Search Results

Search found 12019 results on 481 pages for 'stop execution'.

Page 104/481 | < Previous Page | 100 101 102 103 104 105 106 107 108 109 110 111  | Next Page >

  • Having an issue while trying to implement In-App Purchase

    - by Raymond
    This is my first time to implement In-App purchase and I am using the tutorial located here: Ray Wenderlich Now I am sure this is something simple, but I am having issues figuring out, so I figured I would ask all of the gurus out here. The compiler is saying that _products is Use of undeclared identifier - (void)productPurchased:(NSNotification *)notification { NSString * productIdentifier = notification.object; [_products enumerateObjectsUsingBlock:^(SKProduct * product, NSUInteger idx, BOOL *stop) { if ([product.productIdentifier isEqualToString:productIdentifier]) { *stop = YES; } }]; }

    Read the article

  • unpack dependency and repack classes using maven?

    - by u123
    I am trying to unpack a maven artifact A and repack it into a new jar file in the maven project B. Unpacking class files from artifact A into: <my.classes.folder>${project.build.directory}/staging</my.classes.folder> works fine using this: <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-dependency-plugin</artifactId> <executions> <execution> <id>unpack</id> <phase>generate-resources</phase> <goals> <goal>unpack</goal> </goals> <configuration> <artifactItems> <artifactItem> <groupId>com.test</groupId> <artifactId>mvn-sample</artifactId> <version>1.0.0-SNAPSHOT</version> <type>jar</type> <overWrite>true</overWrite> <outputDirectory>${my.classes.folder}</outputDirectory> <includes>**/*.class,**/*.xml</includes> </artifactItem> </artifactItems> </configuration> </execution> </executions> </plugin> In the same pom I now want to generate an additional jar containing the classes just unpacked: <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-jar-plugin</artifactId> <version>2.4</version> <executions> <execution> <phase>package</phase> <goals> <goal>jar</goal> </goals> <configuration> <classesdirectory>${my.classes.folder}</classesdirectory> <classifier>sample</classifier> </configuration> </execution> </executions> </plugin> A new jar is created but it does not contain the classes from the: ${my.classes.folder} its simply a copy of the default project jar. Any ideas? I have tried to follow this guide: http://jkrishnaraotech.blogspot.dk/2011/06/unpack-remove-some-classes-and-repack.html but its not working.

    Read the article

  • jQuery .hasClass method to omit effect

    - by Jonny Wood
    I've created a simple background effect for some tabs on a page but don't want that effect to fire if the tab has the class 'current'. I presume there is a way to do this using .hasClass Here's what I'm using for the effect: $('ul.htabs a').mouseover(function(){ $(this).stop().animate( {backgroundPosition:"(0 -810px)"}, {duration:150}, {easing: 'easeOutCubic'}) }).mouseout(function(){ $(this).stop().animate( {backgroundPosition:"(0 -806px)"}, {duration:150}, {easing: 'easeInCubic'}) });

    Read the article

  • Help with jquery animate()

    - by andrei
    I'm using this code to change opacity when user is on and off a picture unfortunately when the user clicks the image the opacity does not stay at 1. Anyone has an answer ? $(document).ready(function(){ $('img#slide').animate({"opacity" : .7}) $('img#slide').hover(function(){ $(this).stop().animate({"opacity" : 1}) }, function(){ $(this).stop().animate({"opacity" : .7}) }); $('img#slide').click(function(){ $(this).animate({"opacity" : 1}); }); });

    Read the article

  • Stopping other subs from running while in a Sub

    - by Bigfatty
    Is there a way to stop other subs from running while in a separate sub. for instance say your in the sub CreateNumber() and the subs are setup like CreateNumber() AddNumber() DeleteNumber() Is there a way to be in CreateNumber() and call a function to stop AddNumber from running after creaetNumber() is finished? i just want my program to sit there to wait for an event to happen.

    Read the article

  • [css only gradient background] problems with ff < 3.6

    - by Luca
    hi! :) anyone know if is possible to reproduce this effect background-image: -moz-linear-gradient(top, #666666, #000000); background-image: -webkit-gradient(linear,left bottom,left top,color-stop(0, #000000),color-stop(1, #666666)); also on ff < 3.6? im tryin' to generate a gradient background without images! thanks a lot in advance for any advice.

    Read the article

  • Python: Run a progess bar and work simultaneously?

    - by DanielTA
    I want to know how to run a progress bar and some other work simultaneously, then when the work is done, stop the progress bar in Python (2.7.x) import sys, time def progress_bar(): while True: for c in ['-','\\','|','/']: sys.stdout.write('\r' + "Working " + c) sys.stdout.flush() time.sleep(0.2) def work(): *doing hard work* How would I be able to do something like: progress_bar() #run in background? work() *stop progress bar* print "\nThe work is done!"

    Read the article

  • possible to change a script when it is running?

    - by Daniel
    Suppose a script has 1000 lines, and the 10 line has a command takes a long time to run and when I find it is running line 10, I find I need to change line 100, is it possible to do that without stop the script first? We can also stop a process by using command pstop, but I don't know how to let the process to re-read the script and continue to run from where it paused.

    Read the article

  • Terminating a long-executing thread and then starting a new one in response to user changing parameters via UI in an applet

    - by user1817170
    I have an applet which creates music using the JFugue API and plays it for the user. It allows the user to input a music phrase which the piece will be based on, or lets them choose to have a phrase generated randomly. I had been using the following method (successfully) to simply stop and start the music, which runs in a thread using the Player class from JFugue. I generate the music using my classes and user input from the applet GUI...then... private playerThread pthread; private Thread threadPlyr; private Player player; (from variables declaration) public void startMusic(Pattern p) // pattern is a JFugue object which holds the generated music { if (pthread == null) { pthread = new playerThread(); } else { pthread = null; pthread = new playerThread(); } if (threadPlyr == null) { threadPlyr = new Thread(pthread); } else { threadPlyr = null; threadPlyr = new Thread(pthread); } pthread.setPattern(p); threadPlyr.start(); } class playerThread implements Runnable // plays midi using jfugue Player { private Pattern pt; public void setPattern(Pattern p) { pt = p; } @Override public void run() { try { player.play(pt); // takes a couple mins or more to execute resetGUI(); } catch (Exception exception) { } } } And the following to stop music when user presses the stop/start button while Player.isPlaying() is true: public void stopMusic() { threadPlyr.interrupt(); threadPlyr = null; pthread = null; player.stop(); } Now I want to implement a feature which will allow the user to change parameters while the music is playing, create an updated music pattern, and then play THAT pattern. Basically, the idea is to make it simulate "real time" adjustments to the generated music for the user. Well, I have been beating my head against the wall on this for a couple of weeks. I've read all the standard java documentation, researched, read, and searched forums, and I have tried many different ideas, none of which have succeeded. The problem I've run into with all approaches I've tried is that when I start the new thread with the new, updated musical pattern, all the old threads ALSO start, and there is a cacophony of unintelligible noise instead of my desired output. From what I've gathered, the issue seems to be that all the methods I've come across require that the thread is able to periodically check the value of a "flag" variable and then shut itself down from within its "run" block in response to that variable. However, since my thread makes a call that takes several minutes minimum to execute (playing the music), and I need to terminate it WHILE it is executing this, there is really no safe way to do so. So, I'm wondering if there is something I'm missing when it comes to threads, or if perhaps I can accomplish my goal using a totally different approach. Any ideas or guidance is greatly appreciated! Thank you!

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • SQL SERVER – Index Created on View not Used Often – Limitation of the View 12

    - by pinaldave
    I have previously written on the subject SQL SERVER – The Limitations of the Views – Eleven and more…. This was indeed a very popular series and I had received lots of feedback on that topic. Today we are going to discuss something very interesting as well. During my recent performance tuning seminar in Hyderabad, I presented on the subject of Views. During the seminar, one of the attendees asked a question: We create a table and create a View on the top of it. On the same view, if we create Index, when querying View, will that index be used? The answer is NOT Always! (There is only one specific condition when it will be used. We will write about that later in the next post). Let us see the test case for the same. In our script we will do following: USE tempdb GO IF EXISTS (SELECT * FROM sys.views WHERE OBJECT_ID = OBJECT_ID(N'[dbo].[SampleView]')) DROP VIEW [dbo].[SampleView] GO IF EXISTS (SELECT * FROM sys.objects WHERE OBJECT_ID = OBJECT_ID(N'[dbo].[mySampleTable]') AND TYPE IN (N'U')) DROP TABLE [dbo].[mySampleTable] GO -- Create SampleTable CREATE TABLE mySampleTable (ID1 INT, ID2 INT, SomeData VARCHAR(100)) INSERT INTO mySampleTable (ID1,ID2,SomeData) SELECT TOP 100000 ROW_NUMBER() OVER (ORDER BY o1.name), ROW_NUMBER() OVER (ORDER BY o2.name), o2.name FROM sys.all_objects o1 CROSS JOIN sys.all_objects o2 GO -- Create View CREATE VIEW SampleView WITH SCHEMABINDING AS SELECT ID1,ID2,SomeData FROM dbo.mySampleTable GO -- Create Index on View CREATE UNIQUE CLUSTERED INDEX [IX_ViewSample] ON [dbo].[SampleView] ( ID2 ASC ) GO -- Select from view SELECT ID1,ID2,SomeData FROM SampleView GO Let us check the execution plan for the last SELECT statement. You can see from the execution plan. That even though we are querying View and the View has index, it is not really using that index. In the next post, we will see the significance of this View and where it can be helpful. Meanwhile, I encourage you to read my View series: SQL SERVER – The Limitations of the Views – Eleven and more…. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Training, SQL View, T SQL, Technology

    Read the article

  • Bit by bit comparison of using Java or Python for unit testing frameworks and Selenium

    - by Anirudh
    Currently we are in the process of finalizing which language out of Java, Python should be used for Automation using selenium webdriver and a suitable unit testing frameworks. I have made use of Junit, TestNG and webdriver while using with Java and have designed frameworks without much fuss before. I am new to python though I came across pyhton's unit testing frameworks like unittest, pyunit, nose e.t.c but I have doubts if they would be as successful as testNG or Java. I would like to analyze point by point when used with selenium webdriver as below: 1)I have read that as Python is an interpreted language hence it's execution is slower, so say if I have to run 1000 test cases which take about 6 hours to run in Java, would python take considerably longer time for the same test cases like 8 hours? 2)Can the Python unit testing framework be as flexible as a Java unit testing framework like testNG in terms or Grouping the tests, parallel execution, skipping test. e.t.c 3)Also one point that I think of is that Python with selenium webdriver doeasn't have as big or learned community as we have for Java with webdriver, say if I run into trouble with something I am more likely to find an answer for Java as compared to python? 4)Somewhat related to point 3, is it safe to rely on tools, plugins or even webderiver's python's binding as a continuously well maintained? 5)One major drawback as I see while using python's unit testing framework is lack of boilerplate code or libraries for nicely illustrative HTML reports preferably historical reports with Pie charts, bar graphs and timelines as we have in case of Java like Allure, TestNG's default reports, reportNG or Junit reports with the help of ANT as shown below Allure Reports Junit Historical reports Also I would like to emphasize on the fact if there is a way for one to write the framework in java and make libraries or utilities according to out application in webdriver which can easily be called or integrated in with python code or modules? That would actually solve the problem for us as the client would be able to use the code we write in Java and make use of the same or call it from their python modules?

    Read the article

  • Solaris X86 64-bit Assembly Programming

    - by danx
    Solaris X86 64-bit Assembly Programming This is a simple example on writing, compiling, and debugging Solaris 64-bit x86 assembly language with a C program. This is also referred to as "AMD64" assembly. The term "AMD64" is used in an inclusive sense to refer to all X86 64-bit processors, whether AMD Opteron family or Intel 64 processor family. Both run Solaris x86. I'm keeping this example simple mainly to illustrate how everything comes together—compiler, assembler, linker, and debugger when using assembly language. The example I'm using here is a C program that calls an assembly language program passing a C string. The assembly language program takes the C string and calls printf() with it to print the string. AMD64 Register Usage But first let's review the use of AMD64 registers. AMD64 has several 64-bit registers, some special purpose (such as the stack pointer) and others general purpose. By convention, Solaris follows the AMD64 ABI in register usage, which is the same used by Linux, but different from Microsoft Windows in usage (such as which registers are used to pass parameters). This blog will only discuss conventions for Linux and Solaris. The following chart shows how AMD64 registers are used. The first six parameters to a function are passed through registers. If there's more than six parameters, parameter 7 and above are pushed on the stack before calling the function. The stack is also used to save temporary "stack" variables for use by a function. 64-bit Register Usage %rip Instruction Pointer points to the current instruction %rsp Stack Pointer %rbp Frame Pointer (saved stack pointer pointing to parameters on stack) %rdi Function Parameter 1 %rsi Function Parameter 2 %rdx Function Parameter 3 %rcx Function Parameter 4 %r8 Function Parameter 5 %r9 Function Parameter 6 %rax Function return value %r10, %r11 Temporary registers (need not be saved before used) %rbx, %r12, %r13, %r14, %r15 Temporary registers, but must be saved before use and restored before returning from the current function (usually with the push and pop instructions). 32-, 16-, and 8-bit registers To access the lower 32-, 16-, or 8-bits of a 64-bit register use the following: 64-bit register Least significant 32-bits Least significant 16-bits Least significant 8-bits %rax%eax%ax%al %rbx%ebx%bx%bl %rcx%ecx%cx%cl %rdx%edx%dx%dl %rsi%esi%si%sil %rdi%edi%di%axl %rbp%ebp%bp%bp %rsp%esp%sp%spl %r9%r9d%r9w%r9b %r10%r10d%r10w%r10b %r11%r11d%r11w%r11b %r12%r12d%r12w%r12b %r13%r13d%r13w%r13b %r14%r14d%r14w%r14b %r15%r15d%r15w%r15b %r16%r16d%r16w%r16b There's other registers present, such as the 64-bit %mm registers, 128-bit %xmm registers, 256-bit %ymm registers, and 512-bit %zmm registers. Except for %mm registers, these registers may not present on older AMD64 processors. Assembly Source The following is the source for a C program, helloas1.c, that calls an assembly function, hello_asm(). $ cat helloas1.c extern void hello_asm(char *s); int main(void) { hello_asm("Hello, World!"); } The assembly function called above, hello_asm(), is defined below. $ cat helloas2.s /* * helloas2.s * To build: * cc -m64 -o helloas2-cpp.s -D_ASM -E helloas2.s * cc -m64 -c -o helloas2.o helloas2-cpp.s */ #if defined(lint) || defined(__lint) /* ARGSUSED */ void hello_asm(char *s) { } #else /* lint */ #include <sys/asm_linkage.h> .extern printf ENTRY_NP(hello_asm) // Setup printf parameters on stack mov %rdi, %rsi // P2 (%rsi) is string variable lea .printf_string, %rdi // P1 (%rdi) is printf format string call printf ret SET_SIZE(hello_asm) // Read-only data .text .align 16 .type .printf_string, @object .printf_string: .ascii "The string is: %s.\n\0" #endif /* lint || __lint */ In the assembly source above, the C skeleton code under "#if defined(lint)" is optionally used for lint to check the interfaces with your C program--very useful to catch nasty interface bugs. The "asm_linkage.h" file includes some handy macros useful for assembly, such as ENTRY_NP(), used to define a program entry point, and SET_SIZE(), used to set the function size in the symbol table. The function hello_asm calls C function printf() by passing two parameters, Parameter 1 (P1) is a printf format string, and P2 is a string variable. The function begins by moving %rdi, which contains Parameter 1 (P1) passed hello_asm, to printf()'s P2, %rsi. Then it sets printf's P1, the format string, by loading the address the address of the format string in %rdi, P1. Finally it calls printf. After returning from printf, the hello_asm function returns itself. Larger, more complex assembly functions usually do more setup than the example above. If a function is returning a value, it would set %rax to the return value. Also, it's typical for a function to save the %rbp and %rsp registers of the calling function and to restore these registers before returning. %rsp contains the stack pointer and %rbp contains the frame pointer. Here is the typical function setup and return sequence for a function: ENTRY_NP(sample_assembly_function) push %rbp // save frame pointer on stack mov %rsp, %rbp // save stack pointer in frame pointer xor %rax, %r4ax // set function return value to 0. mov %rbp, %rsp // restore stack pointer pop %rbp // restore frame pointer ret // return to calling function SET_SIZE(sample_assembly_function) Compiling and Running Assembly Use the Solaris cc command to compile both C and assembly source, and to pre-process assembly source. You can also use GNU gcc instead of cc to compile, if you prefer. The "-m64" option tells the compiler to compile in 64-bit address mode (instead of 32-bit). $ cc -m64 -o helloas2-cpp.s -D_ASM -E helloas2.s $ cc -m64 -c -o helloas2.o helloas2-cpp.s $ cc -m64 -c helloas1.c $ cc -m64 -o hello-asm helloas1.o helloas2.o $ file hello-asm helloas1.o helloas2.o hello-asm: ELF 64-bit LSB executable AMD64 Version 1 [SSE FXSR FPU], dynamically linked, not stripped helloas1.o: ELF 64-bit LSB relocatable AMD64 Version 1 helloas2.o: ELF 64-bit LSB relocatable AMD64 Version 1 $ hello-asm The string is: Hello, World!. Debugging Assembly with MDB MDB is the Solaris system debugger. It can also be used to debug user programs, including assembly and C. The following example runs the above program, hello-asm, under control of the debugger. In the example below I load the program, set a breakpoint at the assembly function hello_asm, display the registers and the first parameter, step through the assembly function, and continue execution. $ mdb hello-asm # Start the debugger > hello_asm:b # Set a breakpoint > ::run # Run the program under the debugger mdb: stop at hello_asm mdb: target stopped at: hello_asm: movq %rdi,%rsi > $C # display function stack ffff80ffbffff6e0 hello_asm() ffff80ffbffff6f0 0x400adc() > $r # display registers %rax = 0x0000000000000000 %r8 = 0x0000000000000000 %rbx = 0xffff80ffbf7f8e70 %r9 = 0x0000000000000000 %rcx = 0x0000000000000000 %r10 = 0x0000000000000000 %rdx = 0xffff80ffbffff718 %r11 = 0xffff80ffbf537db8 %rsi = 0xffff80ffbffff708 %r12 = 0x0000000000000000 %rdi = 0x0000000000400cf8 %r13 = 0x0000000000000000 %r14 = 0x0000000000000000 %r15 = 0x0000000000000000 %cs = 0x0053 %fs = 0x0000 %gs = 0x0000 %ds = 0x0000 %es = 0x0000 %ss = 0x004b %rip = 0x0000000000400c70 hello_asm %rbp = 0xffff80ffbffff6e0 %rsp = 0xffff80ffbffff6c8 %rflags = 0x00000282 id=0 vip=0 vif=0 ac=0 vm=0 rf=0 nt=0 iopl=0x0 status=<of,df,IF,tf,SF,zf,af,pf,cf> %gsbase = 0x0000000000000000 %fsbase = 0xffff80ffbf782a40 %trapno = 0x3 %err = 0x0 > ::dis # disassemble the current instructions hello_asm: movq %rdi,%rsi hello_asm+3: leaq 0x400c90,%rdi hello_asm+0xb: call -0x220 <PLT:printf> hello_asm+0x10: ret 0x400c81: nop 0x400c85: nop 0x400c88: nop 0x400c8c: nop 0x400c90: pushq %rsp 0x400c91: pushq $0x74732065 0x400c96: jb +0x69 <0x400d01> > 0x0000000000400cf8/S # %rdi contains Parameter 1 0x400cf8: Hello, World! > [ # Step and execute 1 instruction mdb: target stopped at: hello_asm+3: leaq 0x400c90,%rdi > [ mdb: target stopped at: hello_asm+0xb: call -0x220 <PLT:printf> > [ The string is: Hello, World!. mdb: target stopped at: hello_asm+0x10: ret > [ mdb: target stopped at: main+0x19: movl $0x0,-0x4(%rbp) > :c # continue program execution mdb: target has terminated > $q # quit the MDB debugger $ In the example above, at the start of function hello_asm(), I display the stack contents with "$C", display the registers contents with "$r", then disassemble the current function with "::dis". The first function parameter, which is a C string, is passed by reference with the string address in %rdi (see the register usage chart above). The address is 0x400cf8, so I print the value of the string with the "/S" MDB command: "0x0000000000400cf8/S". I can also print the contents at an address in several other formats. Here's a few popular formats. For more, see the mdb(1) man page for details. address/S C string address/C ASCII character (1 byte) address/E unsigned decimal (8 bytes) address/U unsigned decimal (4 bytes) address/D signed decimal (4 bytes) address/J hexadecimal (8 bytes) address/X hexadecimal (4 bytes) address/B hexadecimal (1 bytes) address/K pointer in hexadecimal (4 or 8 bytes) address/I disassembled instruction Finally, I step through each machine instruction with the "[" command, which steps over functions. If I wanted to enter a function, I would use the "]" command. Then I continue program execution with ":c", which continues until the program terminates. MDB Basic Cheat Sheet Here's a brief cheat sheet of some of the more common MDB commands useful for assembly debugging. There's an entire set of macros and more powerful commands, especially some for debugging the Solaris kernel, but that's beyond the scope of this example. $C Display function stack with pointers $c Display function stack $e Display external function names $v Display non-zero variables and registers $r Display registers ::fpregs Display floating point (or "media" registers). Includes %st, %xmm, and %ymm registers. ::status Display program status ::run Run the program (followed by optional command line parameters) $q Quit the debugger address:b Set a breakpoint address:d Delete a breakpoint $b Display breakpoints :c Continue program execution after a breakpoint [ Step 1 instruction, but step over function calls ] Step 1 instruction address::dis Disassemble instructions at an address ::events Display events Further Information "Assembly Language Techniques for Oracle Solaris on x86 Platforms" by Paul Lowik (2004). Good tutorial on Solaris x86 optimization with assembly. The Solaris Operating System on x86 Platforms An excellent, detailed tutorial on X86 architecture, with Solaris specifics. By an ex-Sun employee, Frank Hofmann (2005). "AMD64 ABI Features", Solaris 64-bit Developer's Guide contains rules on data types and register usage for Intel 64/AMD64-class processors. (available at docs.oracle.com) Solaris X86 Assembly Language Reference Manual (available at docs.oracle.com) SPARC Assembly Language Reference Manual (available at docs.oracle.com) System V Application Binary Interface (2003) defines the AMD64 ABI for UNIX-class operating systems, including Solaris, Linux, and BSD. Google for it—the original website is gone. cc(1), gcc(1), and mdb(1) man pages.

    Read the article

  • Output = MAXDOP 1

    - by Dave Ballantyne
    It is widely know that data modifications on table variables do not support parallelism, Peter Larsson has a good example of that here .  Whilst tracking down a performance issue,  I saw that using the OUTPUT clause also causes parallelism to not be used. By way of example,  first lets create two tables with a simple parent and child (one to one) relationship, and then populate them with 100,000 rows. Drop table ParentDrop table Childgocreate table Parent(id integer identity Primary Key,data1 char(255))Create Table Child(id integer Primary Key)goinsert into Parent(data1)Select top 1000000 NULL from sys.columns a cross join sys.columns b insert into ChildSelect id from Parentgo If we then execute update Parent set data1 =''from Parentjoin Child on Parent.Id = Child.Id where Parent.Id %100 =1 and Child.id %100 =1 We should see an execution plan using parallelism such as   However,  if the OUTPUT clause is now used update Parent set data1 =''output inserted.idfrom Parentjoin Child on Parent.Id = Child.Id where Parent.Id %100 =1 and Child.id %100 =1   The execution plan shows that Parallelism was not used Make of that what you will, but i thought that this was a pretty unexpected outcome. Update : Laurence Hoff has mailed me to note that when the OUTPUT results are captured to a temporary table using the INTO clause,  then parallelism is used.  Naturally if you use a table variable then there is still no parallelism  

    Read the article

  • Unexpected SQL Server 2008 Performance Tip: Avoid local variables in WHERE clause

    - by Jim Duffy
    Sometimes an application needs to have every last drop of performance it can get, others not so much. We’re in the process of converting some legacy Visual FoxPro data into SQL Server 2008 for an application and ran into a situation that required some performance tweaking. I figured the Making Microsoft SQL Server 2008 Fly session that Yavor Angelov (SQL Server Program Manager – Query Processing) presented at PDC 2009 last November would be a good place to start. I was right. One tip among the list of incredibly useful tips Yavor presented was “local variables are bad news for the Query Optimizer and they cause the Query Optimizer to guess”. What that means is you should be avoiding code like this in your stored procs even though it seems such an intuitively good idea. DECLARE @StartDate datetime SET @StartDate = '20091125' SELECT * FROM Orders WHERE OrderDate = @StartDate Instead you should be referencing the value directly in the WHERE clause so the Query Optimizer can create a better execution plan. SELECT * FROM Orders WHERE OrderDate = '20091125' My first thought about this one was we reference variables in the form of passed in parameters in WHERE clauses in many of our stored procs. Not to worry though because parameters ARE available to the Query Optimizer as it compiles the execution plan. I highly recommend checking out Yavor’s session for additional tips to help you squeeze every last drop of performance out of your queries. Have a day. :-|

    Read the article

  • Top 5 Developer Enabling Nuggets in MySQL 5.6

    - by Rob Young
    MySQL 5.6 is truly a better MySQL and reflects Oracle's commitment to the evolution of the most popular and widelyused open source database on the planet.  The feature-complete 5.6 release candidate was announced at MySQL Connect in late September and the production-ready, generally available ("GA") product should be available in early 2013.  While the message around 5.6 has been focused mainly on mass appeal, advanced topics like performance/scale, high availability, and self-healing replication clusters, MySQL 5.6 also provides many developer-friendly nuggets that are designed to enable those who are building the next generation of web-based and embedded applications and services. Boiling down the 5.6 feature set into a smaller set, of simple, easy to use goodies designed with developer agility in mind, these things deserve a quick look:Subquery Optimizations Using semi-JOINs and late materialization, the MySQL 5.6 Optimizer delivers greatly improved subquery performance. Specifically, the optimizer is now more efficient in handling subqueries in the FROM clause; materialization of subqueries in the FROM clause is now postponed until their contents are needed during execution. Additionally, the optimizer may add an index to derived tables during execution to speed up row retrieval. Internal tests run using the DBT-3 benchmark Query #13, shown below, demonstrate an order of magnitude improvement in execution times (from days to seconds) over previous versions. select c_name, c_custkey, o_orderkey, o_orderdate, o_totalprice, sum(l_quantity)from customer, orders, lineitemwhere o_orderkey in (                select l_orderkey                from lineitem                group by l_orderkey                having sum(l_quantity) > 313  )  and c_custkey = o_custkey  and o_orderkey = l_orderkeygroup by c_name, c_custkey, o_orderkey, o_orderdate, o_totalpriceorder by o_totalprice desc, o_orderdateLIMIT 100;What does this mean for developers?  For starters, simplified subqueries can now be coded instead of complex joins for cross table lookups: SELECT title FROM film WHERE film_id IN (SELECT film_id FROM film_actor GROUP BY film_id HAVING count(*) > 12); And even more importantly subqueries embedded in packaged applications no longer need to be re-written into joins.  This is good news for both ISVs and their customers who have access to the underlying queries and who have spent development cycles writing, testing and maintaining their own versions of re-written queries across updated versions of a packaged app.The details are in the MySQL 5.6 docs. Online DDL OperationsToday's web-based applications are designed to rapidly evolve and adapt to meet business and revenue-generationrequirements. As a result, development SLAs are now most often measured in minutes vs days or weeks. For example, when an application must quickly support new product lines or new products within existing product lines, the backend database schema must adapt in kind, and most commonly while the application remains available for normal business operations.  MySQL 5.6 supports this level of online schema flexibility and agility by providing the following new ALTER TABLE online DDL syntax additions:  CREATE INDEX DROP INDEX Change AUTO_INCREMENT value for a column ADD/DROP FOREIGN KEY Rename COLUMN Change ROW FORMAT, KEY_BLOCK_SIZE for a table Change COLUMN NULL, NOT_NULL Add, drop, reorder COLUMN Again, the details are in the MySQL 5.6 docs. Key-value access to InnoDB via Memcached APIMany of the next generation of web, cloud, social and mobile applications require fast operations against simple Key/Value pairs. At the same time, they must retain the ability to run complex queries against the same data, as well as ensure the data is protected with ACID guarantees. With the new NoSQL API for InnoDB, developers have allthe benefits of a transactional RDBMS, coupled with the performance capabilities of Key/Value store.MySQL 5.6 provides simple, key-value interaction with InnoDB data via the familiar Memcached API.  Implemented via a new Memcached daemon plug-in to mysqld, the new Memcached protocol is mapped directly to the native InnoDB API and enables developers to use existing Memcached clients to bypass the expense of query parsing and go directly to InnoDB data for lookups and transactional compliant updates.  The API makes it possible to re-use standard Memcached libraries and clients, while extending Memcached functionality by integrating a persistent, crash-safe, transactional database back-end.  The implementation is shown here:So does this option provide a performance benefit over SQL?  Internal performance benchmarks using a customized Java application and test harness show some very promising results with a 9X improvement in overall throughput for SET/INSERT operations:You can follow the InnoDB team blog for the methodology, implementation and internal test cases that generated these results here. How to get started with Memcached API to InnoDB is here. New Instrumentation in Performance SchemaThe MySQL Performance Schema was introduced in MySQL 5.5 and is designed to provide point in time metrics for key performance indicators.  MySQL 5.6 improves the Performance Schema in answer to the most common DBA and Developer problems.  New instrumentations include: Statements/Stages What are my most resource intensive queries? Where do they spend time? Table/Index I/O, Table Locks Which application tables/indexes cause the most load or contention? Users/Hosts/Accounts Which application users, hosts, accounts are consuming the most resources? Network I/O What is the network load like? How long do sessions idle? Summaries Aggregated statistics grouped by statement, thread, user, host, account or object. The MySQL 5.6 Performance Schema is now enabled by default in the my.cnf file with optimized and auto-tune settings that minimize overhead (< 5%, but mileage will vary), so using the Performance Schema ona production server to monitor the most common application use cases is less of an issue.  In addition, new atomic levels of instrumentation enable the capture of granular levels of resource consumption by users, hosts, accounts, applications, etc. for billing and chargeback purposes in cloud computing environments.The MySQL docs are an excellent resource for all that is available and that can be done with the 5.6 Performance Schema. Better Condition Handling - GET DIAGNOSTICSMySQL 5.6 enables developers to easily check for error conditions and code for exceptions by introducing the new MySQL Diagnostics Area and corresponding GET DIAGNOSTICS interface command. The Diagnostic Area can be populated via multiple options and provides 2 kinds of information:Statement - which provides affected row count and number of conditions that occurredCondition - which provides error codes and messages for all conditions that were returned by a previous operation The addressable items for each are: The new GET DIAGNOSTICS command provides a standard interface into the Diagnostics Area and can be used via the CLI or from within application code to easily retrieve and handle the results of the most recent statement execution.  An example of how it is used might be:mysql> DROP TABLE test.no_such_table; ERROR 1051 (42S02): Unknown table 'test.no_such_table' mysql> GET DIAGNOSTICS CONDITION 1 -> @p1 = RETURNED_SQLSTATE, @p2 = MESSAGE_TEXT; mysql> SELECT @p1, @p2; +-------+------------------------------------+| @p1   | @p2                                | +-------+------------------------------------+| 42S02 | Unknown table 'test.no_such_table' | +-------+------------------------------------+ Options for leveraging the MySQL Diagnotics Area and GET DIAGNOSTICS are detailed in the MySQL Docs.While the above is a summary of some of the key developer enabling 5.6 features, it is by no means exhaustive. You can dig deeper into what MySQL 5.6 has to offer by reading this developer zone article or checking out "What's New in MySQL 5.6" in the MySQL docs.BONUS ALERT!  If you are developing on Windows or are considering MySQL as an alternative to SQL Server for your next project, application or shipping product, you should check out the MySQL Installer for Windows.  The installer includes the MySQL 5.6 RC database, all drivers, Visual Studio and Excel plugins, tray monitor and development tools all a single download and GUI installer.   So what are your next steps? Register for Dec. 13 "MySQL 5.6: Building the Next Generation of Web-Based Applications and Services" live web event.  Hurry!  Seats are limited. Download the MySQL 5.6 Release Candidate (look under the Development Releases tab) Provide Feedback <link to http://bugs.mysql.com/> Join the Developer discussion on the MySQL Forums Explore all MySQL Products and Developer Tools As always, thanks for your continued support of MySQL!

    Read the article

  • Can unit tests verify software requirements?

    - by Peter Smith
    I have often heard unit tests help programmers build confidence in their software. But is it enough for verifying that software requirements are met? I am losing confidence that software is working just because the unit tests pass. We have experienced some failures in production deployment due to an untested\unverified execution path. These failures are sometimes quite large, impact business operations and often requires an immediate fix. The failure is very rarely traced back to a failing unit test. We have large unit test bodies that have reasonable line coverage but almost all of these focus on individual classes and not on their interactions. Manual testing seems to be ineffective because the software being worked on is typically large with many execution paths and many integration points with other software. It is very painful to manually test all of the functionality and it never seems to flush out all the bugs. Are we doing unit testing wrong when it seems we still are failing to verify the software correctly before deployment? Or do most shops have another layer of automated testing in addition to unit tests?

    Read the article

  • Column order can matter

    - by Dave Ballantyne
    Ordinarily, column order of a SQL statement does not matter. Select a,b,c from table will produce the same execution plan as   Select c,b,a from table However, sometimes it can make a difference.   Consider this statement (maxdop is used to make a simpler plan and has no impact to the main point):   select SalesOrderID, CustomerID, OrderDate, ROW_NUMBER() over (Partition By CustomerId order by OrderDate asc) as RownAsc, ROW_NUMBER() over (Partition By CustomerId order by OrderDate Desc) as RownDesc from sales.SalesOrderHeader order by CustomerID,OrderDateoption(maxdop 1) If you look at the execution plan, you will see similar to this That is three sorts.  One for RownAsc,  one for RownDesc and the final one for the ‘Order by’ clause.  Sorting is an expensive operation and one that should be avoided if possible.  So with this in mind, it may come as some surprise that the optimizer does not re-order operations to group them together when the incoming data is in a similar (if not exactly the same) sorted sequence.  A simple change to swap the RownAsc and RownDesc columns to produce this statement : select SalesOrderID, CustomerID, OrderDate, ROW_NUMBER() over (Partition By CustomerId order by OrderDate Desc) as RownDesc , ROW_NUMBER() over (Partition By CustomerId order by OrderDate asc) as RownAsc from Sales.SalesOrderHeader order by CustomerID,OrderDateoption(maxdop 1) Will result a different and more efficient query plan with one less sort. The optimizer, although unable to automatically re-order operations, HAS taken advantage of the data ordering if it is as required.  This is well worth taking advantage of if you have different sorting requirements in one statement. Try grouping the functions that require the same order together and save yourself a few extra sorts.

    Read the article

  • SSIS Dashboard v0.4

    - by Davide Mauri
    Following the post on SSISDB script on Gist, I’ve been working on a HTML5 SSIS Dashboard, in order to have a nice looking, user friendly and, most of all, useful, SSIS Dashboard. Since this is a “spare-time” project, I’ve decided to develop it using Python since it’s THE data language (R aside), it’s a beautiful & powerful, well established and well documented and with a rich ecosystem around. Plus it has full support in Visual Studio, through the amazing Python Tools For Visual Studio plugin, I decided also to use Flask, a very good micro-framework to create websites, and use the SB Admin 2.0 Bootstrap admin template, since I’m all but a Web Designer. The result is here: https://github.com/yorek/ssis-dashboard and I can say I’m pretty satisfied with the work done so far (I’ve worked on it for probably less than 24 hours). Though there’s some features I’d like to add in t future (historical execution time, some charts, connection with AzureML to do prediction on expected execution times) it’s already usable. Of course I’ve tested it only on my development machine, so check twice before putting it in production but, give the fact that, virtually, there is not installation needed (you only need to install Python), and that all queries are based on standard SSISDB objects, I expect no big problems. If you want to test, contribute and/or give feedback please fell free to do it…I would really love to see this little project become a community project! Enjoy!

    Read the article

  • NetworkManager broken after upgrade to Kubuntu Saucy

    - by queueoverflow
    I had Kubuntu 13.04 on my ThinkPad X220, and I upgraded to 13.10 and I am not able to connect to a wired or wireless connection. The new network tray icon does not show any entries at all. In the menu of the tray icon, there is an error saying: Require NetworkManager 0.9.8, found . I then tried the following: nmcli con ** (process:3695): WARNING **: Could not initialize NMClient /org/freedesktop/NetworkManager: Rejected send message, 3 matched rules; type="method_call", sender=":1.64" (uid=1000 pid=3695 comm="nmcli con ") interface="org.freedesktop.DBus.Properties" member="GetAll" error name="(unset)" requested_reply="0" destination="org.freedesktop.NetworkManager" (uid=0 pid=1116 comm="NetworkManager ") Error: nmcli (0.9.8.0) and NetworkManager (unknown) versions don't match. Force execution using --nocheck, but the results are unpredictable. nmcli dev ** (process:3700): WARNING **: Could not initialize NMClient /org/freedesktop/NetworkManager: Rejected send message, 3 matched rules; type="method_call", sender=":1.65" (uid=1000 pid=3700 comm="nmcli dev ") interface="org.freedesktop.DBus.Properties" member="GetAll" error name="(unset)" requested_reply="0" destination="org.freedesktop.NetworkManager" (uid=0 pid=1116 comm="NetworkManager ") Error: nmcli (0.9.8.0) and NetworkManager (unknown) versions don't match. Force execution using --nocheck, but the results are unpredictable. nm-tool ** (process:3705): WARNING **: Could not initialize NMClient /org/freedesktop/NetworkManager: Rejected send message, 3 matched rules; type="method_call", sender=":1.66" (uid=1000 pid=3705 comm="nm-tool ") interface="org.freedesktop.DBus.Properties" member="GetAll" error name="(unset)" requested_reply="0" destination="org.freedesktop.NetworkManager" (uid=0 pid=1116 comm="NetworkManager ") NetworkManager Tool State: unknown ** (process:3705): WARNING **: error: could not connect to NetworkManager Running those as root works, however. I was also able to run nmcli con up id DHCP which got my DHCP connection working and giving me internet access. That did not work using a Wifi connection though, and I do need those. How can I get networking back to work without a reinstall?

    Read the article

  • Help in (re)designing my Swing application

    - by Harihar Das
    I have developed a Swing application that controls execution of several script like jobs. I need to display the interim output of the jobs concurrently. I have followed MVC while writing the application. The application is working as expected. But off late I have the following requirements in hand: A few of the script jobs need special user privileges to execute so as to access specialized resources. There seems to be now way in Java to impersonate as a different user while running an application.[examined in this question]. Also trying to run the Swing application as a scheduled task in windows is not helping. Once started the jobs should be running even if the user logs off after starting the jobs. I am thinking of separating the execution logic from the UI and run that as a service; and introduce JMS in between the two layers so as to store/retrieve the interim the output. Note: I need to run this application on windows Any ideas on meeting my requirements will be highly appreciated.

    Read the article

  • Out-of-the-Box Integration Links Primavera Solutions with PeopleSoft Projects Applications

    - by Sylvie MacKenzie, PMP
    In a move that brings best-in-class enterprise project portfolio management to Oracle’s PeopleSoft enterprise resource planning customers, Oracle announced the integration of Oracle’s PeopleSoft projects applications and Oracle’s Primavera P6 Enterprise Project Portfolio Management. The combination of PeopleSoft financial controls and Primavera portfolio management capabilities brings greater oversight of end-to-end processes to help organizations improve the planning and execution efforts needed to deliver projects on time and within budget. “As an organization with many high-value, project-driven initiatives, we are very pleased to see Oracle’s investment in this important integration,” says Janardhanan Sankar, senior vice president for technology and quality at ITC Infotech India Ltd. Oracle’s PeopleSoft projects applications enable project-centric organizations and departments to establish core operational processes for full project lifecycle management across operations and finance. The integration with Primavera P6 Enterprise Project Portfolio Management means organizations can eliminate costly and difficult-to-maintain proprietary integrations. Organizations can also standardize on the Oracle technologies to Align back-office budgets and costs with project operations to help ensure accurate forecasting of costs, resources, and schedules Provide an accurate single source of truth to financial managers and analysts using Oracle’s PeopleSoft projects applications, and to project managers using Primavera P6 Enterprise Project Portfolio Management  Enhance project collaboration and execution by having all users utilizing common solutions to communicate, plan, and deliver projects “By bringing together Oracle’s PeopleSoft projects applications and Oracle’s Primavera P6 Enterprise Project Portfolio Management, we are able to provide customers with the infrastructure they need to achieve a single source of truth on the projects they are managing,” says Paco Aubrejuan, Oracle’s group vice president and general manager, PeopleSoft. “This real-time visibility drives profitability, increases productivity, and improves operations.” For more information, view the on-demand Webcast, “Bridging Business Processes for Optimal Portfolio Performance,” or read about the new integration.

    Read the article

  • Multiple vulnerabilities in Firefox

    - by RitwikGhoshal
    CVE DescriptionCVSSv2 Base ScoreComponentProduct and Resolution CVE-2012-1960 Information Exposure vulnerability 5.0 Firefox Solaris 10 SPARC: 145080-12 X86: 145081-11 CVE-2012-1970 Denial of Service (DoS) vulnerability 10.0 CVE-2012-1971 Denial of Service (DoS) vulnerability 9.3 CVE-2012-1972 Resource Management Errors vulnerability 10.0 CVE-2012-1973 Resource Management Errors vulnerability 10.0 CVE-2012-1974 Resource Management Errors vulnerability 10.0 CVE-2012-1975 Resource Management Errors vulnerability 10.0 CVE-2012-1976 Resource Management Errors vulnerability 10.0 CVE-2012-3956 Resource Management Errors vulnerability 10.0 CVE-2012-3957 Improper Restriction of Operations within the Bounds of a Memory Buffer vulnerability 10.0 CVE-2012-3958 Resource Management Errors vulnerability 10.0 CVE-2012-3959 Resource Management Errors vulnerability 10.0 CVE-2012-3960 Resource Management Errors vulnerability 10.0 CVE-2012-3961 Resource Management Errors vulnerability 10.0 CVE-2012-3962 Arbitrary code execution vulnerability 9.3 CVE-2012-3963 Resource Management Errors vulnerability 10.0 CVE-2012-3964 Resource Management Errors vulnerability 10.0 CVE-2012-3966 Improper Restriction of Operations within the Bounds of a Memory Buffer vulnerability 10.0 CVE-2012-3967 Arbitrary code execution vulnerability 6.8 CVE-2012-3968 Resource Management Errors vulnerability 10.0 CVE-2012-3969 Numeric Errors vulnerability 9.3 CVE-2012-3970 Resource Management Errors vulnerability 10.0 CVE-2012-3972 Information Exposure vulnerability 5.0 CVE-2012-3974 Resource Management Errors vulnerability 6.9 CVE-2012-3976 Denial of Service (DoS) vulnerability 5.8 CVE-2012-3978 Permissions, Privileges, and Access Controls vulnerability 6.8 CVE-2012-3980 Improper Control of Generation of Code ('Code Injection') vulnerability 9.3 This notification describes vulnerabilities fixed in third-party components that are included in Oracle's product distributions.Information about vulnerabilities affecting Oracle products can be found on Oracle Critical Patch Updates and Security Alerts page.

    Read the article

< Previous Page | 100 101 102 103 104 105 106 107 108 109 110 111  | Next Page >