Search Results

Search found 59301 results on 2373 pages for 'asp net ajax'.

Page 11/2373 | < Previous Page | 7 8 9 10 11 12 13 14 15 16 17 18  | Next Page >

  • Looking into ASP.Net MVC 4.0 Mobile Development - part 1

    - by nikolaosk
    In this post I will be looking how ASP.Net MVC 4.0 helps us to create web solutions that target mobile devices.We all experience the magic that is the World Wide Web through mobile devices. Millions of people around the world, use tablets and smartphones to view the contents of websites,e-shops and portals.ASP.Net MVC 4.0 includes a new mobile project template and the ability to render a different set of views for different types of devices.There is a new feature that is called browser overriding which allows us to control exactly what a user is going to see from your web application regardless of what type of device he is using.In order to follow along this post you must have Visual Studio 2012 and .Net Framework 4.5 installed in your machine.Download and install VS 2012 using this link.My machine runs on Windows 8 and Visual Studio 2012 works just fine.It will work fine in Windows 7 as well so do not worry if you do not have the latest Microsoft operating system.1) Launch VS 2012 and create a new Web Forms application by going to File - >New Project - > ASP.Net MVC 4 Web Application and then click OKHave a look at the picture below  2) From the available templates select Mobile Application and then click OK.Have a look at the picture below 3) When I run the application I get the mobile view of the page. I would like to show you what a typical ASP.Net MVC 4.0 application looks like. So I will create a new simple ASP.Net MVC 4.0 Web Application. When I run the application I get the normal page view.Have a look at the picture below.On the left is the mobile view and on the right the normal view. As you can see we have more or less the same content in our mobile application (log in,register) compared with the normal ASP.Net MVC 4.0 application but it is optimised for mobile devices. 4) Let me explain how and when the mobile view is selected and finally rendered.There is a feature in MVC 4.0 that is called Display Modes and with this feature the runtime will select a view.If we have 2 views e.g contact.mobile.cshtml and contact.cshtml in our application the Controller at some point will instruct the runtime to select and render a view named contact.The runtime will look at the browser making the request and will determine if it is a mobile browser or a desktop browser. So if there is a request from my IPhone Safari browser for a particular site, if there is a mobile view the MVC 4.0 will select it and render it. If there is not a mobile view, the normal view will be rendered.5) In the  ASP.Net MVC 4.0 (Internet application) I created earlier (not the first project which was a mobile one) I can run it once more and see how it looks on the browser. If I want to view it with a mobile browser I must download one emulator like Opera Mobile.You can download Opera Mobile hereWhen I run the application I get the same view in both the desktop and the mobile browser. That was to be expected. Have a look at the picture below 6) Then I create another version of the _Layout.mobile.cshtml view in the Shared folder.I simply copy and paste the _Layout.cshtml  into the same folder and then rename it to _Layout.mobile.cshtml and then just alter the contents of the _Layout.mobile.cshtml.When I run again the application I get a different view on the desktop browser and a different one on the Opera mobile browser.Have a look at the picture below ?he Controller will instruct the ASP.Net runtime to select and render a view named _Layout.mobile.cshtml when the request will come from a mobile browser.?he runtime knows that a browser is a mobile one through the ASP.Net browser capability provider. Hope it helps!!!

    Read the article

  • ASP.NET Web API - Screencast series with downloadable sample code - Part 1

    - by Jon Galloway
    There's a lot of great ASP.NET Web API content on the ASP.NET website at http://asp.net/web-api. I mentioned my screencast series in original announcement post, but we've since added the sample code so I thought it was worth pointing the series out specifically. This is an introductory screencast series that walks through from File / New Project to some more advanced scenarios like Custom Validation and Authorization. The screencast videos are all short (3-5 minutes) and the sample code for the series is both available for download and browsable online. I did the screencasts, but the samples were written by the ASP.NET Web API team. So - let's watch them together! Grab some popcorn and pay attention, because these are short. After each video, I'll talk about what I thought was important. I'm embedding the videos using HTML5 (MP4) with Silverlight fallback, but if something goes wrong or your browser / device / whatever doesn't support them, I'll include the link to where the videos are more professionally hosted on the ASP.NET site. Note also if you're following along with the samples that, since Part 1 just looks at the File / New Project step, the screencast part numbers are one ahead of the sample part numbers - so screencast 4 matches with sample code demo 3. Note: I started this as one long post for all 6 parts, but as it grew over 2000 words I figured it'd be better to break it up. Part 1: Your First Web API [Video and code on the ASP.NET site] This screencast starts with an overview of why you'd want to use ASP.NET Web API: Reach more clients (thinking beyond the browser to mobile clients, other applications, etc.) Scale (who doesn't love the cloud?!) Embrace HTTP (a focus on HTTP both on client and server really simplifies and focuses service interactions) Next, I start a new ASP.NET Web API application and show some of the basics of the ApiController. We don't write any new code in this first step, just look at the example controller that's created by File / New Project. using System; using System.Collections.Generic; using System.Linq; using System.Net.Http; using System.Web.Http; namespace NewProject_Mvc4BetaWebApi.Controllers { public class ValuesController : ApiController { // GET /api/values public IEnumerable<string> Get() { return new string[] { "value1", "value2" }; } // GET /api/values/5 public string Get(int id) { return "value"; } // POST /api/values public void Post(string value) { } // PUT /api/values/5 public void Put(int id, string value) { } // DELETE /api/values/5 public void Delete(int id) { } } } Finally, we walk through testing the output of this API controller using browser tools. There are several ways you can test API output, including Fiddler (as described by Scott Hanselman in this post) and built-in developer tools available in all modern browsers. For simplicity I used Internet Explorer 9 F12 developer tools, but you're of course welcome to use whatever you'd like. A few important things to note: This class derives from an ApiController base class, not the standard ASP.NET MVC Controller base class. They're similar in places where API's and HTML returning controller uses are similar, and different where API and HTML use differ. A good example of where those things are different is in the routing conventions. In an HTTP controller, there's no need for an "action" to be specified, since the HTTP verbs are the actions. We don't need to do anything to map verbs to actions; when a request comes in to /api/values/5 with the DELETE HTTP verb, it'll automatically be handled by the Delete method in an ApiController. The comments above the API methods show sample URL's and HTTP verbs, so we can test out the first two GET methods by browsing to the site in IE9, hitting F12 to bring up the tools, and entering /api/values in the URL: That sample action returns a list of values. To get just one value back, we'd browse to /values/5: That's it for Part 1. In Part 2 we'll look at getting data (beyond hardcoded strings) and start building out a sample application.

    Read the article

  • Daily tech links for .net and related technologies - Mar 26-28, 2010

    - by SanjeevAgarwal
    Daily tech links for .net and related technologies - Mar 26-28, 2010 Web Development Creating Rich View Components in ASP.NET MVC - manzurrashid Diagnosing ASP.NET MVC Problems - Brad Wilson Templated Helpers & Custom Model Binders in ASP.NET MVC 2 - gshackles The jQuery Templating Plugin and Why You Should Be Excited! - Chris Love Web Deployment Made Awesome: If You're Using XCopy, You're Doing It Wrong - Scott Hansleman Dynamic User Specific CSS Selection at Run Time - Misfit Geek Sending email...(read more)

    Read the article

  • What is New in ASP.NET 4 Web Development Overview

    - by Aamir Hasan
     Microsoft Recently Microsoft introduce Visual  studio 2010 which have new feature's Name of some new Features are given below. In ASP.NET 4.O has focus on performance and Search Engine Optimization. I'll be taking a look at what I think are the most important new features in ASP.NET 4.Output cache extensibility Session state compression View state mode for individual control Page.MetaKeyword and Page.MetaDescription properties Response.RedirectPermanent method Routing in ASP.NET Increase the URL character length New syntax for Html Encode Predictable Client IDs Web.config file refactoring Auto-Start ASP.NET applications Improvements on Microsoft Ajax LibraryReference:ASP.NET 4 and Visual Studio 2010 Web Development Overview 

    Read the article

  • Anti-Forgery Request in ASP.NET MVC and AJAX

    - by Dixin
    Background To secure websites from cross-site request forgery (CSRF, or XSRF) attack, ASP.NET MVC provides an excellent mechanism: The server prints tokens to cookie and inside the form; When the form is submitted to server, token in cookie and token inside the form are sent by the HTTP request; Server validates the tokens. To print tokens to browser, just invoke HtmlHelper.AntiForgeryToken():<% using (Html.BeginForm()) { %> <%: this.Html.AntiForgeryToken(Constants.AntiForgeryTokenSalt)%> <%-- Other fields. --%> <input type="submit" value="Submit" /> <% } %> which writes to token to the form:<form action="..." method="post"> <input name="__RequestVerificationToken" type="hidden" value="J56khgCvbE3bVcsCSZkNVuH9Cclm9SSIT/ywruFsXEgmV8CL2eW5C/gGsQUf/YuP" /> <!-- Other fields. --> <input type="submit" value="Submit" /> </form> and the cookie: __RequestVerificationToken_Lw__=J56khgCvbE3bVcsCSZkNVuH9Cclm9SSIT/ywruFsXEgmV8CL2eW5C/gGsQUf/YuP When the above form is submitted, they are both sent to server. [ValidateAntiForgeryToken] attribute is used to specify the controllers or actions to validate them:[HttpPost] [ValidateAntiForgeryToken(Salt = Constants.AntiForgeryTokenSalt)] public ActionResult Action(/* ... */) { // ... } This is very productive for form scenarios. But recently, when resolving security vulnerabilities for Web products, I encountered 2 problems: It is expected to add [ValidateAntiForgeryToken] to each controller, but actually I have to add it for each POST actions, which is a little crazy; After anti-forgery validation is turned on for server side, AJAX POST requests will consistently fail. Specify validation on controller (not on each action) Problem For the first problem, usually a controller contains actions for both HTTP GET and HTTP POST requests, and usually validations are expected for HTTP POST requests. So, if the [ValidateAntiForgeryToken] is declared on the controller, the HTTP GET requests become always invalid:[ValidateAntiForgeryToken(Salt = Constants.AntiForgeryTokenSalt)] public class SomeController : Controller { [HttpGet] public ActionResult Index() // Index page cannot work at all. { // ... } [HttpPost] public ActionResult PostAction1(/* ... */) { // ... } [HttpPost] public ActionResult PostAction2(/* ... */) { // ... } // ... } If user sends a HTTP GET request from a link: http://Site/Some/Index, validation definitely fails, because no token is provided. So the result is, [ValidateAntiForgeryToken] attribute must be distributed to each HTTP POST action in the application:public class SomeController : Controller { [HttpGet] public ActionResult Index() // Works. { // ... } [HttpPost] [ValidateAntiForgeryToken(Salt = Constants.AntiForgeryTokenSalt)] public ActionResult PostAction1(/* ... */) { // ... } [HttpPost] [ValidateAntiForgeryToken(Salt = Constants.AntiForgeryTokenSalt)] public ActionResult PostAction2(/* ... */) { // ... } // ... } Solution To avoid a large number of [ValidateAntiForgeryToken] attributes (one attribute for one HTTP POST action), I created a wrapper class of ValidateAntiForgeryTokenAttribute, where HTTP verbs can be specified:[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method, AllowMultiple = false, Inherited = true)] public class ValidateAntiForgeryTokenWrapperAttribute : FilterAttribute, IAuthorizationFilter { private readonly ValidateAntiForgeryTokenAttribute _validator; private readonly AcceptVerbsAttribute _verbs; public ValidateAntiForgeryTokenWrapperAttribute(HttpVerbs verbs) : this(verbs, null) { } public ValidateAntiForgeryTokenWrapperAttribute(HttpVerbs verbs, string salt) { this._verbs = new AcceptVerbsAttribute(verbs); this._validator = new ValidateAntiForgeryTokenAttribute() { Salt = salt }; } public void OnAuthorization(AuthorizationContext filterContext) { string httpMethodOverride = filterContext.HttpContext.Request.GetHttpMethodOverride(); if (this._verbs.Verbs.Contains(httpMethodOverride, StringComparer.OrdinalIgnoreCase)) { this._validator.OnAuthorization(filterContext); } } } When this attribute is declared on controller, only HTTP requests with the specified verbs are validated:[ValidateAntiForgeryTokenWrapper(HttpVerbs.Post, Constants.AntiForgeryTokenSalt)] public class SomeController : Controller { // Actions for HTTP GET requests are not affected. // Only HTTP POST requests are validated. } Now one single attribute on controller turns on validation for all HTTP POST actions. Submit token via AJAX Problem For AJAX scenarios, when request is sent by JavaScript instead of form:$.post(url, { productName: "Tofu", categoryId: 1 // Token is not posted. }, callback); This kind of AJAX POST requests will always be invalid, because server side code cannot see the token in the posted data. Solution The token must be printed to browser then submitted back to server. So first of all, HtmlHelper.AntiForgeryToken() must be called in the page where the AJAX POST will be sent. Then jQuery must find the printed token in the page, and post it:$.post(url, { productName: "Tofu", categoryId: 1, __RequestVerificationToken: getToken() // Token is posted. }, callback); To be reusable, this can be encapsulated in a tiny jQuery plugin:(function ($) { $.getAntiForgeryToken = function () { // HtmlHelper.AntiForgeryToken() must be invoked to print the token. return $("input[type='hidden'][name='__RequestVerificationToken']").val(); }; var addToken = function (data) { // Converts data if not already a string. if (data && typeof data !== "string") { data = $.param(data); } data = data ? data + "&" : ""; return data + "__RequestVerificationToken=" + encodeURIComponent($.getAntiForgeryToken()); }; $.postAntiForgery = function (url, data, callback, type) { return $.post(url, addToken(data), callback, type); }; $.ajaxAntiForgery = function (settings) { settings.data = addToken(settings.data); return $.ajax(settings); }; })(jQuery); Then in the application just replace $.post() invocation with $.postAntiForgery(), and replace $.ajax() instead of $.ajaxAntiForgery():$.postAntiForgery(url, { productName: "Tofu", categoryId: 1 }, callback); // Token is posted. This solution looks hard coded and stupid. If you have more elegant solution, please do tell me.

    Read the article

  • Employee Info Starter Kit - Visual Studio 2010 and .NET 4.0 Version (4.0.0) Available

    - by joycsharp
    Employee Info Starter Kit is a ASP.NET based web application, which includes very simple user requirements, where we can create, read, update and delete (crud) the employee info of a company. Based on just a database table, it explores and solves all major problems in web development architectural space.  This open source starter kit extensively uses major features available in latest Visual Studio, ASP.NET and Sql Server to make robust, scalable, secured and maintanable web applications quickly and easily. Since it's first release, this starter kit achieved a huge popularity in web developer community and includes 1,40,000+ download from project web site. Visual Studio 2010 and .NET 4.0 came up with lots of exciting features to make software developers life easier.  A new version (v4.0.0) of Employee Info Starter Kit is now available in both MSDN Code Gallery and CodePlex. Chckout the latest version of this starter kit to enjoy cool features available in Visual Studio 2010 and .NET 4.0. [ Release Notes ] Architectural Overview Simple 2 layer architecture (user interface and data access layer) with 1 optional cache layer ASP.NET Web Form based user interface Custom Entity Data Container implemented (with primitive C# types for data fields) Active Record Design Pattern based Data Access Layer, implemented in C# and Entity Framework 4.0 Sql Server Stored Procedure to perform actual CRUD operation Standard infrastructure (architecture, helper utility) for automated integration (bottom up manner) and unit testing Technology UtilizedProgramming Languages/Scripts Browser side: JavaScript Web server side: C# 4.0 Database server side: T-SQL .NET Framework Components .NET 4.0 Entity Framework .NET 4.0 Optional/Named Parameters .NET 4.0 Tuple .NET 3.0+ Extension Method .NET 3.0+ Lambda Expressions .NET 3.0+ Aanonymous Type .NET 3.0+ Query Expressions .NET 3.0+ Automatically Implemented Properties .NET 3.0+ LINQ .NET 2.0 + Partial Classes .NET 2.0 + Generic Type .NET 2.0 + Nullable Type   ASP.NET 3.5+ List View (TBD) ASP.NET 3.5+ Data Pager (TBD) ASP.NET 2.0+ Grid View ASP.NET 2.0+ Form View ASP.NET 2.0+ Skin ASP.NET 2.0+ Theme ASP.NET 2.0+ Master Page ASP.NET 2.0+ Object Data Source ASP.NET 1.0+ Role Based Security Visual Studio Features Visual Studio 2010 CodedUI Test Visual Studio 2010 Layer Diagram Visual Studio 2010 Sequence Diagram Visual Studio 2010 Directed Graph Visual Studio 2005+ Database Unit Test Visual Studio 2005+ Unit Test Visual Studio 2005+ Web Test Visual Studio 2005+ Load Test Sql Server Features Sql Server 2005 Stored Procedure Sql Server 2005 Xml type Sql Server 2005 Paging support

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • Fix: Orchard Error ‘The controller for path '/OrchardLocal/' was not found or does not implement IController.

    - by Ken Cox [MVP]
    Suddenly, in a local Orchard 1.6 project, I started getting this error in ShellRoute.cs: The controller for path '/OrchardLocal/' was not found or does not implement IController. Obviously I had changed something, but the error wasn’t helping much.  After losing far too much time, I copied over the original Orchard source code and was back in business. Shortly thereafter, I further flattened my forehead by applying a sudden, solid blow with the lower portion of my palm! You see, in testing the importing of comments via blogML, I had set the added blog as the Orchard site’s Start page. Then, I deleted the blog so I could test another import batch. The upshot was that by deleting the blog, Orchard no longer had a default (home) page at the root of the site. The site’s default content was missing. The fix was to go to the Admin subdirectory (http://localhost:30320/OrchardLocal/admin) . add a new page, and check Set as homepage. Once again, the problem was between the keyboard and the chair. I hope this helps someone else. Ken

    Read the article

  • Using Razor together with ASP.NET Web API

    - by Fredrik N
    On the blog post “If Then, If Then, If Then, MVC” I found the following code example: [HttpGet]public ActionResult List() { var list = new[] { "John", "Pete", "Ben" }; if (Request.AcceptTypes.Contains("application/json")) { return Json(list, JsonRequestBehavior.AllowGet); } if (Request.IsAjaxRequest()) [ return PartialView("_List", list); } return View(list); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The code is a ASP.NET MVC Controller where it reuse the same “business” code but returns JSON if the request require JSON, a partial view when the request is an AJAX request or a normal ASP.NET MVC View. The above code may have several reasons to be changed, and also do several things, the code is not closed for modifications. To extend the code with a new way of presenting the model, the code need to be modified. So I started to think about how the above code could be rewritten so it will follow the Single Responsibility and open-close principle. I came up with the following result and with the use of ASP.NET Web API: public String[] Get() { return new[] { "John", "Pete", "Ben" }; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   It just returns the model, nothing more. The code will do one thing and it will do it well. But it will not solve the problem when it comes to return Views. If we use the ASP.NET Web Api we can get the result as JSON or XML, but not as a partial view or as a ASP.NET MVC view. Wouldn’t it be nice if we could do the following against the Get() method?   Accept: application/json JSON will be returned – Already part of the Web API   Accept: text/html Returns the model as HTML by using a View   The best thing, it’s possible!   By using the RazorEngine I created a custom MediaTypeFormatter (RazorFormatter, code at the end of this blog post) and associate it with the media type “text/html”. I decided to use convention before configuration to decide which Razor view should be used to render the model. To register the formatter I added the following code to Global.asax: GlobalConfiguration.Configuration.Formatters.Add(new RazorFormatter()); Here is an example of a ApiController that just simply returns a model: using System.Web.Http; namespace WebApiRazor.Controllers { public class CustomersController : ApiController { // GET api/values public Customer Get() { return new Customer { Name = "John Doe", Country = "Sweden" }; } } public class Customer { public string Name { get; set; } public string Country { get; set; } } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Because I decided to use convention before configuration I only need to add a view with the same name as the model, Customer.cshtml, here is the example of the View:   <!DOCTYPE html> <html> <head> <script src="http://ajax.aspnetcdn.com/ajax/jquery/jquery-1.5.1.min.js" type="text/javascript"></script> </head> <body> <div id="body"> <section> <div> <hgroup> <h1>Welcome '@Model.Name' to ASP.NET Web API Razor Formatter!</h1> </hgroup> </div> <p> Using the same URL "api/values" but using AJAX: <button>Press to show content!</button> </p> <p> </p> </section> </div> </body> <script type="text/javascript"> $("button").click(function () { $.ajax({ url: '/api/values', type: "GET", contentType: "application/json; charset=utf-8", success: function(data, status, xhr) { alert(data.Name); }, error: function(xhr, status, error) { alert(error); }}); }); </script> </html> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Now when I open up a browser and enter the following URL: http://localhost/api/customers the above View will be displayed and it will render the model the ApiController returns. If I use Ajax against the same ApiController with the content type set to “json”, the ApiController will now return the model as JSON. Here is a part of a really early prototype of the Razor formatter (The code is far from perfect, just use it for testing). I will rewrite the code and also make it possible to specify an attribute to the returned model, so it can decide which view to be used when the media type is “text/html”, but by default the formatter will use convention: using System; using System.Net.Http.Formatting; namespace WebApiRazor.Models { using System.IO; using System.Net; using System.Net.Http.Headers; using System.Reflection; using System.Threading.Tasks; using RazorEngine; public class RazorFormatter : MediaTypeFormatter { public RazorFormatter() { SupportedMediaTypes.Add(new MediaTypeHeaderValue("text/html")); SupportedMediaTypes.Add(new MediaTypeHeaderValue("application/xhtml+xml")); } //... public override Task WriteToStreamAsync( Type type, object value, Stream stream, HttpContentHeaders contentHeaders, TransportContext transportContext) { var task = Task.Factory.StartNew(() => { var viewPath = // Get path to the view by the name of the type var template = File.ReadAllText(viewPath); Razor.Compile(template, type, type.Name); var razor = Razor.Run(type.Name, value); var buf = System.Text.Encoding.Default.GetBytes(razor); stream.Write(buf, 0, buf.Length); stream.Flush(); }); return task; } } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Summary By using formatters and the ASP.NET Web API we can easily just extend our code without doing any changes to our ApiControllers when we want to return a new format. This blog post just showed how we can extend the Web API to use Razor to format a returned model into HTML.   If you want to know when I will post more blog posts, please feel free to follow me on twitter:   @fredrikn

    Read the article

  • ORM Profiler v1.1 has been released!

    - by FransBouma
    We've released ORM Profiler v1.1, which has the following new features: Real time profiling A real time viewer (RTV) has been added, which gives insight in the activity as it is received by the client, in two views: a chronological connection overview and an activity graph overview. This RTV allows the user to directly record to a snapshot using record buttons, pause the view, mark a range to create a snapshot from that range, and view graphs about the # of connection open actions and # of commands per second. The RTV has a 'range' in which it keeps live data and auto-cleans data that's older than this range. Screenshot of the activity graphs part of the real-time viewer: Low-level activity tab A new tab has been added to the Application tabs: the Low-level activity tab. This tab shows the main activity as it has been received over the named pipe. It can help to get insight in the chronological activity without the grouping over connections, so multiple connections at the same time per thread are easier to spot. Clicking a command will sync the rest of the application tabs, clicking a row will show the details below the splitter bar, as it is done with the other application tabs as well. Default application name in interceptor When an empty string or null is passed for application name to the Initialize method of the interceptor, the AppDomain's friendly name is used instead. Copy call stack to clipboard A call stack viewed in a grid in various parts of the UI is now copyable to the clipboard by clicking a button. Enable/Disable interceptor from the config file It's now possible to enable/disable the interceptor Initialization from the application's config file, using: Code: <appSettings> <add key="ORMProfilerEnabled" value="true"/> </appSettings> if value is true, the interceptor's Initialize method will proceed. If the value is false, the interceptor's Initialize method will not proceed and initialization won't be performed, meaning no interception will take place. If the setting is absent, or misconfigured, the Initialize method will proceed as normal and perform the initialization. Stored procedure calls for select databases are now properly displayed as a call For the databases: SQL Server, Oracle, DB2, Sybase ASA, Sybase ASE and Informix a stored procedure call is displayed as an execute/call statement and copy to clipboard works as-is. I'm especially happy with the new real-time profiling feature in ORM Profiler, which is the flagship feature for this release: it offers a completely new way to use the profiler, namely directly during debugging: you can immediately see what's going on without the necessity of a snapshot. The activity graph feature combined with the auto-cleanup of older data, allows you to keep the profiler open for a long period of time and see any spike of activity on the profiled application.

    Read the article

  • WP7 Tips–Part I– Media File Coding Techniques to help pass the Windows Phone 7 Marketplace Certification Requirements

    - by seaniannuzzi
    Overview Developing an application that plays media files on a Windows Phone 7 Device seems fairly straight forward.  However, what can make this a bit frustrating are the necessary requirements in order to pass the WP7 marketplace requirements so that your application can be published.  If you are new to this development, be aware of these common challenges that are likely to be made.  Below are some techniques and recommendations on how optimize your application to handle playing MP3 and/or WMA files that needs to adhere to the marketplace requirements.   Windows Phone 7 Certification Requirements Windows Phone 7 Developers Blog   Some common challenges are: Not prompting the user if another media file is playing in the background before playing your media file Not allowing the user to control the volume Not allowing the user to mute the sound Not allowing the media to be interrupted by a phone call  To keep this as simple as possible I am only going to focus on what “not to do” and what “to do” in order to implement a simple media solution. Things you will need or may be useful to you before you begin: Visual Studio 2010 Visual Studio 2010 Feature Packs Windows Phone 7 Developer Tools Visual Studio 2010 Express for Windows Phone Windows Phone Emulator Resources Silverlight 4 Tools For Visual Studio XNA Game Studio 4.0 Microsoft Expression Blend for Windows Phone Note: Please keep in mind you do not need all of these downloaded and installed, it is just easier to have all that you need now rather than add them on later.   Objective Summary Create a Windows Phone 7 – Windows Media Sample Application.  The application will implement many of the required features in order to pass the WP7 marketplace certification requirements in order to publish an application to WP7’s marketplace. (Disclaimer: I am not trying to indicate that this application will always pass as the requirements may change or be updated)   Step 1: – Create a New Windows Phone 7 Project   Step 2: – Update the Title and Application Name of your WP7 Application For this example I changed: the Title to: “DOTNETNUZZI WP7 MEDIA SAMPLE - v1.00” and the Page Title to:  “media magic”. Note: I also updated the background.   Step 3: – XAML - Media Element Preparation and Best Practice Before we begin the next step I just wanted to point out a few things that you should not do as a best practice when developing an application for WP7 that is playing music.  Please keep in mind that these requirements are not the same if you are playing Sound Effects and are geared towards playing media in the background.   If you have coded this – be prepared to change it:   To avoid a failure from the market place remove all of your media source elements from your XAML or simply create them dynamically.  To keep this simple we will remove the source and set the AutoPlay property to false to ensure that there are no media elements are active when the application is started. Proper example of the media element with No Source:   Some Additional Settings - Add XAML Support for a Mute Button   Step 4: – Boolean to handle toggle of Mute Feature Step 5: – Add Event Handler for Main Page Load   Step 6: – Add Reference to the XNA Framework   Step 7: – Add two Using Statements to Resolve the Namespace of Media and the Application Bar using Microsoft.Xna.Framework.Media; using Microsoft.Phone.Shell;   Step 8: – Add the Method to Check the Media State as Shown Below   Step 9: – Add Code to Mute the Media File Step 10: – Add Code to Play the Media File //if the state of the media has been checked you are good to go. media_sample.Play(); Note: If we tried to perform this operation at this point you will receive the following error: System.InvalidOperationException was unhandled Message=FrameworkDispatcher.Update has not been called. Regular FrameworkDispatcher.Update calls are necessary for fire and forget sound effects and framework events to function correctly. See http://go.microsoft.com/fwlink/?LinkId=193853 for details. StackTrace:        at Microsoft.Xna.Framework.FrameworkDispatcher.AddNewPendingCall(ManagedCallType callType, UInt32 arg)        at Microsoft.Xna.Framework.UserAsyncDispatcher.HandleManagedCallback(ManagedCallType managedCallType, UInt32 managedCallArgs) at Microsoft.Xna.Framework.UserAsyncDispatcher.AsyncDispatcherThreadFunction()            It is not recommended that you just add the FrameworkDispatcher.Update(); call before playing the media file. It is recommended that you implement the following class to your solution and implement this class in the app.xaml.cs file.   Step 11: – Add FrameworkDispatcher Features I recommend creating a class named XNAAsyncDispatcher and adding the following code:   After you have added the code accordingly, you can now implement this into your app.xaml.cs file as highlighted below.   Note:  If you application sound file is not playing make sure you have the proper “Build Action” set such as Content.   Running the Sample Now that we have some of the foundation created you should be able to run the application successfully.  When the application launches your sound options should be set accordingly when the “checkMediaState” method is called.  As a result the application will properly setup the media options and/or alert the user accordinglyper the certification requirements.  In addition, the sample also shows a quick way to mute the sound in your application by simply removing the URI source of the media file.  If everything successfully compiled the application should look similar to below.                 <sound playing>   Summary At this point we have a fully functional application that provides techniques on how to avoid some common challenges when working with media files and developing applications for Windows Phone 7.  The techniques mentioned above should make things a little easier and helpful in getting your WP7 application approved and published on the Marketplace.  The next blog post will be titled: WP7 Tips–Part II - How to write code that will pass the Windows Phone 7 Marketplace Requirements for Themes (light and dark). If anyone has any questions or comments please comment on this blog. 

    Read the article

  • ASP.NET4.0-Compatibility Settings for rendering controls

    - by Jalpesh P. Vadgama
    With asp.net 4.0 Microsoft has taken a great step for rendering controls. Now it will have more cleaner html there are lots of enhancement for rendering html controls in asp.net 4.0 now all controls like Menu, List View and other controls renders more cleaner html. But recently i have faced strange problem in rendering controls I have my site in asp.net 3.5 and i want to convert it in asp.net 4.0. I have applied my style as per 3.5 rendering and some of items are obsolete in asp.net 4.0. Modifying style sheet was a tedious job here asp.net 4.0 compatibility  setting comes into help. Asp.net 4.0 compatibility settings provides full backward compatibility in terms of the rendering controls. You can assign this in your web.config section like following. XML, using GeSHi 1.0.8.6<system.web> <pages controlRenderingCompatibilityVersion="3.5|4.0"/> </system.web>  Parsed in 0.001 seconds at 84.92 KB/s Here the values of controlRenderingCompatibility is a string which will indicate on which way control should render in browser if you provide 4.0 then it will controls with more cleaner html and while if you want to go with old legacy rendering like 3.5 then you can put 3.5 and it will render same way as you are doing in asp.net 3.5. Hope this help you!!! Technorati Tags: ASP.NET 4.0,controlRenderingCompatibility

    Read the article

  • Realtime progress of AJAX call (asp.net)

    - by Dynde
    Hi... I'm trying to make a progress bar that updates the user on the progress of the AJAX call. My immediate thinking was that I need an AJAX call to start a thread on the server, allowing the starting AJAX call to finish, and allowing the thread to send updates back to the user. For the purpose of simplicity, disregard the actual progress bar functionality (I was thinking of implementing one of those JS bars, with fancy colors and effects ;), but if I can get an update from the thread, then updating a simple JS progress bar becomes trivial ;) ) I just need a few pointers on how to accomplish this, if anyone could oblige me? ;)

    Read the article

  • Ajax.BeginForm is submitting disabled form elements

    - by Fiffe
    Using MVC3 and Ajax.BeginForm I surprisingly discovered that mvc ajax forms submits elements with the attribute disabled="disabled". I have tested both select and text inputs. I was suprised because they should not be submited and they will not when using Html.BeginForm. Is there some hidden option or a workaround for this? [EDIT example] @using (Ajax.BeginForm("Action", "Control", new AjaxOptions() { HttpMethod = "POST" })) { <input type="text" name="_enabled" value="_enabled" /> <input type="text" name="_disabled" value="_disabled" disabled="disabled" /> <input type="submit" value="POST" /> }

    Read the article

  • Ajax Control Toolkit December 2013 Release

    - by Stephen.Walther
    Today, we released a new version of the Ajax Control Toolkit that contains several important bug fixes and new features. The new release contains a new Tabs control that has been entirely rewritten in jQuery. You can download the December 2013 release of the Ajax Control Toolkit at http://Ajax.CodePlex.com. Alternatively, you can install the latest version directly from NuGet: The Ajax Control Toolkit and jQuery The Ajax Control Toolkit now contains two controls written with jQuery: the ToggleButton control and the Tabs control.  The goal is to rewrite the Ajax Control Toolkit to use jQuery instead of the Microsoft Ajax Library gradually over time. The motivation for rewriting the controls in the Ajax Control Toolkit to use jQuery is to modernize the toolkit. We want to continue to accept new controls written for the Ajax Control Toolkit contributed by the community. The community wants to use jQuery. We want to make it easy for the community to submit bug fixes. The community understands jQuery. Using the Ajax Control Toolkit with a Website that Already uses jQuery But what if you are already using jQuery in your website?  Will adding the Ajax Control Toolkit to your website break your existing website?  No, and here is why. The Ajax Control Toolkit uses jQuery.noConflict() to avoid conflicting with an existing version of jQuery in a page.  The version of jQuery that the Ajax Control Toolkit uses is represented by a variable named actJQuery.  You can use actJQuery side-by-side with an existing version of jQuery in a page without conflict.Imagine, for example, that you add jQuery to an ASP.NET page using a <script> tag like this: <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="WebForm1.aspx.cs" Inherits="TestACTDec2013.WebForm1" %> <!DOCTYPE html> <html > <head runat="server"> <title></title> </head> <body> <form id="form1" runat="server"> <div> <script src="Scripts/jquery-2.0.3.min.js"></script> <ajaxToolkit:ToolkitScriptManager runat="server" /> <ajaxToolkit:TabContainer runat="server"> <ajaxToolkit:TabPanel runat="server"> <HeaderTemplate> Tab 1 </HeaderTemplate> <ContentTemplate> <h1>First Tab</h1> </ContentTemplate> </ajaxToolkit:TabPanel> <ajaxToolkit:TabPanel runat="server"> <HeaderTemplate> Tab 2 </HeaderTemplate> <ContentTemplate> <h1>Second Tab</h1> </ContentTemplate> </ajaxToolkit:TabPanel> </ajaxToolkit:TabContainer> </div> </form> </body> </html> The page above uses the Ajax Control Toolkit Tabs control (TabContainer and TabPanel controls).  The Tabs control uses the version of jQuery that is currently bundled with the Ajax Control Toolkit (jQuery version 1.9.1). The page above also includes a <script> tag that references jQuery version 2.0.3.  You might need that particular version of jQuery, for example, to use a particular jQuery plugin. The two versions of jQuery in the page do not create a conflict. This fact can be demonstrated by entering the following two commands in the JavaScript console window: actJQuery.fn.jquery $.fn.jquery Typing actJQuery.fn.jquery will display the version of jQuery used by the Ajax Control Toolkit and typing $.fn.jquery (or jQuery.fn.jquery) will show the version of jQuery used by other jQuery plugins in the page.      Preventing jQuery from Loading Twice So by default, the Ajax Control Toolkit will not conflict with any existing version of jQuery used in your application. However, this does mean that if you are already using jQuery in your application then jQuery will be loaded twice. For performance reasons, you might want to avoid loading the jQuery library twice. By taking advantage of the <remove> element in the AjaxControlToolkit.config file, you can prevent the Ajax Control Toolkit from loading its version of jQuery. <ajaxControlToolkit> <scripts> <remove name="jQuery.jQuery.js" /> </scripts> <controlBundles> <controlBundle> <control name="TabContainer" /> <control name="TabPanel" /> </controlBundle> </controlBundles> </ajaxControlToolkit> Be careful here:  the name of the script being removed – jQuery.jQuery.js – is case-sensitive. If you remove jQuery then it is your responsibility to add the exact same version of jQuery back into your application.  You can add jQuery back using a <script> tag like this: <script src="Scripts/jquery-1.9.1.min.js"></script>     Make sure that you add the <script> tag before the server-side <form> tag or the Ajax Control Toolkit won’t detect the presence of jQuery. Alternatively, you can use the ToolkitScriptManager like this: <ajaxToolkit:ToolkitScriptManager runat="server"> <Scripts> <asp:ScriptReference Name="jQuery.jQuery.js" /> </Scripts> </ajaxToolkit:ToolkitScriptManager> The Ajax Control Toolkit is tested against the particular version of jQuery that is bundled with the Ajax Control Toolkit. Currently, the Ajax Control Toolkit uses jQuery version 1.9.1. If you attempt to use a different version of jQuery with the Ajax Control Toolkit then you will get the exception jQuery 1.9.1 is required in your JavaScript console window: If you need to use a different version of jQuery in the same page as the Ajax Control Toolkit then you should not use the <remove> element. Instead, allow the Ajax Control Toolkit to load its version of jQuery side-by-side with the other version of jQuery. Lots of Bug Fixes As usual, we implemented several important bug fixes with this release. The bug fixes concerned the following three controls: Tabs control – In the course of rewriting the Tabs control to use jQuery, we fixed several bugs related to the Tabs control. AjaxFileUpload control – We resolved an issue concerning the AjaxFileUpload and the TMP directory. HTMLEditor control – We updated the HTMLEditor control to use the new Ajax Control Toolkit bundling and minification framework. Summary I would like to thank the Superexpert team for their hard work on this release. Many long hours of coding and testing went into making this release possible.

    Read the article

  • New HTML 5 input types in ASP.Net 4.5 Developer Preview

    - by sreejukg
    Microsoft has released developer previews for Visual Studio 2011 and .Net framework 4.5. There are lots of new features available in the developer preview. One of the most interested things for web developers is the support introduced for new HTML 5 form controls. The following are the list of new controls available in HTML 5 email url number range Date pickers (date, month, week, time, datetime, datetime-local) search color Describing the functionality for these controls is not in the scope of this article. If you want to know about these controls, refer the below URLs http://msdn.microsoft.com/en-us/magazine/hh547102.aspx http://www.w3schools.com/html5/html5_form_input_types.asp ASP.Net 4.5 introduced more possible values to the Text Mode attribute to cater the above requirements. Let us evaluate these. I have created a project in Visual Studio 2011 developer preview, and created a page named “controls.aspx”. In the page I placed on Text box control from the toolbox Now select the control and go to the properties pane, look at the TextMode attribute. Now you can see more options are added here than prior versions of ASP.Net. I just selected Email as TextMode. I added one button to submit my page. The screen shot of the page in Visual Studio 2011 designer is as follows See the corresponding markup <form id="form1" runat="server">     <div>         Enter your email:         <asp:TextBox ID="TextBox1" runat="server" TextMode="Email"></asp:TextBox     </div>     <asp:Button ID="Button1" runat="server" Text="Submit" /> </form> Now let me run this page, IE 9 do not have the support for new form fields. I browsed the page using Firefox and the page appears as below. From the source of the rendered page, I saw the below markup for my email textbox <input name="TextBox1" type="email" id="TextBox1" /> Try to enter an invalid email and you will see the browser will ask you to enter a valid one by default. When rendered in non-supported browsers, these fields are behaving just as normal text boxes. So make sure you are using validation controls with these fields. See the browser support compatability matrix with these controls with various browser vendors. ASP.Net 4.5 introduced the support for these new form controls. You can build interactive forms using the newly added controls, keeping in mind that you need to validate the data for non-supported browsers.

    Read the article

  • Multiple file upload with asp.net 4.5 and Visual Studio 2012

    - by Jalpesh P. Vadgama
    This post will be part of Visual Studio 2012 feature series. In earlier version of ASP.NET there is no way to upload multiple files at same time. We need to use third party control or we need to create custom control for that. But with asp.net 4.5 now its possible to upload multiple file with file upload control. With ASP.NET 4.5 version Microsoft has enhanced file upload control to support HTML5 multiple attribute. There is a property called ‘AllowedMultiple’ to support that attribute and with that you can easily upload the file. So what we are waiting for!! It’s time to create one example. On the default.aspx file I have written following. <asp:FileUpload ID="multipleFile" runat="server" AllowMultiple="true" /> <asp:Button ID="uploadFile" runat="server" Text="Upload files" onclick="uploadFile_Click"/> Here you can see that I have given file upload control id as multipleFile and I have set AllowMultiple file to true. I have also taken one button for uploading file.For this example I am going to upload file in images folder. As you can see I have also attached event handler for button’s click event. So it’s time to write server side code for this. Following code is for the server side. protected void uploadFile_Click(object sender, EventArgs e) { if (multipleFile.HasFiles) { foreach(HttpPostedFile uploadedFile in multipleFile.PostedFiles) { uploadedFile.SaveAs(System.IO.Path.Combine(Server.MapPath("~/Images/"),uploadedFile.FileName)); Response.Write("File uploaded successfully"); } } } Here in the above code you can see that I have checked whether multiple file upload control has multiple files or not and then I have save that in Images folder of web application. Once you run the application in browser it will look like following. I have selected two files. Once I have selected and clicked on upload file button it will give message like following. As you can see now it has successfully upload file and you can see in windows explorer like following. As you can see it’s very easy to upload multiple file in ASP.NET 4.5. Stay tuned for more. Till then happy programming. P.S.: This feature is only supported in browser who support HTML5 multiple file upload. For other browsers it will work like normal file upload control in asp.net.

    Read the article

  • Great library of ASP.NET videos – Pluralsight!

    - by hajan
    I have been subscribed to the Pluralsight website and of course since ASP.NET is my favorite development technology, I passed throughout few series of videos related to ASP.NET. You have list of ASP.NET galleries from Fundamentals to Advanced topics including the latest features of ASP.NET 4.0, ASP.NET Ajax, ASP.NET MVC etc. Most of the speakers are either Microsoft MVPs or known technology experts! I was really curious to see the way they have organized the entire course materials, and trust me, I was quite amazed. I saw the ASP.NET 4.0 video series to confirm my knowledge and some other video series regarding general software development concepts, design patterns etc. I would like to point out if anyone of you is interested to get FREE 1-week .NET training pass in the Pluralsight library, please CONTACT ME, write your name and email and include the purpose of the message in the content. I hope you will find this useful. Regards, Hajan

    Read the article

  • Getting Started with Chart control in ASP.Net 4.0

    - by sreejukg
    In this article I am going to demonstrate the Chart control available in ASP.Net 4 and Visual Studio 2010. Most of the web applications need to generate reports for business users. The business users are happy to view the results in a graphical format more that seeing it in numbers. For the purpose of this demonstration, I have created a sales table. I am going to create charts from this sale data. The sale table looks as follows I have created an ASP.Net web application project in Visual Studio 2010. I have a default.aspx page that I am going to use for the demonstration. First I am going to add a chart control to the page. Visual Studio 2010 has a chart control. The Chart Control comes under the Data Tab in the toolbox. Drag and drop the Chart control to the default.aspx page. Visual Studio adds the below markup to the page. <asp:Chart ID="Chart1" runat="server"></asp:Chart> In the designer view, the Chart controls gives the following output. As you can see this is exactly similar to other server controls in ASP.Net, and similar to other controls under the data tab, Chart control is also a data bound control. So I am going to bind this with my sales data. From the design view, right click the chart control and select “show smart tag” Here you need so choose the Data source property and the chart type. From the choose data source drop down, select new data source. In the data source configuration wizard, select the SQL data base and write the query to retrieve the data. At first I am going to show the chart for amount of sales done by each sales person. I am going to use the following query inside sqldatasource select command. “SELECT SUM(SaleAmount) AS Expr1, salesperson FROM SalesData GROUP BY SalesPerson” This query will give me the amount of sales achieved by each sales person. The mark up of SQLDataSource is as follows. <asp:SqlDataSource ID="SqlDataSource1" runat="server" ConnectionString="<%$ ConnectionStrings:SampleConnectionString %>" SelectCommand="SELECT SUM(SaleAmount) as amount, SalesPerson FROM SalesData GROUP BY SalesPerson"></asp:SqlDataSource> Once you selected the data source for the chart control, you need to select the X and Y values for the columns. I have entered salesperson in the X Value member and amount in the Y value member. After modifications, the Chart control looks as follows Click F5 to run the application. The output of the page is as follows. Using ASP.Net it is much easier to represent your data in graphical format. To show this chart, I didn’t even write any single line of code. The chart control is a great tool that helps the developer to show the business intelligence in their applications without using third party products. I will write another blog that explore further possibilities that shows more reports by using the same sales data. If you want to get the Project in zipped format, post your email below.

    Read the article

  • Anti-Forgery Request Helpers for ASP.NET MVC and jQuery AJAX

    - by Dixin
    Background To secure websites from cross-site request forgery (CSRF, or XSRF) attack, ASP.NET MVC provides an excellent mechanism: The server prints tokens to cookie and inside the form; When the form is submitted to server, token in cookie and token inside the form are sent in the HTTP request; Server validates the tokens. To print tokens to browser, just invoke HtmlHelper.AntiForgeryToken():<% using (Html.BeginForm()) { %> <%: this.Html.AntiForgeryToken(Constants.AntiForgeryTokenSalt)%> <%-- Other fields. --%> <input type="submit" value="Submit" /> <% } %> This invocation generates a token then writes inside the form:<form action="..." method="post"> <input name="__RequestVerificationToken" type="hidden" value="J56khgCvbE3bVcsCSZkNVuH9Cclm9SSIT/ywruFsXEgmV8CL2eW5C/gGsQUf/YuP" /> <!-- Other fields. --> <input type="submit" value="Submit" /> </form> and also writes into the cookie: __RequestVerificationToken_Lw__= J56khgCvbE3bVcsCSZkNVuH9Cclm9SSIT/ywruFsXEgmV8CL2eW5C/gGsQUf/YuP When the above form is submitted, they are both sent to server. In the server side, [ValidateAntiForgeryToken] attribute is used to specify the controllers or actions to validate them:[HttpPost] [ValidateAntiForgeryToken(Salt = Constants.AntiForgeryTokenSalt)] public ActionResult Action(/* ... */) { // ... } This is very productive for form scenarios. But recently, when resolving security vulnerabilities for Web products, some problems are encountered. Specify validation on controller (not on each action) The server side problem is, It is expected to declare [ValidateAntiForgeryToken] on controller, but actually it has be to declared on each POST actions. Because POST actions are usually much more then controllers, this is a little crazy Problem Usually a controller contains actions for HTTP GET and actions for HTTP POST requests, and usually validations are expected for HTTP POST requests. So, if the [ValidateAntiForgeryToken] is declared on the controller, the HTTP GET requests become invalid:[ValidateAntiForgeryToken(Salt = Constants.AntiForgeryTokenSalt)] public class SomeController : Controller // One [ValidateAntiForgeryToken] attribute. { [HttpGet] public ActionResult Index() // Index() cannot work. { // ... } [HttpPost] public ActionResult PostAction1(/* ... */) { // ... } [HttpPost] public ActionResult PostAction2(/* ... */) { // ... } // ... } If browser sends an HTTP GET request by clicking a link: http://Site/Some/Index, validation definitely fails, because no token is provided. So the result is, [ValidateAntiForgeryToken] attribute must be distributed to each POST action:public class SomeController : Controller // Many [ValidateAntiForgeryToken] attributes. { [HttpGet] public ActionResult Index() // Works. { // ... } [HttpPost] [ValidateAntiForgeryToken(Salt = Constants.AntiForgeryTokenSalt)] public ActionResult PostAction1(/* ... */) { // ... } [HttpPost] [ValidateAntiForgeryToken(Salt = Constants.AntiForgeryTokenSalt)] public ActionResult PostAction2(/* ... */) { // ... } // ... } This is a little bit crazy, because one application can have a lot of POST actions. Solution To avoid a large number of [ValidateAntiForgeryToken] attributes (one for each POST action), the following ValidateAntiForgeryTokenAttribute wrapper class can be helpful, where HTTP verbs can be specified:[AttributeUsage(AttributeTargets.Class | AttributeTargets.Method, AllowMultiple = false, Inherited = true)] public class ValidateAntiForgeryTokenWrapperAttribute : FilterAttribute, IAuthorizationFilter { private readonly ValidateAntiForgeryTokenAttribute _validator; private readonly AcceptVerbsAttribute _verbs; public ValidateAntiForgeryTokenWrapperAttribute(HttpVerbs verbs) : this(verbs, null) { } public ValidateAntiForgeryTokenWrapperAttribute(HttpVerbs verbs, string salt) { this._verbs = new AcceptVerbsAttribute(verbs); this._validator = new ValidateAntiForgeryTokenAttribute() { Salt = salt }; } public void OnAuthorization(AuthorizationContext filterContext) { string httpMethodOverride = filterContext.HttpContext.Request.GetHttpMethodOverride(); if (this._verbs.Verbs.Contains(httpMethodOverride, StringComparer.OrdinalIgnoreCase)) { this._validator.OnAuthorization(filterContext); } } } When this attribute is declared on controller, only HTTP requests with the specified verbs are validated:[ValidateAntiForgeryTokenWrapper(HttpVerbs.Post, Constants.AntiForgeryTokenSalt)] public class SomeController : Controller { // GET actions are not affected. // Only HTTP POST requests are validated. } Now one single attribute on controller turns on validation for all POST actions. Maybe it would be nice if HTTP verbs can be specified on the built-in [ValidateAntiForgeryToken] attribute, which is easy to implemented. Submit token via AJAX The browser side problem is, if server side turns on anti-forgery validation for POST, then AJAX POST requests will fail be default. Problem For AJAX scenarios, when request is sent by jQuery instead of form:$.post(url, { productName: "Tofu", categoryId: 1 // Token is not posted. }, callback); This kind of AJAX POST requests will always be invalid, because server side code cannot see the token in the posted data. Solution The tokens are printed to browser then sent back to server. So first of all, HtmlHelper.AntiForgeryToken() must be called somewhere. Now the browser has token in HTML and cookie. Then jQuery must find the printed token in the HTML, and append token to the data before sending:$.post(url, { productName: "Tofu", categoryId: 1, __RequestVerificationToken: getToken() // Token is posted. }, callback); To be reusable, this can be encapsulated into a tiny jQuery plugin:/// <reference path="jquery-1.4.2.js" /> (function ($) { $.getAntiForgeryToken = function (tokenWindow, appPath) { // HtmlHelper.AntiForgeryToken() must be invoked to print the token. tokenWindow = tokenWindow && typeof tokenWindow === typeof window ? tokenWindow : window; appPath = appPath && typeof appPath === "string" ? "_" + appPath.toString() : ""; // The name attribute is either __RequestVerificationToken, // or __RequestVerificationToken_{appPath}. tokenName = "__RequestVerificationToken" + appPath; // Finds the <input type="hidden" name={tokenName} value="..." /> from the specified. // var inputElements = $("input[type='hidden'][name='__RequestVerificationToken" + appPath + "']"); var inputElements = tokenWindow.document.getElementsByTagName("input"); for (var i = 0; i < inputElements.length; i++) { var inputElement = inputElements[i]; if (inputElement.type === "hidden" && inputElement.name === tokenName) { return { name: tokenName, value: inputElement.value }; } } return null; }; $.appendAntiForgeryToken = function (data, token) { // Converts data if not already a string. if (data && typeof data !== "string") { data = $.param(data); } // Gets token from current window by default. token = token ? token : $.getAntiForgeryToken(); // $.getAntiForgeryToken(window). data = data ? data + "&" : ""; // If token exists, appends {token.name}={token.value} to data. return token ? data + encodeURIComponent(token.name) + "=" + encodeURIComponent(token.value) : data; }; // Wraps $.post(url, data, callback, type). $.postAntiForgery = function (url, data, callback, type) { return $.post(url, $.appendAntiForgeryToken(data), callback, type); }; // Wraps $.ajax(settings). $.ajaxAntiForgery = function (settings) { settings.data = $.appendAntiForgeryToken(settings.data); return $.ajax(settings); }; })(jQuery); In most of the scenarios, it is Ok to just replace $.post() invocation with $.postAntiForgery(), and replace $.ajax() with $.ajaxAntiForgery():$.postAntiForgery(url, { productName: "Tofu", categoryId: 1 }, callback); // Token is posted. There might be some scenarios of custom token. Here $.appendAntiForgeryToken() is provided:data = $.appendAntiForgeryToken(data, token); // Token is already in data. No need to invoke $.postAntiForgery(). $.post(url, data, callback); And there are scenarios that the token is not in the current window. For example, an HTTP POST request can be sent by iframe, while the token is in the parent window. Here window can be specified for $.getAntiForgeryToken():data = $.appendAntiForgeryToken(data, $.getAntiForgeryToken(window.parent)); // Token is already in data. No need to invoke $.postAntiForgery(). $.post(url, data, callback); If you have better solution, please do tell me.

    Read the article

  • AJAX Return Problem from data sent via jQuery.ajax

    - by Anthony Garand
    I am trying to receive a json object back from php after sending data to the php file from the js file. All I get is undefined. Here are the contents of the php and js file. data.php <?php $action = $_GET['user']; $data = array( "first_name" = "Anthony", "last_name" = "Garand", "email" = "[email protected]", "password" = "changeme"); switch ($action) { case '[email protected]': echo $_GET['callback'] . '('. json_encode($data) . ');'; break; } ? core.js $(document).ready(function(){ $.ajax({ url: "data.php", data: {"user":"[email protected]"}, context: document.body, data: "jsonp", success: function(data){renderData(data);} }); }); function renderData(data) { document.write(data.first_name); }

    Read the article

  • Dependency Injection in ASP.NET MVC NerdDinner App using Ninject

    - by shiju
    In this post, I am applying Dependency Injection to the NerdDinner application using Ninject. The controllers of NerdDinner application have Dependency Injection enabled constructors. So we can apply Dependency Injection through constructor without change any existing code. A Dependency Injection framework injects the dependencies into a class when the dependencies are needed. Dependency Injection enables looser coupling between classes and their dependencies and provides better testability of an application and it removes the need for clients to know about their dependencies and how to create them. If you are not familiar with Dependency Injection and Inversion of Control (IoC), read Martin Fowler’s article Inversion of Control Containers and the Dependency Injection pattern. The Open Source Project NerDinner is a great resource for learning ASP.NET MVC.  A free eBook provides an end-to-end walkthrough of building NerdDinner.com application. The free eBook and the Open Source Nerddinner application are extremely useful if anyone is trying to lean ASP.NET MVC. The first release of  Nerddinner was as a sample for the first chapter of Professional ASP.NET MVC 1.0. Currently the application is updating to ASP.NET MVC 2 and you can get the latest source from the source code tab of Nerddinner at http://nerddinner.codeplex.com/SourceControl/list/changesets. I have taken the latest ASP.NET MVC 2 source code of the application and applied  Dependency Injection using Ninject and Ninject extension Ninject.Web.Mvc.Ninject &  Ninject.Web.MvcNinject is available at http://github.com/enkari/ninject and Ninject.Web.Mvc is available at http://github.com/enkari/ninject.web.mvcNinject is a lightweight and a great dependency injection framework for .NET.  Ninject is a great choice of dependency injection framework when building ASP.NET MVC applications. Ninject.Web.Mvc is an extension for ninject which providing integration with ASP.NET MVC.Controller constructors and dependencies of NerdDinner application Listing 1 – Constructor of DinnersController  public DinnersController(IDinnerRepository repository) {     dinnerRepository = repository; }  Listing 2 – Constrcutor of AccountControllerpublic AccountController(IFormsAuthentication formsAuth, IMembershipService service) {     FormsAuth = formsAuth ?? new FormsAuthenticationService();     MembershipService = service ?? new AccountMembershipService(); }  Listing 3 – Constructor of AccountMembership – Concrete class of IMembershipService public AccountMembershipService(MembershipProvider provider) {     _provider = provider ?? Membership.Provider; }    Dependencies of NerdDinnerDinnersController, RSVPController SearchController and ServicesController have a dependency with IDinnerRepositiry. The concrete implementation of IDinnerRepositiry is DinnerRepositiry. AccountController has dependencies with IFormsAuthentication and IMembershipService. The concrete implementation of IFormsAuthentication is FormsAuthenticationService and the concrete implementation of IMembershipService is AccountMembershipService. The AccountMembershipService has a dependency with ASP.NET Membership Provider. Dependency Injection in NerdDinner using NinjectThe below steps will configure Ninject to apply controller injection in NerdDinner application.Step 1 – Add reference for NinjectOpen the  NerdDinner application and add  reference to Ninject.dll and Ninject.Web.Mvc.dll. Both are available from http://github.com/enkari/ninject and http://github.com/enkari/ninject.web.mvcStep 2 – Extend HttpApplication with NinjectHttpApplication Ninject.Web.Mvc extension allows integration between the Ninject and ASP.NET MVC. For this, you have to extend your HttpApplication with NinjectHttpApplication. Open the Global.asax.cs and inherit your MVC application from  NinjectHttpApplication instead of HttpApplication.   public class MvcApplication : NinjectHttpApplication Then the Application_Start method should be replace with OnApplicationStarted method. Inside the OnApplicationStarted method, call the RegisterAllControllersIn() method.   protected override void OnApplicationStarted() {     AreaRegistration.RegisterAllAreas();     RegisterRoutes(RouteTable.Routes);     ViewEngines.Engines.Clear();     ViewEngines.Engines.Add(new MobileCapableWebFormViewEngine());     RegisterAllControllersIn(Assembly.GetExecutingAssembly()); }  The RegisterAllControllersIn method will enables to activating all controllers through Ninject in the assembly you have supplied .We are passing the current assembly as parameter for RegisterAllControllersIn() method. Now we can expose dependencies of controller constructors and properties to request injectionsStep 3 – Create Ninject ModulesWe can configure your dependency injection mapping information using Ninject Modules.Modules just need to implement the INinjectModule interface, but most should extend the NinjectModule class for simplicity. internal class ServiceModule : NinjectModule {     public override void Load()     {                    Bind<IFormsAuthentication>().To<FormsAuthenticationService>();         Bind<IMembershipService>().To<AccountMembershipService>();                  Bind<MembershipProvider>().ToConstant(Membership.Provider);         Bind<IDinnerRepository>().To<DinnerRepository>();     } } The above Binding inforamtion specified in the Load method tells the Ninject container that, to inject instance of DinnerRepositiry when there is a request for IDinnerRepositiry and  inject instance of FormsAuthenticationService when there is a request for IFormsAuthentication and inject instance of AccountMembershipService when there is a request for IMembershipService. The AccountMembershipService class has a dependency with ASP.NET Membership provider. So we configure that inject the instance of Membership Provider. When configuring the binding information, you can specify the object scope in you application.There are four built-in scopes available in Ninject:Transient  -  A new instance of the type will be created each time one is requested. (This is the default scope). Binding method is .InTransientScope()   Singleton - Only a single instance of the type will be created, and the same instance will be returned for each subsequent request. Binding method is .InSingletonScope()Thread -  One instance of the type will be created per thread. Binding method is .InThreadScope() Request -  One instance of the type will be created per web request, and will be destroyed when the request ends. Binding method is .InRequestScope() Step 4 – Configure the Ninject KernelOnce you create NinjectModule, you load them into a container called the kernel. To request an instance of a type from Ninject, you call the Get() extension method. We can configure the kernel, through the CreateKernel method in the Global.asax.cs. protected override IKernel CreateKernel() {     var modules = new INinjectModule[]     {         new ServiceModule()     };       return new StandardKernel(modules); } Here we are loading the Ninject Module (ServiceModule class created in the step 3)  onto the container called the kernel for performing dependency injection.Source CodeYou can download the source code from http://nerddinneraddons.codeplex.com. I just put the modified source code onto CodePlex repository. The repository will update with more add-ons for the NerdDinner application.

    Read the article

< Previous Page | 7 8 9 10 11 12 13 14 15 16 17 18  | Next Page >