Search Results

Search found 9894 results on 396 pages for 'primary interop assembly'.

Page 104/396 | < Previous Page | 100 101 102 103 104 105 106 107 108 109 110 111  | Next Page >

  • Problems using FluentNHibernate + SQLite with .NET4?

    - by stiank81
    I have a WPF application running with VS2010 .Net3.5 using Nhibernate with FluentNHibernate + SQLite, and all works fine. Now I want to change to use .Net4, but this has turned into a more painful experience then I expected.. When setting up the connection a FluentConfigurationException is thrown from FluentConfiguration.BuildConfiguration saying: An invalid or incomplete configuration was used while creating a SessionFactory. Check PotentialReasons collection, and InnerException for more details. The inner exception gives us more information: Could not create the driver from NHibernate.Driver.SQLite20Driver, NHibernate, Version=2.1.2.4000, Culture=neutral, PublicKeyToken=aa95f207798dfdb4. It has an InnerException again: Exception has been thrown by the target of an invocation. Which again has an InnerException: The IDbCommand and IDbConnection implementation in the assembly System.Data.SQLite could not be found. Ensure that the assembly System.Data.SQLite is located in the application directory or in the Global Assembly Cache. If the assembly is in the GAC, use element in the application configuration file to specify the full name of the assembly. Now - to me it sounds like it doesn't find System.Data.SQLite.dll, but I can't understand this. Everywhere this is referenced I have "Copy Local", and I have verified that it is in every build folder for projects using SQLite. I have also copied it manually to every Debug folder of the solution - without luck. Notes: This is exactly the same code that worked just fine before I upgraded to .Net4. I did see some x64 x86 mismatch problems earlier, but I have switched to use x86 as the target platform and for all referenced dlls. I have verified that all files in the Debug-folder are x86. I have tried the precompiled Fluent dlls, I have tried compiling myself, and I have compiled my own version of Fluent using .Net4. I see that there are also others that have seen this problem, but I haven't really seen any solution yet. After @devio's answer I tried adding a reference to the SQLite dll. This didn't change anything, but I hope I made it right though.. This is what I added to the root node of the app.config file: <runtime> <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1"> <qualifyAssembly partialName="System.Data.SQLite" fullName="System.Data.SQLite, Version=1.0.60.0, Culture=neutral, PublicKeyToken=db937bc2d44ff139" /> </assemblyBinding> </runtime> Anyone out there using Fluent with .Net4 and SQLite successfully? Help! I'm lost...

    Read the article

  • Foreign Key Relationships and "belongs to many"

    - by jan
    I have the following model: S belongs to T T has many S A,B,C,D,E (etc) have 1 T each, so the T should belong to each of A,B,C,D,E (etc) At first I set up my foreign keys so that in A, fk_a_t would be the foreign key on A.t to T(id), in B it'd be fk_b_t, etc. Everything looks fine in my UML (using MySQLWorkBench), but generating the yii models results in it thinking that T has many A,B,C,D (etc) which to me is the reverse. It sounds to me like either I need to have A_T, B_T, C_T (etc) tables, but this would be a pain as there are a lot of tables that have this relationship. I've also googled that the better way to do this would be some sort of behavior, such that A,B,C,D (etc) can behave as a T, but I'm not clear on exactly how to do this (I will continue to google more on this) What do you think is the better solution? UML: Here's the DDL (auto generated). Just pretend that there is more than 3 tables referencing T. -- ----------------------------------------------------- -- Table `mydb`.`T` -- ----------------------------------------------------- CREATE TABLE IF NOT EXISTS `mydb`.`T` ( `id` INT NOT NULL AUTO_INCREMENT , PRIMARY KEY (`id`) ) ENGINE = InnoDB; -- ----------------------------------------------------- -- Table `mydb`.`S` -- ----------------------------------------------------- CREATE TABLE IF NOT EXISTS `mydb`.`S` ( `id` INT NOT NULL AUTO_INCREMENT , `thing` VARCHAR(45) NULL , `t` INT NOT NULL , PRIMARY KEY (`id`) , INDEX `fk_S_T` (`id` ASC) , CONSTRAINT `fk_S_T` FOREIGN KEY (`id` ) REFERENCES `mydb`.`T` (`id` ) ON DELETE NO ACTION ON UPDATE NO ACTION) ENGINE = InnoDB; -- ----------------------------------------------------- -- Table `mydb`.`A` -- ----------------------------------------------------- CREATE TABLE IF NOT EXISTS `mydb`.`A` ( `id` INT NOT NULL AUTO_INCREMENT , `T` INT NOT NULL , `stuff` VARCHAR(45) NULL , `bar` VARCHAR(45) NULL , `foo` VARCHAR(45) NULL , PRIMARY KEY (`id`) , INDEX `fk_A_T` (`T` ASC) , CONSTRAINT `fk_A_T` FOREIGN KEY (`T` ) REFERENCES `mydb`.`T` (`id` ) ON DELETE NO ACTION ON UPDATE NO ACTION) ENGINE = InnoDB; -- ----------------------------------------------------- -- Table `mydb`.`B` -- ----------------------------------------------------- CREATE TABLE IF NOT EXISTS `mydb`.`B` ( `id` INT NOT NULL AUTO_INCREMENT , `T` INT NOT NULL , `stuff2` VARCHAR(45) NULL , `foobar` VARCHAR(45) NULL , `other` VARCHAR(45) NULL , PRIMARY KEY (`id`) , INDEX `fk_A_T` (`T` ASC) , CONSTRAINT `fk_A_T` FOREIGN KEY (`T` ) REFERENCES `mydb`.`T` (`id` ) ON DELETE NO ACTION ON UPDATE NO ACTION) ENGINE = InnoDB; -- ----------------------------------------------------- -- Table `mydb`.`C` -- ----------------------------------------------------- CREATE TABLE IF NOT EXISTS `mydb`.`C` ( `id` INT NOT NULL AUTO_INCREMENT , `T` INT NOT NULL , `stuff3` VARCHAR(45) NULL , `foobar2` VARCHAR(45) NULL , `other4` VARCHAR(45) NULL , PRIMARY KEY (`id`) , INDEX `fk_A_T` (`T` ASC) , CONSTRAINT `fk_A_T` FOREIGN KEY (`T` ) REFERENCES `mydb`.`T` (`id` ) ON DELETE NO ACTION ON UPDATE NO ACTION) ENGINE = InnoDB;

    Read the article

  • Fleunt NHibernate not working outside of nunit test fixtures

    - by thorkia
    Okay, here is my problem... I created a Data Layer using the RTM Fluent Nhibernate. My create session code looks like this: _session = Fluently.Configure(). Database(SQLiteConfiguration.Standard.UsingFile("Data.s3db")) .Mappings( m => { m.FluentMappings.AddFromAssemblyOf<ProductMap>(); m.FluentMappings.AddFromAssemblyOf<ProductLogMap>(); }) .ExposeConfiguration(BuildSchema) .BuildSessionFactory(); When I reference the module in a test project, then create a test fixture that looks something like this: [Test] public void CanAddProduct() { var product = new Product {Code = "9", Name = "Test 9"}; IProductRepository repository = new ProductRepository(); repository.AddProduct(product); using (ISession session = OrmHelper.OpenSession()) { var fromDb = session.Get<Product>(product.Id); Assert.IsNotNull(fromDb); Assert.AreNotSame(fromDb, product); Assert.AreEqual(fromDb.Id, product.Id); } My tests pass. When I open up the created SQLite DB, the new Product with Code 9 is in it. the tables for Product and ProductLog are there. Now, when I create a new console application, and reference the same library, do something like this: Product product = new Product() {Code = "10", Name = "Hello"}; IProductRepository repository = new ProductRepository(); repository.AddProduct(product); Console.WriteLine(product.Id); Console.ReadLine(); It doesn't work. I actually get pretty nasty exception chain. To save you lots of head aches, here is the summary: Top Level exception: An invalid or incomplete configuration was used while creating a SessionFactory. Check PotentialReasons collection, and InnerException for more detail.\r\n\r\n The PotentialReasons collection is empty The Inner exception: The IDbCommand and IDbConnection implementation in the assembly System.Data.SQLite could not be found. Ensure that the assembly System.Data.SQLite is located in the application directory or in the Global Assembly Cache. If the assembly is in the GAC, use element in the application configuration file to specify the full name of the assembly. Both the unit test library and the console application reference the exact same version of System.Data.SQLite. Both projects have the exact same DLLs in the debug folder. I even tried copying SQLite DB the unit test library created into the debug directory of the console app, and removed the build schema lines and it still fails If anyone can help me figure out why this won't work outside of my unit tests it would be greatly appreciated. This crazy bug has me at a stand still.

    Read the article

  • How to set which version of the VC++ runtime Visual Studio 2005 targets

    - by TallGuy
    I have an application that contains a VC++ project (along with C# projects). Previously, (i.e. during the last year or so) when a build has been done, Visual Studio 2005 appears to be targeting the VC++ runtime version 8.0.50727.762. At least, that is what the Assembly.dll.intermediate.manifest file is telling me: <?xml version='1.0' encoding='UTF-8' standalone='yes'?> <assembly xmlns='urn:schemas-microsoft-com:asm.v1' manifestVersion='1.0'> <dependency> <dependentAssembly> <assemblyIdentity type='win32' name='Microsoft.VC80.CRT' version='8.0.50727.762' processorArchitecture='x86' publicKeyToken='1fc8b3b9a1e18e3b' /> </dependentAssembly> </dependency> </assembly> This version number matches the Visual Studio 2005 version number. The application worked fine when deployed to the webserver. The sun was shining, the birds were singing and all was right with the world. Now something has changed. I don't know what - a security patch, an obscure Visual Studio setting or something. Now Visual Studio 2005 seems to be targeting the wrong version of the VC++ runtime: <?xml version='1.0' encoding='UTF-8' standalone='yes'?> <assembly xmlns='urn:schemas-microsoft-com:asm.v1' manifestVersion='1.0'> <dependency> <dependentAssembly> <assemblyIdentity type='win32' name='Microsoft.VC80.CRT' version='8.0.50727.4053' processorArchitecture='x86' publicKeyToken='1fc8b3b9a1e18e3b' /> </dependentAssembly> </dependency> </assembly> When I deploy the application to the webserver, I get the dreaded This application has failed to start because the application configuration is incorrect. Reinstalling the application may fix this problem. (Exception from HRESULT: 0x800736B1) error. This problem occurs even when I recompile previous versions of the application. I can absolutely guarantee that nothing at all has changed in the solution - we zip up the entire contents of the solution as part of the build process and archive it. I have unzipped a number of these to a temp directory, verified that the previous manifest file refers to 8.0.50727.762, recompiled using exactly the same command at the command line and then verified that the new manifest file now refers to 8.0.50727.4053. I am using Microsoft Visual Studio 2005 Version 8.0.50727.762 (SP.050727-7600) and Microsoft Visual C++ 2005 77646-008-0000007-41610. Why would Visual Studio revert to a previous version of the VC++ runtime? How do I specify which version it should use? What is going wrong here?

    Read the article

  • WPF windows locked when calling webservice. Even when run asynchronously

    - by SumGuy
    Hi there. I'm having a big problem when calling a web service from my WPF application. The application/window locks until the process has completed. I've attempted to run this asynchronously but the problem still persists. Currently, the web service call I'm making can last 45-60 seconds. It runs a process on the server to fetch a big chunk of data. As it take a little while I wanted to have a progress bar moving indeterminately for the user to see that the application hasn't stalled or anything (you know how impatatient they get). So: private void btnSelect_Click(object sender, RoutedEventArgs e) { wDrawingList = new WindowDrawingList(systemManager); AsyncMethodHandler caller = default(AsyncMethodHandler); caller = new AsyncMethodHandler(setupDrawingList); // open new thread with callback method caller.BeginInvoke((Guid)((Button)sender).Tag, MyAsyncCallback, null); } Click a button and the app will create the form that the async stuff will be posted to and set up the async stuff calling the async method. public bool setupDrawingList(Guid ID) { if (systemManager.set(ID)) { wDrawingList.Dispatcher.Invoke(DispatcherPriority.Background, new Action(() => { wDrawingList.ShowForm(); Hide(); })); return true; } return false; } This is the async method. The showForm method contains the calls to setup the new form including the monster web service call public void MyAsyncCallback(IAsyncResult ar) { // Because you passed your original delegate in the asyncState parameter of the Begin call, you can get it back here to complete the call. MethodDelegate dlgt = (MethodDelegate)ar.AsyncState; // Complete the call. bool output = dlgt.EndInvoke(ar); try { // Retrieve the delegate. AsyncResult result = (AsyncResult)ar; AsyncMethodHandler caller = (AsyncMethodHandler)result.AsyncDelegate; // Because this method is running from secondary thread it can never access ui objects because they are created // on the primary thread. // Call EndInvoke to retrieve the results. bool returnValue = caller.EndInvoke(ar); // Still on secondary thread, must update ui on primary thread UpdateUI(returnValue == true ? "Success" : "Failed"); } catch (Exception ex) { string exMessage = null; exMessage = "Error: " + ex.Message; UpdateUI(exMessage); } } public void UpdateUI(string outputValue) { // Get back to primary thread to update ui UpdateUIHandler uiHandler = new UpdateUIHandler(UpdateUIIndicators); string results = outputValue; // Run new thread off Dispatched (primary thread) this.Dispatcher.Invoke(System.Windows.Threading.DispatcherPriority.Normal, uiHandler, results); } public void UpdateUIIndicators(string outputValue) { // update user interface controls from primary UI thread sbi3.Content = "Processing Completed."; } Any help or theories are appreciated. I'm at a loss. Thanks in advance

    Read the article

  • MySQL forgot about automatically creating an index for a foreign key?

    - by bobo
    After running the following SQL statements, you will see that, MySQL has automatically created the non-unique index question_tag_tag_id_tag_id on the tag_id column for me after the first ALTER TABLE statement has run. But after the second ALTER TABLE statement has run, I think MySQL should also automatically create another non-unique index question_tag_question_id_question_id on the question_id column for me. But as you can see from the SHOW INDEXES statement output, it's not there. Why does MySQL forget about the second ALTER TABLE statement? By the way, since I have already created a unique index question_id_tag_id_idx used by both question_id and tag_id columns. Is creating a separate index for each of them redundant? mysql> DROP DATABASE mydatabase; Query OK, 1 row affected (0.00 sec) mysql> CREATE DATABASE mydatabase; Query OK, 1 row affected (0.00 sec) mysql> USE mydatabase; Database changed mysql> CREATE TABLE question (id BIGINT AUTO_INCREMENT, html TEXT, PRIMARY KEY(id)) ENGINE = INNODB; Query OK, 0 rows affected (0.05 sec) mysql> CREATE TABLE tag (id BIGINT AUTO_INCREMENT, name VARCHAR(10) NOT NULL, UNIQUE INDEX name_idx (name), PRIMARY KEY(id)) ENGINE = INNODB; Query OK, 0 rows affected (0.05 sec) mysql> CREATE TABLE question_tag (question_id BIGINT, tag_id BIGINT, UNIQUE INDEX question_id_tag_id_idx (question_id, tag_id), PRIMARY KEY(question_id, tag_id)) ENGINE = INNODB; Query OK, 0 rows affected (0.00 sec) mysql> ALTER TABLE question_tag ADD CONSTRAINT question_tag_tag_id_tag_id FOREIGN KEY (tag_id) REFERENCES tag(id); Query OK, 0 rows affected (0.10 sec) Records: 0 Duplicates: 0 Warnings: 0 mysql> ALTER TABLE question_tag ADD CONSTRAINT question_tag_question_id_question_id FOREIGN KEY (question_id) REFERENCES question(id); Query OK, 0 rows affected (0.13 sec) Records: 0 Duplicates: 0 Warnings: 0 mysql> SHOW INDEXES FROM question_tag; +--------------+------------+----------------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+ | Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | +--------------+------------+----------------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+ | question_tag | 0 | PRIMARY | 1 | question_id | A | 0 | NULL | NULL | | BTREE | | | question_tag | 0 | PRIMARY | 2 | tag_id | A | 0 | NULL | NULL | | BTREE | | | question_tag | 0 | question_id_tag_id_idx | 1 | question_id | A | 0 | NULL | NULL | | BTREE | | | question_tag | 0 | question_id_tag_id_idx | 2 | tag_id | A | 0 | NULL | NULL | | BTREE | | | question_tag | 1 | question_tag_tag_id_tag_id | 1 | tag_id | A | 0 | NULL | NULL | | BTREE | | +--------------+------------+----------------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+ 5 rows in set (0.01 sec) mysql>

    Read the article

  • Creating Custom Ajax Control Toolkit Controls

    - by Stephen Walther
    The goal of this blog entry is to explain how you can extend the Ajax Control Toolkit with custom Ajax Control Toolkit controls. I describe how you can create the two halves of an Ajax Control Toolkit control: the server-side control extender and the client-side control behavior. Finally, I explain how you can use the new Ajax Control Toolkit control in a Web Forms page. At the end of this blog entry, there is a link to download a Visual Studio 2010 solution which contains the code for two Ajax Control Toolkit controls: SampleExtender and PopupHelpExtender. The SampleExtender contains the minimum skeleton for creating a new Ajax Control Toolkit control. You can use the SampleExtender as a starting point for your custom Ajax Control Toolkit controls. The PopupHelpExtender control is a super simple custom Ajax Control Toolkit control. This control extender displays a help message when you start typing into a TextBox control. The animated GIF below demonstrates what happens when you click into a TextBox which has been extended with the PopupHelp extender. Here’s a sample of a Web Forms page which uses the control: <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="ShowPopupHelp.aspx.cs" Inherits="MyACTControls.Web.Default" %> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html > <head runat="server"> <title>Show Popup Help</title> </head> <body> <form id="form1" runat="server"> <div> <act:ToolkitScriptManager ID="tsm" runat="server" /> <%-- Social Security Number --%> <asp:Label ID="lblSSN" Text="SSN:" AssociatedControlID="txtSSN" runat="server" /> <asp:TextBox ID="txtSSN" runat="server" /> <act:PopupHelpExtender id="ph1" TargetControlID="txtSSN" HelpText="Please enter your social security number." runat="server" /> <%-- Social Security Number --%> <asp:Label ID="lblPhone" Text="Phone Number:" AssociatedControlID="txtPhone" runat="server" /> <asp:TextBox ID="txtPhone" runat="server" /> <act:PopupHelpExtender id="ph2" TargetControlID="txtPhone" HelpText="Please enter your phone number." runat="server" /> </div> </form> </body> </html> In the page above, the PopupHelp extender is used to extend the functionality of the two TextBox controls. When focus is given to a TextBox control, the popup help message is displayed. An Ajax Control Toolkit control extender consists of two parts: a server-side control extender and a client-side behavior. For example, the PopupHelp extender consists of a server-side PopupHelpExtender control (PopupHelpExtender.cs) and a client-side PopupHelp behavior JavaScript script (PopupHelpBehavior.js). Over the course of this blog entry, I describe how you can create both the server-side extender and the client-side behavior. Writing the Server-Side Code Creating a Control Extender You create a control extender by creating a class that inherits from the abstract ExtenderControlBase class. For example, the PopupHelpExtender control is declared like this: public class PopupHelpExtender: ExtenderControlBase { } The ExtenderControlBase class is part of the Ajax Control Toolkit. This base class contains all of the common server properties and methods of every Ajax Control Toolkit extender control. The ExtenderControlBase class inherits from the ExtenderControl class. The ExtenderControl class is a standard class in the ASP.NET framework located in the System.Web.UI namespace. This class is responsible for generating a client-side behavior. The class generates a call to the Microsoft Ajax Library $create() method which looks like this: <script type="text/javascript"> $create(MyACTControls.PopupHelpBehavior, {"HelpText":"Please enter your social security number.","id":"ph1"}, null, null, $get("txtSSN")); }); </script> The JavaScript $create() method is part of the Microsoft Ajax Library. The reference for this method can be found here: http://msdn.microsoft.com/en-us/library/bb397487.aspx This method accepts the following parameters: type – The type of client behavior to create. The $create() method above creates a client PopupHelpBehavior. Properties – Enables you to pass initial values for the properties of the client behavior. For example, the initial value of the HelpText property. This is how server property values are passed to the client. Events – Enables you to pass client-side event handlers to the client behavior. References – Enables you to pass references to other client components. Element – The DOM element associated with the client behavior. This will be the DOM element associated with the control being extended such as the txtSSN TextBox. The $create() method is generated for you automatically. You just need to focus on writing the server-side control extender class. Specifying the Target Control All Ajax Control Toolkit extenders inherit a TargetControlID property from the ExtenderControlBase class. This property, the TargetControlID property, points at the control that the extender control extends. For example, the Ajax Control Toolkit TextBoxWatermark control extends a TextBox, the ConfirmButton control extends a Button, and the Calendar control extends a TextBox. You must indicate the type of control which your extender is extending. You indicate the type of control by adding a [TargetControlType] attribute to your control. For example, the PopupHelp extender is declared like this: [TargetControlType(typeof(TextBox))] public class PopupHelpExtender: ExtenderControlBase { } The PopupHelp extender can be used to extend a TextBox control. If you try to use the PopupHelp extender with another type of control then an exception is thrown. If you want to create an extender control which can be used with any type of ASP.NET control (Button, DataView, TextBox or whatever) then use the following attribute: [TargetControlType(typeof(Control))] Decorating Properties with Attributes If you decorate a server-side property with the [ExtenderControlProperty] attribute then the value of the property gets passed to the control’s client-side behavior. The value of the property gets passed to the client through the $create() method discussed above. The PopupHelp control contains the following HelpText property: [ExtenderControlProperty] [RequiredProperty] public string HelpText { get { return GetPropertyValue("HelpText", "Help Text"); } set { SetPropertyValue("HelpText", value); } } The HelpText property determines the help text which pops up when you start typing into a TextBox control. Because the HelpText property is decorated with the [ExtenderControlProperty] attribute, any value assigned to this property on the server is passed to the client automatically. For example, if you declare the PopupHelp extender in a Web Form page like this: <asp:TextBox ID="txtSSN" runat="server" /> <act:PopupHelpExtender id="ph1" TargetControlID="txtSSN" HelpText="Please enter your social security number." runat="server" />   Then the PopupHelpExtender renders the call to the the following Microsoft Ajax Library $create() method: $create(MyACTControls.PopupHelpBehavior, {"HelpText":"Please enter your social security number.","id":"ph1"}, null, null, $get("txtSSN")); You can see this call to the JavaScript $create() method by selecting View Source in your browser. This call to the $create() method calls a method named set_HelpText() automatically and passes the value “Please enter your social security number”. There are several attributes which you can use to decorate server-side properties including: ExtenderControlProperty – When a property is marked with this attribute, the value of the property is passed to the client automatically. ExtenderControlEvent – When a property is marked with this attribute, the property represents a client event handler. Required – When a value is not assigned to this property on the server, an error is displayed. DefaultValue – The default value of the property passed to the client. ClientPropertyName – The name of the corresponding property in the JavaScript behavior. For example, the server-side property is named ID (uppercase) and the client-side property is named id (lower-case). IDReferenceProperty – Applied to properties which refer to the IDs of other controls. URLProperty – Calls ResolveClientURL() to convert from a server-side URL to a URL which can be used on the client. ElementReference – Returns a reference to a DOM element by performing a client $get(). The WebResource, ClientResource, and the RequiredScript Attributes The PopupHelp extender uses three embedded resources named PopupHelpBehavior.js, PopupHelpBehavior.debug.js, and PopupHelpBehavior.css. The first two files are JavaScript files and the final file is a Cascading Style sheet file. These files are compiled as embedded resources. You don’t need to mark them as embedded resources in your Visual Studio solution because they get added to the assembly when the assembly is compiled by a build task. You can see that these files get embedded into the MyACTControls assembly by using Red Gate’s .NET Reflector tool: In order to use these files with the PopupHelp extender, you need to work with both the WebResource and the ClientScriptResource attributes. The PopupHelp extender includes the following three WebResource attributes. [assembly: WebResource("PopupHelp.PopupHelpBehavior.js", "text/javascript")] [assembly: WebResource("PopupHelp.PopupHelpBehavior.debug.js", "text/javascript")] [assembly: WebResource("PopupHelp.PopupHelpBehavior.css", "text/css", PerformSubstitution = true)] These WebResource attributes expose the embedded resource from the assembly so that they can be accessed by using the ScriptResource.axd or WebResource.axd handlers. The first parameter passed to the WebResource attribute is the name of the embedded resource and the second parameter is the content type of the embedded resource. The PopupHelp extender also includes the following ClientScriptResource and ClientCssResource attributes: [ClientScriptResource("MyACTControls.PopupHelpBehavior", "PopupHelp.PopupHelpBehavior.js")] [ClientCssResource("PopupHelp.PopupHelpBehavior.css")] Including these attributes causes the PopupHelp extender to request these resources when you add the PopupHelp extender to a page. If you open View Source in a browser which uses the PopupHelp extender then you will see the following link for the Cascading Style Sheet file: <link href="/WebResource.axd?d=0uONMsWXUuEDG-pbJHAC1kuKiIMteQFkYLmZdkgv7X54TObqYoqVzU4mxvaa4zpn5H9ch0RDwRYKwtO8zM5mKgO6C4WbrbkWWidKR07LD1d4n4i_uNB1mHEvXdZu2Ae5mDdVNDV53znnBojzCzwvSw2&amp;t=634417392021676003" type="text/css" rel="stylesheet" /> You also will see the following script include for the JavaScript file: <script src="/ScriptResource.axd?d=pIS7xcGaqvNLFBvExMBQSp_0xR3mpDfS0QVmmyu1aqDUjF06TrW1jVDyXNDMtBHxpRggLYDvgFTWOsrszflZEDqAcQCg-hDXjun7ON0Ol7EXPQIdOe1GLMceIDv3OeX658-tTq2LGdwXhC1-dE7_6g2&amp;t=ffffffff88a33b59" type="text/javascript"></script> The JavaScrpt file returned by this request to ScriptResource.axd contains the combined scripts for any and all Ajax Control Toolkit controls in a page. By default, the Ajax Control Toolkit combines all of the JavaScript files required by a page into a single JavaScript file. Combining files in this way really speeds up how quickly all of the JavaScript files get delivered from the web server to the browser. So, by default, there will be only one ScriptResource.axd include for all of the JavaScript files required by a page. If you want to disable Script Combining, and create separate links, then disable Script Combining like this: <act:ToolkitScriptManager ID="tsm" runat="server" CombineScripts="false" /> There is one more important attribute used by Ajax Control Toolkit extenders. The PopupHelp behavior uses the following two RequirdScript attributes to load the JavaScript files which are required by the PopupHelp behavior: [RequiredScript(typeof(CommonToolkitScripts), 0)] [RequiredScript(typeof(PopupExtender), 1)] The first parameter of the RequiredScript attribute represents either the string name of a JavaScript file or the type of an Ajax Control Toolkit control. The second parameter represents the order in which the JavaScript files are loaded (This second parameter is needed because .NET attributes are intrinsically unordered). In this case, the RequiredScript attribute will load the JavaScript files associated with the CommonToolkitScripts type and the JavaScript files associated with the PopupExtender in that order. The PopupHelp behavior depends on these JavaScript files. Writing the Client-Side Code The PopupHelp extender uses a client-side behavior written with the Microsoft Ajax Library. Here is the complete code for the client-side behavior: (function () { // The unique name of the script registered with the // client script loader var scriptName = "PopupHelpBehavior"; function execute() { Type.registerNamespace('MyACTControls'); MyACTControls.PopupHelpBehavior = function (element) { /// <summary> /// A behavior which displays popup help for a textbox /// </summmary> /// <param name="element" type="Sys.UI.DomElement">The element to attach to</param> MyACTControls.PopupHelpBehavior.initializeBase(this, [element]); this._textbox = Sys.Extended.UI.TextBoxWrapper.get_Wrapper(element); this._cssClass = "ajax__popupHelp"; this._popupBehavior = null; this._popupPosition = Sys.Extended.UI.PositioningMode.BottomLeft; this._popupDiv = null; this._helpText = "Help Text"; this._element$delegates = { focus: Function.createDelegate(this, this._element_onfocus), blur: Function.createDelegate(this, this._element_onblur) }; } MyACTControls.PopupHelpBehavior.prototype = { initialize: function () { MyACTControls.PopupHelpBehavior.callBaseMethod(this, 'initialize'); // Add event handlers for focus and blur var element = this.get_element(); $addHandlers(element, this._element$delegates); }, _ensurePopup: function () { if (!this._popupDiv) { var element = this.get_element(); var id = this.get_id(); this._popupDiv = $common.createElementFromTemplate({ nodeName: "div", properties: { id: id + "_popupDiv" }, cssClasses: ["ajax__popupHelp"] }, element.parentNode); this._popupBehavior = new $create(Sys.Extended.UI.PopupBehavior, { parentElement: element }, {}, {}, this._popupDiv); this._popupBehavior.set_positioningMode(this._popupPosition); } }, get_HelpText: function () { return this._helpText; }, set_HelpText: function (value) { if (this._HelpText != value) { this._helpText = value; this._ensurePopup(); this._popupDiv.innerHTML = value; this.raisePropertyChanged("Text") } }, _element_onfocus: function (e) { this.show(); }, _element_onblur: function (e) { this.hide(); }, show: function () { this._popupBehavior.show(); }, hide: function () { if (this._popupBehavior) { this._popupBehavior.hide(); } }, dispose: function() { var element = this.get_element(); $clearHandlers(element); if (this._popupBehavior) { this._popupBehavior.dispose(); this._popupBehavior = null; } } }; MyACTControls.PopupHelpBehavior.registerClass('MyACTControls.PopupHelpBehavior', Sys.Extended.UI.BehaviorBase); Sys.registerComponent(MyACTControls.PopupHelpBehavior, { name: "popupHelp" }); } // execute if (window.Sys && Sys.loader) { Sys.loader.registerScript(scriptName, ["ExtendedBase", "ExtendedCommon"], execute); } else { execute(); } })();   In the following sections, we’ll discuss how this client-side behavior works. Wrapping the Behavior for the Script Loader The behavior is wrapped with the following script: (function () { // The unique name of the script registered with the // client script loader var scriptName = "PopupHelpBehavior"; function execute() { // Behavior Content } // execute if (window.Sys && Sys.loader) { Sys.loader.registerScript(scriptName, ["ExtendedBase", "ExtendedCommon"], execute); } else { execute(); } })(); This code is required by the Microsoft Ajax Library Script Loader. You need this code if you plan to use a behavior directly from client-side code and you want to use the Script Loader. If you plan to only use your code in the context of the Ajax Control Toolkit then you can leave out this code. Registering a JavaScript Namespace The PopupHelp behavior is declared within a namespace named MyACTControls. In the code above, this namespace is created with the following registerNamespace() method: Type.registerNamespace('MyACTControls'); JavaScript does not have any built-in way of creating namespaces to prevent naming conflicts. The Microsoft Ajax Library extends JavaScript with support for namespaces. You can learn more about the registerNamespace() method here: http://msdn.microsoft.com/en-us/library/bb397723.aspx Creating the Behavior The actual Popup behavior is created with the following code. MyACTControls.PopupHelpBehavior = function (element) { /// <summary> /// A behavior which displays popup help for a textbox /// </summmary> /// <param name="element" type="Sys.UI.DomElement">The element to attach to</param> MyACTControls.PopupHelpBehavior.initializeBase(this, [element]); this._textbox = Sys.Extended.UI.TextBoxWrapper.get_Wrapper(element); this._cssClass = "ajax__popupHelp"; this._popupBehavior = null; this._popupPosition = Sys.Extended.UI.PositioningMode.BottomLeft; this._popupDiv = null; this._helpText = "Help Text"; this._element$delegates = { focus: Function.createDelegate(this, this._element_onfocus), blur: Function.createDelegate(this, this._element_onblur) }; } MyACTControls.PopupHelpBehavior.prototype = { initialize: function () { MyACTControls.PopupHelpBehavior.callBaseMethod(this, 'initialize'); // Add event handlers for focus and blur var element = this.get_element(); $addHandlers(element, this._element$delegates); }, _ensurePopup: function () { if (!this._popupDiv) { var element = this.get_element(); var id = this.get_id(); this._popupDiv = $common.createElementFromTemplate({ nodeName: "div", properties: { id: id + "_popupDiv" }, cssClasses: ["ajax__popupHelp"] }, element.parentNode); this._popupBehavior = new $create(Sys.Extended.UI.PopupBehavior, { parentElement: element }, {}, {}, this._popupDiv); this._popupBehavior.set_positioningMode(this._popupPosition); } }, get_HelpText: function () { return this._helpText; }, set_HelpText: function (value) { if (this._HelpText != value) { this._helpText = value; this._ensurePopup(); this._popupDiv.innerHTML = value; this.raisePropertyChanged("Text") } }, _element_onfocus: function (e) { this.show(); }, _element_onblur: function (e) { this.hide(); }, show: function () { this._popupBehavior.show(); }, hide: function () { if (this._popupBehavior) { this._popupBehavior.hide(); } }, dispose: function() { var element = this.get_element(); $clearHandlers(element); if (this._popupBehavior) { this._popupBehavior.dispose(); this._popupBehavior = null; } } }; The code above has two parts. The first part of the code is used to define the constructor function for the PopupHelp behavior. This is a factory method which returns an instance of a PopupHelp behavior: MyACTControls.PopupHelpBehavior = function (element) { } The second part of the code modified the prototype for the PopupHelp behavior: MyACTControls.PopupHelpBehavior.prototype = { } Any code which is particular to a single instance of the PopupHelp behavior should be placed in the constructor function. For example, the default value of the _helpText field is assigned in the constructor function: this._helpText = "Help Text"; Any code which is shared among all instances of the PopupHelp behavior should be added to the PopupHelp behavior’s prototype. For example, the public HelpText property is added to the prototype: get_HelpText: function () { return this._helpText; }, set_HelpText: function (value) { if (this._HelpText != value) { this._helpText = value; this._ensurePopup(); this._popupDiv.innerHTML = value; this.raisePropertyChanged("Text") } }, Registering a JavaScript Class After you create the PopupHelp behavior, you must register the behavior as a class by using the Microsoft Ajax registerClass() method like this: MyACTControls.PopupHelpBehavior.registerClass('MyACTControls.PopupHelpBehavior', Sys.Extended.UI.BehaviorBase); This call to registerClass() registers PopupHelp behavior as a class which derives from the base Sys.Extended.UI.BehaviorBase class. Like the ExtenderControlBase class on the server side, the BehaviorBase class on the client side contains method used by every behavior. The documentation for the BehaviorBase class can be found here: http://msdn.microsoft.com/en-us/library/bb311020.aspx The most important methods and properties of the BehaviorBase class are the following: dispose() – Use this method to clean up all resources used by your behavior. In the case of the PopupHelp behavior, the dispose() method is used to remote the event handlers created by the behavior and disposed the Popup behavior. get_element() -- Use this property to get the DOM element associated with the behavior. In other words, the DOM element which the behavior extends. get_id() – Use this property to the ID of the current behavior. initialize() – Use this method to initialize the behavior. This method is called after all of the properties are set by the $create() method. Creating Debug and Release Scripts You might have noticed that the PopupHelp behavior uses two scripts named PopupHelpBehavior.js and PopupHelpBehavior.debug.js. However, you never create these two scripts. Instead, you only create a single script named PopupHelpBehavior.pre.js. The pre in PopupHelpBehavior.pre.js stands for preprocessor. When you build the Ajax Control Toolkit (or the sample Visual Studio Solution at the end of this blog entry), a build task named JSBuild generates the PopupHelpBehavior.js release script and PopupHelpBehavior.debug.js debug script automatically. The JSBuild preprocessor supports the following directives: #IF #ELSE #ENDIF #INCLUDE #LOCALIZE #DEFINE #UNDEFINE The preprocessor directives are used to mark code which should only appear in the debug version of the script. The directives are used extensively in the Microsoft Ajax Library. For example, the Microsoft Ajax Library Array.contains() method is created like this: $type.contains = function Array$contains(array, item) { //#if DEBUG var e = Function._validateParams(arguments, [ {name: "array", type: Array, elementMayBeNull: true}, {name: "item", mayBeNull: true} ]); if (e) throw e; //#endif return (indexOf(array, item) >= 0); } Notice that you add each of the preprocessor directives inside a JavaScript comment. The comment prevents Visual Studio from getting confused with its Intellisense. The release version, but not the debug version, of the PopupHelpBehavior script is also minified automatically by the Microsoft Ajax Minifier. The minifier is invoked by a build step in the project file. Conclusion The goal of this blog entry was to explain how you can create custom AJAX Control Toolkit controls. In the first part of this blog entry, you learned how to create the server-side portion of an Ajax Control Toolkit control. You learned how to derive a new control from the ExtenderControlBase class and decorate its properties with the necessary attributes. Next, in the second part of this blog entry, you learned how to create the client-side portion of an Ajax Control Toolkit control by creating a client-side behavior with JavaScript. You learned how to use the methods of the Microsoft Ajax Library to extend your client behavior from the BehaviorBase class. Download the Custom ACT Starter Solution

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • Automatic Standby Recreation for Data Guard

    - by pablo.boixeda(at)oracle.com
    Hi,Unfortunately sometimes a Standby Instance needs to be recreated. This can happen for many reasons such as lost archive logs, standby data files, failover, among others.This is why we wanted to have one script to recreate standby instances in an easy way.This script recreates the standby considering some prereqs:-Database Version should be at least 11gR1-Dummy instance started on the standby node (Seeking to improve this so it won't be needed)-Broker configuration hasn't been removed-In our case we have two TNSNAMES files, one for the Standby creation (using SID) and the other one for production using service names (including broker service name)-Some environment variables set up by the environment db script (like ORACLE_HOME, PATH...)-The directory tree should not have been modified in the stanby hostWe are currently using it on our 11gR2 Data Guard tests.Any improvements will be welcome! Normal 0 21 false false false ES X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} #!/bin/ksh ###    NOMBRE / VERSION ###       recrea_dg.sh   v.1.00 ### ###    DESCRIPCION ###       reacreacion de la Standby ### ###    DEVUELVE ###       0 Creacion de STANDBY correcta ###       1 Fallo ### ###    NOTAS ###       Este shell script NO DEBE MODIFICARSE. ###       Todas las variables y constantes necesarias se toman del entorno. ### ###    MODIFICADO POR:    FECHA:        COMENTARIOS: ###    ---------------    ----------    ------------------------------------- ###      Oracle           15/02/2011    Creacion. ### ### ### Cargar entorno ### V_ADMIN_DIR=`dirname $0` . ${V_ADMIN_DIR}/entorno_bd.sh 1>>/dev/null if [ $? -ne 0 ] then   echo "Error Loading the environment."   exit 1 fi V_RET=0 V_DATE=`/bin/date` V_DATE_F=`/bin/date +%Y%m%d_%H%M%S` V_LOGFILE=${V_TRAZAS}/recrea_dg_${V_DATE_F}.log exec 4>&1 tee ${V_FICH_LOG} >&4 |& exec 1>&p 2>&1 ### ### Variables para Recrear el Data Guard ### V_DB_BR=`echo ${V_DB_NAME}|tr '[:lower:]' '[:upper:]'` if [ "${ORACLE_SID}" = "${V_DB_NAME}01" ] then         V_LOCAL_BR=${V_DB_BR}'01'         V_REMOTE_BR=${V_DB_BR}'02' else         V_LOCAL_BR=${V_DB_BR}'02'         V_REMOTE_BR=${V_DB_BR}'01' fi echo " Getting local instance ROLE ${ORACLE_SID} ..." sqlplus -s /nolog 1>>/dev/null 2>&1 <<-! whenever sqlerror exit 1 connect / as sysdba variable salida number declare   v_database_role v\$database.database_role%type; begin   select database_role into v_database_role from v\$database;   :salida := case v_database_role        when 'PRIMARY' then 2        when 'PHYSICAL STANDBY' then 3        else 4      end; end; / exit :salida ! case $? in 1) echo " ERROR: Cannot get instance ROLE ." | tee -a ${V_LOGFILE}   2>&1    V_RET=1 ;; 2) echo " Local Instance with PRIMARY role." | tee -a ${V_LOGFILE}   2>&1    V_DB_ROLE_LCL=PRIMARY ;; 3) echo " Local Instance with PHYSICAL STANDBY role." | tee -a ${V_LOGFILE}   2>&1    V_DB_ROLE_LCL=STANDBY ;; *) echo " ERROR: UNKNOWN ROLE." | tee -a ${V_LOGFILE}   2>&1    V_RET=1 ;; esac if [ "${V_DB_ROLE_LCL}" = "PRIMARY" ] then         echo "####################################################################" | tee -a ${V_LOGFILE}   2>&1         echo "${V_DATE} - Reacreating  STANDBY Instance." | tee -a ${V_LOGFILE}   2>&1         echo "" | tee -a ${V_LOGFILE}   2>&1         echo "DATAFILES, CONTROL FILES, REDO LOGS and ARCHIVE LOGS in standby instance ${V_REMOTE_BR} will be removed" | tee -a ${V_LOGFILE}   2>&1         echo "" | tee -a ${V_LOGFILE}   2>&1         V_PRIMARY=${V_LOCAL_BR}         V_STANDBY=${V_REMOTE_BR} fi if [ "${V_DB_ROLE_LCL}" = "STANDBY" ] then         echo "####################################################################" | tee -a ${V_LOGFILE}   2>&1         echo "${V_DATE} - Reacreating  STANDBY Instance." | tee -a ${V_LOGFILE}   2>&1         echo "" | tee -a ${V_LOGFILE}   2>&1         echo "DATAFILES, CONTROL FILES, REDO LOGS and ARCHIVE LOGS in standby instance ${V_LOCAL_BR} will be removed" | tee -a ${V_LOGFILE}   2>&1         echo "" | tee -a ${V_LOGFILE}   2>&1         V_PRIMARY=${V_REMOTE_BR}         V_STANDBY=${V_LOCAL_BR} fi # Cargamos las variables de los hosts # Cargamos las variables de los hosts PRY_HOST=`sqlplus  /nolog << EOF | grep KEEP | sed 's/KEEP//;s/[   ]//g' connect sys/${V_DB_PWD}@${V_PRIMARY} as sysdba select 'KEEP',host_name from v\\$instance; EOF` SBY_HOST=`sqlplus  /nolog << EOF | grep KEEP | sed 's/KEEP//;s/[   ]//g' connect sys/${V_DB_PWD}@${V_STANDBY} as sysdba select 'KEEP',host_name from v\\$instance; EOF` echo "el HOST primary es: ${PRY_HOST}" | tee -a ${V_LOGFILE}   2>&1 echo "el HOST standby es: ${SBY_HOST}" | tee -a ${V_LOGFILE}   2>&1 echo "" | tee -a ${V_LOGFILE}   2>&1 ## ## Paramos la instancia STANDBY ## V_DATE=`/bin/date` echo "${V_DATE} - Shutting down Standby instance" | tee -a ${V_LOGFILE}   2>&1 echo "" | tee -a ${V_LOGFILE}   2>&1 echo "********************************************************************************" | tee -a ${V_LOGFILE}   2>&1 ## ## Paramos la instancia STANDBY ## SBY_STATUS=`sqlplus  /nolog << EOF | grep KEEP | sed 's/KEEP//;s/[   ]//g' connect sys/${V_DB_PWD}@${V_STANDBY} as sysdba select 'KEEP',status from v\\$instance; EOF` if [ ${SBY_STATUS} = 'STARTED' ] || [ ${SBY_STATUS} = 'MOUNTED' ] || [ ${SBY_STATUS} = 'OPEN' ] then         echo "${V_DATE} - Standby instance shutdown in progress..." | tee -a ${V_LOGFILE}   2>&1         echo "" | tee -a ${V_LOGFILE}   2>&1         echo "********************************************************************************" | tee -a ${V_LOGFILE}   2>&1         sqlplus -s /nolog 1>>/dev/null 2>&1 <<-!         whenever sqlerror exit 1         connect sys/${V_DB_PWD}@${V_STANDBY} as sysdba         shutdown abort         ! fi V_DATE=`/bin/date` echo "" echo "${V_DATE} - Standby instance stopped" | tee -a ${V_LOGFILE}   2>&1 echo "" | tee -a ${V_LOGFILE}   2>&1 echo "********************************************************************************" | tee -a ${V_LOGFILE}   2>&1 ## ## Eliminamos los ficheros de la base de datos ## V_SBY_SID=`echo ${V_STANDBY}|tr '[:upper:]' '[:lower:]'` V_PRY_SID=`echo ${V_PRIMARY}|tr '[:upper:]' '[:lower:]'` ssh ${SBY_HOST} rm /opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/data/*.dbf ssh ${SBY_HOST} rm /opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/arch/*.arc ssh ${SBY_HOST} rm /opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/ctl/*.ctl ssh ${SBY_HOST} rm /opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/redo/*.ctl ssh ${SBY_HOST} rm /opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/redo/*.rdo ## ## Startup nomount stby instance ## V_DATE=`/bin/date` echo "" | tee -a ${V_LOGFILE}   2>&1 echo "${V_DATE} - Starting  DUMMY Standby Instance " | tee -a ${V_LOGFILE}   2>&1 echo "" | tee -a ${V_LOGFILE}   2>&1 echo "********************************************************************************" | tee -a ${V_LOGFILE}   2>&1 ssh ${SBY_HOST} touch /home/oracle/init_dg.ora ssh ${SBY_HOST} 'echo "DB_NAME='${V_DB_NAME}'">>/home/oracle/init_dg.ora' ssh ${SBY_HOST} touch /home/oracle/start_dummy.sh ssh ${SBY_HOST} 'echo "ORACLE_HOME=/opt/oracle/db/db'${V_DB_NAME}'/soft/db11.2.0.2 ">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "export ORACLE_HOME">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "PATH=\$ORACLE_HOME/bin:\$PATH">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "export PATH">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "ORACLE_SID='${V_SBY_SID}'">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "export ORACLE_SID">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "sqlplus -s /nolog <<-!" >>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "      whenever sqlerror exit 1 ">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "      connect / as sysdba ">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "      startup nomount pfile='\''/home/oracle/init_dg.ora'\''">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'echo "! ">>/home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'chmod 744 /home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'sh /home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'rm /home/oracle/start_dummy.sh' ssh ${SBY_HOST} 'rm /home/oracle/init_dg.ora' ## ## TNSNAMES change, specific for RMAN duplicate ## V_DATE=`/bin/date` echo "" | tee -a ${V_LOGFILE}   2>&1 echo "${V_DATE} - Setting up TNSNAMES in PRIMARY host " | tee -a ${V_LOGFILE}   2>&1 echo "" | tee -a ${V_LOGFILE}   2>&1 echo "********************************************************************************" | tee -a ${V_LOGFILE}   2>&1 ssh ${PRY_HOST} 'cp /opt/oracle/db/db'${V_DB_NAME}'/soft/db11.2.0.2/network/admin/tnsnames.ora.inst  /opt/oracle/db/db'${V_DB_NAME}'/soft/db11.2.0.2/network/admin/tnsnames.ora' V_DATE=`/bin/date` echo "" | tee -a ${V_LOGFILE}   2>&1 echo "${V_DATE} - Starting STANDBY creation with RMAN.. " | tee -a ${V_LOGFILE}   2>&1 echo "" | tee -a ${V_LOGFILE}   2>&1 echo "********************************************************************************" | tee -a ${V_LOGFILE}   2>&1 rman<<-! >>${V_LOGFILE} connect target sys/${V_DB_PWD}@${V_PRIMARY} connect auxiliary sys/${V_DB_PWD}@${V_STANDBY} run { allocate channel prmy1 type disk; allocate channel prmy2 type disk; allocate channel prmy3 type disk; allocate channel prmy4 type disk; allocate auxiliary channel stby type disk; duplicate target database for standby from active database dorecover spfile parameter_value_convert '${V_PRY_SID}','${V_SBY_SID}' set control_files='/opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/ctl/control01.ctl','/opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/redo/control02.ctl' set db_file_name_convert='/opt/oracle/db/db${V_DB_NAME}/${V_PRY_SID}/','/opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/' set log_file_name_convert='/opt/oracle/db/db${V_DB_NAME}/${V_PRY_SID}/','/opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/' set 'db_unique_name'='${V_SBY_SID}' set log_archive_config='DG_CONFIG=(${V_PRIMARY},${V_STANDBY})' set fal_client='${V_STANDBY}' set fal_server='${V_PRIMARY}' set log_archive_dest_1='LOCATION=/opt/oracle/db/db${V_DB_NAME}/${V_SBY_SID}/arch DB_UNIQUE_NAME=${V_SBY_SID} MANDATORY VALID_FOR=(ALL_LOGFILES,ALL_ROLES)' set log_archive_dest_2='SERVICE="${V_PRIMARY}"','SYNC AFFIRM DB_UNIQUE_NAME=${V_PRY_SID} DELAY=0 MAX_FAILURE=0 REOPEN=300 REGISTER VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)' nofilenamecheck ; } ! V_DATE=`/bin/date` if [ $? -ne 0 ] then         echo ""         echo "${V_DATE} - Error creating STANDBY instance"         echo ""         echo "********************************************************************************" else         echo ""         echo "${V_DATE} - STANDBY instance created SUCCESSFULLY "         echo ""         echo "********************************************************************************" fi sqlplus -s /nolog 1>>/dev/null 2>&1 <<-!         whenever sqlerror exit 1         connect sys/${V_DB_PWD}@${V_STANDBY} as sysdba         alter system set local_listener='(ADDRESS=(PROTOCOL=TCP)(HOST=${SBY_HOST})(PORT=1544))' scope=both;         alter system set service_names='${V_DB_NAME}.eu.roca.net,${V_SBY_SID}.eu.roca.net,${V_SBY_SID}_DGMGRL.eu.roca.net' scope=both;         alter database recover managed standby database using current logfile disconnect from session;         alter system set dg_broker_start=true scope=both; ! ## ## TNSNAMES change, back to Production Mode ## V_DATE=`/bin/date` echo " " | tee -a ${V_LOGFILE}   2>&1 echo "${V_DATE} - Restoring TNSNAMES in PRIMARY "  | tee -a ${V_LOGFILE}   2>&1 echo ""  | tee -a ${V_LOGFILE}   2>&1 echo "********************************************************************************"  | tee -a ${V_LOGFILE}   2>&1 ssh ${PRY_HOST} 'cp /opt/oracle/db/db'${V_DB_NAME}'/soft/db11.2.0.2/network/admin/tnsnames.ora.prod  /opt/oracle/db/db'${V_DB_NAME}'/soft/db11.2.0.2/network/admin/tnsnames.ora' echo ""  | tee -a ${V_LOGFILE}   2>&1 echo "${V_DATE} -  Waiting for media recovery before check the DATA GUARD Broker"  | tee -a ${V_LOGFILE}   2>&1 echo ""  | tee -a ${V_LOGFILE}   2>&1 echo "********************************************************************************"  | tee -a ${V_LOGFILE}   2>&1 sleep 200 dgmgrl <<-! | grep SUCCESS 1>/dev/null 2>&1     connect ${V_DB_USR}/${V_DB_PWD}@${V_STANDBY}     show configuration verbose; ! if [ $? -ne 0 ] ; then         echo "       ERROR: El status del Broker no es SUCCESS" | tee -a ${V_LOGFILE}   2>&1 ;         V_RET=1 else          echo "      DATA GUARD OK " | tee -a ${V_LOGFILE}   2>&1 ; Normal 0 21 false false false ES X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}         V_RET=0 fi Hope it helps.

    Read the article

  • PC hangs and reboots from time to time

    - by Bevor
    Hello, I have a very strange problem: Since I have my new PC, I have always had problems with it. From time to time the computer freezes for some seconds and suddendly reboots by itself. I've had this problem since Ubuntu 9.10. The same with 10.04 and 10.10. That's why I don't think it's a software failure because the problem persist too long. It doesn't have anything to do with what I'm doing at this time. Sometimes I listen to music, sometimes I only use Firefox, sometimes I'm running 2 or 3 VMs, sometimes I watch DVD. So it's not isolatable. I could freeze once a day or once a week. I put the PC to the vendor twice(!). The first time they changed my power supply but the problem persisted. The second time they told me that they made some heavy performance tests 50 hours long but they didn't find anything. (How can that be that I have daily freezes with normal usage). The vendor didn't check the hard discs because they used their own disc with Windows. (So they never checked the Linux installation). Yesterday I made some intensive hard disc scans with "SMART" but no errors were found. I ran memtest for 3 times but no errors found. I already had this problem in my old flat, so I doubt that I has something to do with current fluctuation. I already tried another electrical socket and changed to connector strip but the problem persists. At the moment I removed 2 of the RAMs (2x 2GB). In all I have 6GB, 2x2GB and 2x1GB. Could this difference maybe be a problem? Here is a list of my components. I hope that anybody find something I didn't think about yet. And here a list of my components: 1x AMD Phenom II X4 965 Black Edition, 3,4Ghz, Quad Core, S-AM3, Boxed 2x DDR3-RAM 2048MB, PC3-1333 Mhz, CL9, Kingston ValueRAM 2x DDR3-RAM 1024MB, PC3-1333 Mhz, CL9, Kingston ValueRAM 2x SATA II Seagate Barracuda 7200.12, 1TB 32MB Cache = RAID 1 1x DVD ROM SATA LG DH16NSR, 16x/52x 1x DVD-+R/-+RW SATA LG GH-22NS50 1x Cardreader 18in1 1x PCI-E 2.0 GeForce GTS 250, Retail, 1024MB 1x Power Supply ATX 400 Watt, CHIEFTEC APS-400S, 80 Plus 1x Network card PCI Intel PRO/1000GT 10/100/1000 MBit 1x Mainboard Socket-AM3 ASUS M4A79XTD EVO, ATX lshw: description: Desktop Computer product: System Product Name vendor: System manufacturer version: System Version serial: System Serial Number width: 64 bits capabilities: smbios-2.5 dmi-2.5 vsyscall64 vsyscall32 configuration: boot=normal chassis=desktop uuid=80E4001E-8C00-002C-AA59-E0CB4EBAC29A *-core description: Motherboard product: M4A79XTD EVO vendor: ASUSTeK Computer INC. physical id: 0 version: Rev X.0X serial: MT709CK11101196 slot: To Be Filled By O.E.M. *-firmware description: BIOS vendor: American Megatrends Inc. physical id: 0 version: 0704 (11/25/2009) size: 64KiB capacity: 960KiB capabilities: isa pci pnp apm upgrade shadowing escd cdboot bootselect socketedrom edd int13floppy1200 int13floppy720 int13floppy2880 int5printscreen int9keyboard int14serial int17printer int10video acpi usb ls120boot zipboot biosbootspecification *-cpu description: CPU product: AMD Phenom(tm) II X4 965 Processor vendor: Advanced Micro Devices [AMD] physical id: 4 bus info: cpu@0 version: AMD Phenom(tm) II X4 965 Processor serial: To Be Filled By O.E.M. slot: AM3 size: 800MHz capacity: 3400MHz width: 64 bits clock: 200MHz capabilities: fpu fpu_exception wp vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp x86-64 3dnowext 3dnow constant_tsc rep_good nonstop_tsc extd_apicid pni monitor cx16 popcnt lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt npt lbrv svm_lock nrip_save cpufreq *-cache:0 description: L1 cache physical id: 5 slot: L1-Cache size: 512KiB capacity: 512KiB capabilities: pipeline-burst internal varies data *-cache:1 description: L2 cache physical id: 6 slot: L2-Cache size: 2MiB capacity: 2MiB capabilities: pipeline-burst internal varies unified *-cache:2 description: L3 cache physical id: 7 slot: L3-Cache size: 6MiB capacity: 6MiB capabilities: pipeline-burst internal varies unified *-memory description: System Memory physical id: 36 slot: System board or motherboard size: 2GiB *-bank:0 description: DIMM Synchronous 1333 MHz (0.8 ns) product: ModulePartNumber00 vendor: Manufacturer00 physical id: 0 serial: SerNum00 slot: DIMM0 size: 1GiB width: 64 bits clock: 1333MHz (0.8ns) *-bank:1 description: DIMM Synchronous 1333 MHz (0.8 ns) product: ModulePartNumber01 vendor: Manufacturer01 physical id: 1 serial: SerNum01 slot: DIMM1 size: 1GiB width: 64 bits clock: 1333MHz (0.8ns) *-bank:2 description: DIMM [empty] product: ModulePartNumber02 vendor: Manufacturer02 physical id: 2 serial: SerNum02 slot: DIMM2 *-bank:3 description: DIMM [empty] product: ModulePartNumber03 vendor: Manufacturer03 physical id: 3 serial: SerNum03 slot: DIMM3 *-pci:0 description: Host bridge product: RD780 Northbridge only dual slot PCI-e_GFX and HT1 K8 part vendor: ATI Technologies Inc physical id: 100 bus info: pci@0000:00:00.0 version: 00 width: 32 bits clock: 66MHz *-pci:0 description: PCI bridge product: RD790 PCI to PCI bridge (external gfx0 port A) vendor: ATI Technologies Inc physical id: 2 bus info: pci@0000:00:02.0 version: 00 width: 32 bits clock: 33MHz capabilities: pci pm pciexpress msi ht normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:40 ioport:a000(size=4096) memory:f8000000-fbbfffff ioport:d0000000(size=268435456) *-display description: VGA compatible controller product: G92 [GeForce GTS 250] vendor: nVidia Corporation physical id: 0 bus info: pci@0000:01:00.0 version: a2 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress vga_controller bus_master cap_list rom configuration: driver=nvidia latency=0 resources: irq:18 memory:fa000000-faffffff memory:d0000000-dfffffff memory:f8000000-f9ffffff ioport:ac00(size=128) memory:fbbe0000-fbbfffff *-pci:1 description: PCI bridge product: RD790 PCI to PCI bridge (PCI express gpp port C) vendor: ATI Technologies Inc physical id: 6 bus info: pci@0000:00:06.0 version: 00 width: 32 bits clock: 33MHz capabilities: pci pm pciexpress msi ht normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:41 ioport:b000(size=4096) memory:fbc00000-fbcfffff ioport:f6f00000(size=1048576) *-network description: Ethernet interface product: RTL8111/8168B PCI Express Gigabit Ethernet controller vendor: Realtek Semiconductor Co., Ltd. physical id: 0 bus info: pci@0000:02:00.0 logical name: eth0 version: 03 serial: e0:cb:4e:ba:c2:9a size: 10MB/s capacity: 1GB/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress msix vpd bus_master cap_list rom ethernet physical tp mii 10bt 10bt-fd 100bt 100bt-fd 1000bt 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=r8169 driverversion=2.3LK-NAPI duplex=half latency=0 link=no multicast=yes port=MII speed=10MB/s resources: irq:45 ioport:b800(size=256) memory:f6fff000-f6ffffff memory:f6ff8000-f6ffbfff memory:fbcf0000-fbcfffff *-pci:2 description: PCI bridge product: RD790 PCI to PCI bridge (PCI express gpp port D) vendor: ATI Technologies Inc physical id: 7 bus info: pci@0000:00:07.0 version: 00 width: 32 bits clock: 33MHz capabilities: pci pm pciexpress msi ht normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:42 ioport:c000(size=4096) memory:fbd00000-fbdfffff *-firewire description: FireWire (IEEE 1394) product: VT6315 Series Firewire Controller vendor: VIA Technologies, Inc. physical id: 0 bus info: pci@0000:03:00.0 version: 00 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress ohci bus_master cap_list configuration: driver=firewire_ohci latency=0 resources: irq:19 memory:fbdff800-fbdfffff ioport:c800(size=256) *-pci:3 description: PCI bridge product: RD790 PCI to PCI bridge (PCI express gpp port E) vendor: ATI Technologies Inc physical id: 9 bus info: pci@0000:00:09.0 version: 00 width: 32 bits clock: 33MHz capabilities: pci pm pciexpress msi ht normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:43 ioport:d000(size=4096) memory:fbe00000-fbefffff *-ide description: IDE interface product: 88SE6121 SATA II Controller vendor: Marvell Technology Group Ltd. physical id: 0 bus info: pci@0000:04:00.0 version: b2 width: 32 bits clock: 33MHz capabilities: ide pm msi pciexpress bus_master cap_list configuration: driver=pata_marvell latency=0 resources: irq:17 ioport:dc00(size=8) ioport:d880(size=4) ioport:d800(size=8) ioport:d480(size=4) ioport:d400(size=16) memory:fbeffc00-fbefffff *-storage description: SATA controller product: SB700/SB800 SATA Controller [IDE mode] vendor: ATI Technologies Inc physical id: 11 bus info: pci@0000:00:11.0 logical name: scsi0 logical name: scsi2 version: 00 width: 32 bits clock: 66MHz capabilities: storage msi ahci_1.0 bus_master cap_list emulated configuration: driver=ahci latency=64 resources: irq:44 ioport:9000(size=8) ioport:8000(size=4) ioport:7000(size=8) ioport:6000(size=4) ioport:5000(size=16) memory:f7fffc00-f7ffffff *-disk:0 description: ATA Disk product: ST31000528AS vendor: Seagate physical id: 0 bus info: scsi@0:0.0.0 logical name: /dev/sda version: CC38 serial: 9VP3WD9Z size: 931GiB (1TB) capabilities: partitioned partitioned:dos configuration: ansiversion=5 signature=000ad206 *-volume:0 UNCLAIMED description: Linux filesystem partition vendor: Linux physical id: 1 bus info: scsi@0:0.0.0,1 version: 1.0 serial: 81839235-21ea-4853-90a4-814779f49000 size: 972MiB capacity: 972MiB capabilities: primary ext2 initialized configuration: filesystem=ext2 modified=2010-12-06 18:32:58 mounted=2010-11-01 07:05:10 state=unknown *-volume:1 UNCLAIMED description: Linux swap volume physical id: 2 bus info: scsi@0:0.0.0,2 version: 1 serial: 22b881d5-6f5c-484d-94e8-e231896fa91b size: 486MiB capacity: 486MiB capabilities: primary nofs swap initialized configuration: filesystem=swap pagesize=4096 *-volume:2 UNCLAIMED description: EXT3 volume vendor: Linux physical id: 3 bus info: scsi@0:0.0.0,3 version: 1.0 serial: ad5b0daf-11e8-4f8f-8598-4e89da9c0d84 size: 47GiB capacity: 47GiB capabilities: primary journaled extended_attributes large_files recover ext3 ext2 initialized configuration: created=2010-02-16 20:42:29 filesystem=ext3 modified=2010-11-29 17:02:34 mounted=2010-12-06 18:32:50 state=clean *-volume:3 UNCLAIMED description: Extended partition physical id: 4 bus info: scsi@0:0.0.0,4 size: 882GiB capacity: 882GiB capabilities: primary extended partitioned partitioned:extended *-logicalvolume UNCLAIMED description: Linux filesystem partition physical id: 5 capacity: 882GiB *-disk:1 description: ATA Disk product: ST31000528AS vendor: Seagate physical id: 1 bus info: scsi@2:0.0.0 logical name: /dev/sdb version: CC38 serial: 9VP3SCPF size: 931GiB (1TB) capabilities: partitioned partitioned:dos configuration: ansiversion=5 signature=000ad206 *-volume:0 UNCLAIMED description: Linux filesystem partition vendor: Linux physical id: 1 bus info: scsi@2:0.0.0,1 version: 1.0 serial: 81839235-21ea-4853-90a4-814779f49000 size: 972MiB capacity: 972MiB capabilities: primary ext2 initialized configuration: filesystem=ext2 modified=2010-12-06 18:32:58 mounted=2010-11-01 07:05:10 state=unknown *-volume:1 UNCLAIMED description: Linux swap volume physical id: 2 bus info: scsi@2:0.0.0,2 version: 1 serial: 22b881d5-6f5c-484d-94e8-e231896fa91b size: 486MiB capacity: 486MiB capabilities: primary nofs swap initialized configuration: filesystem=swap pagesize=4096 *-volume:2 UNCLAIMED description: EXT3 volume vendor: Linux physical id: 3 bus info: scsi@2:0.0.0,3 version: 1.0 serial: ad5b0daf-11e8-4f8f-8598-4e89da9c0d84 size: 47GiB capacity: 47GiB capabilities: primary journaled extended_attributes large_files recover ext3 ext2 initialized configuration: created=2010-02-16 20:42:29 filesystem=ext3 modified=2010-11-29 17:02:34 mounted=2010-12-06 18:32:50 state=clean *-volume:3 UNCLAIMED description: Extended partition physical id: 4 bus info: scsi@2:0.0.0,4 size: 882GiB capacity: 882GiB capabilities: primary extended partitioned partitioned:extended *-logicalvolume UNCLAIMED description: Linux filesystem partition physical id: 5 capacity: 882GiB *-usb:0 description: USB Controller product: SB700/SB800 USB OHCI0 Controller vendor: ATI Technologies Inc physical id: 12 bus info: pci@0000:00:12.0 version: 00 width: 32 bits clock: 66MHz capabilities: ohci bus_master configuration: driver=ohci_hcd latency=64 resources: irq:16 memory:f7ffd000-f7ffdfff *-usb:1 description: USB Controller product: SB700 USB OHCI1 Controller vendor: ATI Technologies Inc physical id: 12.1 bus info: pci@0000:00:12.1 version: 00 width: 32 bits clock: 66MHz capabilities: ohci bus_master configuration: driver=ohci_hcd latency=64 resources: irq:16 memory:f7ffe000-f7ffefff *-usb:2 description: USB Controller product: SB700/SB800 USB EHCI Controller vendor: ATI Technologies Inc physical id: 12.2 bus info: pci@0000:00:12.2 version: 00 width: 32 bits clock: 66MHz capabilities: pm debug ehci bus_master cap_list configuration: driver=ehci_hcd latency=64 resources: irq:17 memory:f7fff800-f7fff8ff *-usb:3 description: USB Controller product: SB700/SB800 USB OHCI0 Controller vendor: ATI Technologies Inc physical id: 13 bus info: pci@0000:00:13.0 version: 00 width: 32 bits clock: 66MHz capabilities: ohci bus_master configuration: driver=ohci_hcd latency=64 resources: irq:18 memory:f7ffb000-f7ffbfff *-usb:4 description: USB Controller product: SB700 USB OHCI1 Controller vendor: ATI Technologies Inc physical id: 13.1 bus info: pci@0000:00:13.1 version: 00 width: 32 bits clock: 66MHz capabilities: ohci bus_master configuration: driver=ohci_hcd latency=64 resources: irq:18 memory:f7ffc000-f7ffcfff *-usb:5 description: USB Controller product: SB700/SB800 USB EHCI Controller vendor: ATI Technologies Inc physical id: 13.2 bus info: pci@0000:00:13.2 version: 00 width: 32 bits clock: 66MHz capabilities: pm debug ehci bus_master cap_list configuration: driver=ehci_hcd latency=64 resources: irq:19 memory:f7fff400-f7fff4ff *-serial UNCLAIMED description: SMBus product: SBx00 SMBus Controller vendor: ATI Technologies Inc physical id: 14 bus info: pci@0000:00:14.0 version: 3c width: 32 bits clock: 66MHz capabilities: ht cap_list configuration: latency=0 *-ide description: IDE interface product: SB700/SB800 IDE Controller vendor: ATI Technologies Inc physical id: 14.1 bus info: pci@0000:00:14.1 logical name: scsi5 version: 00 width: 32 bits clock: 66MHz capabilities: ide msi bus_master cap_list emulated configuration: driver=pata_atiixp latency=64 resources: irq:16 ioport:1f0(size=8) ioport:3f6 ioport:170(size=8) ioport:376 ioport:ff00(size=16) *-cdrom:0 description: DVD reader product: DVDROM DH16NS30 vendor: HL-DT-ST physical id: 0.0.0 bus info: scsi@5:0.0.0 logical name: /dev/cdrom1 logical name: /dev/dvd1 logical name: /dev/scd0 logical name: /dev/sr0 version: 1.00 capabilities: removable audio dvd configuration: ansiversion=5 status=nodisc *-cdrom:1 description: DVD-RAM writer product: DVDRAM GH22NS50 vendor: HL-DT-ST physical id: 0.1.0 bus info: scsi@5:0.1.0 logical name: /dev/cdrom logical name: /dev/cdrw logical name: /dev/dvd logical name: /dev/dvdrw logical name: /dev/scd1 logical name: /dev/sr1 version: TN02 capabilities: removable audio cd-r cd-rw dvd dvd-r dvd-ram configuration: ansiversion=5 status=nodisc *-multimedia description: Audio device product: SBx00 Azalia (Intel HDA) vendor: ATI Technologies Inc physical id: 14.2 bus info: pci@0000:00:14.2 version: 00 width: 64 bits clock: 33MHz capabilities: pm bus_master cap_list configuration: driver=HDA Intel latency=64 resources: irq:16 memory:f7ff4000-f7ff7fff *-isa description: ISA bridge product: SB700/SB800 LPC host controller vendor: ATI Technologies Inc physical id: 14.3 bus info: pci@0000:00:14.3 version: 00 width: 32 bits clock: 66MHz capabilities: isa bus_master configuration: latency=0 *-pci:4 description: PCI bridge product: SBx00 PCI to PCI Bridge vendor: ATI Technologies Inc physical id: 14.4 bus info: pci@0000:00:14.4 version: 00 width: 32 bits clock: 66MHz capabilities: pci subtractive_decode bus_master resources: ioport:e000(size=4096) memory:fbf00000-fbffffff *-network description: Ethernet interface product: 82541PI Gigabit Ethernet Controller vendor: Intel Corporation physical id: 5 bus info: pci@0000:05:05.0 logical name: eth1 version: 05 serial: 00:1b:21:56:f3:60 size: 100MB/s capacity: 1GB/s width: 32 bits clock: 66MHz capabilities: pm pcix bus_master cap_list rom ethernet physical tp 10bt 10bt-fd 100bt 100bt-fd 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=e1000 driverversion=7.3.21-k6-NAPI duplex=full firmware=N/A ip=192.168.1.2 latency=64 link=yes mingnt=255 multicast=yes port=twisted pair speed=100MB/s resources: irq:20 memory:fbfe0000-fbffffff memory:fbfc0000-fbfdffff ioport:ec00(size=64) memory:fbfa0000-fbfbffff *-usb:6 description: USB Controller product: SB700/SB800 USB OHCI2 Controller vendor: ATI Technologies Inc physical id: 14.5 bus info: pci@0000:00:14.5 version: 00 width: 32 bits clock: 66MHz capabilities: ohci bus_master configuration: driver=ohci_hcd latency=64 resources: irq:18 memory:f7ffa000-f7ffafff *-pci:1 description: Host bridge product: Family 10h Processor HyperTransport Configuration vendor: Advanced Micro Devices [AMD] physical id: 101 bus info: pci@0000:00:18.0 version: 00 width: 32 bits clock: 33MHz *-pci:2 description: Host bridge product: Family 10h Processor Address Map vendor: Advanced Micro Devices [AMD] physical id: 102 bus info: pci@0000:00:18.1 version: 00 width: 32 bits clock: 33MHz *-pci:3 description: Host bridge product: Family 10h Processor DRAM Controller vendor: Advanced Micro Devices [AMD] physical id: 103 bus info: pci@0000:00:18.2 version: 00 width: 32 bits clock: 33MHz *-pci:4 description: Host bridge product: Family 10h Processor Miscellaneous Control vendor: Advanced Micro Devices [AMD] physical id: 104 bus info: pci@0000:00:18.3 version: 00 width: 32 bits clock: 33MHz configuration: driver=k10temp resources: irq:0 *-pci:5 description: Host bridge product: Family 10h Processor Link Control vendor: Advanced Micro Devices [AMD] physical id: 105 bus info: pci@0000:00:18.4 version: 00 width: 32 bits clock: 33MHz *-scsi physical id: 1 bus info: usb@2:3 logical name: scsi8 capabilities: emulated scsi-host configuration: driver=usb-storage *-disk:0 description: SCSI Disk physical id: 0.0.0 bus info: scsi@8:0.0.0 logical name: /dev/sdc *-disk:1 description: SCSI Disk physical id: 0.0.1 bus info: scsi@8:0.0.1 logical name: /dev/sdd *-disk:2 description: SCSI Disk physical id: 0.0.2 bus info: scsi@8:0.0.2 logical name: /dev/sde *-disk:3 description: SCSI Disk physical id: 0.0.3 bus info: scsi@8:0.0.3 logical name: /dev/sdf *-network DISABLED description: Ethernet interface physical id: 1 logical name: vboxnet0 serial: 0a:00:27:00:00:00 capabilities: ethernet physical configuration: broadcast=yes multicast=yes

    Read the article

  • Slides and links for Looking at the Clouds through Dirty Windows :-)

    - by Eric Nelson
    Tomorrow (Friday 23/4/2010) I am delivering a session at the Cloud Grid Exchange in London at SkillsMatter (A top training company and superb supporter of development communities). To be perfectly honest – I’m more interested in attending than presenting as the sessions and speaker line up look great. But in the middle of all that I will be doing the following (rather cheekily named) session: Looking at the Clouds through dirty Windows Many developers assume that the Microsoft Windows Azure Platform for Cloud Computing is only relevant if you develop solutions using Microsoft Visual Studio and the .NET Framework. The reality is somewhat different. In the same way that developers can build great applications on Windows Server using a variety of programming languages, developers can do the same for Azure. Java, Tomcat, PHP, Ruby, Python, MySQL and more all work great on Azure. In this session we will take a lap around the services offered by the Azure PaaS and demonstrate just how easy it is to build and deploy applications built in .NET and other technologies. The session will be a mix of slides and demos – currently I plan to demo .NET and Ruby on Rails running on Azure – but I may flex that depending on how the morning sessions go and who turns up. Looking at the clouds through dirty windows View more presentations from Eric Nelson. Links: Getting started: Details on how to sign up for FREE to try out Windows Azure http://bit.ly/azure25  Getting started with Windows Azure UK Site http://bit.ly/startazure UK Azure Site http://bit.ly/landazure UK Community http://ukazure.ning.com Examples of Azure and none .NET technologies: http://ukinterop.cloudapp.net Restlet based, using Windows Azure Storage http://rubyukinterop.cloudapp.net Rails based clone using Windows Azure Storage (down at time of posting) http://rubysqlazure.cloudapp.net Simple rails using SQL Azure http://bookingbug.com Real world “Ruby on Rails on Azure” (Work in progress for conversion to Azure) Domino’s Pizza migration of Java/Tomcat on Solaris to Java/Tomcat on Windows Azure Main Azure Interop site http://www.microsoft.com/WindowsAzure/interop/: Eclipse Tooling http://windowsazure4e.org Java support http://www.windowsazure4j.org/ Rails on Azure skeleton project for Visual Studio http://code.msdn.com/railsonazure Azure Runme utility for spawning processes http://azurerunme.codeplex.com Feedback www.mygreatwindowsazureidea.com

    Read the article

  • SQL SERVER – DQS Error – Cannot connect to server – A .NET Framework error occurred during execution of user-defined routine or aggregate “SetDataQualitySessions” – SetDataQualitySessionPhaseTwo

    - by pinaldave
    Earlier I wrote a blog post about how to install DQS in SQL Server 2012. Today I decided to write a second part of this series where I explain how to use DQS, however, as soon as I started the DQS client, I encountered an error that will not let me pass through and connect with DQS client. It was a bit strange to me as everything was functioning very well when I left it last time.  The error was very big but here are the first few words of it. Cannot connect to server. A .NET Framework error occurred during execution of user-defined routine or aggregate “SetDataQualitySessions”: System.Data.SqlClient.SqlException (0×80131904): A .NET Framework error occurred during execution of user-defined routine or aggregate “SetDataQualitySessionPhaseTwo”: The error continues – here is the quick screenshot of the error. As my initial attempts could not fix the error I decided to search online and I finally received a wonderful solution from Microsoft Site. The error has happened due to latest update I had installed on .NET Framework 4. There was a  mismatch between the Module Version IDs (MVIDs) of the SQL Common Language Runtime (SQLCLR) assemblies in the SQL Server 2012 database and the Global Assembly Cache (GAC). This mismatch was to be resolved for the DQS to work properly. The workaround is specified here in detail. Scroll to subtopic 4.23 Some .NET Framework 4 Updates Might Cause DQS to Fail. The script was very much straight forward. Here are the few things to not to miss while applying workaround. Make sure DQS client is properly closed The NETAssemblies is based on your OS. NETAssemblies for 64 bit machine – which is my machine is “c:\windows\Microsoft.NET\Framework64\v4.0.30319″. If you have Winodws installed on any other drive other than c:\windows do not forget to change that in the above path. Additionally if you have 32 bit version installed on c:\windows you should use path as ”c:\windows\Microsoft.NET\Framework\v4.0.30319″ Make sure that you execute the script specified in 4.23 sections in this article in the database DQS_MAIN. Do not run this in the master database as this will not fix your error. Do not forget to restart your SQL Services once above script has been executed. Once you open the client it will work this time. Here is the script which I have bit modified from original script. I strongly suggest that you use original script mentioned 4.23 sections. However, this one is customized my own machine. /* Original source: http://bit.ly/PXX4NE (Technet) Modifications: -- Added Database context -- Added environment variable @NETAssemblies -- Main script modified to use @NETAssemblies */ USE DQS_MAIN GO BEGIN -- Set your environment variable -- assumption - Windows is installed in c:\windows folder DECLARE @NETAssemblies NVARCHAR(200) -- For 64 bit uncomment following line SET @NETAssemblies = 'c:\windows\Microsoft.NET\Framework64\v4.0.30319\' -- For 32 bit uncomment following line -- SET @NETAssemblies = 'c:\windows\Microsoft.NET\Framework\v4.0.30319\' DECLARE @AssemblyName NVARCHAR(200), @RefreshCmd NVARCHAR(200), @ErrMsg NVARCHAR(200) DECLARE ASSEMBLY_CURSOR CURSOR FOR SELECT name AS NAME FROM sys.assemblies WHERE name NOT LIKE '%ssdqs%' AND name NOT LIKE '%microsoft.sqlserver.types%' AND name NOT LIKE '%practices%' AND name NOT LIKE '%office%' AND name NOT LIKE '%stdole%' AND name NOT LIKE '%Microsoft.Vbe.Interop%' OPEN ASSEMBLY_CURSOR FETCH NEXT FROM ASSEMBLY_CURSOR INTO @AssemblyName WHILE @@FETCH_STATUS = 0 BEGIN BEGIN TRY SET @RefreshCmd = 'ALTER ASSEMBLY [' + @AssemblyName + '] FROM ''' + @NETAssemblies + @AssemblyName + '.dll' + ''' WITH PERMISSION_SET = UNSAFE' EXEC sp_executesql @RefreshCmd PRINT 'Successfully upgraded assembly ''' + @AssemblyName + '''' END TRY BEGIN CATCH IF ERROR_NUMBER() != 6285 BEGIN SET @ErrMsg = ERROR_MESSAGE() PRINT 'Failed refreshing assembly ' + @AssemblyName + '. Error message: ' + @ErrMsg END END CATCH FETCH NEXT FROM ASSEMBLY_CURSOR INTO @AssemblyName END CLOSE ASSEMBLY_CURSOR DEALLOCATE ASSEMBLY_CURSOR END GO Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Error Messages, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • No device file for partition on logical volume (Linux LVM)

    - by Brian
    I created a logical volume (scandata) containing a single ext3 partition. It is the only logical volume in its volume group (case4t). Said volume group is comprised by 3 physical volumes, which are three primary partitions on a single block device (/dev/sdb). When I created it, I could mount the partition via the block device /dev/mapper/case4t-scandatap1. Since last reboot the aforementioned block device file has disappeared. It may be of note -- I'm not sure -- that my superior (a college professor) had prompted this reboot by running sudo chmod -R [his name] /usr/bin, which obliterated all suid in its path, preventing the both of us from sudo-ing. That issue has been (temporarily) rectified via this operation. Now I'll cut the chatter and get started with the terminal dumps: $ sudo pvs; sudo vgs; sudo lvs Logging initialised at Sat Jan 8 11:42:34 2011 Set umask to 0077 Scanning for physical volume names PV VG Fmt Attr PSize PFree /dev/sdb1 case4t lvm2 a- 819.32G 0 /dev/sdb2 case4t lvm2 a- 866.40G 0 /dev/sdb3 case4t lvm2 a- 47.09G 0 Wiping internal VG cache Logging initialised at Sat Jan 8 11:42:34 2011 Set umask to 0077 Finding all volume groups Finding volume group "case4t" VG #PV #LV #SN Attr VSize VFree case4t 3 1 0 wz--n- 1.69T 0 Wiping internal VG cache Logging initialised at Sat Jan 8 11:42:34 2011 Set umask to 0077 Finding all logical volumes LV VG Attr LSize Origin Snap% Move Log Copy% Convert scandata case4t -wi-a- 1.69T Wiping internal VG cache $ sudo vgchange -a y Logging initialised at Sat Jan 8 11:43:14 2011 Set umask to 0077 Finding all volume groups Finding volume group "case4t" 1 logical volume(s) in volume group "case4t" already active 1 existing logical volume(s) in volume group "case4t" monitored Found volume group "case4t" Activated logical volumes in volume group "case4t" 1 logical volume(s) in volume group "case4t" now active Wiping internal VG cache $ ls /dev | grep case4t case4t $ ls /dev/mapper case4t-scandata control $ sudo fdisk -l /dev/case4t/scandata Disk /dev/case4t/scandata: 1860.5 GB, 1860584865792 bytes 255 heads, 63 sectors/track, 226203 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Disk identifier: 0x00049bf5 Device Boot Start End Blocks Id System /dev/case4t/scandata1 1 226203 1816975566 83 Linux $ sudo parted /dev/case4t/scandata print Model: Linux device-mapper (linear) (dm) Disk /dev/mapper/case4t-scandata: 1861GB Sector size (logical/physical): 512B/512B Partition Table: msdos Number Start End Size Type File system Flags 1 32.3kB 1861GB 1861GB primary ext3 $ sudo fdisk -l /dev/sdb Disk /dev/sdb: 1860.5 GB, 1860593254400 bytes 255 heads, 63 sectors/track, 226204 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Disk identifier: 0x00000081 Device Boot Start End Blocks Id System /dev/sdb1 1 106955 859116006 83 Linux /dev/sdb2 113103 226204 908491815 83 Linux /dev/sdb3 106956 113102 49375777+ 83 Linux Partition table entries are not in disk order $ sudo parted /dev/sdb print Model: DELL PERC 6/i (scsi) Disk /dev/sdb: 1861GB Sector size (logical/physical): 512B/512B Partition Table: msdos Number Start End Size Type File system Flags 1 32.3kB 880GB 880GB primary reiserfs 3 880GB 930GB 50.6GB primary 2 930GB 1861GB 930GB primary I find it a bit strange that partition one above is said to be reiserfs, or if it matters -- it was previously reiserfs, but LVM recognizes it as a PV. To reiterate, neither /dev/mapper/case4t-scandatap1 (which I had used previously) nor /dev/case4t/scandata1 (as printed by fdisk) exists. And /dev/case4t/scandata (no partition number) cannot be mounted: $sudo mount -t ext3 /dev/case4t/scandata /mnt/new mount: wrong fs type, bad option, bad superblock on /dev/mapper/case4t-scandata, missing codepage or helper program, or other error In some cases useful info is found in syslog - try dmesg | tail or so All I get on syslog is: [170059.538137] VFS: Can't find ext3 filesystem on dev dm-0. Thanks in advance for any help you can offer, Brian P.S. I am on Ubuntu GNU/Linux 2.6.28-11-server (Jaunty) (out of date, I know -- that's on the laundry list).

    Read the article

  • MVC Portable Areas &ndash; Deploying Static Files

    - by Steve Michelotti
    This is the second post in a series related to build and deployment considerations as I’ve been exploring MVC Portable Areas: #1 – Using Web Application Project to build portable areas #2 – Conventions for deploying portable area static files #3 – Portable area static files as embedded resources As I’ve been digging more into portable areas, one of the things I’ve liked best is the deployment story which enables my *.aspx, *.ascx pages to be compiled into the assembly as embedded resources rather than having to maintain all those files separately. In traditional web forms, that was always the thing to prevented developers from utilizing *.ascx user controls across projects (see this post for using portable areas in web forms).  However, though the aspx pages are embedded, the supporting static files (e.g., images, css, javascript) are *not*. Most of the demos available online today tend to brush over this issue and focus solely on the aspx side of things. But to create truly robust portable areas, it’s important to have a good story for these supporting files as well.  I’ve been working with two different approaches so far (of course I’d really like to hear if other people are using alternatives). Scenario For the approaches below, the scenario really isn’t that important. It could be something as trivial as this partial view: 1: <%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl" %> 2: <img src="<%: Url.Content("~/images/arrow.gif") %>" /> Hello World! The point is that there needs to be careful consideration for *any* scenario that links to an external file such as an image, *.css, *.js, etc. In the example shown above, it uses the Url.Content() method to convert to a relative path. But this method won’t necessary work depending on how you deploy your portable area. One approach to address this issue is to build your portable area project with MSDeploy/WebDeploy so that it is packaged properly before incorporating into the host application. All of the *.cs files are removed and the project is ready for xcopy deployment – however, I do *not* need the “Views” folder since all of the mark up has been compiled into the assembly as embedded resources. Now in the host application we create a folder called “Modules” and deploy any portable areas as sub-folders under that: At this point we can add a simple assembly reference to the Widget1.dll sitting in the Modules\Widget1\bin folder. I can now render the portable image in my view like any other portable area. However, the problem with that is that the view results in this:   It couldn’t find arrow.gif because it looked for /images/arrow.gif and it was *actually* located at /images/Modules/Widget1/images/arrow.gif. One solution is to make the physical location of the portable configurable from the perspective of the host like this: 1: <appSettings> 2: <add key="Widget1" value="Modules\Widget1"/> 3: </appSettings> Using the <appSettings> section is a little cheesy but it could be better formalized into its own section. In fact, if were you willing to rely on conventions (e.g., “Modules\{areaName}”) then then config could be eliminated completely. With this config in place, we could create our own Html helper method called Url.AreaContent() that “wraps” the OOTB Url.Content() method while simply pre-pending the area location path: 1: public static string AreaContent(this UrlHelper urlHelper, string contentPath) 2: { 3: var areaName = (string)urlHelper.RequestContext.RouteData.DataTokens["area"]; 4: var areaPath = (string)ConfigurationManager.AppSettings[areaName]; 5:   6: return urlHelper.Content("~/" + areaPath + "/" + contentPath); With these two items in place, we just change our Url.Content() call to Url.AreaContent() like this: 1: <img src="<%: Url.AreaContent("/images/arrow.gif") %>" /> Hello World! and the arrow.gif now renders correctly:     Since we’re just using our own Url.AreaContent() rather than the built-in Url.Content(), this solution works for images, *.css, *.js, or any externally referenced files.  Additionally, any images referenced inside a css file will work provided it’s a relative reference and not an absolute reference. An alternative to this approach is to build the static file into the assembly as embedded resources themselves. I’ll explore this in another post (linked at the top).

    Read the article

  • MVC Portable Areas &ndash; Static Files as Embedded Resources

    - by Steve Michelotti
    This is the third post in a series related to build and deployment considerations as I’ve been exploring MVC Portable Areas: #1 – Using Web Application Project to build portable areas #2 – Conventions for deploying portable area static files #3 – Portable area static files as embedded resources In the last post, I walked through a convention for managing static files.  In this post I’ll discuss another approach to manage static files (e.g., images, css, js, etc.).  With this approach, you *also* compile the static files as embedded resources into the assembly similar to the *.aspx pages. Once again, you can set this to happen automatically by simply modifying your *.csproj file to include the desired extensions so you don’t have to remember every time you add a file: 1: <Target Name="BeforeBuild"> 2: <ItemGroup> 3: <EmbeddedResource Include="**\*.aspx;**\*.ascx;**\*.gif;**\*.css;**\*.js" /> 4: </ItemGroup> 5: </Target> We now need a reliable way to serve up these static files that are embedded in the assembly. There are a couple of ways to do this but one way is to simply create a Resource controller whose job is dedicated to doing this. 1: public class ResourceController : Controller 2: { 3: public ActionResult Index(string resourceName) 4: { 5: var contentType = GetContentType(resourceName); 6: var resourceStream = Assembly.GetExecutingAssembly().GetManifestResourceStream(resourceName); 7:   8: return this.File(resourceStream, contentType); 9: return View(); 10: } 11:   12: private static string GetContentType(string resourceName) 13: { 14: var extention = resourceName.Substring(resourceName.LastIndexOf('.')).ToLower(); 15: switch (extention) 16: { 17: case ".gif": 18: return "image/gif"; 19: case ".js": 20: return "text/javascript"; 21: case ".css": 22: return "text/css"; 23: default: 24: return "text/html"; 25: } 26: } 27: } In order to use this controller, we need to make sure we’ve registered the route in our portable area registration (shown in lines 5-6): 1: public class WidgetAreaRegistration : PortableAreaRegistration 2: { 3: public override void RegisterArea(System.Web.Mvc.AreaRegistrationContext context, IApplicationBus bus) 4: { 5: context.MapRoute("ResourceRoute", "widget1/resource/{resourceName}", 6: new { controller = "Resource", action = "Index" }); 7:   8: context.MapRoute("Widget1", "widget1/{controller}/{action}", new 9: { 10: controller = "Home", 11: action = "Index" 12: }); 13:   14: RegisterTheViewsInTheEmbeddedViewEngine(GetType()); 15: } 16:   17: public override string AreaName 18: { 19: get { return "Widget1"; } 20: } 21: } In my previous post, we relied on a custom Url helper method to find the actual physical path to the static file like this: 1: <img src="<%: Url.AreaContent("/images/arrow.gif") %>" /> Hello World! However, since we are now embedding the files inside the assembly, we no longer have to worry about the physical path. We can change this line of code to this: 1: <img src="<%: Url.Resource("Widget1.images.arrow.gif") %>" /> Hello World! Note that I had to fully quality the resource name (with namespace and physical location) since that is how .NET assemblies store embedded resources. I also created my own Url helper method called Resource which looks like this: 1: public static string Resource(this UrlHelper urlHelper, string resourceName) 2: { 3: var areaName = (string)urlHelper.RequestContext.RouteData.DataTokens["area"]; 4: return urlHelper.Action("Index", "Resource", new { resourceName = resourceName, area = areaName }); 5: } This method gives us the convenience of not having to know how to construct the URL – but just allowing us to refer to the resource name. The resulting html for the image tag is: 1: <img src="/widget1/resource/Widget1.images.arrow.gif" /> so we can always request any image from the browser directly. This is almost analogous to the WebResource.axd file but for MVC. What is interesting though is that we can encapsulate each one of these so that each area can have it’s own set of resources and they are easily distinguished because the area name is the first segment of the route. This makes me wonder if something like this ResourceController should be baked into portable areas itself. I’m definitely interested in anyone has any opinions on it or have taken alternative approaches.

    Read the article

  • How to resize / enlarge / grow a non-LVM ext4 partition

    - by Mischa
    I have already searched the forums, but couldnt find a good suitable answer: I have an Ubuntu Server 10.04 as KVM Host and a guest system, that also runs 10.04. The host system uses LVM and there are three logical volumes, which are provided to the guest as virtual block devices - one for /, one for /home and one for swap. The guest had been partitioned without LVM. I have already enlarged the logical volume in the host system - the guest successfully sees the bigger virtual disk. However, this virtual disk contains one "good old" partition, which still has the old small size. The output of fdisk -l is me@produktion:/$ LC_ALL=en_US sudo fdisk -l Disk /dev/vda: 32.2 GB, 32212254720 bytes 255 heads, 63 sectors/track, 3916 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x000c8ce7 Device Boot Start End Blocks Id System /dev/vda1 * 1 3917 31455232 83 Linux Disk /dev/vdb: 2147 MB, 2147483648 bytes 244 heads, 47 sectors/track, 365 cylinders Units = cylinders of 11468 * 512 = 5871616 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x000f2bf7 Device Boot Start End Blocks Id System /dev/vdb1 1 366 2095104 82 Linux swap / Solaris Partition 1 has different physical/logical beginnings (non-Linux?): phys=(0, 32, 33) logical=(0, 43, 28) Partition 1 has different physical/logical endings: phys=(260, 243, 47) logical=(365, 136, 44) Disk /dev/vdc: 225.5 GB, 225485783040 bytes 255 heads, 63 sectors/track, 27413 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00027f25 Device Boot Start End Blocks Id System /dev/vdc1 1 9138 73398272 83 Linux The output of parted print all is Model: Virtio Block Device (virtblk) Disk /dev/vda: 32.2GB Sector size (logical/physical): 512B/512B Partition Table: msdos Number Start End Size Type File system Flags 1 1049kB 32.2GB 32.2GB primary ext4 boot Model: Virtio Block Device (virtblk) Disk /dev/vdb: 2147MB Sector size (logical/physical): 512B/512B Partition Table: msdos Number Start End Size Type File system Flags 1 1049kB 2146MB 2145MB primary linux-swap(v1) Model: Virtio Block Device (virtblk) Disk /dev/vdc: 225GB Sector size (logical/physical): 512B/512B Partition Table: msdos Number Start End Size Type File system Flags 1 1049kB 75.2GB 75.2GB primary ext4 What I want to achieve is to simply grow or resize the partition /dev/vdc1 so that it uses the whole space provided by the virtual block device /dev/vdc. The problem is, that when I try to do that with parted, it complains: (parted) select /dev/vdc Using /dev/vdc (parted) print Model: Virtio Block Device (virtblk) Disk /dev/vdc: 225GB Sector size (logical/physical): 512B/512B Partition Table: msdos Number Start End Size Type File system Flags 1 1049kB 75.2GB 75.2GB primary ext4 (parted) resize 1 WARNING: you are attempting to use parted to operate on (resize) a file system. parted's file system manipulation code is not as robust as what you'll find in dedicated, file-system-specific packages like e2fsprogs. We recommend you use parted only to manipulate partition tables, whenever possible. Support for performing most operations on most types of file systems will be removed in an upcoming release. Start? [1049kB]? End? [75.2GB]? 224GB Error: File system has an incompatible feature enabled. Compatible features are has_journal, dir_index, filetype, sparse_super and large_file. Use tune2fs or debugfs to remove features. So what can I do? This is a headless production system. What is a safe way to grow this partition? I CAN unmount it, though - so this is not the problem.

    Read the article

  • Putting indexes in separate filegroup kills our queries

    - by womp
    Can anyone shed some light on this? On our dev boxes, our database resides entirely in the PRIMARY filegroup, and everything works fine. On one of our production servers, recently upgraded from 2005 to 2008, we noticed it was performing slower than it should. On this machine, there are two filegroups - PRIMARY and INDEXES. Both filegroups contain 1 file per logical volume, one logical volume per CPU, (and each logical volume is a RAID 10 of 4 physical disks). We isolated a few queries that were performing fast on the dev boxes and slow (up to 40x slower) on the production machine. Turned out these queries were using the non-clustered indexes that resided in the INDEXES filegroup. Tweaking some of the queries to only use clustered indexes that were in the PRIMARY filegroup dropped their times back to normal. As a final confirmation, we redeployed the same database on the same machine to have everything in PRIMARY, and things went back to normal! Here's the statistics output of one of the queries, run identically on the machine with different filegroup configurations (table names changed to protect the innocent): FAST (everything in PRIMARY filegroup): (3 row(s) affected) Table '0'. Scan count 2, logical reads 14, ... Table '1'. Scan count 0, logical reads 0, ... Table '1'. Scan count 0, logical reads 0, ... Table '2'. Scan count 2, logical reads 7, ... Table '3'. Scan count 2, logical reads 1012, ... Table '4'. Scan count 1, logical reads 3, ... SQL Server Execution Times: CPU time = 437 ms, elapsed time = 445 ms. SLOW (indexes split into their own filegroup): (3 row(s) affected) Table '0'. Scan count 209, logical reads 428, ... Table '1'. Scan count 0, logical reads 0,... Table '2'. Scan count 1021, logical reads 9043,.... Table '3'. Scan count 209, logical reads 105754, .... Table '4'. Scan count 0, logical reads 0, .... Table '5'. Scan count 1, logical reads 695, ... **Table '#46DA8CA9'. Scan count 205, logical reads 205, ...** Table '6'. Scan count 6, logical reads 436, ... Table '7'. Scan count 1, logical reads 12,.... SQL Server Execution Times: CPU time = 17581 ms, elapsed time = 17595 ms. Notice the weird temp table and extra tables involved in the slow query. It seems clear that having a second file group is making SQL Server batty with choosing an execution plan. What the heck is going on?

    Read the article

  • Oracle GoldenGate Active-Active Part 1

    - by Nick_W
    My name is Nick Wagner, and I'm a recent addition to the Oracle Maximum Availability Architecture (MAA) product management team.  I've spent the last 15+ years working on database replication products, and I've spent the last 10 years working on the Oracle GoldenGate product.  So most of my posting will probably be focused on OGG.  One question that comes up all the time is around active-active replication with Oracle GoldenGate.  How do I know if my application is a good fit for active-active replication with GoldenGate?   To answer that, it really comes down to how you plan on handling conflict resolution.  I will delve into topology and deployment in a later blog, but here is a simple architecture: The two most common resolution routines are host based resolution and timestamp based resolution. Host based resolution is used less often, but works with the fewest application changes.  Think of it like this: any transactions from SystemA always take precedence over any transactions from SystemB.  If there is a conflict on SystemB, then the record from SystemA will overwrite it.  If there is a conflict on SystemA, then it will be ignored.  It is quite a bit less restrictive, and in most cases, as long as all the tables have primary keys, host based resolution will work just fine.  Timestamp based resolution, on the other hand, is a little trickier. In this case, you can decide which record is overwritten based on timestamps. For example, does the older record get overwritten with the newer record?  Or vice-versa?  This method not only requires primary keys on every table, but it also requires every table to have a timestamp/date column that is updated each time a record is inserted or updated on the table.  Most homegrown applications can always be customized to include these requirements, but it's a little more difficult with 3rd party applications, and might even be impossible for large ERP type applications.  If your database has these features - whether it’s primary keys for host based resolution, or primary keys and timestamp columns for timestamp based resolution - then your application could be a great candidate for active-active replication.  But table structure is not the only requirement.  The other consideration applies when there is a conflict; i.e., do I need to perform any notification or track down the user that had their data overwritten?  In most cases, I don't think it's necessary, but if it is required, OGG can always create an exceptions table that contains all of the overwritten transactions so that people can be notified. It's a bit of extra work to implement this type of option, but if the business requires it, then it can be done. Unless someone is constantly monitoring this exception table or has an automated process in dealing with exceptions, there will be a delay in getting a response back to the end user. Ideally, when setting up active-active resolution we can include some simple procedural steps or configuration options that can reduce, or in some cases eliminate the potential for conflicts.  This makes the whole implementation that much easier and foolproof.  And I'll cover these in my next blog. 

    Read the article

  • SQL SERVER – Curious Case of Disappearing Rows – ON UPDATE CASCADE and ON DELETE CASCADE – T-SQL Example – Part 2 of 2

    - by pinaldave
    Yesterday I wrote a real world story of how a friend who thought they have an issue with intrusion or virus whereas the issue was really in the code. I strongly suggest you read my earlier blog post Curious Case of Disappearing Rows – ON UPDATE CASCADE and ON DELETE CASCADE – Part 1 of 2 before continuing this blog post as this is second part of the first blog post. Let me reproduce the simple scenario in T-SQL. Building Sample Data USE [TestDB] GO -- Creating Table Products CREATE TABLE [dbo].[Products]( [ProductID] [int] NOT NULL, [ProductDesc] [varchar](50) NOT NULL, CONSTRAINT [PK_Products] PRIMARY KEY CLUSTERED ( [ProductID] ASC )) ON [PRIMARY] GO -- Creating Table ProductDetails CREATE TABLE [dbo].[ProductDetails]( [ProductDetailID] [int] NOT NULL, [ProductID] [int] NOT NULL, [Total] [int] NOT NULL, CONSTRAINT [PK_ProductDetails] PRIMARY KEY CLUSTERED ( [ProductDetailID] ASC )) ON [PRIMARY] GO ALTER TABLE [dbo].[ProductDetails] WITH CHECK ADD CONSTRAINT [FK_ProductDetails_Products] FOREIGN KEY([ProductID]) REFERENCES [dbo].[Products] ([ProductID]) ON UPDATE CASCADE ON DELETE CASCADE GO -- Insert Data into Table USE TestDB GO INSERT INTO Products (ProductID, ProductDesc) SELECT 1, 'Bike' UNION ALL SELECT 2, 'Car' UNION ALL SELECT 3, 'Books' GO INSERT INTO ProductDetails ([ProductDetailID],[ProductID],[Total]) SELECT 1, 1, 200 UNION ALL SELECT 2, 1, 100 UNION ALL SELECT 3, 1, 111 UNION ALL SELECT 4, 2, 200 UNION ALL SELECT 5, 3, 100 UNION ALL SELECT 6, 3, 100 UNION ALL SELECT 7, 3, 200 GO Select Data from Tables -- Selecting Data SELECT * FROM Products SELECT * FROM ProductDetails GO Delete Data from Products Table -- Deleting Data DELETE FROM Products WHERE ProductID = 1 GO Select Data from Tables Again -- Selecting Data SELECT * FROM Products SELECT * FROM ProductDetails GO Clean up Data -- Clean up DROP TABLE ProductDetails DROP TABLE Products GO My friend was confused as there was no delete was firing over ProductsDetails Table still there was a delete happening. The reason was because there is a foreign key created between Products and ProductsDetails Table with the keywords ON DELETE CASCADE. Due to ON DELETE CASCADE whenever is specified when the data from Table A is deleted and if it is referenced in another table using foreign key it will be deleted as well. Workaround 1: Design Changes – 3 Tables Change the design to have more than two tables. Create One Product Mater Table with all the products. It should historically store all the products list in it. No products should be ever removed from it. Add another table called Current Product and it should contain only the table which should be visible in the product catalogue. Another table should be called as ProductHistory table. There should be no use of CASCADE keyword among them. Workaround 2: Design Changes - Column IsVisible You can keep the same two tables. 1) Products and 2) ProductsDetails. Add a column with BIT datatype to it and name it as a IsVisible. Now change your application code to display the catalogue based on this column. There should be no need to delete anything. Workaround 3: Bad Advices (Bad advises begins here) The reason I have said bad advices because these are going to be bad advices for sure. You should make necessary design changes and not use poor workarounds which can damage the system and database integrity further. Here are the examples 1) Do not delete the data – well, this is not a real solution but can give time to implement design changes. 2) Do not have ON CASCADE DELETE – in this case, you will have entry in productsdetails which will have no corresponding product id and later on there will be lots of confusion. 3) Duplicate Data – you can have all the data of the product table move to the product details table and repeat them at each row. Now remove CASCADE code. This will let you delete the product table rows without any issue. There are so many things wrong this suggestion, that I will not even start here. (Bad advises ends here)  Well, did I miss anything? Please help me with your suggestions. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • What can stop IIS7 from restarting an ASP.NET app when uppdating a dll in the bin folder?

    - by Carl Björknäs
    We're running ASP.NET 2.0 on MS Server 2008 and IIS 7. During the last releases the app pool hasn't automatically been restarted after changes in the bin folder. It works like a charm on our test server but not on the live server. The site is browsable but runs with the logic of the old version of the updated dll. One of the changes we have done lately is that one of the dll:s in the bin folder consists of other dlls that have been merged with ILMerge. Interop.ADODB.dll and Interop.CDO.dll is included in the merged dll. It is the user dll of the merged dll that is updated. What can possibly hinder IIS from restarting the app pool although a file has changed in the bin folder?

    Read the article

  • Encapsulating code in F# (Part 2)

    - by MarkPearl
    In part one of this series I showed an example of encapsulation within a local definition. This is useful to know so that you are aware of the scope of value holders etc. but what I am more interested in is encapsulation with regards to generating useful F# code libraries in .Net, this is done by using Namespaces and Modules. Lets have a look at some C# code first… using System; namespace EncapsulationNS { public class EncapsulationCLS { public static void TestMethod() { Console.WriteLine("Hello"); } } } Pretty simple stuff… now the F# equivalent…. namespace EncapsulationNS module EncapsulationMDL = let TestFunction = System.Console.WriteLine("Hello") ()   Even easier… lets look at some specifics about F# namespaces… Namespaces are open. meaning you can have multiple source files and assemblies can contribute to the same namespace. So, Namespaces are a great way to group modules together, so the question needs to be asked, what role do modules play. For me, the F# module is in many ways similar to the vb6 days of modules. In vb6 modules were separate files and simply allowed us to group certain methods together. I find it easier to visualize F# modules this way than to compare them to the C# classes. However that being said one is not restricted to one module per file – there is flexibility to have multiple modules in one code file however with my limited F# experience I would still recommend using the file as the standard level of separating modules as it is very easy to then find your way around a solution. An important note about interop with F# and other .Net languages. I wrote a blog post a while back about a very basic F# to C# interop. If I were to reference an F# library in a C# project (for instance ‘TestFunction’), in C# it would show this method as a static method call, meaning I would not have to instantiate an instance of the module.

    Read the article

  • The "CreateRiaClientFilesTask" task failed unexpectedly.

    - by Mohammadreza
    Hi guys. I've VS 2010 and recently installed WCF RIA Services V1.0. For testing I have created a new Silverligh Business project but now every now and then when I rebuild the solution I receive the following error: Does anybody know why I get this? Thanks Error 1 The "CreateRiaClientFilesTask" task failed unexpectedly. System.IO.FileNotFoundException: Could not load file or assembly 'Microsoft.ServiceModel.DomainServices.Tools, Version=4.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35' or one of its dependencies. The system cannot find the file specified. File name: 'Microsoft.ServiceModel.DomainServices.Tools, Version=4.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35' at System.RuntimeTypeHandle.GetTypeByName(String name, Boolean throwOnError, Boolean ignoreCase, Boolean reflectionOnly, StackCrawlMarkHandle stackMark, Boolean loadTypeFromPartialName, ObjectHandleOnStack type) at System.RuntimeTypeHandle.GetTypeByName(String name, Boolean throwOnError, Boolean ignoreCase, Boolean reflectionOnly, StackCrawlMark& stackMark, Boolean loadTypeFromPartialName) at System.RuntimeType.GetType(String typeName, Boolean throwOnError, Boolean ignoreCase, Boolean reflectionOnly, StackCrawlMark& stackMark) at System.Type.GetType(String typeName, Boolean throwOnError) at System.Web.Hosting.HostingEnvironment.CreateWellKnownObjectInstance(String assemblyQualifiedName, Boolean failIfExists) at System.Web.Hosting.HostingEnvironment.CreateWellKnownObjectInstance(String assemblyQualifiedName, Boolean failIfExists) at System.Web.Hosting.ApplicationManager.CreateObjectInternal(String appId, Type type, IApplicationHost appHost, Boolean failIfExists, HostingEnvironmentParameters hostingParameters) at System.Web.Hosting.ApplicationManager.CreateObjectInternal(String appId, Type type, IApplicationHost appHost, Boolean failIfExists) at System.Web.Compilation.ClientBuildManager.CreateObject(Type type, Boolean failIfExists) at Microsoft.ServiceModel.DomainServices.Tools.CreateRiaClientFilesTask.CreateSharedTypeService(ClientBuildManager clientBuildManager, IEnumerable`1 serverAssemblies, ILogger logger) at Microsoft.ServiceModel.DomainServices.Tools.CreateRiaClientFilesTask.GenerateClientProxies() at Microsoft.ServiceModel.DomainServices.Tools.CreateRiaClientFilesTask.ExecuteInternal() at Microsoft.ServiceModel.DomainServices.Tools.RiaClientFilesTask.Execute() at Microsoft.Build.BackEnd.TaskExecutionHost.Microsoft.Build.BackEnd.ITaskExecutionHost.Execute() at Microsoft.Build.BackEnd.TaskBuilder.ExecuteInstantiatedTask(ITaskExecutionHost taskExecutionHost, TaskLoggingContext taskLoggingContext, TaskHost taskHost, ItemBucket bucket, TaskExecutionMode howToExecuteTask, Boolean& taskResult) WRN: Assembly binding logging is turned OFF. To enable assembly bind failure logging, set the registry value [HKLM\Software\Microsoft\Fusion!EnableLog] (DWORD) to 1. Note: There is some performance penalty associated with assembly bind failure logging. To turn this feature off, remove the registry value [HKLM\Software\Microsoft\Fusion!EnableLog]. BusinessApplication2

    Read the article

  • Building a VS2010 solution from TFS2008

    - by slugster
    I have a TFS 2008 Build Agent that has been used to build .Net 3.5 applications. I now have a .Net 4.0 app which i want to compile on the same build agent. I have ensured that MSBuild 4.0 is installed on there and all the required componentry is also installed, but i am getting the following MSB4062 error when building: [Any CPU/Release] C:\Program Files\MSBuild\Microsoft\VisualStudio\v10.0\WebApplications\Microsoft.WebApplication.targets(244,5): error MSB4062: The "Microsoft.WebApplication.Build.Tasks.GetSilverlightItemsFromProperty" task could not be loaded from the assembly C:\Program Files\MSBuild\Microsoft\VisualStudio\v10.0\WebApplications\Microsoft.WebApplication.Build.Tasks.dll. Could not load file or assembly 'file:///C:\Program Files\MSBuild\Microsoft\VisualStudio\v10.0\WebApplications\Microsoft.WebApplication.Build.Tasks.dll' or one of its dependencies. This assembly is built by a runtime newer than the currently loaded runtime and cannot be loaded. Confirm that the declaration is correct, and that the assembly and all its dependencies are available. I am presuming that i get this because the TFSBuild.proj gets executed by MSBuild 3.5 which in turn means my solution is compiled with MSBuild 3.5. Am i correct with my diagnosis? Is there any way to ensure that TFS2008 uses MSBuild 4.0 for my solution? Can it be done on a single team project so that it doesn't affect any other team projects being built on the same build agent? Note that i have checked the question Build failing - VS2010 solution on TFS2008 and this is not a duplicate. Thanks :)

    Read the article

  • What is the difference (if any) between Html.Partial(view, model) and Html.RenderPartial(view,model)

    - by Stephane
    Other than the type it returns and the fact that you call it differently of course <% Html.RenderPartial(...); %> <%= Html.Partial(...) %> If they are different, why would you call one rather than the other one? The definitions: // Type: System.Web.Mvc.Html.RenderPartialExtensions // Assembly: System.Web.Mvc, Version=2.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35 // Assembly location: C:\Program Files (x86)\Microsoft ASP.NET\ASP.NET MVC 2\Assemblies\System.Web.Mvc.dll using System.Web.Mvc; namespace System.Web.Mvc.Html { public static class RenderPartialExtensions { public static void RenderPartial(this HtmlHelper htmlHelper, string partialViewName); public static void RenderPartial(this HtmlHelper htmlHelper, string partialViewName, ViewDataDictionary viewData); public static void RenderPartial(this HtmlHelper htmlHelper, string partialViewName, object model); public static void RenderPartial(this HtmlHelper htmlHelper, string partialViewName, object model, ViewDataDictionary viewData); } } // Type: System.Web.Mvc.Html.PartialExtensions // Assembly: System.Web.Mvc, Version=2.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35 // Assembly location: C:\Program Files (x86)\Microsoft ASP.NET\ASP.NET MVC 2\Assemblies\System.Web.Mvc.dll using System.Web.Mvc; namespace System.Web.Mvc.Html { public static class PartialExtensions { public static MvcHtmlString Partial(this HtmlHelper htmlHelper, string partialViewName); public static MvcHtmlString Partial(this HtmlHelper htmlHelper, string partialViewName, ViewDataDictionary viewData); public static MvcHtmlString Partial(this HtmlHelper htmlHelper, string partialViewName, object model); public static MvcHtmlString Partial(this HtmlHelper htmlHelper, string partialViewName, object model, ViewDataDictionary viewData); } }

    Read the article

  • Subsonic : Can’t decide which property to consider the Key? foreign key issue.

    - by AJ
    Hi I am trying to select count of rows from a table which has foreign keys of two tables. The C# code threw the error mentioned below. So, I added a primary key column to the table (schema as follows) and regenerated the code. But still the same error is coming. Error : Can't decide which property to consider the Key - you can create one called 'ID' or mark one with SubSonicPrimaryKey attribute sqLite Table schema CREATE TABLE "AlbumDocuments" ("Id" INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL , "AlbumId" INTEGER NOT NULL CONSTRAINT fk_AlbumId REFERENCES Albums(Id) , "DocumentId" INTEGER NOT NULL CONSTRAINT fk_DocumentId REFERENCES Documents(Id)) C# code int selectAlbumDocumentsCount = new SubSonic.Query.Select() .From<DocSafeDB.DataLayer.AlbumDocumentsTable>() .Where(DocSafeDB.DataLayer.AlbumDocumentsTable.AlbumIdColumn).In(request.AlbumId) .Execute(); Not sure what I should be doing next as I can't do where against primary key because I don;t have that info. So my questions are: How do I select count of rows against foreign key column? Is primary key required in this scenario? I have several things but not sure why its not working. To me it looks like a very normal use case. Please advise. Thanks AJ

    Read the article

< Previous Page | 100 101 102 103 104 105 106 107 108 109 110 111  | Next Page >