. And also, if Atan2(), Sine() and Cosine() are a little too much to digest, we’ll see how to achieve the same effect without using them, in the next to next post maybe. Ciao!

    Read the article

  • You Don't Want to Meet Orgad Kimchi in a Dark Alley

    - by rickramsey
    source Do you remember what those bad guys in the old Charles Bronson films looked like? They looked like Orgad Kimchi, that's what they looked like. When I met him at Oracle OpenWorld 2012, I realized I didn't want to meet him in the wrong alleyway of Budapest after dark. Neither do old versions of Oracle Solaris, which Orgad bends to his will with as much ease as he probably bends stray tourists to his will in Budapest, Kandahar, or Dagestan. How Orgad Made Oracle Database Migrate from Oracle Solaris 8 to Oracle Solaris 11 In this article, which we liked so much we reprinted it from his blog (please don't tell him!), Orgad explains how he head-butted an Oracle Database into submission. The database thought it was safe running in Oracle Solaris 8, but Orgad dragged its whimpering carcas into Oracle Solaris 11. How'd he do that? Well, if you had met Orgad in person, you wouldn't ask that question. Because you'd know he could have simply stared at it, and the database would have migrated on its own. But Orgad didn't do that. Instead, he stuffed an Oracle Solaris 8 Physical-to-Virtual (P2V) Archiver Tool into his leather trench coat, the one with the special pockets sown in by the East German Secret Police for several Uzis and their ammo, and walked into his data center in a way that reminded the survivors of this clip from Matrix Reloaded. The end result? The Oracle Database 10.2 that was running on Oracle Solaris 8 is now running inside a Solaris 10 branded zone in Oracle Solaris 11. With no complaints. Don't make Orgad angry. Read his article. - Rick Website Newsletter Facebook Twitter

    Read the article

  • WCF Bidirectional serialization fails

    - by Gena Verdel
    I'm trying to take advantage of Bidirectional serialization of some relational Linq-2-Sql generated entity classes. When using Unidirectional option everything works just fine, bu the moment I add IsReferenceType=true, objects fail to get transported over the tcp binding. Sample code: Entity class: [Table(Name="dbo.Blocks")] [DataContract()] public partial class Block : INotifyPropertyChanging, INotifyPropertyChanged { private static PropertyChangingEventArgs emptyChangingEventArgs = new PropertyChangingEventArgs(String.Empty); private long _ID; private int _StatusID; private string _Name; private bool _IsWithControlPoints; private long _DivisionID; private string _SHAPE; private EntitySet<BlockByWorkstation> _BlockByWorkstations; private EntitySet<PlanningPointAppropriation> _PlanningPointAppropriations; private EntitySet<Neighbor> _Neighbors; private EntitySet<Neighbor> _Neighbors1; private EntitySet<Task> _Tasks; private EntitySet<PlanningPointByBlock> _PlanningPointByBlocks; private EntitySet<ControlPointByBlock> _ControlPointByBlocks; private EntityRef<Division> _Division; private bool serializing; #region Extensibility Method Definitions partial void OnLoaded(); partial void OnValidate(System.Data.Linq.ChangeAction action); partial void OnCreated(); partial void OnIDChanging(long value); partial void OnIDChanged(); partial void OnStatusIDChanging(int value); partial void OnStatusIDChanged(); partial void OnNameChanging(string value); partial void OnNameChanged(); partial void OnIsWithControlPointsChanging(bool value); partial void OnIsWithControlPointsChanged(); partial void OnDivisionIDChanging(long value); partial void OnDivisionIDChanged(); partial void OnSHAPEChanging(string value); partial void OnSHAPEChanged(); #endregion public Block() { this.Initialize(); } [Column(Storage="_ID", AutoSync=AutoSync.OnInsert, DbType="BigInt NOT NULL IDENTITY", IsPrimaryKey=true, IsDbGenerated=true)] [DataMember(Order=1)] public override long ID { get { return this._ID; } set { if ((this._ID != value)) { this.OnIDChanging(value); this.SendPropertyChanging(); this._ID = value; this.SendPropertyChanged("ID"); this.OnIDChanged(); } } } [Column(Storage="_StatusID", DbType="Int NOT NULL")] [DataMember(Order=2)] public int StatusID { get { return this._StatusID; } set { if ((this._StatusID != value)) { this.OnStatusIDChanging(value); this.SendPropertyChanging(); this._StatusID = value; this.SendPropertyChanged("StatusID"); this.OnStatusIDChanged(); } } } [Column(Storage="_Name", DbType="NVarChar(255)")] [DataMember(Order=3)] public string Name { get { return this._Name; } set { if ((this._Name != value)) { this.OnNameChanging(value); this.SendPropertyChanging(); this._Name = value; this.SendPropertyChanged("Name"); this.OnNameChanged(); } } } [Column(Storage="_IsWithControlPoints", DbType="Bit NOT NULL")] [DataMember(Order=4)] public bool IsWithControlPoints { get { return this._IsWithControlPoints; } set { if ((this._IsWithControlPoints != value)) { this.OnIsWithControlPointsChanging(value); this.SendPropertyChanging(); this._IsWithControlPoints = value; this.SendPropertyChanged("IsWithControlPoints"); this.OnIsWithControlPointsChanged(); } } } [Column(Storage="_DivisionID", DbType="BigInt NOT NULL")] [DataMember(Order=5)] public long DivisionID { get { return this._DivisionID; } set { if ((this._DivisionID != value)) { if (this._Division.HasLoadedOrAssignedValue) { throw new System.Data.Linq.ForeignKeyReferenceAlreadyHasValueException(); } this.OnDivisionIDChanging(value); this.SendPropertyChanging(); this._DivisionID = value; this.SendPropertyChanged("DivisionID"); this.OnDivisionIDChanged(); } } } [Column(Storage="_SHAPE", DbType="Text", UpdateCheck=UpdateCheck.Never)] [DataMember(Order=6)] public string SHAPE { get { return this._SHAPE; } set { if ((this._SHAPE != value)) { this.OnSHAPEChanging(value); this.SendPropertyChanging(); this._SHAPE = value; this.SendPropertyChanged("SHAPE"); this.OnSHAPEChanged(); } } } [Association(Name="Block_BlockByWorkstation", Storage="_BlockByWorkstations", ThisKey="ID", OtherKey="BlockID")] [DataMember(Order=7, EmitDefaultValue=false)] public EntitySet<BlockByWorkstation> BlockByWorkstations { get { if ((this.serializing && (this._BlockByWorkstations.HasLoadedOrAssignedValues == false))) { return null; } return this._BlockByWorkstations; } set { this._BlockByWorkstations.Assign(value); } } [Association(Name="Block_PlanningPointAppropriation", Storage="_PlanningPointAppropriations", ThisKey="ID", OtherKey="MasterBlockID")] [DataMember(Order=8, EmitDefaultValue=false)] public EntitySet<PlanningPointAppropriation> PlanningPointAppropriations { get { if ((this.serializing && (this._PlanningPointAppropriations.HasLoadedOrAssignedValues == false))) { return null; } return this._PlanningPointAppropriations; } set { this._PlanningPointAppropriations.Assign(value); } } [Association(Name="Block_Neighbor", Storage="_Neighbors", ThisKey="ID", OtherKey="FirstBlockID")] [DataMember(Order=9, EmitDefaultValue=false)] public EntitySet<Neighbor> Neighbors { get { if ((this.serializing && (this._Neighbors.HasLoadedOrAssignedValues == false))) { return null; } return this._Neighbors; } set { this._Neighbors.Assign(value); } } [Association(Name="Block_Neighbor1", Storage="_Neighbors1", ThisKey="ID", OtherKey="SecondBlockID")] [DataMember(Order=10, EmitDefaultValue=false)] public EntitySet<Neighbor> Neighbors1 { get { if ((this.serializing && (this._Neighbors1.HasLoadedOrAssignedValues == false))) { return null; } return this._Neighbors1; } set { this._Neighbors1.Assign(value); } } [Association(Name="Block_Task", Storage="_Tasks", ThisKey="ID", OtherKey="BlockID")] [DataMember(Order=11, EmitDefaultValue=false)] public EntitySet<Task> Tasks { get { if ((this.serializing && (this._Tasks.HasLoadedOrAssignedValues == false))) { return null; } return this._Tasks; } set { this._Tasks.Assign(value); } } [Association(Name="Block_PlanningPointByBlock", Storage="_PlanningPointByBlocks", ThisKey="ID", OtherKey="BlockID")] [DataMember(Order=12, EmitDefaultValue=false)] public EntitySet<PlanningPointByBlock> PlanningPointByBlocks { get { if ((this.serializing && (this._PlanningPointByBlocks.HasLoadedOrAssignedValues == false))) { return null; } return this._PlanningPointByBlocks; } set { this._PlanningPointByBlocks.Assign(value); } } [Association(Name="Block_ControlPointByBlock", Storage="_ControlPointByBlocks", ThisKey="ID", OtherKey="BlockID")] [DataMember(Order=13, EmitDefaultValue=false)] public EntitySet<ControlPointByBlock> ControlPointByBlocks { get { if ((this.serializing && (this._ControlPointByBlocks.HasLoadedOrAssignedValues == false))) { return null; } return this._ControlPointByBlocks; } set { this._ControlPointByBlocks.Assign(value); } } [Association(Name="Division_Block", Storage="_Division", ThisKey="DivisionID", OtherKey="ID", IsForeignKey=true, DeleteOnNull=true, DeleteRule="CASCADE")] public Division Division { get { return this._Division.Entity; } set { Division previousValue = this._Division.Entity; if (((previousValue != value) || (this._Division.HasLoadedOrAssignedValue == false))) { this.SendPropertyChanging(); if ((previousValue != null)) { this._Division.Entity = null; previousValue.Blocks.Remove(this); } this._Division.Entity = value; if ((value != null)) { value.Blocks.Add(this); this._DivisionID = value.ID; } else { this._DivisionID = default(long); } this.SendPropertyChanged("Division"); } } } public event PropertyChangingEventHandler PropertyChanging; public event PropertyChangedEventHandler PropertyChanged; protected virtual void SendPropertyChanging() { if ((this.PropertyChanging != null)) { this.PropertyChanging(this, emptyChangingEventArgs); } } protected virtual void SendPropertyChanged(String propertyName) { if ((this.PropertyChanged != null)) { this.PropertyChanged(this, new PropertyChangedEventArgs(propertyName)); } } private void attach_BlockByWorkstations(BlockByWorkstation entity) { this.SendPropertyChanging(); entity.Block = this; } private void detach_BlockByWorkstations(BlockByWorkstation entity) { this.SendPropertyChanging(); entity.Block = null; } private void attach_PlanningPointAppropriations(PlanningPointAppropriation entity) { this.SendPropertyChanging(); entity.Block = this; } private void detach_PlanningPointAppropriations(PlanningPointAppropriation entity) { this.SendPropertyChanging(); entity.Block = null; } private void attach_Neighbors(Neighbor entity) { this.SendPropertyChanging(); entity.FirstBlock = this; } private void detach_Neighbors(Neighbor entity) { this.SendPropertyChanging(); entity.FirstBlock = null; } private void attach_Neighbors1(Neighbor entity) { this.SendPropertyChanging(); entity.SecondBlock = this; } private void detach_Neighbors1(Neighbor entity) { this.SendPropertyChanging(); entity.SecondBlock = null; } private void attach_Tasks(Task entity) { this.SendPropertyChanging(); entity.Block = this; } private void detach_Tasks(Task entity) { this.SendPropertyChanging(); entity.Block = null; } private void attach_PlanningPointByBlocks(PlanningPointByBlock entity) { this.SendPropertyChanging(); entity.Block = this; } private void detach_PlanningPointByBlocks(PlanningPointByBlock entity) { this.SendPropertyChanging(); entity.Block = null; } private void attach_ControlPointByBlocks(ControlPointByBlock entity) { this.SendPropertyChanging(); entity.Block = this; } private void detach_ControlPointByBlocks(ControlPointByBlock entity) { this.SendPropertyChanging(); entity.Block = null; } private void Initialize() { this._BlockByWorkstations = new EntitySet<BlockByWorkstation>(new Action<BlockByWorkstation>(this.attach_BlockByWorkstations), new Action<BlockByWorkstation>(this.detach_BlockByWorkstations)); this._PlanningPointAppropriations = new EntitySet<PlanningPointAppropriation>(new Action<PlanningPointAppropriation>(this.attach_PlanningPointAppropriations), new Action<PlanningPointAppropriation>(this.detach_PlanningPointAppropriations)); this._Neighbors = new EntitySet<Neighbor>(new Action<Neighbor>(this.attach_Neighbors), new Action<Neighbor>(this.detach_Neighbors)); this._Neighbors1 = new EntitySet<Neighbor>(new Action<Neighbor>(this.attach_Neighbors1), new Action<Neighbor>(this.detach_Neighbors1)); this._Tasks = new EntitySet<Task>(new Action<Task>(this.attach_Tasks), new Action<Task>(this.detach_Tasks)); this._PlanningPointByBlocks = new EntitySet<PlanningPointByBlock>(new Action<PlanningPointByBlock>(this.attach_PlanningPointByBlocks), new Action<PlanningPointByBlock>(this.detach_PlanningPointByBlocks)); this._ControlPointByBlocks = new EntitySet<ControlPointByBlock>(new Action<ControlPointByBlock>(this.attach_ControlPointByBlocks), new Action<ControlPointByBlock>(this.detach_ControlPointByBlocks)); this._Division = default(EntityRef<Division>); OnCreated(); } [OnDeserializing()] [System.ComponentModel.EditorBrowsableAttribute(EditorBrowsableState.Never)] public void OnDeserializing(StreamingContext context) { this.Initialize(); } [OnSerializing()] [System.ComponentModel.EditorBrowsableAttribute(EditorBrowsableState.Never)] public void OnSerializing(StreamingContext context) { this.serializing = true; } [OnSerialized()] [System.ComponentModel.EditorBrowsableAttribute(EditorBrowsableState.Never)] public void OnSerialized(StreamingContext context) { this.serializing = false; } } App.config: <?xml version="1.0" encoding="utf-8" ?> <configuration> <system.web> <compilation debug="true" /> </system.web> <!-- When deploying the service library project, the content of the config file must be added to the host's app.config file. System.Configuration does not support config files for libraries. --> <system.serviceModel> <services> <service behaviorConfiguration="debugging" name="DBServicesLibrary.DBService"> </service> </services> <behaviors> <serviceBehaviors> <behavior name="DBServicesLibrary.DBServiceBehavior"> <!-- To avoid disclosing metadata information, set the value below to false and remove the metadata endpoint above before deployment --> <serviceMetadata httpGetEnabled="True"/> <!-- To receive exception details in faults for debugging purposes, set the value below to true. Set to false before deployment to avoid disclosing exception information --> <serviceDebug includeExceptionDetailInFaults="False" /> </behavior> <behavior name="debugging"> <serviceDebug includeExceptionDetailInFaults="true"/> </behavior> </serviceBehaviors> </behaviors> </system.serviceModel> </configuration> Host part: ServiceHost svh = new ServiceHost(typeof(DBService)); svh.AddServiceEndpoint( typeof(DBServices.Contract.IDBService), new NetTcpBinding(), "net.tcp://localhost:8000"); Client part: ChannelFactory<DBServices.Contract.IDBService> scf; scf = new ChannelFactory<DBServices.Contract.IDBService>(new NetTcpBinding(),"net.tcp://localhost:8000"); _serv = scf.CreateChannel(); ((IContextChannel)_serv).OperationTimeout = new TimeSpan(0, 5, 0);

    Read the article

  • invitation: Oracle Endeca Information Discovery Bootcamp

    - by mseika
    The Oracle Endeca Information Discovery (OEID) Boot Camp is designed to give partners an understanding of OEID’s features, and how it complements the existing Oracle Business Intelligence suite. Participants will learn how to develop & implement solutions using a Data Discovery method. Training is in EnglishWhat will be covered?The Oracle Endeca Information Discovery (OEID) Boot Camp is a three-day class with a combination of lecture and hands-on exercises, tailored to make participants aware of the Oracle Endeca Information Discovery platform, and to gain valuable skills for the implementation of projects.The course will follow a combination of lectures and hands-on lab sessions, to allow participants to apply the knowledge they have gained by extracting from sample data sources, and creating an end-user application that will be used to answer several business questions. What You Will Learn Architecture: OEID Components, use of graphs, overview of clustering OEID Installation: Architecture planning, infrastructure requirements, installation process, production hints & tips OEID Administration: Data store management, administrative operations, portal configuration, data sources, system monitoring Indexing: Integration Suite, Data source analysis, Graph (ETL) creation, record design techniques Portlets: Studio portlets, custom portlet development, querying functions Reporting: Studio applications & best practices, visualizations, EQL PrerequisitesYou must bring a laptop with you for the Hands-on labs ENVIRONMENT – LAPTOP REQUIREMENTS For the OEID boot camp, participants will perform the hands-on lab exercises using a virtual machine image. These virtual machines will be provided to participants within a cloud environment, requiring participants to bring a laptop to the Boot Camp that can access a Windows server utilizing Microsoft RDP from their laptop. Participants will not need to install any software onto their laptops, but must ensure that they have the proper software installed for their OS, to connect through RDP to a server. HARDWARE • CPU: Dual-core, x64, 1.8Ghz or higher • RAM: 2GB SOFTWARE • Microsoft Remote Desktop Client • Internet Explorer 7, Firefox, or Google Chrome This boot camp is intended for prospective implementers of Oracle Endeca Information Discovery (OEID), or those in a presales role looking to gain insight into the technical benefits of this new package. Attendees should have experience and familiarity with the basic concepts of business intelligence. Where and When ? Monday, October 15th until wednesday, October 17th included 9:00 - 18:00 Oracle France 15, boulevard Charles de Gaulle 92715 Colombes Access Register Here Limited number of seats !

    Read the article

  • Convert Java program to C

    - by imicrothinking
    I need a bit of guidance with writing a C program...a bit of quick background as to my level, I've programmed in Java previously, but this is my first time programming in C, and we've been tasked to translate a word count program from Java to C that consists of the following: Read a file from memory Count the words in the file For each occurrence of a unique word, keep a word counter variable Print out the top ten most frequent words and their corresponding occurrences Here's the source program in Java: package lab0; import java.io.File; import java.io.FileReader; import java.util.ArrayList; import java.util.Calendar; import java.util.Collections; public class WordCount { private ArrayList<WordCountNode> outputlist = null; public WordCount(){ this.outputlist = new ArrayList<WordCountNode>(); } /** * Read the file into memory. * * @param filename name of the file. * @return content of the file. * @throws Exception if the file is too large or other file related exception. */ public char[] readFile(String filename) throws Exception{ char [] result = null; File file = new File(filename); long size = file.length(); if (size > Integer.MAX_VALUE){ throw new Exception("File is too large"); } result = new char[(int)size]; FileReader reader = new FileReader(file); int len, offset = 0, size2read = (int)size; while(size2read > 0){ len = reader.read(result, offset, size2read); if(len == -1) break; size2read -= len; offset += len; } return result; } /** * Make article word by word. * * @param article the content of file to be counted. * @return string contains only letters and "'". */ private enum SPLIT_STATE {IN_WORD, NOT_IN_WORD}; /** * Go through article, find all the words and add to output list * with their count. * * @param article the content of the file to be counted. * @return words in the file and their counts. */ public ArrayList<WordCountNode> countWords(char[] article){ SPLIT_STATE state = SPLIT_STATE.NOT_IN_WORD; if(null == article) return null; char curr_ltr; int curr_start = 0; for(int i = 0; i < article.length; i++){ curr_ltr = Character.toUpperCase( article[i]); if(state == SPLIT_STATE.IN_WORD){ article[i] = curr_ltr; if ((curr_ltr < 'A' || curr_ltr > 'Z') && curr_ltr != '\'') { article[i] = ' '; //printf("\nthe word is %s\n\n",curr_start); if(i - curr_start < 0){ System.out.println("i = " + i + " curr_start = " + curr_start); } addWord(new String(article, curr_start, i-curr_start)); state = SPLIT_STATE.NOT_IN_WORD; } }else{ if (curr_ltr >= 'A' && curr_ltr <= 'Z') { curr_start = i; article[i] = curr_ltr; state = SPLIT_STATE.IN_WORD; } } } return outputlist; } /** * Add the word to output list. */ public void addWord(String word){ int pos = dobsearch(word); if(pos >= outputlist.size()){ outputlist.add(new WordCountNode(1L, word)); }else{ WordCountNode tmp = outputlist.get(pos); if(tmp.getWord().compareTo(word) == 0){ tmp.setCount(tmp.getCount() + 1); }else{ outputlist.add(pos, new WordCountNode(1L, word)); } } } /** * Search the output list and return the position to put word. * @param word is the word to be put into output list. * @return position in the output list to insert the word. */ public int dobsearch(String word){ int cmp, high = outputlist.size(), low = -1, next; // Binary search the array to find the key while (high - low > 1) { next = (high + low) / 2; // all in upper case cmp = word.compareTo((outputlist.get(next)).getWord()); if (cmp == 0) return next; else if (cmp < 0) high = next; else low = next; } return high; } public static void main(String args[]){ // handle input if (args.length == 0){ System.out.println("USAGE: WordCount <filename> [Top # of results to display]\n"); System.exit(1); } String filename = args[0]; int dispnum; try{ dispnum = Integer.parseInt(args[1]); }catch(Exception e){ dispnum = 10; } long start_time = Calendar.getInstance().getTimeInMillis(); WordCount wordcount = new WordCount(); System.out.println("Wordcount: Running..."); // read file char[] input = null; try { input = wordcount.readFile(filename); } catch (Exception e) { // TODO Auto-generated catch block e.printStackTrace(); System.exit(1); } // count all word ArrayList<WordCountNode> result = wordcount.countWords(input); long end_time = Calendar.getInstance().getTimeInMillis(); System.out.println("wordcount: completed " + (end_time - start_time)/1000000 + "." + (end_time - start_time)%1000000 + "(s)"); System.out.println("wordsort: running ..."); start_time = Calendar.getInstance().getTimeInMillis(); Collections.sort(result); end_time = Calendar.getInstance().getTimeInMillis(); System.out.println("wordsort: completed " + (end_time - start_time)/1000000 + "." + (end_time - start_time)%1000000 + "(s)"); Collections.reverse(result); System.out.println("\nresults (TOP "+ dispnum +" from "+ result.size() +"):\n" ); // print out result String str ; for (int i = 0; i < result.size() && i < dispnum; i++){ if(result.get(i).getWord().length() > 15) str = result.get(i).getWord().substring(0, 14); else str = result.get(i).getWord(); System.out.println(str + " - " + result.get(i).getCount()); } } public class WordCountNode implements Comparable{ private String word; private long count; public WordCountNode(long count, String word){ this.count = count; this.word = word; } public String getWord() { return word; } public void setWord(String word) { this.word = word; } public long getCount() { return count; } public void setCount(long count) { this.count = count; } public int compareTo(Object arg0) { // TODO Auto-generated method stub WordCountNode obj = (WordCountNode)arg0; if( count - obj.getCount() < 0) return -1; else if( count - obj.getCount() == 0) return 0; else return 1; } } } Here's my attempt (so far) in C: #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include <string.h> // Read in a file FILE *readFile (char filename[]) { FILE *inputFile; inputFile = fopen (filename, "r"); if (inputFile == NULL) { printf ("File could not be opened.\n"); exit (EXIT_FAILURE); } return inputFile; } // Return number of words in an array int wordCount (FILE *filePointer, char filename[]) {//, char *words[]) { // count words int count = 0; char temp; while ((temp = getc(filePointer)) != EOF) { //printf ("%c", temp); if ((temp == ' ' || temp == '\n') && (temp != '\'')) count++; } count += 1; // counting method uses space AFTER last character in word - the last space // of the last character isn't counted - off by one error // close file fclose (filePointer); return count; } // Print out the frequencies of the 10 most frequent words in the console int main (int argc, char *argv[]) { /* Step 1: Read in file and check for errors */ FILE *filePointer; filePointer = readFile (argv[1]); /* Step 2: Do a word count to prep for array size */ int count = wordCount (filePointer, argv[1]); printf ("Number of words is: %i\n", count); /* Step 3: Create a 2D array to store words in the file */ // open file to reset marker to beginning of file filePointer = fopen (argv[1], "r"); // store words in character array (each element in array = consecutive word) char allWords[count][100]; // 100 is an arbitrary size - max length of word int i,j; char temp; for (i = 0; i < count; i++) { for (j = 0; j < 100; j++) { // labels are used with goto statements, not loops in C temp = getc(filePointer); if ((temp == ' ' || temp == '\n' || temp == EOF) && (temp != '\'') ) { allWords[i][j] = '\0'; break; } else { allWords[i][j] = temp; } printf ("%c", allWords[i][j]); } printf ("\n"); } // close file fclose (filePointer); /* Step 4: Use a simple selection sort algorithm to sort 2D char array */ // PStep 1: Compare two char arrays, and if // (a) c1 > c2, return 2 // (b) c1 == c2, return 1 // (c) c1 < c2, return 0 qsort(allWords, count, sizeof(char[][]), pstrcmp); /* int k = 0, l = 0, m = 0; char currentMax, comparedElement; int max; // the largest element in the current 2D array int elementToSort = 0; // elementToSort determines the element to swap with starting from the left // Outer a iterates through number of swaps needed for (k = 0; k < count - 1; k++) { // times of swaps max = k; // max element set to k // Inner b iterates through successive elements to fish out the largest element for (m = k + 1; m < count - k; m++) { currentMax = allWords[k][l]; comparedElement = allWords[m][l]; // Inner c iterates through successive chars to set the max vars to the largest for (l = 0; (currentMax != '\0' || comparedElement != '\0'); l++) { if (currentMax > comparedElement) break; else if (currentMax < comparedElement) { max = m; currentMax = allWords[m][l]; break; } else if (currentMax == comparedElement) continue; } } // After max (count and string) is determined, perform swap with temp variable char swapTemp[1][20]; int y = 0; do { swapTemp[0][y] = allWords[elementToSort][y]; allWords[elementToSort][y] = allWords[max][y]; allWords[max][y] = swapTemp[0][y]; } while (swapTemp[0][y++] != '\0'); elementToSort++; } */ int a, b; for (a = 0; a < count; a++) { for (b = 0; (temp = allWords[a][b]) != '\0'; b++) { printf ("%c", temp); } printf ("\n"); } // Copy rows to different array and print results /* char arrayCopy [count][20]; int ac, ad; char tempa; for (ac = 0; ac < count; ac++) { for (ad = 0; (tempa = allWords[ac][ad]) != '\0'; ad++) { arrayCopy[ac][ad] = tempa; printf("%c", arrayCopy[ac][ad]); } printf("\n"); } */ /* Step 5: Create two additional arrays: (a) One in which each element contains unique words from char array (b) One which holds the count for the corresponding word in the other array */ /* Step 6: Sort the count array in decreasing order, and print the corresponding array element as well as word count in the console */ return 0; } // Perform housekeeping tasks like freeing up memory and closing file I'm really stuck on the selection sort algorithm. I'm currently using 2D arrays to represent strings, and that worked out fine, but when it came to sorting, using three level nested loops didn't seem to work, I tried to use qsort instead, but I don't fully understand that function as well. Constructive feedback and criticism greatly welcome (...and needed)!

    Read the article

  • Endeca Information Discovery 3-Day Hands-on Training Boot-Camp

    - by Mike.Hallett(at)Oracle-BI&EPM
    For Oracle Partners, on October 15-17, 2012 in Paris, France: Register here. The Oracle Endeca Information Discovery (OEID) Boot-Camp is designed to give partners an understanding of OEID’s features, and how it complements the existing Oracle Business Intelligence suite. Participants will learn how to develop & implement solutions using a Data Discovery method.  Training is in English. What will be covered? The Oracle Endeca Information Discovery (OEID) Boot Camp is a three-day class with a combination of lecture and hands-on exercises, tailored to make participants aware of the Oracle Endeca Information Discovery platform, and to gain valuable skills for the implementation of projects.   Prerequisites You must bring a laptop with you for the Hands-on labs: Attendees should have experience and familiarity with the basic concepts of business intelligence and be OPN Partners with Gold or above membership.  This training is free to OPN Partners. Click here for more information. Where and When ? Monday, October 15th until Wednesday, October 17th included  9:00 - 18:00 Oracle France 15, boulevard Charles de Gaulle 92715 Colombes: Access Venue Map Register here  : NOTE there is a Limited number of seats, you will get confirmation within 2 weeks.

    Read the article

  • HttpURLConnection! Connection.getInputStream is java.io.FileNotFoundException

    - by user3643283
    I created a method "UPLPAD2" to upload file to server. Splitting my file to packets(10MB). It's OK (100%). But when i call getInputStream, i get FileNotFoundException. I think, in loop, i make new HttpURLConnection to set "setRequestProperty". This is a problem. Here's my code: @SuppressLint("NewApi") public int upload2(URL url, String filePath, OnProgressUpdate progressCallBack, AtomicInteger cancelHandle) throws IOException { HttpURLConnection connection = null; InputStream fileStream = null; OutputStream out = null; InputStream in = null; HttpResponse response = new HttpResponse(); Log.e("Upload_Url_Util", url.getFile()); Log.e("Upload_FilePath_Util", filePath); long total = 0; try { // Write the request. // Read from filePath and upload to server (url) byte[] buf = new byte[1024]; fileStream = new FileInputStream(filePath); long lenghtOfFile = (new java.io.File(filePath)).length(); Log.e("LENGHT_Of_File", lenghtOfFile + ""); int totalPacket = 5 * 1024 * 1024; // 10 MB int totalChunk = (int) ((lenghtOfFile + (totalPacket - 1)) / totalPacket); String headerValue = ""; String contentLenght = ""; for (int i = 0; i < totalChunk; i++) { long from = i * totalPacket; long to = 0; if ((from + totalPacket) > lenghtOfFile) { to = lenghtOfFile; } else { to = (totalPacket * (i + 1)); } to = to - 1; headerValue = "bytes " + from + "-" + to + "/" + lenghtOfFile; contentLenght = "Content-Length:" + (to - from + 1); Log.e("Conten_LENGHT", contentLenght); connection = client.open(url); connection.setRequestMethod("POST"); connection.setRequestProperty("Content-Range", headerValue); connection.setRequestProperty("Content-Length", Long.toString(to - from + 1)); out = connection.getOutputStream(); Log.e("Lenght_Of_File", lenghtOfFile + ""); Log.e("Total_Packet", totalPacket + ""); Log.e("Total_Chunk", totalChunk + ""); Log.e("Header_Valure", headerValue); int read = 1; while (read > 0 && cancelHandle.intValue() == 0 && total < totalPacket * (i + 1)) { read = fileStream.read(buf); if (read > 0) { out.write(buf, 0, read); total += read; progressCallBack .onProgressUpdate((int) ((total * 100) / lenghtOfFile)); } } Log.e("TOTAL_", total + "------" + totalPacket * (i + 1)); Log.e("I_", i + ""); Log.e("LENGHT_Of_File", lenghtOfFile + ""); if (i < totalChunk - 1) { connection.disconnect(); } out.close(); } // Read the response. response.setHttpCode(connection.getResponseCode()); in = connection.getInputStream(); // I GET ERROR HERE. if (connection.getResponseCode() != HttpURLConnection.HTTP_OK) { throw new IOException("Unexpected HTTP response: " + connection.getResponseCode() + " " + connection.getResponseMessage()); } byte[] body = readFully(in); response.setBody(body); response.setHeaderFields(connection.getHeaderFields()); if (cancelHandle.intValue() != 0) { return 1; } JSONObject jo = new JSONObject(response.getBodyAsString()); Log.e("Upload_Body_res_", response.getBodyAsString()); if (jo.has("error")) { if (jo.has("code")) { int errCode = jo.getInt("code"); Log.e("Upload_Had_errcode", errCode + ""); return errCode; } else { return 504; } } Log.e("RESPONE_BODY_UPLOAD", response.getBodyAsString() + ""); return 0; } catch (Exception e) { e.printStackTrace(); Log.e("Http_UpLoad_Response_Exception", e.toString()); response.setHttpCode(connection.getResponseCode()); Log.e("ErrorCode_Upload_Util_Return", response.getHttpCode() + ""); if (connection.getResponseCode() == 200) { return 1; } else if (connection.getResponseCode() == 0) { return 1; } else { return response.getHttpCode(); } // Log.e("ErrorCode_Upload_Util_Return", response.getHttpCode()+""); } finally { if (fileStream != null) fileStream.close(); if (out != null) out.close(); if (in != null) in.close(); } } And Logcat 06-12 09:39:29.558: W/System.err(30740): java.io.FileNotFoundException: http://download-f77c.fshare.vn/upload/NRHAwh+bUCxjUtcD4cn9xqkADpdL32AT9pZm7zaboHLwJHLxOPxUX9CQxOeBRgelkjeNM5XcK11M1V-x 06-12 09:39:29.558: W/System.err(30740): at com.squareup.okhttp.internal.http.HttpURLConnectionImpl.getInputStream(HttpURLConnectionImpl.java:187) 06-12 09:39:29.563: W/System.err(30740): at com.fsharemobile.client.HttpUtil.upload2(HttpUtil.java:383) 06-12 09:39:29.563: W/System.err(30740): at com.fsharemobile.fragments.ExplorerFragment$7$1.run(ExplorerFragment.java:992) 06-12 09:39:29.568: W/System.err(30740): at java.lang.Thread.run(Thread.java:856) 06-12 09:39:29.568: E/Http_UpLoad_Response_Exception(30740): java.io.FileNotFoundException: http://download-f77c.fshare.vn/upload/NRHAwh+bUCxjUtcD4cn9xqkADpdL32AT9pZm7zaboHLwJHLxOPxUX9CQxOeBRgelkjeNM5XcK11M1V-x

    Read the article

  • what should I read in Windows [closed]

    - by Umesha MS
    I think I am asking generic question. Being a developer in windows what should I read to improve my skills? Do I need to read concepts on need basis or do I need to read concepts well in advance? If I want to read the concepts in advance then what topics do I need to read. (Note : I am a Windows developer. I use c++ programming language, Win32/MFC frame work and I use Visual studio IDE.) Updated: To be more specific when a fresher comes to my team I will ask him to read the following things and I tell him that these are very important. 1)C++ : 1 The C++ Programming Language by Bjarne Stroustrup's 2 Thinking in C++ 2nd Edition by Bruce Eckel 2)Win32/MFC : 1 Programming Applications for Microsoft Windows by Jeffrey Richter 2 windows programming by charles petzold 3 Programming Windows with MFC –by Jeff Prosise For 2 years and above developer I ask them to read 1)Above concepts (C++ and Win32/MFC)are mandate 2)Design Pattern : 1)Gang Of Four. 2)Head first patter. 3)Design princples. But for above 6 years’ experience developer what are the concepts are important.

    Read the article

  • Change English numbers to Persian and vice versa in MVC (httpmodule)?

    - by Mohammad
    I wanna change all English numbers to Persian for showing to users. and change them to English numbers again for giving all requests (Postbacks) e.g: we have something like this in view IRQ170, I wanna show IRQ??? to users and give IRQ170 from users. I know, I have to use Httpmodule, But I don't know how ? Could you please guide me? Edit : Let me describe more : I've written the following http module : using System; using System.Collections.Specialized; using System.Diagnostics; using System.IO; using System.Text; using System.Text.RegularExpressions; using System.Web; using System.Web.UI; using Smartiz.Common; namespace Smartiz.UI.Classes { public class PersianNumberModule : IHttpModule { private StreamWatcher _watcher; #region Implementation of IHttpModule /// <summary> /// Initializes a module and prepares it to handle requests. /// </summary> /// <param name="context">An <see cref="T:System.Web.HttpApplication"/> that provides access to the methods, properties, and events common to all application objects within an ASP.NET application </param> public void Init(HttpApplication context) { context.BeginRequest += ContextBeginRequest; context.EndRequest += ContextEndRequest; } /// <summary> /// Disposes of the resources (other than memory) used by the module that implements <see cref="T:System.Web.IHttpModule"/>. /// </summary> public void Dispose() { } #endregion private void ContextBeginRequest(object sender, EventArgs e) { HttpApplication context = sender as HttpApplication; if (context == null) return; _watcher = new StreamWatcher(context.Response.Filter); context.Response.Filter = _watcher; } private void ContextEndRequest(object sender, EventArgs e) { HttpApplication context = sender as HttpApplication; if (context == null) return; _watcher = new StreamWatcher(context.Response.Filter); context.Response.Filter = _watcher; } } public class StreamWatcher : Stream { private readonly Stream _stream; private readonly MemoryStream _memoryStream = new MemoryStream(); public StreamWatcher(Stream stream) { _stream = stream; } public override void Flush() { _stream.Flush(); } public override int Read(byte[] buffer, int offset, int count) { int bytesRead = _stream.Read(buffer, offset, count); string orgContent = Encoding.UTF8.GetString(buffer, offset, bytesRead); string newContent = orgContent.ToEnglishNumber(); int newByteCountLength = Encoding.UTF8.GetByteCount(newContent); Encoding.UTF8.GetBytes(newContent, 0, Encoding.UTF8.GetByteCount(newContent), buffer, 0); return newByteCountLength; } public override void Write(byte[] buffer, int offset, int count) { string strBuffer = Encoding.UTF8.GetString(buffer, offset, count); MatchCollection htmlAttributes = Regex.Matches(strBuffer, @"(\S+)=[""']?((?:.(?![""']?\s+(?:\S+)=|[>""']))+.)[""']?", RegexOptions.IgnoreCase | RegexOptions.Multiline); foreach (Match match in htmlAttributes) { strBuffer = strBuffer.Replace(match.Value, match.Value.ToEnglishNumber()); } MatchCollection scripts = Regex.Matches(strBuffer, "<script[^>]*>(.*?)</script>", RegexOptions.Singleline | RegexOptions.IgnoreCase | RegexOptions.Multiline | RegexOptions.IgnorePatternWhitespace); foreach (Match match in scripts) { MatchCollection values = Regex.Matches(match.Value, @"([""'])(?:(?=(\\?))\2.)*?\1", RegexOptions.Singleline | RegexOptions.IgnoreCase | RegexOptions.Multiline | RegexOptions.IgnorePatternWhitespace); foreach (Match stringValue in values) { strBuffer = strBuffer.Replace(stringValue.Value, stringValue.Value.ToEnglishNumber()); } } MatchCollection styles = Regex.Matches(strBuffer, "<style[^>]*>(.*?)</style>", RegexOptions.Singleline | RegexOptions.IgnoreCase | RegexOptions.Multiline | RegexOptions.IgnorePatternWhitespace); foreach (Match match in styles) { strBuffer = strBuffer.Replace(match.Value, match.Value.ToEnglishNumber()); } byte[] data = Encoding.UTF8.GetBytes(strBuffer); _memoryStream.Write(data, offset, count); _stream.Write(data, offset, count); } public override string ToString() { return Encoding.UTF8.GetString(_memoryStream.ToArray()); } #region Rest of the overrides public override bool CanRead { get { throw new NotImplementedException(); } } public override bool CanSeek { get { throw new NotImplementedException(); } } public override bool CanWrite { get { throw new NotImplementedException(); } } public override long Seek(long offset, SeekOrigin origin) { throw new NotImplementedException(); } public override void SetLength(long value) { throw new NotImplementedException(); } public override long Length { get { throw new NotImplementedException(); } } public override long Position { get { throw new NotImplementedException(); } set { throw new NotImplementedException(); } } #endregion } } It works well, but It converts all numbers in css and scripts files to Persian and it causes error.

    Read the article

  • Free Xsigo Technical Pre-sales workshop for Selected Partners !

    - by mseika
    In 2012 Oracle acquired Xsigo, a developer of network I/O virtualisation solutions. This acquisition compliments Oracle’s extensive virtualisation portfolio. With Oracle Virtual Networking products (Xsigo) you can: Virtualise connectivity from any server to any storage and any network. Reduce datacentre complexity by 70% Cut infrastructure expenses by up to 50% Benefits to Channel Partners: Offer a unique proposition that your competitors can’t match. Provide an innovative solution that delivers more performance at less cost. High margins that help sell more products and services. This course is aimed at Technical Pre-Sales Consultants equipping them to provide detailed demos, and architect RFP feedback and customer solutions. The language of this event is French. WHEN24th September 2013 WHEREOracle France 15, boulevard Charles De Gaulle92715 COLOMBES FEESFree of charge 09.00: Welcome, Coffee & Introduction 09.30: Value Propositions, Architecture & Use Cases 11.30: Build a OVN Web Quote & TCO 12.30: Lunch 13.30: Competitive Summary 14.00: Design Scenario Workshop 15.45: Questions/Opportunities  REGISTRATION: Register via this link as soon as possible, 14th june, latest. Note that we have only 20 seats in total for this event. Note that after 14th june we will release free seats for other organizations to register. We look forward to your participation! What we expect from you: You will bring your own laptop. Recommended browser is Firefox 10 ESR. You have checked the material and conducted the assessments. You will be flexible in terms of Agenda and Progress as we intend this to be more of a Workshop having Dialogue rather than sticking tightly into the tentative timeline. What this is not: This PartnerLab does not replace Oracle University Trainings. This PartnerLab does not lead to a Certification as such. This PartnerLab does not enable Partners to full and complete implementation skills.

    Read the article

  • Android FTP seek Bar issue

    - by Androi Developer
    I am trying to Upload & Download file to server using FTP and Download File using HTTP i am able to do this, my problem is when i am trying to show seek bar with Upload status of file using ftp then it's not showing. In this attached image Using HTTP it's showing seekbar with Network spped like this i need to display seek bar & Network sppeed in FTP. Below code i wrote for FTP to upload file into server. Code:-- // Upload System.out.println("upload test is called"); //Toast.makeText(con, "upload FTP test is called", Toast.LENGTH_SHORT).show(); //ContextWrapper context = null; //assetManager= context.getAssets(); assetManager = getResources().getAssets(); input1 = assetManager.open("hello.txt"); final long started = System.currentTimeMillis(); int size = input1.available(); //byte[] buffer = new byte[size]; byte dataByte[] = new byte[1024]; //input1.read(buffer); //String data = "ZK DATA TESTER TEST DATA1sdfsdf"; String data = input1.toString(); System.out.println("dat value is........"+data); final int lenghtOfFile = data.getBytes().length; //final int lenghtOfFile = input1.getBytes().length; System.out.println("length of file....."+lenghtOfFile); ByteArrayInputStream in = new ByteArrayInputStream( data.getBytes()); //toast("Uploading /test.txt"); //Toast.makeText(con,"File Size : " +data.getBytes().length + " bytes",Toast.LENGTH_SHORT).show(); //byte b[] = new byte[1024]; long total = 0; long sleepingTime= 0; System.out.println("started time --"+started); updateUI(status, "Uploading"); while ((count = in.read(dataByte)) != -1) { System.out.println("read value is...."+in.read(dataByte)); while (sleep1) { Thread.sleep(1000); System.out.println("ftp upload is in sleeping mode"); sleepingTime +=1000; } System.out.println("Total count --"+count); total += count; System.out.println("Only Total --"+total); final int progress = (int) ((total * 100) / lenghtOfFile); final long speed = total; //duration = ((System.currentTimeMillis() - started)-sleepingTime) / 1000; boolean result = ObjFtpCon.storeFile("/test.txt", input1); //boolean result = ObjFtpCon.storeFile(map.get("file_address").toString()+"/test.txt", input1); duration = ((System.currentTimeMillis() - started)-sleepingTime) / 1000; /* runOnUiThread(new Runnable() { public void run() { bar.setProgress(progress); // trans.setText("" + progress); //duration = ((System.currentTimeMillis() - started)-sleepingTime) / 1000; //duration = ((System.currentTimeMillis() - started)-sleepingTime) / 1000; //real_time.setText(duration + " secs"); if (duration != 0) { test_avg.setText((((speed / duration)*1000)*0.0078125) + " kbps"); if (pk <= (speed / duration) / 1024) { pk = (speed / duration) / 1024; } if (pk <= ((speed / duration)*1000)*0.0078125) { pk = (long)(((speed / duration)*1000)*0.0078125); } //peak.setText(pk + " kbps"); } } });*/ //in.close(); if (result) { updateUI(status, "Uploaded"); // toast("Uploading succeeded"); // toast("Uploaded at /test.txt"); //duration = ((System.currentTimeMillis() - started)-sleepingTime) / 1000; System.out.println("curreent time..... "+System.currentTimeMillis()); System.out.println("started time --"+started); System.out.println("sleep tome...."+sleepingTime); System.out.println("duration is....."+duration); runOnUiThread(new Runnable() { public void run() { bar.setProgress(progress); // trans.setText("" + progress); //duration = ((System.currentTimeMillis() - started)-sleepingTime) / 1000; real_time.setText(duration + " secs"); if (duration != 0) { test_avg.setText((speed / duration) / 1024 + " kbps"); if (pk <= (speed / duration) / 1024) { pk = (speed / duration) / 1024; } peak.setText(pk + " kbps"); } } }); } /*while(!result){Thread.sleep(1000);}*/ } in.close();

    Read the article

  • opengl problem works on droid but not droid eris and others.

    - by nathan
    This GlRenderer works fine on the moto droid, but does not work well at all on droid eris or other android phones does anyone know why? package com.ntu.way2fungames.spacehockeybase; import java.io.DataInputStream; import java.io.IOException; import java.nio.Buffer; import java.nio.FloatBuffer; import javax.microedition.khronos.egl.EGLConfig; import javax.microedition.khronos.opengles.GL10; import com.ntu.way2fungames.LoadFloatArray; import com.ntu.way2fungames.OGLTriReader; import android.content.res.AssetManager; import android.content.res.Resources; import android.opengl.GLU; import android.opengl.GLSurfaceView.Renderer; import android.os.Handler; import android.os.Message; public class GlRenderer extends Thread implements Renderer { private float drawArray[]; private float yoff; private float yoff2; private long lastRenderTime; private float[] yoffs= new float[10]; int Width; int Height; private float[] pixelVerts = new float[] { +.0f,+.0f,2, +.5f,+.5f,0, +.5f,-.5f,0, +.0f,+.0f,2, +.5f,-.5f,0, -.5f,-.5f,0, +.0f,+.0f,2, -.5f,-.5f,0, -.5f,+.5f,0, +.0f,+.0f,2, -.5f,+.5f,0, +.5f,+.5f,0, }; @Override public void run() { } private float[] arenaWalls = new float[] { 8.00f,2.00f,1f,2f,2f,1f,2.00f,8.00f,1f,8.00f,2.00f,1f,2.00f,8.00f,1f,8.00f,8.00f,1f, 2.00f,8.00f,1f,2f,2f,1f,0.00f,0.00f,0f,2.00f,8.00f,1f,0.00f,0.00f,0f,0.00f,10.00f,0f, 8.00f,8.00f,1f,2.00f,8.00f,1f,0.00f,10.00f,0f,8.00f,8.00f,1f,0.00f,10.00f,0f,10.00f,10.00f,0f, 2f,2f,1f,8.00f,2.00f,1f,10.00f,0.00f,0f,2f,2f,1f,10.00f,0.00f,0f,0.00f,0.00f,0f, 8.00f,2.00f,1f,8.00f,8.00f,1f,10.00f,10.00f,0f,8.00f,2.00f,1f,10.00f,10.00f,0f,10.00f,0.00f,0f, 10.00f,10.00f,0f,0.00f,10.00f,0f,0.00f,0.00f,0f,10.00f,10.00f,0f,0.00f,0.00f,0f,10.00f,0.00f,0f, 8.00f,6.00f,1f,8.00f,4.00f,1f,122f,4.00f,1f,8.00f,6.00f,1f,122f,4.00f,1f,122f,6.00f,1f, 8.00f,6.00f,1f,122f,6.00f,1f,120f,7.00f,0f,8.00f,6.00f,1f,120f,7.00f,0f,10.00f,7.00f,0f, 122f,4.00f,1f,8.00f,4.00f,1f,10.00f,3.00f,0f,122f,4.00f,1f,10.00f,3.00f,0f,120f,3.00f,0f, 480f,10.00f,0f,470f,10.00f,0f,470f,0.00f,0f,480f,10.00f,0f,470f,0.00f,0f,480f,0.00f,0f, 478f,2.00f,1f,478f,8.00f,1f,480f,10.00f,0f,478f,2.00f,1f,480f,10.00f,0f,480f,0.00f,0f, 472f,2f,1f,478f,2.00f,1f,480f,0.00f,0f,472f,2f,1f,480f,0.00f,0f,470f,0.00f,0f, 478f,8.00f,1f,472f,8.00f,1f,470f,10.00f,0f,478f,8.00f,1f,470f,10.00f,0f,480f,10.00f,0f, 472f,8.00f,1f,472f,2f,1f,470f,0.00f,0f,472f,8.00f,1f,470f,0.00f,0f,470f,10.00f,0f, 478f,2.00f,1f,472f,2f,1f,472f,8.00f,1f,478f,2.00f,1f,472f,8.00f,1f,478f,8.00f,1f, 478f,846f,1f,472f,846f,1f,472f,852f,1f,478f,846f,1f,472f,852f,1f,478f,852f,1f, 472f,852f,1f,472f,846f,1f,470f,844f,0f,472f,852f,1f,470f,844f,0f,470f,854f,0f, 478f,852f,1f,472f,852f,1f,470f,854f,0f,478f,852f,1f,470f,854f,0f,480f,854f,0f, 472f,846f,1f,478f,846f,1f,480f,844f,0f,472f,846f,1f,480f,844f,0f,470f,844f,0f, 478f,846f,1f,478f,852f,1f,480f,854f,0f,478f,846f,1f,480f,854f,0f,480f,844f,0f, 480f,854f,0f,470f,854f,0f,470f,844f,0f,480f,854f,0f,470f,844f,0f,480f,844f,0f, 10.00f,854f,0f,0.00f,854f,0f,0.00f,844f,0f,10.00f,854f,0f,0.00f,844f,0f,10.00f,844f,0f, 8.00f,846f,1f,8.00f,852f,1f,10.00f,854f,0f,8.00f,846f,1f,10.00f,854f,0f,10.00f,844f,0f, 2f,846f,1f,8.00f,846f,1f,10.00f,844f,0f,2f,846f,1f,10.00f,844f,0f,0.00f,844f,0f, 8.00f,852f,1f,2.00f,852f,1f,0.00f,854f,0f,8.00f,852f,1f,0.00f,854f,0f,10.00f,854f,0f, 2.00f,852f,1f,2f,846f,1f,0.00f,844f,0f,2.00f,852f,1f,0.00f,844f,0f,0.00f,854f,0f, 8.00f,846f,1f,2f,846f,1f,2.00f,852f,1f,8.00f,846f,1f,2.00f,852f,1f,8.00f,852f,1f, 6f,846f,1f,4f,846f,1f,4f,8f,1f,6f,846f,1f,4f,8f,1f,6f,8f,1f, 6f,846f,1f,6f,8f,1f,7f,10f,0f,6f,846f,1f,7f,10f,0f,7f,844f,0f, 4f,8f,1f,4f,846f,1f,3f,844f,0f,4f,8f,1f,3f,844f,0f,3f,10f,0f, 474f,8f,1f,474f,846f,1f,473f,844f,0f,474f,8f,1f,473f,844f,0f,473f,10f,0f, 476f,846f,1f,476f,8f,1f,477f,10f,0f,476f,846f,1f,477f,10f,0f,477f,844f,0f, 476f,846f,1f,474f,846f,1f,474f,8f,1f,476f,846f,1f,474f,8f,1f,476f,8f,1f, 130f,10.00f,0f,120f,10.00f,0f,120f,0.00f,0f,130f,10.00f,0f,120f,0.00f,0f,130f,0.00f,0f, 128f,2.00f,1f,128f,8.00f,1f,130f,10.00f,0f,128f,2.00f,1f,130f,10.00f,0f,130f,0.00f,0f, 122f,2f,1f,128f,2.00f,1f,130f,0.00f,0f,122f,2f,1f,130f,0.00f,0f,120f,0.00f,0f, 128f,8.00f,1f,122f,8.00f,1f,120f,10.00f,0f,128f,8.00f,1f,120f,10.00f,0f,130f,10.00f,0f, 122f,8.00f,1f,122f,2f,1f,120f,0.00f,0f,122f,8.00f,1f,120f,0.00f,0f,120f,10.00f,0f, 128f,2.00f,1f,122f,2f,1f,122f,8.00f,1f,128f,2.00f,1f,122f,8.00f,1f,128f,8.00f,1f, 352f,8.00f,1f,358f,8.00f,1f,358f,2.00f,1f,352f,8.00f,1f,358f,2.00f,1f,352f,2.00f,1f, 358f,2.00f,1f,358f,8.00f,1f,360f,10.00f,0f,358f,2.00f,1f,360f,10.00f,0f,360f,0.00f,0f, 352f,2.00f,1f,358f,2.00f,1f,360f,0.00f,0f,352f,2.00f,1f,360f,0.00f,0f,350f,0.00f,0f, 358f,8.00f,1f,352f,8.00f,1f,350f,10.00f,0f,358f,8.00f,1f,350f,10.00f,0f,360f,10.00f,0f, 352f,8.00f,1f,352f,2.00f,1f,350f,0.00f,0f,352f,8.00f,1f,350f,0.00f,0f,350f,10.00f,0f, 350f,0.00f,0f,360f,0.00f,0f,360f,10.00f,0f,350f,0.00f,0f,360f,10.00f,0f,350f,10.00f,0f, 358f,6.00f,1f,472f,6.00f,1f,470f,7.00f,0f,358f,6.00f,1f,470f,7.00f,0f,360f,7.00f,0f, 472f,4.00f,1f,358f,4.00f,1f,360f,3.00f,0f,472f,4.00f,1f,360f,3.00f,0f,470f,3.00f,0f, 472f,4.00f,1f,472f,6.00f,1f,358f,6.00f,1f,472f,4.00f,1f,358f,6.00f,1f,358f,4.00f,1f, 472f,848f,1f,472f,850f,1f,358f,850f,1f,472f,848f,1f,358f,850f,1f,358f,848f,1f, 472f,848f,1f,358f,848f,1f,360f,847f,0f,472f,848f,1f,360f,847f,0f,470f,847f,0f, 358f,850f,1f,472f,850f,1f,470f,851f,0f,358f,850f,1f,470f,851f,0f,360f,851f,0f, 350f,844f,0f,360f,844f,0f,360f,854f,0f,350f,844f,0f,360f,854f,0f,350f,854f,0f, 352f,852f,1f,352f,846f,1f,350f,844f,0f,352f,852f,1f,350f,844f,0f,350f,854f,0f, 358f,852f,1f,352f,852f,1f,350f,854f,0f,358f,852f,1f,350f,854f,0f,360f,854f,0f, 352f,846f,1f,358f,846f,1f,360f,844f,0f,352f,846f,1f,360f,844f,0f,350f,844f,0f, 358f,846f,1f,358f,852f,1f,360f,854f,0f,358f,846f,1f,360f,854f,0f,360f,844f,0f, 352f,852f,1f,358f,852f,1f,358f,846f,1f,352f,852f,1f,358f,846f,1f,352f,846f,1f, 128f,846f,1f,122f,846f,1f,122f,852f,1f,128f,846f,1f,122f,852f,1f,128f,852f,1f, 122f,852f,1f,122f,846f,1f,120f,844f,0f,122f,852f,1f,120f,844f,0f,120f,854f,0f, 128f,852f,1f,122f,852f,1f,120f,854f,0f,128f,852f,1f,120f,854f,0f,130f,854f,0f, 122f,846f,1f,128f,846f,1f,130f,844f,0f,122f,846f,1f,130f,844f,0f,120f,844f,0f, 128f,846f,1f,128f,852f,1f,130f,854f,0f,128f,846f,1f,130f,854f,0f,130f,844f,0f, 130f,854f,0f,120f,854f,0f,120f,844f,0f,130f,854f,0f,120f,844f,0f,130f,844f,0f, 122f,848f,1f,8f,848f,1f,10f,847f,0f,122f,848f,1f,10f,847f,0f,120f,847f,0f, 8f,850f,1f,122f,850f,1f,120f,851f,0f,8f,850f,1f,120f,851f,0f,10f,851f,0f, 8f,850f,1f,8f,848f,1f,122f,848f,1f,8f,850f,1f,122f,848f,1f,122f,850f,1f, 10f,847f,0f,120f,847f,0f,124.96f,829.63f,-0.50f,10f,847f,0f,124.96f,829.63f,-0.50f,19.51f,829.63f,-0.50f, 130f,844f,0f,130f,854f,0f,134.55f,836.34f,-0.50f,130f,844f,0f,134.55f,836.34f,-0.50f,134.55f,826.76f,-0.50f, 350f,844f,0f,350f,854f,0f,345.45f,836.34f,-0.50f,350f,844f,0f,345.45f,836.34f,-0.50f,345.45f,826.76f,-0.50f, 360f,847f,0f,470f,847f,0f,460.49f,829.63f,-0.50f,360f,847f,0f,460.49f,829.63f,-0.50f,355.04f,829.63f,-0.50f, 470f,7.00f,0f,360f,7.00f,0f,355.04f,24.37f,-0.50f,470f,7.00f,0f,355.04f,24.37f,-0.50f,460.49f,24.37f,-0.50f, 350f,10.00f,0f,350f,0.00f,0f,345.45f,17.66f,-0.50f,350f,10.00f,0f,345.45f,17.66f,-0.50f,345.45f,27.24f,-0.50f, 130f,10.00f,0f,130f,0.00f,0f,134.55f,17.66f,-0.50f,130f,10.00f,0f,134.55f,17.66f,-0.50f,134.55f,27.24f,-0.50f, 473f,844f,0f,473f,10f,0f,463.36f,27.24f,-0.50f,473f,844f,0f,463.36f,27.24f,-0.50f,463.36f,826.76f,-0.50f, 7f,10f,0f,7f,844f,0f,16.64f,826.76f,-0.50f,7f,10f,0f,16.64f,826.76f,-0.50f,16.64f,27.24f,-0.50f, 120f,7.00f,0f,10.00f,7.00f,0f,19.51f,24.37f,-0.50f,120f,7.00f,0f,19.51f,24.37f,-0.50f,124.96f,24.37f,-0.50f, 120f,7.00f,0f,130f,10.00f,0f,134.55f,27.24f,-0.50f,120f,7.00f,0f,134.55f,27.24f,-0.50f,124.96f,24.37f,-0.50f, 10.00f,7.00f,0f,7f,10f,0f,16.64f,27.24f,-0.50f,10.00f,7.00f,0f,16.64f,27.24f,-0.50f,19.51f,24.37f,-0.50f, 350f,10.00f,0f,360f,7.00f,0f,355.04f,24.37f,-0.50f,350f,10.00f,0f,355.04f,24.37f,-0.50f,345.45f,27.24f,-0.50f, 473f,10f,0f,470f,7.00f,0f,460.49f,24.37f,-0.50f,473f,10f,0f,460.49f,24.37f,-0.50f,463.36f,27.24f,-0.50f, 473f,844f,0f,470f,847f,0f,460.49f,829.63f,-0.50f,473f,844f,0f,460.49f,829.63f,-0.50f,463.36f,826.76f,-0.50f, 360f,847f,0f,350f,844f,0f,345.45f,826.76f,-0.50f,360f,847f,0f,345.45f,826.76f,-0.50f,355.04f,829.63f,-0.50f, 130f,844f,0f,120f,847f,0f,124.96f,829.63f,-0.50f,130f,844f,0f,124.96f,829.63f,-0.50f,134.55f,826.76f,-0.50f, 7f,844f,0f,10f,847f,0f,19.51f,829.63f,-0.50f,7f,844f,0f,19.51f,829.63f,-0.50f,16.64f,826.76f,-0.50f, 19.51f,829.63f,-0.50f,124.96f,829.63f,-0.50f,136.47f,789.37f,-2f,19.51f,829.63f,-0.50f,136.47f,789.37f,-2f,41.56f,789.37f,-2f, 134.55f,826.76f,-0.50f,134.55f,836.34f,-0.50f,145.09f,795.41f,-2f,134.55f,826.76f,-0.50f,145.09f,795.41f,-2f,145.09f,786.78f,-2f, 345.45f,826.76f,-0.50f,345.45f,836.34f,-0.50f,334.91f,795.41f,-2f,345.45f,826.76f,-0.50f,334.91f,795.41f,-2f,334.91f,786.78f,-2f, 355.04f,829.63f,-0.50f,460.49f,829.63f,-0.50f,438.44f,789.37f,-2f,355.04f,829.63f,-0.50f,438.44f,789.37f,-2f,343.53f,789.37f,-2f, 460.49f,24.37f,-0.50f,355.04f,24.37f,-0.50f,343.53f,64.63f,-2f,460.49f,24.37f,-0.50f,343.53f,64.63f,-2f,438.44f,64.63f,-2f, 345.45f,27.24f,-0.50f,345.45f,17.66f,-0.50f,334.91f,58.59f,-2f,345.45f,27.24f,-0.50f,334.91f,58.59f,-2f,334.91f,67.22f,-2f, 134.55f,27.24f,-0.50f,134.55f,17.66f,-0.50f,145.09f,58.59f,-2f,134.55f,27.24f,-0.50f,145.09f,58.59f,-2f,145.09f,67.22f,-2f, 463.36f,826.76f,-0.50f,463.36f,27.24f,-0.50f,441.03f,67.22f,-2f,463.36f,826.76f,-0.50f,441.03f,67.22f,-2f,441.03f,786.78f,-2f, 16.64f,27.24f,-0.50f,16.64f,826.76f,-0.50f,38.97f,786.78f,-2f,16.64f,27.24f,-0.50f,38.97f,786.78f,-2f,38.97f,67.22f,-2f, 124.96f,24.37f,-0.50f,19.51f,24.37f,-0.50f,41.56f,64.63f,-2f,124.96f,24.37f,-0.50f,41.56f,64.63f,-2f,136.47f,64.63f,-2f, 124.96f,24.37f,-0.50f,134.55f,27.24f,-0.50f,145.09f,67.22f,-2f,124.96f,24.37f,-0.50f,145.09f,67.22f,-2f,136.47f,64.63f,-2f, 19.51f,24.37f,-0.50f,16.64f,27.24f,-0.50f,38.97f,67.22f,-2f,19.51f,24.37f,-0.50f,38.97f,67.22f,-2f,41.56f,64.63f,-2f, 345.45f,27.24f,-0.50f,355.04f,24.37f,-0.50f,343.53f,64.63f,-2f,345.45f,27.24f,-0.50f,343.53f,64.63f,-2f,334.91f,67.22f,-2f, 463.36f,27.24f,-0.50f,460.49f,24.37f,-0.50f,438.44f,64.63f,-2f,463.36f,27.24f,-0.50f,438.44f,64.63f,-2f,441.03f,67.22f,-2f, 463.36f,826.76f,-0.50f,460.49f,829.63f,-0.50f,438.44f,789.37f,-2f,463.36f,826.76f,-0.50f,438.44f,789.37f,-2f,441.03f,786.78f,-2f, 355.04f,829.63f,-0.50f,345.45f,826.76f,-0.50f,334.91f,786.78f,-2f,355.04f,829.63f,-0.50f,334.91f,786.78f,-2f,343.53f,789.37f,-2f, 134.55f,826.76f,-0.50f,124.96f,829.63f,-0.50f,136.47f,789.37f,-2f,134.55f,826.76f,-0.50f,136.47f,789.37f,-2f,145.09f,786.78f,-2f, 16.64f,826.76f,-0.50f,19.51f,829.63f,-0.50f,41.56f,789.37f,-2f,16.64f,826.76f,-0.50f,41.56f,789.37f,-2f,38.97f,786.78f,-2f, }; private float[] backgroundData = new float[] { // # ,Scale, Speed, 300 , 1.05f, .001f, 150 , 1.07f, .002f, 075 , 1.10f, .003f, 040 , 1.12f, .006f, 20 , 1.15f, .012f, 10 , 1.25f, .025f, 05 , 1.50f, .050f, 3 , 2.00f, .100f, 2 , 3.00f, .200f, }; private float[] triangleCoords = new float[] { 0, -25, 0, -.75f, -1, 0, +.75f, -1, 0, 0, +2, 0, -.99f, -1, 0, .99f, -1, 0, }; private float[] triangleColors = new float[] { 1.0f, 1.0f, 1.0f, 0.05f, 1.0f, 1.0f, 1.0f, 0.5f, 1.0f, 1.0f, 1.0f, 0.5f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.5f, 1.0f, 1.0f, 1.0f, 0.5f, }; private float[] drawArray2; private FloatBuffer drawBuffer2; private float[] colorArray2; private static FloatBuffer colorBuffer; private static FloatBuffer triangleBuffer; private static FloatBuffer quadBuffer; private static FloatBuffer drawBuffer; private float[] backgroundVerts; private FloatBuffer backgroundVertsWrapped; private float[] backgroundColors; private Buffer backgroundColorsWraped; private FloatBuffer backgroundColorsWrapped; private FloatBuffer arenaWallsWrapped; private FloatBuffer arenaColorsWrapped; private FloatBuffer arena2VertsWrapped; private FloatBuffer arena2ColorsWrapped; private long wallHitStartTime; private int wallHitDrawTime; private FloatBuffer pixelVertsWrapped; private float[] wallHit; private FloatBuffer pixelColorsWrapped; //private float[] pitVerts; private Resources lResources; private FloatBuffer pitVertsWrapped; private FloatBuffer pitColorsWrapped; private boolean arena2; private long lastStartTime; private long startTime; private int state=1; private long introEndTime; protected long introTotalTime =8000; protected long introStartTime; private boolean initDone= false; private static int stateIntro = 0; private static int stateGame = 1; public GlRenderer(spacehockey nspacehockey) { lResources = nspacehockey.getResources(); nspacehockey.SetHandlerToGLRenderer(new Handler() { @Override public void handleMessage(Message m) { if (m.what ==0){ wallHit = m.getData().getFloatArray("wall hit"); wallHitStartTime =System.currentTimeMillis(); wallHitDrawTime = 1000; }else if (m.what ==1){ //state = stateIntro; introEndTime= System.currentTimeMillis()+introTotalTime ; introStartTime = System.currentTimeMillis(); } }}); } public void onSurfaceCreated(GL10 gl, EGLConfig config) { gl.glShadeModel(GL10.GL_SMOOTH); gl.glClearColor(.01f, .01f, .01f, .1f); gl.glClearDepthf(1.0f); gl.glEnable(GL10.GL_DEPTH_TEST); gl.glDepthFunc(GL10.GL_LEQUAL); gl.glHint(GL10.GL_PERSPECTIVE_CORRECTION_HINT, GL10.GL_NICEST); } private float SumOfStrideI(float[] data, int offset, int stride) { int sum= 0; for (int i=offset;i<data.length-1;i=i+stride){ sum = (int) (data[i]+sum); } return sum; } public void onDrawFrame(GL10 gl) { if (state== stateIntro){DrawIntro(gl);} if (state== stateGame){DrawGame(gl);} } private void DrawIntro(GL10 gl) { startTime = System.currentTimeMillis(); if (startTime< introEndTime){ float ptd = (float)(startTime- introStartTime)/(float)introTotalTime; float ptl = 1-ptd; gl.glClear(GL10.GL_COLOR_BUFFER_BIT);//dont move gl.glMatrixMode(GL10.GL_MODELVIEW); int setVertOff = 0; gl.glEnableClientState(GL10.GL_VERTEX_ARRAY); gl.glEnableClientState(GL10.GL_COLOR_ARRAY); gl.glColorPointer(4, GL10.GL_FLOAT, 0, backgroundColorsWrapped); for (int i = 0; i < backgroundData.length / 3; i = i + 1) { int setoff = i * 3; int setVertLen = (int) backgroundData[setoff]; yoffs[i] = (backgroundData[setoff + 2]*(90+(ptl*250))) + yoffs[i]; if (yoffs[i] > Height) {yoffs[i] = 0;} gl.glPushMatrix(); //gl.glTranslatef(0, -(Height/2), 0); //gl.glScalef(1f, 1f+(ptl*2), 1f); //gl.glTranslatef(0, +(Height/2), 0); gl.glTranslatef(0, yoffs[i], i+60); gl.glVertexPointer(3, GL10.GL_FLOAT, 0, backgroundVertsWrapped); gl.glDrawArrays(GL10.GL_TRIANGLES, (setVertOff * 2 * 3) - 0, (setVertLen * 2 * 3) - 1); gl.glTranslatef(0, -Height, 0); gl.glDrawArrays(GL10.GL_TRIANGLES, (setVertOff * 2 * 3) - 0, (setVertLen * 2 * 3) - 1); setVertOff = (int) (setVertOff + setVertLen); gl.glPopMatrix(); } gl.glDisableClientState(GL10.GL_VERTEX_ARRAY); gl.glDisableClientState(GL10.GL_COLOR_ARRAY); }else{state = stateGame;} } private void DrawGame(GL10 gl) { lastStartTime = startTime; startTime = System.currentTimeMillis(); long moveTime = startTime-lastStartTime; gl.glClear(GL10.GL_COLOR_BUFFER_BIT);//dont move gl.glMatrixMode(GL10.GL_MODELVIEW); int setVertOff = 0; gl.glEnableClientState(GL10.GL_VERTEX_ARRAY); gl.glEnableClientState(GL10.GL_COLOR_ARRAY); gl.glColorPointer(4, GL10.GL_FLOAT, 0, backgroundColorsWrapped); for (int i = 0; i < backgroundData.length / 3; i = i + 1) { int setoff = i * 3; int setVertLen = (int) backgroundData[setoff]; yoffs[i] = (backgroundData[setoff + 2]*moveTime) + yoffs[i]; if (yoffs[i] > Height) {yoffs[i] = 0;} gl.glPushMatrix(); gl.glTranslatef(0, yoffs[i], i+60); gl.glVertexPointer(3, GL10.GL_FLOAT, 0, backgroundVertsWrapped); gl.glDrawArrays(GL10.GL_TRIANGLES, (setVertOff * 6) - 0, (setVertLen *6) - 1); gl.glTranslatef(0, -Height, 0); gl.glDrawArrays(GL10.GL_TRIANGLES, (setVertOff * 6) - 0, (setVertLen *6) - 1); setVertOff = (int) (setVertOff + setVertLen); gl.glPopMatrix(); } //arena frame gl.glPushMatrix(); gl.glVertexPointer(3, GL10.GL_FLOAT, 0, arenaWallsWrapped); gl.glColorPointer(4, GL10.GL_FLOAT, 0, arenaColorsWrapped); gl.glColor4f(.1f, .5f, 1f, 1f); gl.glTranslatef(0, 0, 50); gl.glDrawArrays(GL10.GL_TRIANGLES, 0, (int)(arenaWalls.length / 3)); gl.glPopMatrix(); //arena2 frame if (arena2 == true){ gl.glLoadIdentity(); gl.glVertexPointer(3, GL10.GL_FLOAT, 0, pitVertsWrapped); gl.glColorPointer(4, GL10.GL_FLOAT, 0, pitColorsWrapped); gl.glTranslatef(0, -Height, 40); gl.glDrawArrays(GL10.GL_TRIANGLES, 0, (int)(pitVertsWrapped.capacity() / 3)); } if (wallHitStartTime != 0) { float timeRemaining = (wallHitStartTime + wallHitDrawTime)-System.currentTimeMillis(); if (timeRemaining>0) { gl.glPushMatrix(); float percentDone = 1-(timeRemaining/wallHitDrawTime); gl.glLoadIdentity(); gl.glVertexPointer(3, GL10.GL_FLOAT, 0, pixelVertsWrapped); gl.glColorPointer(4, GL10.GL_FLOAT, 0, pixelColorsWrapped); gl.glTranslatef(wallHit[0], wallHit[1], 0); gl.glScalef(8, Height*percentDone, 0); gl.glDrawArrays(GL10.GL_TRIANGLES, 0, 12); gl.glPopMatrix(); } else { wallHitStartTime = 0; } } gl.glDisableClientState(GL10.GL_VERTEX_ARRAY); gl.glDisableClientState(GL10.GL_COLOR_ARRAY); } public void init(GL10 gl) { if (arena2 == true) { AssetManager assetManager = lResources.getAssets(); try { // byte[] ba = {111,111}; DataInputStream Dis = new DataInputStream(assetManager .open("arena2.ogl")); pitVertsWrapped = LoadFloatArray.FromDataInputStream(Dis); pitColorsWrapped = MakeFakeLighting(pitVertsWrapped.array(), .25f, .50f, 1f, 200, .5f); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } if ((Height != 854) || (Width != 480)) { arenaWalls = ScaleFloats(arenaWalls, Width / 480f, Height / 854f); } arenaWallsWrapped = FloatBuffer.wrap(arenaWalls); arenaColorsWrapped = MakeFakeLighting(arenaWalls, .03f, .16f, .33f, .33f, 3); pixelVertsWrapped = FloatBuffer.wrap(pixelVerts); pixelColorsWrapped = MakeFakeLighting(pixelVerts, .03f, .16f, .33f, .10f, 20); initDone=true; } public void onSurfaceChanged(GL10 gl, int nwidth, int nheight) { Width= nwidth; Height = nheight; // avoid division by zero if (Height == 0) Height = 1; // draw on the entire screen gl.glViewport(0, 0, Width, Height); // setup projection matrix gl.glMatrixMode(GL10.GL_PROJECTION); gl.glLoadIdentity(); gl.glOrthof(0, Width, Height, 0, 100, -100); // gl.glOrthof(-nwidth*2, nwidth*2, nheight*2,-nheight*2, 100, -100); // GLU.gluPerspective(gl, 180.0f, (float)nwidth / (float)nheight, // 1000.0f, -1000.0f); gl.glEnable(GL10.GL_BLEND); gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE_MINUS_SRC_ALPHA); System.gc(); if (initDone == false){ SetupStars(); init(gl); } } public void SetupStars(){ backgroundVerts = new float[(int) SumOfStrideI(backgroundData,0,3)*triangleCoords.length]; backgroundColors = new float[(int) SumOfStrideI(backgroundData,0,3)*triangleColors.length]; int iii=0; int vc=0; float ascale=1; for (int i=0;i<backgroundColors.length-1;i=i+1){ if (iii==0){ascale = (float) Math.random();} if (vc==3){ backgroundColors[i]= (float) (triangleColors[iii]*(ascale)); }else if(vc==2){ backgroundColors[i]= (float) (triangleColors[iii]-(Math.random()*.2)); }else{ backgroundColors[i]= (float) (triangleColors[iii]-(Math.random()*.3)); } iii=iii+1;if (iii> triangleColors.length-1){iii=0;} vc=vc+1; if (vc>3){vc=0;} } int ii=0; int i =0; int set =0; while(ii<backgroundVerts.length-1){ float scale = (float) backgroundData[(set*3)+1]; int length= (int) backgroundData[(set*3)]; for (i=0;i<length;i=i+1){ if (set ==0){ AddVertsToArray(ScaleFloats(triangleCoords, scale,scale*.25f), backgroundVerts, (float)(Math.random()*Width),(float) (Math.random()*Height), ii); }else{ AddVertsToArray(ScaleFloats(triangleCoords, scale), backgroundVerts, (float)(Math.random()*Width),(float) (Math.random()*Height), ii);} ii=ii+triangleCoords.length; } set=set+1; } backgroundVertsWrapped = FloatBuffer.wrap(backgroundVerts); backgroundColorsWrapped = FloatBuffer.wrap(backgroundColors); } public void AddVertsToArray(float[] sva,float[]dva,float ox,float oy,int start){ //x for (int i=0;i<sva.length;i=i+3){ if((start+i)<dva.length){dva[start+i]= sva[i]+ox;} } //y for (int i=1;i<sva.length;i=i+3){ if((start+i)<dva.length){dva[start+i]= sva[i]+oy;} } //z for (int i=2;i<sva.length;i=i+3){ if((start+i)<dva.length){dva[start+i]= sva[i];} } } public FloatBuffer MakeFakeLighting(float[] sa,float r, float g,float b,float a,float multby){ float[] da = new float[((sa.length/3)*4)]; int vertex=0; for (int i=0;i<sa.length;i=i+3){ if (sa[i+2]>=1){ da[(vertex*4)+0]= r*multby*sa[i+2]; da[(vertex*4)+1]= g*multby*sa[i+2]; da[(vertex*4)+2]= b*multby*sa[i+2]; da[(vertex*4)+3]= a*multby*sa[i+2]; }else if (sa[i+2]<=-1){ float divisor = (multby*(-sa[i+2])); da[(vertex*4)+0]= r / divisor; da[(vertex*4)+1]= g / divisor; da[(vertex*4)+2]= b / divisor; da[(vertex*4)+3]= a / divisor; }else{ da[(vertex*4)+0]= r; da[(vertex*4)+1]= g; da[(vertex*4)+2]= b; da[(vertex*4)+3]= a; } vertex = vertex+1; } return FloatBuffer.wrap(da); } public float[] ScaleFloats(float[] va,float s){ float[] reta= new float[va.length]; for (int i=0;i<va.length;i=i+1){ reta[i]=va[i]*s; } return reta; } public float[] ScaleFloats(float[] va,float sx,float sy){ float[] reta= new float[va.length]; int cnt = 0; for (int i=0;i<va.length;i=i+1){ if (cnt==0){reta[i]=va[i]*sx;} else if (cnt==1){reta[i]=va[i]*sy;} else if (cnt==2){reta[i]=va[i];} cnt = cnt +1;if (cnt>2){cnt=0;} } return reta; } }

    Read the article

  • F# and the rose-tinted reflection

    - by CliveT
    We're already seeing increasing use of many cores on client desktops. It is a change that has been long predicted. It is not just a change in architecture, but our notions of efficiency in a program. No longer can we focus on the asymptotic complexity of an algorithm by counting the steps that a single core processor would take to execute it. Instead we'll soon be more concerned about the scalability of the algorithm and how well we can increase the performance as we increase the number of cores. This may even lead us to throw away our most efficient algorithms, and switch to less efficient algorithms that scale better. We might even be willing to waste cycles in order to speculatively execute at the algorithm rather than the hardware level. State is the big headache in this parallel world. At the hardware level, main memory doesn't necessarily contain the definitive value corresponding to a particular address. An update to a location might still be held in a CPU's local cache and it might be some time before the value gets propagated. To get the latest value, and the notion of "latest" takes a lot of defining in this world of rapidly mutating state, the CPUs may well need to communicate to decide who has the definitive value of a particular address in order to avoid lost updates. At the user program level, this means programmers will need to lock objects before modifying them, or attempt to avoid the overhead of locking by understanding the memory models at a very deep level. I think it's this need to avoid statefulness that has led to the recent resurgence of interest in functional languages. In the 1980s, functional languages started getting traction when research was carried out into how programs in such languages could be auto-parallelised. Sadly, the impracticality of some of the languages, the overheads of communication during this parallel execution, and rapid improvements in compiler technology on stock hardware meant that the functional languages fell by the wayside. The one thing that these languages were good at was getting rid of implicit state, and this single idea seems like a solution to the problems we are going to face in the coming years. Whether these languages will catch on is hard to predict. The mindset for writing a program in a functional language is really very different from the way that object-oriented problem decomposition happens - one has to focus on the verbs instead of the nouns, which takes some getting used to. There are a number of hybrid functional/object languages that have been becoming more popular in recent times. These half-way houses make it easy to use functional ideas for some parts of the program while still allowing access to the underlying object-focused platform without a great deal of impedance mismatch. One example is F# running on the CLR which, in Visual Studio 2010, has because a first class member of the pack. Inside Visual Studio 2010, the tooling for F# has improved to the point where it is easy to set breakpoints and watch values change while debugging at the source level. In my opinion, it is the tooling support that will enable the widespread adoption of functional languages - without this support, people will put off any transition into the functional world for as long as they possibly can. Without tool support it will make it hard to learn these languages. One tool that doesn't currently support F# is Reflector. The idea of decompiling IL to a functional language is daunting, but F# is potentially so important I couldn't dismiss the idea. As I'm currently developing Reflector 6.5, I thought it wise to take four days just to see how far I could get in doing so, even if it achieved little more than to be clearer on how much was possible, and how long it might take. You can read what happened here, and of the insights it gave us on ways to improve the tool.

    Read the article

  • Simple task framework - building software from reusable pieces

    - by RuslanD
    I'm writing a web service with several APIs, and they will be sharing some of the implementation code. In order not to copy-paste, I would like to ideally implement each API call as a series of tasks, which are executed in a sequence determined by the business logic. One obvious question is whether that's the best strategy for code reuse, or whether I can look at it in a different way. But assuming I want to go with tasks, several issues arise: What's a good task interface to use? How do I pass data computed in one task to another task in the sequence that might need it? In the past, I've worked with task interfaces like: interface Task<T, U> { U execute(T input); } Then I also had sort of a "task context" object which had getters and setters for any kind of data my tasks needed to produce or consume, and it gets passed to all tasks. I'm aware that this suffers from a host of problems. So I wanted to figure out a better way to implement it this time around. My current idea is to have a TaskContext object which is a type-safe heterogeneous container (as described in Effective Java). Each task can ask for an item from this container (task input), or add an item to the container (task output). That way, tasks don't need to know about each other directly, and I don't have to write a class with dozens of methods for each data item. There are, however, several drawbacks: Each item in this TaskContext container should be a complex type that wraps around the actual item data. If task A uses a String for some purpose, and task B uses a String for something entirely different, then just storing a mapping between String.class and some object doesn't work for both tasks. The other reason is that I can't use that kind of container for generic collections directly, so they need to be wrapped in another object. This means that, based on how many tasks I define, I would need to also define a number of classes for the task items that may be consumed or produced, which may lead to code bloat and duplication. For instance, if a task takes some Long value as input and produces another Long value as output, I would have to have two classes that simply wrap around a Long, which IMO can spiral out of control pretty quickly as the codebase evolves. I briefly looked at workflow engine libraries, but they kind of seem like a heavy hammer for this particular nail. How would you go about writing a simple task framework with the following requirements: Tasks should be as self-contained as possible, so they can be composed in different ways to create different workflows. That being said, some tasks may perform expensive computations that are prerequisites for other tasks. We want to have a way of storing the results of intermediate computations done by tasks so that other tasks can use those results for free. The task framework should be light, i.e. growing the code doesn't involve introducing many new types just to plug into the framework.

    Read the article

  • Access Denied

    - by Tony Davis
    When Microsoft executives wake up in the night screaming, I suspect they are having a nightmare about their own version of Frankenstein's monster. Created with the best of intentions, without thinking too hard of the long-term strategy, and having long outlived its usefulness, the monster still lives on, occasionally wreaking vengeance on the innocent. Its name is Access; a living synthesis of disparate body parts that is resistant to all attempts at a mercy-killing. In 1986, Microsoft had no database products, and needed one for their new OS/2 operating system, the successor to MSDOS. In 1986, they bought exclusive rights to Sybase DataServer, and were also intent on developing a desktop database to capture Ashton-Tate's dominance of that market, with dbase. This project, first called 'Omega' and later 'Cirrus', eventually spawned two products: Visual Basic in 1991 and Access in late 1992. Whereas Visual Basic battled with PowerBuilder for dominance in the client-server market, Access easily won the desktop database battle, with Dbase III and DataEase falling away. Access did an excellent job of abstracting and simplifying the task of building small database applications in a short amount of time, for a small number of departmental users, and often for a transient requirement. There is an excellent front end and forms generator. We not only see it in Access but parts of it also reappear in SSMS. It's good. A business user can pull together useful reports, without relying on extensive technical support. A skilled Access programmer can deliver a fairly sophisticated application, whilst the traditional client-server programmer is still sharpening his pencil. Even for the SQL Server programmer, the forms generator of Access is useful for sketching out application designs. So far, so good, but here's where the problems start; Access ties together two different products and the backend of Access is the bugbear. The limitations of Jet/ACE are well-known and documented. They range from MDB files that are prone to corruption, especially as they grow in size, pathetic security, and "copy and paste" Backups. The biggest problem though, was an infamous lack of scalability. Because Microsoft never realized how long the product would last, they put little energy into improving the beast. Microsoft 'ate their own dog food' by using Access for Microsoft Exchange and Outlook. They choked on it. For years, scalability and performance problems with Exchange Server have been laid at the door of the Jet Blue engine on which it relies. Substantial development work in Exchange 2010 was required, just in order to improve the engine and storage schema so that it more efficiently handled the reading and writing of mails. The alternative of using SQL Server just never panned out. The Jet engine was designed to limit concurrent users to a small number (10-20). When Access applications outgrew this, bitter experience proved that there really is no easy upgrade path from Access to SQL Server, beyond rewriting the whole lot from scratch. The various initiatives to do this never quite bridged the cultural gulf between Access and a true relational database So, what are the obvious alternatives for small, strategic database applications? I know many users who, for simple 'list maintenance' requirements are very happy using Excel databases. Surely, now that PowerPivot has led the way, it is time for Microsoft to offer a new RAD package for database application development; namely an Excel-based front end for SQL Server Express. In that way, we'll have a powerful and familiar front end, to a scalable database, and a clear upgrade path when an app takes off and needs to go enterprise. Cheers, Tony.

    Read the article

  • Recent improvements in Console Performance

    - by loren.konkus
    Recently, the WebLogic Server development and support organizations have worked with a number of customers to quantify and improve the performance of the Administration Console in large, distributed configurations where there is significant latency in the communications between the administration server and managed servers. These improvements fall into two categories: Constraining the amount of time that the Console stalls waiting for communication Reducing and streamlining the amount of data required for an update A few releases ago, we added support for a configurable domain-wide mbean "Invocation Timeout" value on the Console's configuration: general, advanced section for a domain. The default value for this setting is 0, which means wait indefinitely and was chosen for compatibility with the behavior of previous releases. This configuration setting applies to all mbean communications between the admin server and managed servers, and is the first line of defense against being blocked by a stalled or completely overloaded managed server. Each site should choose an appropriate timeout value for their environment and network latency. In the next release of WebLogic Server, we've added an additional console preference, "Management Operation Timeout", to the Console's shared preference page. This setting further constrains how long certain console pages will wait for slowly responding servers before returning partial results. While not all Console pages support this yet, key pages such as the Servers Configuration and Control table pages and the Deployments Control pages have been updated to support this. For example, if a user requests a Servers Table page and a Management Operation Timeout occurs, the table is displayed with both local configuration and remote runtime information from the responding managed servers and only local configuration information for servers that did not yet respond. This means that a troublesome managed server does not impede your ability to manage your domain using the Console. To support these changes, these Console pages have been re-written to use the Work Management feature of WebLogic Server to interact with each server or deployment concurrently, which further improves the responsiveness of these pages. The basic algorithm for these pages is: For each configuration mbean (ie, Servers) populate rows with configuration attributes from the fast, local mbean server Find a WorkManager For each server, Create a Work instance to obtain runtime mbean attributes for the server Schedule Work instance in the WorkManager Call WorkManager.waitForAll to wait WorkItems to finish, constrained by Management Operation Timeout For each WorkItem, if the runtime information obtained was not complete, add a message indicating which server has incomplete data Display collected data in table In addition to these changes to constrain how long the console waits for communication, a number of other changes have been made to reduce the amount and scope of managed server interactions for key pages. For example, in previous releases the Deployments Control table looked at the status of a deployment on every managed server, even those servers that the deployment was not currently targeted on. (This was done to handle an edge case where a deployment's target configuration was changed while it remained running on previously targeted servers.) We decided supporting that edge case did not warrant the performance impact for all, and instead only look at the status of a deployment on the servers it is targeted to. Comprehensive status continues to be available if a user clicks on the 'status' field for a deployment. Finally, changes have been made to the System Status portlet to reduce its impact on Console page display times. Obtaining health information for this display requires several mbean interactions with managed servers. In previous releases, this mbean interaction occurred with every display, and any delay or impediment in these interactions was reflected in the display time for every page. To reduce this impact, we've made several changes in this portlet: Using Work Management to obtain health concurrently Applying the operation timeout configuration to constrain how long we will wait Caching health information to reduce the cost during rapid navigation from page to page and only obtaining new health information if the previous information is over 30 seconds old. Eliminating heath collection if this portlet is minimized. Together, these Console changes have resulted in significant performance improvements for the customers with large configurations and high latency that we have worked with during their development, and some lesser performance improvements for those with small configurations and very fast networks. These changes will be included in the 11g Rel 1 patch set 2 (10.3.3.0) release of WebLogic Server.

    Read the article

< Previous Page | 96 97 98 99 100 101 102 103 104 105 106 107  | Next Page >