Search Results

Search found 59643 results on 2386 pages for 'data migration'.

Page 11/2386 | < Previous Page | 7 8 9 10 11 12 13 14 15 16 17 18  | Next Page >

  • Data Flow Diagrams - Difference between Lines and Arrows

    - by Howdy_McGee
    I'm currently working with Visio to create Data Flow Diagrams for a System Analysis and Design class but I'm unsure what the difference between ------ and ------> is. I can connect 2 shapes together with a line (process, entity, data store) but does the single line connecting the two mean data flow? Do I need to explicitly use the data flow arrow to show which way data is flowing? (There doesn't seem to be tags for this topic, maybe im in the wrong place?)

    Read the article

  • Big Data Videos

    - by Jean-Pierre Dijcks
    You can view them all on YouTube using the following links: Overview for the Boss: http://youtu.be/ikJyrmKdJWc Hadoop: http://youtu.be/acWtid-OOWM Acquiring Big Data: http://youtu.be/TfuhuA_uaho Organizing Big Data: http://youtu.be/IC6jVRO2Hq4 Analyzing Big Data: http://youtu.be/2yf_jrBhz5w These videos are a great place to start learning about big data, the value it can bring to your organisation and how Oracle can help you start working with big data today.

    Read the article

  • SQL Server and the XML Data Type : Data Manipulation

    The introduction of the xml data type, with its own set of methods for processing xml data, made it possible for SQL Server developers to create columns and variables of the type xml. Deanna Dicken examines the modify() method, which provides for data manipulation of the XML data stored in the xml data type via XML DML statements.

    Read the article

  • Behavior of <- NULL on lists versus data.frames for removing data

    - by Ananda Mahto
    Many R users eventually figure out lots of ways to remove elements from their data. One way is to use NULL, particularly when you want to do something like drop a column from a data.frame or drop an element from a list. Eventually, a user comes across a situation where they want to drop several columns from a data.frame at once, and they hit upon <- list(NULL) as the solution (since using <- NULL will result in an error). A data.frame is a special type of list, so it wouldn't be too tough to imagine that the approaches for removing items from a list should be the same as removing columns from a data.frame. However, they produce different results, as can be seen in the example below. ## Make some small data--two data.frames and two lists cars1 <- cars2 <- head(mtcars)[1:4] cars3 <- cars4 <- as.list(cars2) ## Demonstration that the `list(NULL)` approach works cars1[c("mpg", "cyl")] <- list(NULL) cars1 # disp hp # Mazda RX4 160 110 # Mazda RX4 Wag 160 110 # Datsun 710 108 93 # Hornet 4 Drive 258 110 # Hornet Sportabout 360 175 # Valiant 225 105 ## Demonstration that simply using `NULL` does not work cars2[c("mpg", "cyl")] <- NULL # Error in `[<-.data.frame`(`*tmp*`, c("mpg", "cyl"), value = NULL) : # replacement has 0 items, need 12 Switch to applying the same concept to a list, and compare the difference in behavior. ## Does not fully drop the items, but sets them to `NULL` cars3[c("mpg", "cyl")] <- list(NULL) # $mpg # NULL # # $cyl # NULL # # $disp # [1] 160 160 108 258 360 225 # # $hp # [1] 110 110 93 110 175 105 ## *Does* drop the `list` items while this would ## have produced an error with a `data.frame` cars4[c("mpg", "cyl")] <- NULL # $disp # [1] 160 160 108 258 360 225 # # $hp # [1] 110 110 93 110 175 105 The main questions I have are, if a data.frame is a list, why does it behave so differently in this scenario? Is there a foolproof way of knowing when an element will be dropped, when it will produce an error, and when it will simply be given a NULL value? Or do we depend on trial-and-error for this?

    Read the article

  • Core Data Migration - "Can't add source store" error

    - by Tofrizer
    Hi, In my iPhone app I'm using Core Data and I've made changes to my data model that cannot be automatically migrated over (i.e. added new relationships). I added the data model version (Design - Data Model - Add Model Version) and applied my new data model changes to the new version 2. I then created a mapping object model and set the Source and Destination models to their correct data models (old and new respectively). When I run the app and call the persistentStoreCoordinator, my app barfs with the following: 2010-02-27 02:40:30.922 XXXX[73578:20b] Unresolved error Error Domain=NSCocoaErrorDomain Code=134110 UserInfo=0xfc2240 "Operation could not be completed. (Cocoa error 134110.)", { NSUnderlyingError = Error Domain=NSCocoaErrorDomain Code=134130 UserInfo=0xfbb3a0 "Operation could not be completed. (Cocoa error 134130.)"; reason = "Can't add source store"; } FWIW (not much i think) I've also made the usual code changes in persistentStoreCoordinator to use the NSMigratePersistentStoresAutomaticallyOption and NSInferMappingModelAutomaticallyOption (for future data model changes that can be automatically migrated). More relevantly, my managedObjectModel is created by calling initWithContentsOfURL where the file/resource type is "momd". I've tried updating both the source and destination model in the mapping model (Design - Mapping Model - Update XXX Model) as well as deleted the mapping model and recreated it. I've cleaned and re-built but all to no avail. I still get the above error message. Any pointers/thoughts on how I can further debug or resolve this problem please? I haven't posted any code snippets because this feels much more like a build environment issue (and my code is very standard - just the usual core data code to handle migrations using a mapping model but I'm happy to show the code if it helps). Appreciate any help. Thanks

    Read the article

  • How does jQuery stores data with .data()?

    - by TK
    I am a little confused how jQuery stores data with .data() functions. Is this something called expando? Or is this using HTML5 Web Storage although I think this is very unlikely? The documentation says: The .data() method allows us to attach data of any type to DOM elements in a way that is safe from circular references and therefore from memory leaks. As I read about expando, it seems to have a rick of memory leak. Unfortunately my skills are not enough to read and understand jQuery code itself, but I want to know how jQuery stores such data by using data(). http://api.jquery.com/data/

    Read the article

  • ASP.Net Layered app - Share Entity Data Model amongst layers

    - by Chris Klepeis
    How can I share the auto-generated entity data model (generated object classes) amongst all layers of my C# web app whilst only granting query access in the data layer? This uses the typical 3 layer approach: data, business, presentation. My data layer returns an IEnumerable<T> to my business layer, but I cannot return type T to the presentation layer because I do not want the presentation layer to know of the existence of the data layer - which is where the entity framework auto-generated my classes. It was recommended to have a seperate layer with just the data model, but I'm unsure how to seperate the data model from the query functionality the entity framework provides.

    Read the article

  • How does jQuery store data with .data()?

    - by TK
    I am a little confused how jQuery stores data with .data() functions. Is this something called expando? Or is this using HTML5 Web Storage although I think this is very unlikely? The documentation says: The .data() method allows us to attach data of any type to DOM elements in a way that is safe from circular references and therefore from memory leaks. As I read about expando, it seems to have a rick of memory leak. Unfortunately my skills are not enough to read and understand jQuery code itself, but I want to know how jQuery stores such data by using data(). http://api.jquery.com/data/

    Read the article

  • Advice for migrating email server

    - by Chris Adams
    Hi there, I'm planning to migrate a Zimbra server with about 200gb of data from a server hosted in an office into a datacentre, to increase uptime (we've had a couple of outages when our network here started flaking out, and we have people in other countries relying on this server too). However, I'm not sure how best to migrate the data into the data centre without rendering the connection unusable during office hours, because there's far too much to send in over night over the two meg upstream connection we have here. I'm familiar with using tools like nice to stop a long running process degrading machine performance - is there a simple way to throttle a connection between office hours, so the long running transfer doesn't block the pipe, but then opens up outside of office hours to make the most of the bandwidth? I'm aware the alternative here is to simply mail a hard drive to the data centre, but I'd like to avoid doing that if I could. We're using Centos Linux for our servers, in the office and the datacentre, so extra points for an open source linux answer.

    Read the article

  • Accessing and Updating Data in ASP.NET: Filtering Data Using a CheckBoxList

    Filtering Database Data with Parameters, an earlier installment in this article series, showed how to filter the data returned by ASP.NET's data source controls. In a nutshell, the data source controls can include parameterized queries whose parameter values are defined via parameter controls. For example, the SqlDataSource can include a parameterized SelectCommand, such as: SELECT * FROM Books WHERE Price > @Price. Here, @Price is a parameter; the value for a parameter can be defined declaratively using a parameter control. ASP.NET offers a variety of parameter controls, including ones that use hard-coded values, ones that retrieve values from the querystring, and ones that retrieve values from session, and others. Perhaps the most useful parameter control is the ControlParameter, which retrieves its value from a Web control on the page. Using the ControlParameter we can filter the data returned by the data source control based on the end user's input. While the ControlParameter works well with most types of Web controls, it does not work as expected with the CheckBoxList control. The ControlParameter is designed to retrieve a single property value from the specified Web control, but the CheckBoxList control does not have a property that returns all of the values of its selected items in a form that the CheckBoxList control can use. Moreover, if you are using the selected CheckBoxList items to query a database you'll quickly find that SQL does not offer out of the box functionality for filtering results based on a user-supplied list of filter criteria. The good news is that with a little bit of effort it is possible to filter data based on the end user's selections in a CheckBoxList control. This article starts with a look at how to get SQL to filter data based on a user-supplied, comma-delimited list of values. Next, it shows how to programmatically construct a comma-delimited list that represents the selected CheckBoxList values and pass that list into the SQL query. Finally, we'll explore creating a custom parameter control to handle this logic declaratively. Read on to learn more! Read More >

    Read the article

  • SQLAuthority News – Fast Track Data Warehouse 3.0 Reference Guide

    - by pinaldave
    http://msdn.microsoft.com/en-us/library/gg605238.aspx I am very excited that Fast Track Data Warehouse 3.0 reference guide has been announced. As a consultant I have always enjoyed working with Fast Track Data Warehouse project as it truly expresses the potential of the SQL Server Engine. Here is few details of the enhancement of the Fast Track Data Warehouse 3.0 reference architecture. The SQL Server Fast Track Data Warehouse initiative provides a basic methodology and concrete examples for the deployment of balanced hardware and database configuration for a data warehousing workload. Balance is measured across the key components of a SQL Server installation; storage, server, application settings, and configuration settings for each component are evaluated. Description Note FTDW 3.0 Architecture Basic component architecture for FT 3.0 based systems. New Memory Guidelines Minimum and maximum tested memory configurations by server socket count. Additional Startup Options Notes for T-834 and setting for Lock Pages in Memory. Storage Configuration RAID1+0 now standard (RAID1 was used in FT 2.0). Evaluating Fragmentation Query provided for evaluating logical fragmentation. Loading Data Additional options for CI table loads. MCR Additional detail and explanation of FTDW MCR Rating. Read white paper on fast track data warehousing. Reference: Pinal Dave (http://blog.SQLAuthority.com)   Filed under: Business Intelligence, Data Warehousing, PostADay, SQL, SQL Authority, SQL Documentation, SQL Download, SQL Query, SQL Server, SQL Tips and Tricks, SQL White Papers, SQLAuthority News, T SQL, Technology

    Read the article

  • Accessing and Updating Data in ASP.NET: Filtering Data Using a CheckBoxList

    Filtering Database Data with Parameters, an earlier installment in this article series, showed how to filter the data returned by ASP.NET's data source controls. In a nutshell, the data source controls can include parameterized queries whose parameter values are defined via parameter controls. For example, the SqlDataSource can include a parameterized SelectCommand, such as: SELECT * FROM Books WHERE Price > @Price. Here, @Price is a parameter; the value for a parameter can be defined declaratively using a parameter control. ASP.NET offers a variety of parameter controls, including ones that use hard-coded values, ones that retrieve values from the querystring, and ones that retrieve values from session, and others. Perhaps the most useful parameter control is the ControlParameter, which retrieves its value from a Web control on the page. Using the ControlParameter we can filter the data returned by the data source control based on the end user's input. While the ControlParameter works well with most types of Web controls, it does not work as expected with the CheckBoxList control. The ControlParameter is designed to retrieve a single property value from the specified Web control, but the CheckBoxList control does not have a property that returns all of the values of its selected items in a form that the CheckBoxList control can use. Moreover, if you are using the selected CheckBoxList items to query a database you'll quickly find that SQL does not offer out of the box functionality for filtering results based on a user-supplied list of filter criteria. The good news is that with a little bit of effort it is possible to filter data based on the end user's selections in a CheckBoxList control. This article starts with a look at how to get SQL to filter data based on a user-supplied, comma-delimited list of values. Next, it shows how to programmatically construct a comma-delimited list that represents the selected CheckBoxList values and pass that list into the SQL query. Finally, we'll explore creating a custom parameter control to handle this logic declaratively. Read on to learn more! Read More >

    Read the article

  • Core Data: migrating entities with self-referential properties

    - by Dan
    My Core Data model contains an entity, Shape, that has two self-referential relationships, which means four properties. One pair is a one-to-many relationship (Shape.containedBy <- Shape.contains) and the another is a many-to-many relationship (Shape.nextShapes <<- Shape.previousShapes). It all works perfectly in the application, so I don't think self-referencing relationships is a problem in general. However, when it comes to migrating the model to a new version, then Xcode fails to compile the automatically generated mapping model, with this error message: 2009-10-30 17:10:09.387 mapc[18619:607] *** Terminating app due to uncaught exception 'NSInvalidArgumentException', reason: 'Unable to parse the format string "FUNCTION($manager ,'destinationInstancesForSourceRelationshipNamed:sourceInstances:' , 'contains' , $source.contains) == 1"' *** Call stack at first throw: ( 0 CoreFoundation 0x00007fff80d735a4 __exceptionPreprocess + 180 1 libobjc.A.dylib 0x00007fff83f0a313 objc_exception_throw + 45 2 Foundation 0x00007fff819bc8d4 _qfqp2_performParsing + 8412 3 Foundation 0x00007fff819ba79d +[NSPredicate predicateWithFormat:arguments:] + 59 4 Foundation 0x00007fff81a482ef +[NSExpression expressionWithFormat:arguments:] + 68 5 Foundation 0x00007fff81a48843 +[NSExpression expressionWithFormat:] + 155 6 XDBase 0x0000000100038e94 -[XDDevRelationshipMapping valueExpressionAsString] + 260 7 XDBase 0x000000010003ae5c -[XDMappingCompilerSupport generateCompileResultForMappingModel:] + 2828 8 XDBase 0x000000010003b135 -[XDMappingCompilerSupport compileSourcePath:options:] + 309 9 mapc 0x0000000100001a1c 0x0 + 4294973980 10 mapc 0x0000000100001794 0x0 + 4294973332 ) terminate called after throwing an instance of 'NSException' Command /Developer/usr/bin/mapc failed with exit code 6 The 'contains' is the name of one of the self-referential properties. Anyway, the really big problem is that I can't even look at this Mapping Property as Xcode crashes as soon as I select the entity mapping when viewing the mapping model. So I'm a bit lost really where to go from here. I really can't remove the self-referential properties, so I'm thinking I've got manually create a mapping model that compiles? Any ideas? Cheers

    Read the article

  • Connecting Named SQL Server Express 2005 from MySQL Migration Toolkit 1.1.10

    - by KoolKabin
    Hi guys, I am trying to migrate SQL Server Express 2005 database to mysql. I came across the mysql migration toolkit. When i started with the tool it asked for my sql server express information. I provided all the information of the sql express but it still can't connect. My machine has got 1.) SQL Server 2000 [Default instance eg computername ] 2.) SQL Server Express 2005 [Default Named Instance eg computername$SQLExpress ] *I can make easy connection from Microsoft SQL Server Management Studio. I am getting problem only while connecting from MySQl Migration toolkit 1.1.10

    Read the article

  • extjs data store load data on fly

    - by CKeven
    I'm trying to create a data store that will load the data schema and records on fly. Here is the current code i have and I'm not sure how to setup the array reader properly since i don't have the schema before query returns. ds = new Ext.data.Store({ url: 'http://10.10.97.83/cgi-bin/cgiip.exe/WService=wsdev/majax/jsbrdgx.p', baseParams: { cr: Ext.util.JSON.encode(omgtobxParms) }, reader: new Ext.data.ArrayReader({ //root:data.value.records }, col_names) }); {"name": "tmp_buy_book", "schema": [ { "name": "a", "type": "C"}, { "name": "b", "type": "C"} "records": [["1", ""], ["1",""]]}

    Read the article

  • rails migration. modify starting point for auto_increment

    - by railsnew
    I have a table already created. I am looking for a rails migration where I can modify the starting point of the auto_increment number for id column of my table. Let's say I want it to start from 1000. I googled a bit and came across this: it says: :options "string" pass raw options to your underlying database, e.g. auto_increment = 10000. Note that passing options will cause you to lose the default ENGINE=InnoDB statement Can this be used for something I want? and how will the migration look since i am changing the column and not creating new one...

    Read the article

  • Big Data – Buzz Words: What is MapReduce – Day 7 of 21

    - by Pinal Dave
    In yesterday’s blog post we learned what is Hadoop. In this article we will take a quick look at one of the four most important buzz words which goes around Big Data – MapReduce. What is MapReduce? MapReduce was designed by Google as a programming model for processing large data sets with a parallel, distributed algorithm on a cluster. Though, MapReduce was originally Google proprietary technology, it has been quite a generalized term in the recent time. MapReduce comprises a Map() and Reduce() procedures. Procedure Map() performance filtering and sorting operation on data where as procedure Reduce() performs a summary operation of the data. This model is based on modified concepts of the map and reduce functions commonly available in functional programing. The library where procedure Map() and Reduce() belongs is written in many different languages. The most popular free implementation of MapReduce is Apache Hadoop which we will explore tomorrow. Advantages of MapReduce Procedures The MapReduce Framework usually contains distributed servers and it runs various tasks in parallel to each other. There are various components which manages the communications between various nodes of the data and provides the high availability and fault tolerance. Programs written in MapReduce functional styles are automatically parallelized and executed on commodity machines. The MapReduce Framework takes care of the details of partitioning the data and executing the processes on distributed server on run time. During this process if there is any disaster the framework provides high availability and other available modes take care of the responsibility of the failed node. As you can clearly see more this entire MapReduce Frameworks provides much more than just Map() and Reduce() procedures; it provides scalability and fault tolerance as well. A typical implementation of the MapReduce Framework processes many petabytes of data and thousands of the processing machines. How do MapReduce Framework Works? A typical MapReduce Framework contains petabytes of the data and thousands of the nodes. Here is the basic explanation of the MapReduce Procedures which uses this massive commodity of the servers. Map() Procedure There is always a master node in this infrastructure which takes an input. Right after taking input master node divides it into smaller sub-inputs or sub-problems. These sub-problems are distributed to worker nodes. A worker node later processes them and does necessary analysis. Once the worker node completes the process with this sub-problem it returns it back to master node. Reduce() Procedure All the worker nodes return the answer to the sub-problem assigned to them to master node. The master node collects the answer and once again aggregate that in the form of the answer to the original big problem which was assigned master node. The MapReduce Framework does the above Map () and Reduce () procedure in the parallel and independent to each other. All the Map() procedures can run parallel to each other and once each worker node had completed their task they can send it back to master code to compile it with a single answer. This particular procedure can be very effective when it is implemented on a very large amount of data (Big Data). The MapReduce Framework has five different steps: Preparing Map() Input Executing User Provided Map() Code Shuffle Map Output to Reduce Processor Executing User Provided Reduce Code Producing the Final Output Here is the Dataflow of MapReduce Framework: Input Reader Map Function Partition Function Compare Function Reduce Function Output Writer In a future blog post of this 31 day series we will explore various components of MapReduce in Detail. MapReduce in a Single Statement MapReduce is equivalent to SELECT and GROUP BY of a relational database for a very large database. Tomorrow In tomorrow’s blog post we will discuss Buzz Word – HDFS. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • SQL Developer Data Modeler v3.3 Early Adopter: Search

    - by thatjeffsmith
    photo: Stuck in Customs via photopin cc The next version of Oracle SQL Developer Data Modeler is now available as an Early Adopter (read, beta) release. There are many new major feature enhancements to talk about, but today’s focus will be on the brand new Search mechanism. Data, data, data – SO MUCH data Google has made countless billions of dollars around a very efficient and intelligent search business. People have become accustomed to having their data accessible AND searchable. Data models can have thousands of entities or tables, each having dozens of attributes or columns. Imagine how hard it could be to find what you’re looking for here. This is the challenge we have tackled head-on in v3.3. Same location as the Search toolbar in Oracle SQL Developer (and most web browsers) Here’s how it works: Search as you type – wicked fast as the entire model is loaded into memory Supports regular expressions (regex) Results loaded to a new panel below Search across designs, models Search EVERYTHING, or filter by type Save your frequent searches Save your search results as a report Open common properties of object in search results and edit basic properties on-the-fly Want to just watch the video? We have a new Oracle Learning Library resource available now which introduces the new and improved Search mechanism in SQL Developer Data Modeler. Go watch the video and then come back. Some Screenshots This will be a pretty easy feature to pick up. Search is intuitive – we’ve already learned how to do search. Now we just have a better interface for it in SQL Developer Data Modeler. But just in case you need a couple of pointers… The SYS data dictionary in model form with Search Results If I type ‘translation’ in the search dialog, then the results will come up as hits are ‘resolved.’ By default, everything is searched, although I can filter the results after-the-fact. You can see where the search finds a match in the ‘Content’ column Save the Results as a Report If you limit the search results to a category and a model, then you can save the results as a report. All of the usual suspects You can optionally include the search string, which displays in the top of of the report as ‘PATTERN.’ You can save you common reporting setups as a template and reuse those as well. Here’s a sample HTML report: Yes, I like to search my search results report! Two More Ways to Search You can search ‘in context’ by opening the ‘Find’ dialog from an active design. You can do this using the ‘Search’ toolbar button or from a model context menu. Searching a specific model Instead of bringing up the old modal Find dialog, you now get to use the new and improved Search panel. Notice there’s no ‘Model’ drop-down to select and that the active Search form is now in the Search panel versus the search toolbar up top. What else is new in SQL Developer Data Modeler version 3.3? All kinds of goodies. You can send your model to Excel for quick edits/reviews and suck the changes back into your model, you can share objects between models, and much much more. You’ll find new videos and blog posts on the subject in the new few days and weeks. Enjoy! If you have any feedback or want to report bugs, please visit our forums.

    Read the article

  • Big Data – Operational Databases Supporting Big Data – Key-Value Pair Databases and Document Databases – Day 13 of 21

    - by Pinal Dave
    In yesterday’s blog post we learned the importance of the Relational Database and NoSQL database in the Big Data Story. In this article we will understand the role of Key-Value Pair Databases and Document Databases Supporting Big Data Story. Now we will see a few of the examples of the operational databases. Relational Databases (Yesterday’s post) NoSQL Databases (Yesterday’s post) Key-Value Pair Databases (This post) Document Databases (This post) Columnar Databases (Tomorrow’s post) Graph Databases (Tomorrow’s post) Spatial Databases (Tomorrow’s post) Key Value Pair Databases Key Value Pair Databases are also known as KVP databases. A key is a field name and attribute, an identifier. The content of that field is its value, the data that is being identified and stored. They have a very simple implementation of NoSQL database concepts. They do not have schema hence they are very flexible as well as scalable. The disadvantages of Key Value Pair (KVP) database are that they do not follow ACID (Atomicity, Consistency, Isolation, Durability) properties. Additionally, it will require data architects to plan for data placement, replication as well as high availability. In KVP databases the data is stored as strings. Here is a simple example of how Key Value Database will look like: Key Value Name Pinal Dave Color Blue Twitter @pinaldave Name Nupur Dave Movie The Hero As the number of users grow in Key Value Pair databases it starts getting difficult to manage the entire database. As there is no specific schema or rules associated with the database, there are chances that database grows exponentially as well. It is very crucial to select the right Key Value Pair Database which offers an additional set of tools to manage the data and provides finer control over various business aspects of the same. Riak Rick is one of the most popular Key Value Database. It is known for its scalability and performance in high volume and velocity database. Additionally, it implements a mechanism for collection key and values which further helps to build manageable system. We will further discuss Riak in future blog posts. Key Value Databases are a good choice for social media, communities, caching layers for connecting other databases. In simpler words, whenever we required flexibility of the data storage keeping scalability in mind – KVP databases are good options to consider. Document Database There are two different kinds of document databases. 1) Full document Content (web pages, word docs etc) and 2) Storing Document Components for storage. The second types of the document database we are talking about over here. They use Javascript Object Notation (JSON) and Binary JSON for the structure of the documents. JSON is very easy to understand language and it is very easy to write for applications. There are two major structures of JSON used for Document Database – 1) Name Value Pairs and 2) Ordered List. MongoDB and CouchDB are two of the most popular Open Source NonRelational Document Database. MongoDB MongoDB databases are called collections. Each collection is build of documents and each document is composed of fields. MongoDB collections can be indexed for optimal performance. MongoDB ecosystem is highly available, supports query services as well as MapReduce. It is often used in high volume content management system. CouchDB CouchDB databases are composed of documents which consists fields and attachments (known as description). It supports ACID properties. The main attraction points of CouchDB are that it will continue to operate even though network connectivity is sketchy. Due to this nature CouchDB prefers local data storage. Document Database is a good choice of the database when users have to generate dynamic reports from elements which are changing very frequently. A good example of document usages is in real time analytics in social networking or content management system. Tomorrow In tomorrow’s blog post we will discuss about various other Operational Databases supporting Big Data. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • The data reader returned by the store data provider does not have enough columns

    - by molgan
    Hello I get the following error when I try to execute a stored procedure: "The data reader returned by the store data provider does not have enough columns" When I in the sql-manager execute it like this: DECLARE @return_value int, @EndDate datetime EXEC @return_value = [dbo].[GetSomeDate] @SomeID = 91, @EndDate = @EndDate OUTPUT SELECT @EndDate as N'@EndDate' SELECT 'Return Value' = @return_value GO It returns the value properly.... @SomeDate = '2010-03-24 09:00' And in my app I have: if (_entities.Connection.State == System.Data.ConnectionState.Closed) _entities.Connection.Open(); using (EntityCommand c = new EntityCommand("MyAppEntities.GetSomeDate", (EntityConnection)this._entities.Connection)) { c.CommandType = System.Data.CommandType.StoredProcedure; EntityParameter paramSomeID = new EntityParameter("SomeID", System.Data.DbType.Int32); paramSomeID.Direction = System.Data.ParameterDirection.Input; paramSomeID.Value = someID; c.Parameters.Add(paramSomeID); EntityParameter paramSomeDate = new EntityParameter("SomeDate", System.Data.DbType.DateTime); SomeDate.Direction = System.Data.ParameterDirection.Output; c.Parameters.Add(paramSomeDate); int retval = c.ExecuteNonQuery(); return (DateTime?)c.Parameters["SomeDate"].Value; Why does it complain about columns? I googled on error and someone said something about removing RETURN in sp, but I dont have any RETURN there. last like is like SELECT @SomeDate = D.SomeDate FROM .... /M

    Read the article

  • ASP.NET server data persistence

    - by Wayne Werner
    Hi, I'm not really sure exactly how the question should be phrased, so please be patient if I ask the wrong thing. I'm writing an ASP.NET application using VB as the code behind language. I have a data access class that connects to the DB to run the query (parameterized, of course), and another class to perform the validation tasks - I access this class from my aspx page. What I would like is to be able to store the data server side and wait for the user to choose from a few options based on the validity of the data. But unless my understanding is completely off, having persistent data objects on the server will give problems when multiple users connect? My ultimate goal is that once the data has been validated the end user can't modify it. Currently I'm validating the data, but I still have to retrieve it from the web form AFTER the user says OK, which obviously leaves open the possibility of injecting bad data either accidentally (unlikely) or on purpose (also unlikely for the use, but I'd prefer not to take the chance). So am I completely off in my understanding? If so, can someone point me to a resource that provides some instructions on keeping persistent data on the server, or provide instruction? Thanks!

    Read the article

  • SQLAuthority News – Best Practices for Data Warehousing with SQL Server 2008 R2

    - by pinaldave
    An integral part of any BI system is the data warehouse—a central repository of data that is regularly refreshed from the source systems. The new data is transferred at regular intervals  by extract, transform, and load (ETL) processes. This whitepaper talks about what are best practices for Data Warehousing. This whitepaper discusses ETL, Analysis, Reporting as well relational database. The main focus of this whitepaper is on mainly ‘architecture’ and ‘performance’. Download Best Practices for Data Warehousing with SQL Server 2008 R2 Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Best Practices, Data Warehousing, PostADay, SQL, SQL Authority, SQL Documentation, SQL Download, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Nagy dobás készül az Oracle adatányászati felületen, Oracle Data Mining

    - by Fekete Zoltán
    Ahogyan már a tavaly oszi Oracle OpenWorld hírekben és eloadásokban is láthattuk a beharangozót, az Oracle nagy dobásra készül az adatbányászati fronton (Oracle Data Mining), mégpedig a remekül használható adatbányászati motor grafikus felületének a kiterjesztésével. Ha jól megfigyeljük ezt az utóbbi linket, az eddigi grafikus felület már Oracle Data Miner Classic néven fut. Hogyan is lehet használni az Oracle Data Mining-ot? - Oracle Data Miner (ingyenesen letöltheto GUI az OTN-rol) - Java-ból és PL/SQL-bol, Oracle Data Mining JDeveloper and SQL Developer Extensions - Excel felületrol, Oracle Spreadsheet Add-In for Predictive Analytics - ODM Connector for mySAP BW Oracle Data Mining technikai információ.

    Read the article

  • Google I/O 2012 - Big Data: Turning Your Data Problem Into a Competitive Advantage

    Google I/O 2012 - Big Data: Turning Your Data Problem Into a Competitive Advantage Ju-kay Kwek, Navneet Joneja Can businesses get practical value from web-scale data without building proprietary web-scale infrastructure? This session will explore how new Google data services can be used to solve key data storage, transformation and analysis challenges. We will look at concrete case studies demonstrating how real life businesses have successfully used these solutions to turn data into a competitive business asset. For all I/O 2012 sessions, go to developers.google.com From: GoogleDevelopers Views: 1 0 ratings Time: 52:39 More in Science & Technology

    Read the article

< Previous Page | 7 8 9 10 11 12 13 14 15 16 17 18  | Next Page >