Search Results

Search found 1208 results on 49 pages for 'endpoint'.

Page 11/49 | < Previous Page | 7 8 9 10 11 12 13 14 15 16 17 18  | Next Page >

  • Sinatra not passing header with redirect

    - by emson
    Hi All I have a simple Sinatra proxy, which when an endpoint is called, will redirect to another endpoint on the same Sinatra proxy. When I make a request with a header, the proxy doesn't seem to pass this header through to the second endpoint when the request redirects in the first. This is my code: get '/first' do # get the header from the request username = env['HTTP_USERNAME'] # set the header for the response response['username'] = username redirect '/second' end get '/second' do # This doesn't exist when redirected from /first puts env['HTTP_USERNAME'] # Here is a list of all headers env.each_key do |key| puts "KEY: #{key} VALUE: #{env[key]}" unless key.nil? end "DONE" end Any tips would be greatly appreciated. Thanks

    Read the article

  • New .NET Library for Accessing the Survey Monkey API

    - by Ben Emmett
    I’ve used Survey Monkey’s API for a while, and though it’s pretty powerful, there’s a lot of boilerplate each time it’s used in a new project, and the json it returns needs a bunch of processing to be able to use the raw information. So I’ve finally got around to releasing a .NET library you can use to consume the API more easily. The main advantages are: Only ever deal with strongly-typed .NET objects, making everything much more robust and a lot faster to get going Automatically handles things like rate-limiting and paging through results Uses combinations of endpoints to get all relevant data for you, and processes raw response data to map responses to questions To start, either install it using NuGet with PM> Install-Package SurveyMonkeyApi (easier option), or grab the source from https://github.com/bcemmett/SurveyMonkeyApi if you prefer to build it yourself. You’ll also need to have signed up for a developer account with Survey Monkey, and have both your API key and an OAuth token. A simple usage would be something like: string apiKey = "KEY"; string token = "TOKEN"; var sm = new SurveyMonkeyApi(apiKey, token); List<Survey> surveys = sm.GetSurveyList(); The surveys object is now a list of surveys with all the information available from the /surveys/get_survey_list API endpoint, including the title, id, date it was created and last modified, language, number of questions / responses, and relevant urls. If there are more than 1000 surveys in your account, the library pages through the results for you, making multiple requests to get a complete list of surveys. All the filtering available in the API can be controlled using .NET objects. For example you might only want surveys created in the last year and containing “pineapple” in the title: var settings = new GetSurveyListSettings { Title = "pineapple", StartDate = DateTime.Now.AddYears(-1) }; List<Survey> surveys = sm.GetSurveyList(settings); By default, whenever optional fields can be requested with a response, they will all be fetched for you. You can change this behaviour if for some reason you explicitly don’t want the information, using var settings = new GetSurveyListSettings { OptionalData = new GetSurveyListSettingsOptionalData { DateCreated = false, AnalysisUrl = false } }; Survey Monkey’s 7 read-only endpoints are supported, and the other 4 which make modifications to data might be supported in the future. The endpoints are: Endpoint Method Object returned /surveys/get_survey_list GetSurveyList() List<Survey> /surveys/get_survey_details GetSurveyDetails() Survey /surveys/get_collector_list GetCollectorList() List<Collector> /surveys/get_respondent_list GetRespondentList() List<Respondent> /surveys/get_responses GetResponses() List<Response> /surveys/get_response_counts GetResponseCounts() Collector /user/get_user_details GetUserDetails() UserDetails /batch/create_flow Not supported Not supported /batch/send_flow Not supported Not supported /templates/get_template_list Not supported Not supported /collectors/create_collector Not supported Not supported The hierarchy of objects the library can return is Survey List<Page> List<Question> QuestionType List<Answer> List<Item> List<Collector> List<Response> Respondent List<ResponseQuestion> List<ResponseAnswer> Each of these classes has properties which map directly to the names of properties returned by the API itself (though using PascalCasing which is more natural for .NET, rather than the snake_casing used by SurveyMonkey). For most users, Survey Monkey imposes a rate limit of 2 requests per second, so by default the library leaves at least 500ms between requests. You can request higher limits from them, so if you want to change the delay between requests just use a different constructor: var sm = new SurveyMonkeyApi(apiKey, token, 200); //200ms delay = 5 reqs per sec There’s a separate cap of 1000 requests per day for each API key, which the library doesn’t currently enforce, so if you think you’ll be in danger of exceeding that you’ll need to handle it yourself for now.  To help, you can see how many requests the current instance of the SurveyMonkeyApi object has made by reading its RequestsMade property. If the library encounters any errors, including communicating with the API, it will throw a SurveyMonkeyException, so be sure to handle that sensibly any time you use it to make calls. Finally, if you have a survey (or list of surveys) obtained using GetSurveyList(), the library can automatically fill in all available information using sm.FillMissingSurveyInformation(surveys); For each survey in the list, it uses the other endpoints to fill in the missing information about the survey’s question structure, respondents, and responses. This results in at least 5 API calls being made per survey, so be careful before passing it a large list. It also joins up the raw response information to the survey’s question structure, so that for each question in a respondent’s set of replies, you can access a ProcessedAnswer object. For example, a response to a dropdown question (from the /surveys/get_responses endpoint) might be represented in json as { "answers": [ { "row": "9384627365", } ], "question_id": "615487516" } Separately, the question’s structure (from the /surveys/get_survey_details endpoint) might have several possible answers, one of which might look like { "text": "Fourth item in dropdown list", "visible": true, "position": 4, "type": "row", "answer_id": "9384627365" } The library understands how this mapping works, and uses that to give you the following ProcessedAnswer object, which first describes the family and type of question, and secondly gives you the respondent’s answers as they relate to the question. Survey Monkey has many different question types, with 11 distinct data structures, each of which are supported by the library. If you have suggestions or spot any bugs, let me know in the comments, or even better submit a pull request .

    Read the article

  • Syncing Data with a Server using Silverlight and HTTP Polling Duplex

    - by dwahlin
    Many applications have the need to stay in-sync with data provided by a service. Although web applications typically rely on standard polling techniques to check if data has changed, Silverlight provides several interesting options for keeping an application in-sync that rely on server “push” technologies. A few years back I wrote several blog posts covering different “push” technologies available in Silverlight that rely on sockets or HTTP Polling Duplex. We recently had a project that looked like it could benefit from pushing data from a server to one or more clients so I thought I’d revisit the subject and provide some updates to the original code posted. If you’ve worked with AJAX before in Web applications then you know that until browsers fully support web sockets or other duplex (bi-directional communication) technologies that it’s difficult to keep applications in-sync with a server without relying on polling. The problem with polling is that you have to check for changes on the server on a timed-basis which can often be wasteful and take up unnecessary resources. With server “push” technologies, data can be pushed from the server to the client as it changes. Once the data is received, the client can update the user interface as appropriate. Using “push” technologies allows the client to listen for changes from the data but stay 100% focused on client activities as opposed to worrying about polling and asking the server if anything has changed. Silverlight provides several options for pushing data from a server to a client including sockets, TCP bindings and HTTP Polling Duplex.  Each has its own strengths and weaknesses as far as performance and setup work with HTTP Polling Duplex arguably being the easiest to setup and get going.  In this article I’ll demonstrate how HTTP Polling Duplex can be used in Silverlight 4 applications to push data and show how you can create a WCF server that provides an HTTP Polling Duplex binding that a Silverlight client can consume.   What is HTTP Polling Duplex? Technologies that allow data to be pushed from a server to a client rely on duplex functionality. Duplex (or bi-directional) communication allows data to be passed in both directions.  A client can call a service and the server can call the client. HTTP Polling Duplex (as its name implies) allows a server to communicate with a client without forcing the client to constantly poll the server. It has the benefit of being able to run on port 80 making setup a breeze compared to the other options which require specific ports to be used and cross-domain policy files to be exposed on port 943 (as with sockets and TCP bindings). Having said that, if you’re looking for the best speed possible then sockets and TCP bindings are the way to go. But, they’re not the only game in town when it comes to duplex communication. The first time I heard about HTTP Polling Duplex (initially available in Silverlight 2) I wasn’t exactly sure how it was any better than standard polling used in AJAX applications. I read the Silverlight SDK, looked at various resources and generally found the following definition unhelpful as far as understanding the actual benefits that HTTP Polling Duplex provided: "The Silverlight client periodically polls the service on the network layer, and checks for any new messages that the service wants to send on the callback channel. The service queues all messages sent on the client callback channel and delivers them to the client when the client polls the service." Although the previous definition explained the overall process, it sounded as if standard polling was used. Fortunately, Microsoft’s Scott Guthrie provided me with a more clear definition several years back that explains the benefits provided by HTTP Polling Duplex quite well (used with his permission): "The [HTTP Polling Duplex] duplex support does use polling in the background to implement notifications – although the way it does it is different than manual polling. It initiates a network request, and then the request is effectively “put to sleep” waiting for the server to respond (it doesn’t come back immediately). The server then keeps the connection open but not active until it has something to send back (or the connection times out after 90 seconds – at which point the duplex client will connect again and wait). This way you are avoiding hitting the server repeatedly – but still get an immediate response when there is data to send." After hearing Scott’s definition the light bulb went on and it all made sense. A client makes a request to a server to check for changes, but instead of the request returning immediately, it parks itself on the server and waits for data. It’s kind of like waiting to pick up a pizza at the store. Instead of calling the store over and over to check the status, you sit in the store and wait until the pizza (the request data) is ready. Once it’s ready you take it back home (to the client). This technique provides a lot of efficiency gains over standard polling techniques even though it does use some polling of its own as a request is initially made from a client to a server. So how do you implement HTTP Polling Duplex in your Silverlight applications? Let’s take a look at the process by starting with the server. Creating an HTTP Polling Duplex WCF Service Creating a WCF service that exposes an HTTP Polling Duplex binding is straightforward as far as coding goes. Add some one way operations into an interface, create a client callback interface and you’re ready to go. The most challenging part comes into play when configuring the service to properly support the necessary binding and that’s more of a cut and paste operation once you know the configuration code to use. To create an HTTP Polling Duplex service you’ll need to expose server-side and client-side interfaces and reference the System.ServiceModel.PollingDuplex assembly (located at C:\Program Files (x86)\Microsoft SDKs\Silverlight\v4.0\Libraries\Server on my machine) in the server project. For the demo application I upgraded a basketball simulation service to support the latest polling duplex assemblies. The service simulates a simple basketball game using a Game class and pushes information about the game such as score, fouls, shots and more to the client as the game changes over time. Before jumping too far into the game push service, it’s important to discuss two interfaces used by the service to communicate in a bi-directional manner. The first is called IGameStreamService and defines the methods/operations that the client can call on the server (see Listing 1). The second is IGameStreamClient which defines the callback methods that a server can use to communicate with a client (see Listing 2).   [ServiceContract(Namespace = "Silverlight", CallbackContract = typeof(IGameStreamClient))] public interface IGameStreamService { [OperationContract(IsOneWay = true)] void GetTeamData(); } Listing 1. The IGameStreamService interface defines server operations that can be called on the server.   [ServiceContract] public interface IGameStreamClient { [OperationContract(IsOneWay = true)] void ReceiveTeamData(List<Team> teamData); [OperationContract(IsOneWay = true, AsyncPattern=true)] IAsyncResult BeginReceiveGameData(GameData gameData, AsyncCallback callback, object state); void EndReceiveGameData(IAsyncResult result); } Listing 2. The IGameStreamClient interfaces defines client operations that a server can call.   The IGameStreamService interface is decorated with the standard ServiceContract attribute but also contains a value for the CallbackContract property.  This property is used to define the interface that the client will expose (IGameStreamClient in this example) and use to receive data pushed from the service. Notice that each OperationContract attribute in both interfaces sets the IsOneWay property to true. This means that the operation can be called and passed data as appropriate, however, no data will be passed back. Instead, data will be pushed back to the client as it’s available.  Looking through the IGameStreamService interface you can see that the client can request team data whereas the IGameStreamClient interface allows team and game data to be received by the client. One interesting point about the IGameStreamClient interface is the inclusion of the AsyncPattern property on the BeginReceiveGameData operation. I initially created this operation as a standard one way operation and it worked most of the time. However, as I disconnected clients and reconnected new ones game data wasn’t being passed properly. After researching the problem more I realized that because the service could take up to 7 seconds to return game data, things were getting hung up. By setting the AsyncPattern property to true on the BeginReceivedGameData operation and providing a corresponding EndReceiveGameData operation I was able to get around this problem and get everything running properly. I’ll provide more details on the implementation of these two methods later in this post. Once the interfaces were created I moved on to the game service class. The first order of business was to create a class that implemented the IGameStreamService interface. Since the service can be used by multiple clients wanting game data I added the ServiceBehavior attribute to the class definition so that I could set its InstanceContextMode to InstanceContextMode.Single (in effect creating a Singleton service object). Listing 3 shows the game service class as well as its fields and constructor.   [ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Multiple, InstanceContextMode = InstanceContextMode.Single)] public class GameStreamService : IGameStreamService { object _Key = new object(); Game _Game = null; Timer _Timer = null; Random _Random = null; Dictionary<string, IGameStreamClient> _ClientCallbacks = new Dictionary<string, IGameStreamClient>(); static AsyncCallback _ReceiveGameDataCompleted = new AsyncCallback(ReceiveGameDataCompleted); public GameStreamService() { _Game = new Game(); _Timer = new Timer { Enabled = false, Interval = 2000, AutoReset = true }; _Timer.Elapsed += new ElapsedEventHandler(_Timer_Elapsed); _Timer.Start(); _Random = new Random(); }} Listing 3. The GameStreamService implements the IGameStreamService interface which defines a callback contract that allows the service class to push data back to the client. By implementing the IGameStreamService interface, GameStreamService must supply a GetTeamData() method which is responsible for supplying information about the teams that are playing as well as individual players.  GetTeamData() also acts as a client subscription method that tracks clients wanting to receive game data.  Listing 4 shows the GetTeamData() method. public void GetTeamData() { //Get client callback channel var context = OperationContext.Current; var sessionID = context.SessionId; var currClient = context.GetCallbackChannel<IGameStreamClient>(); context.Channel.Faulted += Disconnect; context.Channel.Closed += Disconnect; IGameStreamClient client; if (!_ClientCallbacks.TryGetValue(sessionID, out client)) { lock (_Key) { _ClientCallbacks[sessionID] = currClient; } } currClient.ReceiveTeamData(_Game.GetTeamData()); //Start timer which when fired sends updated score information to client if (!_Timer.Enabled) { _Timer.Enabled = true; } } Listing 4. The GetTeamData() method subscribes a given client to the game service and returns. The key the line of code in the GetTeamData() method is the call to GetCallbackChannel<IGameStreamClient>().  This method is responsible for accessing the calling client’s callback channel. The callback channel is defined by the IGameStreamClient interface shown earlier in Listing 2 and used by the server to communicate with the client. Before passing team data back to the client, GetTeamData() grabs the client’s session ID and checks if it already exists in the _ClientCallbacks dictionary object used to track clients wanting callbacks from the server. If the client doesn’t exist it adds it into the collection. It then pushes team data from the Game class back to the client by calling ReceiveTeamData().  Since the service simulates a basketball game, a timer is then started if it’s not already enabled which is then used to randomly send data to the client. When the timer fires, game data is pushed down to the client. Listing 5 shows the _Timer_Elapsed() method that is called when the timer fires as well as the SendGameData() method used to send data to the client. void _Timer_Elapsed(object sender, ElapsedEventArgs e) { int interval = _Random.Next(3000, 7000); lock (_Key) { _Timer.Interval = interval; _Timer.Enabled = false; } SendGameData(_Game.GetGameData()); } private void SendGameData(GameData gameData) { var cbs = _ClientCallbacks.Where(cb => ((IContextChannel)cb.Value).State == CommunicationState.Opened); for (int i = 0; i < cbs.Count(); i++) { var cb = cbs.ElementAt(i).Value; try { cb.BeginReceiveGameData(gameData, _ReceiveGameDataCompleted, cb); } catch (TimeoutException texp) { //Log timeout error } catch (CommunicationException cexp) { //Log communication error } } lock (_Key) _Timer.Enabled = true; } private static void ReceiveGameDataCompleted(IAsyncResult result) { try { ((IGameStreamClient)(result.AsyncState)).EndReceiveGameData(result); } catch (CommunicationException) { // empty } catch (TimeoutException) { // empty } } LIsting 5. _Timer_Elapsed is used to simulate time in a basketball game. When _Timer_Elapsed() fires the SendGameData() method is called which iterates through the clients wanting to be notified of changes. As each client is identified, their respective BeginReceiveGameData() method is called which ultimately pushes game data down to the client. Recall that this method was defined in the client callback interface named IGameStreamClient shown earlier in Listing 2. Notice that BeginReceiveGameData() accepts _ReceiveGameDataCompleted as its second parameter (an AsyncCallback delegate defined in the service class) and passes the client callback as the third parameter. The initial version of the sample application had a standard ReceiveGameData() method in the client callback interface. However, sometimes the client callbacks would work properly and sometimes they wouldn’t which was a little baffling at first glance. After some investigation I realized that I needed to implement an asynchronous pattern for client callbacks to work properly since 3 – 7 second delays are occurring as a result of the timer. Once I added the BeginReceiveGameData() and ReceiveGameDataCompleted() methods everything worked properly since each call was handled in an asynchronous manner. The final task that had to be completed to get the server working properly with HTTP Polling Duplex was adding configuration code into web.config. In the interest of brevity I won’t post all of the code here since the sample application includes everything you need. However, Listing 6 shows the key configuration code to handle creating a custom binding named pollingDuplexBinding and associate it with the service’s endpoint.   <bindings> <customBinding> <binding name="pollingDuplexBinding"> <binaryMessageEncoding /> <pollingDuplex maxPendingSessions="2147483647" maxPendingMessagesPerSession="2147483647" inactivityTimeout="02:00:00" serverPollTimeout="00:05:00"/> <httpTransport /> </binding> </customBinding> </bindings> <services> <service name="GameService.GameStreamService" behaviorConfiguration="GameStreamServiceBehavior"> <endpoint address="" binding="customBinding" bindingConfiguration="pollingDuplexBinding" contract="GameService.IGameStreamService"/> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange" /> </service> </services>   Listing 6. Configuring an HTTP Polling Duplex binding in web.config and associating an endpoint with it. Calling the Service and Receiving “Pushed” Data Calling the service and handling data that is pushed from the server is a simple and straightforward process in Silverlight. Since the service is configured with a MEX endpoint and exposes a WSDL file, you can right-click on the Silverlight project and select the standard Add Service Reference item. After the web service proxy is created you may notice that the ServiceReferences.ClientConfig file only contains an empty configuration element instead of the normal configuration elements created when creating a standard WCF proxy. You can certainly update the file if you want to read from it at runtime but for the sample application I fed the service URI directly to the service proxy as shown next: var address = new EndpointAddress("http://localhost.:5661/GameStreamService.svc"); var binding = new PollingDuplexHttpBinding(); _Proxy = new GameStreamServiceClient(binding, address); _Proxy.ReceiveTeamDataReceived += _Proxy_ReceiveTeamDataReceived; _Proxy.ReceiveGameDataReceived += _Proxy_ReceiveGameDataReceived; _Proxy.GetTeamDataAsync(); This code creates the proxy and passes the endpoint address and binding to use to its constructor. It then wires the different receive events to callback methods and calls GetTeamDataAsync().  Calling GetTeamDataAsync() causes the server to store the client in the server-side dictionary collection mentioned earlier so that it can receive data that is pushed.  As the server-side timer fires and game data is pushed to the client, the user interface is updated as shown in Listing 7. Listing 8 shows the _Proxy_ReceiveGameDataReceived() method responsible for handling the data and calling UpdateGameData() to process it.   Listing 7. The Silverlight interface. Game data is pushed from the server to the client using HTTP Polling Duplex. void _Proxy_ReceiveGameDataReceived(object sender, ReceiveGameDataReceivedEventArgs e) { UpdateGameData(e.gameData); } private void UpdateGameData(GameData gameData) { //Update Score this.tbTeam1Score.Text = gameData.Team1Score.ToString(); this.tbTeam2Score.Text = gameData.Team2Score.ToString(); //Update ball visibility if (gameData.Action != ActionsEnum.Foul) { if (tbTeam1.Text == gameData.TeamOnOffense) { AnimateBall(this.BB1, this.BB2); } else //Team 2 { AnimateBall(this.BB2, this.BB1); } } if (this.lbActions.Items.Count > 9) this.lbActions.Items.Clear(); this.lbActions.Items.Add(gameData.LastAction); if (this.lbActions.Visibility == Visibility.Collapsed) this.lbActions.Visibility = Visibility.Visible; } private void AnimateBall(Image onBall, Image offBall) { this.FadeIn.Stop(); Storyboard.SetTarget(this.FadeInAnimation, onBall); Storyboard.SetTarget(this.FadeOutAnimation, offBall); this.FadeIn.Begin(); } Listing 8. As the server pushes game data, the client’s _Proxy_ReceiveGameDataReceived() method is called to process the data. In a real-life application I’d go with a ViewModel class to handle retrieving team data, setup data bindings and handle data that is pushed from the server. However, for the sample application I wanted to focus on HTTP Polling Duplex and keep things as simple as possible.   Summary Silverlight supports three options when duplex communication is required in an application including TCP bindins, sockets and HTTP Polling Duplex. In this post you’ve seen how HTTP Polling Duplex interfaces can be created and implemented on the server as well as how they can be consumed by a Silverlight client. HTTP Polling Duplex provides a nice way to “push” data from a server while still allowing the data to flow over port 80 or another port of your choice.   Sample Application Download

    Read the article

  • Sesame update du jour: SL 4, OOB, Azure, and proxy support

    - by Fabrice Marguerie
    I've just published a new version of Sesame Data Browser. Here's what's new this time: Upgraded to Silverlight 4 Can run out-of-browser (OOB), with elevated permissions. This gives you an icon on your desktop and enables new scenarios. Note: The application is unsigned for the moment. Support for Windows Azure authentication Support for SQL Azure authentication If you are behind a proxy that requires authentication, just give Sesame a new try after clicking on "If you are behind a proxy that requires authentication, please click here" An icon and a button for closing connections are now displayed on connection tabsSome less visible improvements Here is the connection view with anonymous access: If you want to access Windows Azure tables as OData, all you have to do is use your table storage endpoint as the URL, and provide your access key: A Windows Azure table storage address looks like this: http://<your account>.table.core.windows.net/ If you want to browse your SQL Azure databases with Sesame, you have to enable OData support for them at https://www.sqlazurelabs.com/ConfigOData.aspx. I won't show how it works because it's already been done in several places over the Web. Here are pointers: OData.org: Got SQL Azure? Then you've got OData OakLeaf Systems: Enabling and Using the OData Protocol with SQL Azure Patrick Verbruggen: Creating an OData feed for your Azure databases Shawn Wildermuth: SQL Azure's OData Support Jack Greenfield: How to Use OData for SQL Azure with AppFabric Access Control You can choose to enable anonymous access or not. When you don't enable anonymous access, you have to provide an Issuer name and a Secret key, and optionally an Security Token Service (STS) endpoint: Excerpt from Jack Greenfield's blog: To enable OData access to the currently selected database, check the box labeled "Enable OData". When OData access is enabled, database user mapping information is displayed at the bottom of the form.Use the drop down list labeled "Anonymous Access User" to select an anonymous access user. If an anonymous access user is selected, then all queries against the database presented without credentials will execute by impersonating that user. You can access the database as the anonymous user by clicking on the link provided at the bottom of the page. If no anonymous access user is selected, then the OData Service will not allow anonymous access to the database.Click the link labeled "Add User" to add a user for authenticated access. In the pop up panel, select the user from the drop down list. Leave the issuer name empty for simple authentication, or provide the name of a trusted Security Token Service (STS) for federated authentication. For example, to federate with another ACS based STS, provide the base URI for the STS endpoint displayed by the Windows Azure AppFabric Portal for the STS.Click the "OK" button to complete the configuration process and dismiss the pop up panel. When one or more authenticated access users are added, the OData Service will impersonate them when appropriate credentials are presented. You can designate as many authenticated access users as you like. The OData Service will decide which one to impersonate for each query by inspecting the credentials presented with the query.Next time I'll give an overview of how Sesame Data Browser is built.In the meantime, happy data browsing!

    Read the article

  • Asynchronous connectToServer

    - by Pavel Bucek
    Users of JSR-356 – Java API for WebSocket are probably familiar with WebSocketContainer#connectToServer method. This article will be about its usage and improvement which was introduce in recent Tyrus release. WebSocketContainer#connectToServer does what is says, it connects to WebSocketServerEndpoint deployed on some compliant container. It has two or three parameters (depends on which representation of client endpoint are you providing) and returns aSession. Returned Session represents WebSocket connection and you are instantly able to send messages, register MessageHandlers, etc. An issue might appear when you are trying to create responsive user interface and use this method – its execution blocks until Session is created which usually means some container needs to be started, DNS queried, connection created (it’s even more complicated when there is some proxy on the way), etc., so nothing which might be really considered as responsive. Trivial and correct solution is to do this in another thread and monitor the result, but.. why should users do that? :-) Tyrus now provides async* versions of all connectToServer methods, which performs only simple (=fast) check in the same thread and then fires a new one and performs all other tasks there. Return type of these methods is Future<Session>. List of added methods: public Future<Session> asyncConnectToServer(Class<?> annotatedEndpointClass, URI path) public Future<Session> asyncConnectToServer(Class<? extends Endpoint>  endpointClass, ClientEndpointConfig cec, URI path) public Future<Session> asyncConnectToServer(Endpoint endpointInstance, ClientEndpointConfig cec, URI path) public Future<Session> asyncConnectToServer(Object obj, URI path) As you can see, all connectToServer variants have its async* alternative. All these methods do throw DeploymentException, same as synchronous variants, but some of these errors cannot be thrown as a result of the first method call, so you might get it as the cause ofExecutionException thrown when Future<Session>.get() is called. Please let us know if you find these newly added methods useful or if you would like to change something (signature, functionality, …) – you can send us a comment to [email protected] or ping me personally. Related links: https://tyrus.java.net https://java.net/jira/browse/TYRUS/ https://github.com/tyrus-project/tyrus

    Read the article

  • Message Buffers in cloud

    - by kaleidoscope
    Message Buffer is WCF queue in the cloud (although currently it does not provide all features of WCF queue). With on-premise WCF, you can take advantage of MSMQ, so that a message is sent to MSMQ by one endpoint, and another endpoint can get the message in a later time. The message is usually a SOAP message so that you can generate a client proxy and invoke the service operations just as invoking a normal WCF operation. Message Buffer is similar, but it also provides a REST API for you to work with the messages. Use it when you need a reliable WCF service. Message buffers can be consumed by non-azure components, "Message  buffers are accessible to applications using HTTP and do not require the Windows Azure platform AppFabric SDK"              How to: Configure an AppFabric Service Bus Message Buffer :    please find below link for more details: http://msdn.microsoft.com/en-us/library/ee794877.aspx http://msdn.microsoft.com/en-us/library/ee794877.aspx   Chandraprakash, S

    Read the article

  • Build Controller status Unavailable issue in TFS2010

    - by jehan
    I ran into this problem few days back, I was not able to run the builds because the Build Controller was showing Status as Unavailable. It was showing the below exception: There was no endpoint listening at http://fullmachinename:9191/Build/v3.0/Services/Controller/2 that could accept the message. This is often caused by an incorrect address or SOAP action. See InnerException, if present, for more details. After trying out few things, I looked at below Build Service Properties.   Then, I did below modifications to the Build Services Properties: 1)      Changed the Local Build Service Endpoint(incoming) from http://machinename.domain.com:9191 to http://machinename:9191 2)      Changed the Connect to Team Project Collection (outgoing) from localhost to machine name. http://localhost:8080/tfs/defaultCollection to http://machinename:8080/tfs/DefaultCollection   After that Started the Build Services and it fixed the issue, the Build Controller was showing Available Status and was able to run the builds.

    Read the article

  • Content Based Routing with BRE and ESB

    - by Christopher House
    I've been working with BizTalk 2009 and the ESB toolkit for the past couple of days.  This is actually my first exposure to ESB and so far I'm pleased with how easy it is to work with. Initially we had planned to use UDDI for storing endpoint information.  However after discussing this with my client, we opted to look at BRE instead of UDDI since we're already storing transforms in BRE.  Fortunately making the change to BRE from UDDI was quite simple.  This solution of course has the added advantage of not needing to go through the convoluted process of registering our endpoints in UDDI. The first thing to remember if you want to do content based routing with BRE and ESB is that the pipleines included in the ESB toolkit don't include disassembler components.  This means that you'll need to first create a custom recieve pipeline with the necessary disassembler for your message type as well as the ESB components, itinerary selector and dispather. Next you need to create a BRE policy.  The ESB.ContextInfo vocabulary contains vocabulary links for the various items in the ESB context dictionary.  In this vocabulary, you'll find an item called Context Message Type, use this as the left hand side of your condition.  Set the right hand side to your message type, something like http://your.message.namespace/#yourrootelement.  Now find the ESB.EndPointInfo vocabulary.  This contains links to all the properties related to endpoint information.  Use the various set operators in your rule's action to configure your endpoint. In the example above, I'm using the WCF-SQL adapter. Now that the hard work is out of the way, you just need to configure the resolver in your itinerary. Nothing complicated here.  Just select BRE as your resolver implementation and select your policy from the drop-down list.  Note that when you select a policy, the Version field will be automatically filled in with the version of your policy.  If you leave this as-is, the resolver will always use that policy version.  Alternatively, you can clear the version number and the resolver will use the highest deployed version.

    Read the article

  • How to connect to a WCF service using IP of the host machine where the service is hosted?

    - by Kumar
    I have a secured WCF service (https://<MachineName>:sslport/services) self hosted in a machine. Different instances of same service are deployed in differnt machines. From a client app, I am able to connect to theses services through code, i.e. using ChannelFactory() with the same endpoint address. But if I try to access the service using the endpoint address as https://<ipAddress>:sslport/services replacing machines name with machine IP address, I am getting some error stating "could not establish trust relationship". I know this is an error caused by SSL certificate that it could not establish a trust relationship. Are there any settings or any possibilities to make this work?

    Read the article

  • WCF Routing Service Filter Generator

    - by Michael Stephenson
    Recently I've been working with the WCF routing service and in our case we were simply routing based on the SOAP Action. This is a pretty good approach for a standard redirection of the message when all messages matching a SOAP Action will go to the same endpoint. Using the SOAP Action also lets you be specific about which methods you expose via the router. One of the things which was a pain was the number of routing rules I needed to create because we were routing for a lot of different methods. I could have explored the option of using a regular expression to match the message to its routing but I wanted to be very specific about what's routed and not risk exposing methods I shouldn't via the router. I decided to put together a little spreadsheet so that I can generate part of the configuration I would need to put in the configuration file rather than have to type this by hand. To show how this works download the spreadsheet from the following url: https://s3.amazonaws.com/CSCBlogSamples/WCF+Routing+Generator.xlsx In the spreadsheet you will see that the squares in green are the ones which you need to amend. In the below picture you can see that you specify a prefix and suffix for the filter name. The core namespace from the web service your generating routing rules for and the WCF endpoint name which you want to route to. In column A you will see the green cells where you add the list of method names which you want to include routing rules for. The spreadsheet will workout what the full SOAP Action would be then the name you will use for that filter in your WCF Routing filters. In column D the spreadsheet will have generated the XML snippet which you can add to the routing filters section in your configuration file. In column E the spreadsheet will have created the XML snippet which you can add to the routing table to send messages matching each filter to the appropriate WCF client endpoint to forward the message to the required destination. Hopefully you can see that with this spreadsheet it would be very easy to produce accurate XML for the WCF Routing configuration if you had a large number of routing rules. If you had additional methods in other services you can simply copy the worksheet and add multiple copies to the Excel workbook. One worksheet per service would work well.

    Read the article

  • Dynamic Strategy Pattern [migrated]

    - by Karl Barker
    So I'm writing a web service architecture which includes FunctionProvider classes which do the actual processing of requests, and a main Endpoint class which receives and delegates requests to the proper FunctionProvider. I don't know exactly the FunctionProviders available at runtime, so I need to be able to 'register' (if that's the right word) them with my main Endpoint class, and query them to see if they match an incoming request. public class MyFunc implements FunctionProvider{ static { MyEndpoint.register(MyFunc); } public Boolean matchesRequest(Request req){...} public void processRequest(Request req){...} } public class MyEndpoint{ private static ArrayList<FunctionProvider> functions = new ArrayList<FunctionProvider>(); public void register(Class clz){ functions.add(clz); } public void doPost(Request request){ //find the FunctionProvider in functions //matching the request } } I've really not done much reflective Java like this (and the above is likely wrong, but hopefully demonstrates my intentions). What's the nicest way to implement this without getting hacky?

    Read the article

  • What is the Big-Oh nitation for this? [closed]

    - by laniam
    procedure quartersearch (x : inter, a1, a2, ?, an) : increasing integers) i := 1{i is left endpoint of search interval} ? j := n {j is right endpoint of search interval} while i < j begin m :=? ?(i + j)? / 4 if x am then ?i := m+1 else if x am then ?m : = ?(i + j)? / 4 else if x am then m := 2 ?(i + j)? /4 else ?if x am then m := 3 ?(i + j)? /4 else j := m end if x = ai then location := i else location := 0

    Read the article

  • How to expose service contract interfaces with multiple inheritance in WCF service on single endpoin

    - by Vaibhav Gawali
    I have only simple data types in method signature of service (such as int, string). My service class implements single ServiceContract interface say IMathService, and this interface in turn inherits from some other base interface say IAdderService. I want to expose the MathService using interface contract IAdderService as a service on a single endpoint. However some of the clinet's which know about IMathService should be able to access the extra services provided by IMathService on that single endpoint i.e. by just typecasting IAdderService to IMathService. //Interfaces and classes at server side [ServiceContract] public interface IAdderService { [OperationContract] int Add(int num1, int num2); } [ServiceContract] public interface IMathService : IAdderService { [OperationContract] int Substract(int num1, int num2); } public class MathService : IMathService { #region IMathService Members public int Substract(int num1, int num2) { return num1 - num2; } #endregion #region IAdderService Members public int Add(int num1, int num2) { return num1 + num2; } #endregion } //Run WCF service as a singleton instace MathService mathService = new MathService(); ServiceHost host = new ServiceHost(mathService); host.Open(); Server side Configuration: <configuration> <system.serviceModel> <services> <service name="IAdderService" behaviorConfiguration="AdderServiceServiceBehavior"> <endpoint address="net.pipe://localhost/AdderService" binding="netNamedPipeBinding" bindingConfiguration="Binding1" contract="TestApp.IAdderService" /> <endpoint address="mex" binding="mexNamedPipeBinding" contract="IMetadataExchange" /> <host> <baseAddresses> <add baseAddress="net.pipe://localhost/AdderService"/> </baseAddresses> </host> </service> </services> <bindings> <netNamedPipeBinding> <binding name="Binding1" > <security mode = "None"> </security> </binding > </netNamedPipeBinding> </bindings> <behaviors> <serviceBehaviors> <behavior name="AdderServiceServiceBehavior"> <serviceMetadata /> <serviceDebug includeExceptionDetailInFaults="True" /> </behavior> </serviceBehaviors> </behaviors> </system.serviceModel> </configuration> Client Side imeplementation: IAdderService adderService = new ChannelFactory<IAdderService>("AdderService").CreateChannel(); int result = adderService.Add(10, 11); IMathService mathService = adderService as IMathService; result = mathService.Substract(100, 9); Client side configuration: <configuration> <system.serviceModel> <client> <endpoint name="AdderService" address="net.pipe://localhost/AdderService" binding="netNamedPipeBinding" bindingConfiguration="Binding1" contract="TestApp.IAdderService" /> </client> <bindings> <netNamedPipeBinding> <binding name="Binding1" maxBufferSize="65536" maxConnections="10"> <security mode = "None"> </security> </binding > </netNamedPipeBinding> </bindings> </system.serviceModel> </configuration> Using above code and configuration I am not able to typecast IAdderService instnace to IMathService, it fails and I get null instance of IMathService at client side. My observation is if server exposes IMathService to client then client can safely typecast to IAdderService and vice versa is also possible. However if server exposes IAdderService then the typecast fails. Is there any solution to this? or am I doing it in a wrong way.

    Read the article

  • WCF Error: the client and service bindings may be mismatched?

    - by Rev
    Hi let see server config and client config. Then help me find difference between these configs!! Client config <system.serviceModel> <client> <endpoint address="http://localhost/admin2/AdminCentralService.svc" binding="wsHttpBinding" bindingConfiguration="WSHttpBinding_Config" contract="TIR.ThreeTier.ICommandInvoker" name="AdminCentralServiceConfig" /> <endpoint binding="wsHttpBinding" bindingConfiguration="WSHttpBinding_Config" contract="TIR.ThreeTier.ICommandInvoker" name="CommandInvokerConfig" /> </client> <bindings> <wsHttpBinding> <binding name="WSHttpBinding_Config" closeTimeout="00:10:00" openTimeout="00:10:00" receiveTimeout="00:10:00" sendTimeout="00:10:00" bypassProxyOnLocal="false" transactionFlow="false" hostNameComparisonMode="StrongWildcard" maxBufferPoolSize="2147483647" maxReceivedMessageSize="2147483647" messageEncoding="Mtom" textEncoding="utf-8" useDefaultWebProxy="true" allowCookies="false"> <readerQuotas maxDepth="2147483647" maxStringContentLength="2147483647" maxArrayLength="2147483647" maxBytesPerRead="2147483647" maxNameTableCharCount="2147483647" /> <reliableSession ordered="true" inactivityTimeout="00:10:00" enabled="false" /> <security mode="Message"> <transport clientCredentialType="Windows" proxyCredentialType="None" realm="" /> <message clientCredentialType="Windows" negotiateServiceCredential="true" algorithmSuite="Default" establishSecurityContext="true" /> </security> </binding> </wsHttpBinding> </bindings> Server Config <system.serviceModel> <behaviors> <serviceBehaviors> <behavior name="AdminCentral.Business.Web.Service1Behavior"> <serviceMetadata httpGetEnabled="true" /> <serviceDebug includeExceptionDetailInFaults="false" /> </behavior> </serviceBehaviors> </behaviors> <bindings> <wsHttpBinding> <binding name="WSHttpBinding_Config" closeTimeout="00:10:00" openTimeout="00:10:00" receiveTimeout="00:10:00" sendTimeout="00:10:00" bypassProxyOnLocal="false" transactionFlow="false" hostNameComparisonMode="StrongWildcard" maxBufferPoolSize="2147483647" maxReceivedMessageSize="2147483647" messageEncoding="Mtom" textEncoding="utf-8" useDefaultWebProxy="true" allowCookies="false"> <readerQuotas maxDepth="2147483647" maxStringContentLength="2147483647" maxArrayLength="2147483647" maxBytesPerRead="2147483647" maxNameTableCharCount="2147483647"/> <reliableSession ordered="true" inactivityTimeout="00:10:00" enabled="false"/> <security mode="Message"> <transport clientCredentialType="Windows" proxyCredentialType="None" realm=""/> <message clientCredentialType="Windows" negotiateServiceCredential="true" algorithmSuite="Default" establishSecurityContext="true"/> </security> </binding> </wsHttpBinding> </bindings> <services> <service behaviorConfiguration="AdminCentral.Business.Web.Service1Behavior" name="AdminCentral.Business.Web.AdminCentralService"> <endpoint address="" binding="wsHttpBinding" contract="AdminCentral.Business.Web.ICommandInvoker"> <identity> <dns value="localhost" /> </identity> </endpoint> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange" /> </service> </services>

    Read the article

  • Calling webservice from WCF service

    - by Balaji
    I am having an issue consuming a webservice (c#.net) from a WCF service. The error i am getting is EndPointNotFoundException "TCP error code 10061: No connection could be made because the target machine actively refused it" I wrote a unit test to check if i could send a request to the web service and it worked fine [The unit test is using the same binding configuration as my WCF service] The web service and WCF service (client) have basichttp binding. Did anyone had similar kind of issue calling a webservice from a WCF service? The service Model section is as follows <system.serviceModel> <bindings> <basicHttpBinding> <binding name="DataService" closeTimeout="00:05:00" openTimeout="00:05:00" receiveTimeout="00:10:00" sendTimeout="00:05:00" allowCookies="false" bypassProxyOnLocal="false" hostNameComparisonMode="StrongWildcard" maxBufferSize="65536" maxBufferPoolSize="524288" maxReceivedMessageSize="65536" messageEncoding="Text" textEncoding="utf-8" transferMode="Buffered" useDefaultWebProxy="true"> <readerQuotas maxDepth="32" maxStringContentLength="8192" maxArrayLength="16384" maxBytesPerRead="4096" maxNameTableCharCount="16384"/> <security mode="None"> <transport clientCredentialType="None" proxyCredentialType="None" realm=""/> <message clientCredentialType="UserName" algorithmSuite="Default"/> </security> </binding> </basicHttpBinding> </bindings> <client> <endpoint address="http://10.22.33.67/Service/DataService.asmx" binding="basicHttpBinding" bindingConfiguration="DataService" contract="Service.DataService" name="DataService"/> </client> <services> <service name="TestToConsumeDataService.WCFHost.Service1" behaviorConfiguration="TestToConsumeDataService.WCFHost.Service1Behavior"> <!-- Service Endpoints --> <endpoint address="" binding="basicHttpBinding" contract="TestToConsumeDataService.WCFHost.IService1"> <!-- Upon deployment, the following identity element should be removed or replaced to reflect the identity under which the deployed service runs. If removed, WCF will infer an appropriate identity automatically. --> <identity> <dns value="localhost"/> </identity> </endpoint> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange"/> </service> </services> <behaviors> <serviceBehaviors> <behavior name="TestToConsumeDataService.WCFHost.Service1Behavior"> <!-- To avoid disclosing metadata information, set the value below to false and remove the metadata endpoint above before deployment --> <serviceMetadata httpGetEnabled="true"/> <!-- To receive exception details in faults for debugging purposes, set the value below to true. Set to false before deployment to avoid disclosing exception information --> <serviceDebug includeExceptionDetailInFaults="false"/> </behavior> </serviceBehaviors> </behaviors> </system.serviceModel> The unit test project is also using the same service model section and it works. The only issue is while calling the service from another WCF service. Could you please suggest.

    Read the article

  • wcf erorr: The client and service bindings may be mismatched?

    - by Rev
    Hi let see server config and client config. Then help me find difference between these configs!! Client config <system.serviceModel> <client> <endpoint address="http://localhost/admin2/AdminCentralService.svc" binding="wsHttpBinding" bindingConfiguration="WSHttpBinding_Config" contract="TIR.ThreeTier.ICommandInvoker" name="AdminCentralServiceConfig" /> <endpoint binding="wsHttpBinding" bindingConfiguration="WSHttpBinding_Config" contract="TIR.ThreeTier.ICommandInvoker" name="CommandInvokerConfig" /> </client> <bindings> <wsHttpBinding> <binding name="WSHttpBinding_Config" closeTimeout="00:10:00" openTimeout="00:10:00" receiveTimeout="00:10:00" sendTimeout="00:10:00" bypassProxyOnLocal="false" transactionFlow="false" hostNameComparisonMode="StrongWildcard" maxBufferPoolSize="2147483647" maxReceivedMessageSize="2147483647" messageEncoding="Mtom" textEncoding="utf-8" useDefaultWebProxy="true" allowCookies="false"> <readerQuotas maxDepth="2147483647" maxStringContentLength="2147483647" maxArrayLength="2147483647" maxBytesPerRead="2147483647" maxNameTableCharCount="2147483647" /> <reliableSession ordered="true" inactivityTimeout="00:10:00" enabled="false" /> <security mode="Message"> <transport clientCredentialType="Windows" proxyCredentialType="None" realm="" /> <message clientCredentialType="Windows" negotiateServiceCredential="true" algorithmSuite="Default" establishSecurityContext="true" /> </security> </binding> </wsHttpBinding> </bindings> Server Config <system.serviceModel> <behaviors> <serviceBehaviors> <behavior name="AdminCentral.Business.Web.Service1Behavior"> <serviceMetadata httpGetEnabled="true" /> <serviceDebug includeExceptionDetailInFaults="false" /> </behavior> </serviceBehaviors> </behaviors> <bindings> <wsHttpBinding> <binding name="WSHttpBinding_Config" closeTimeout="00:10:00" openTimeout="00:10:00" receiveTimeout="00:10:00" sendTimeout="00:10:00" bypassProxyOnLocal="false" transactionFlow="false" hostNameComparisonMode="StrongWildcard" maxBufferPoolSize="2147483647" maxReceivedMessageSize="2147483647" messageEncoding="Mtom" textEncoding="utf-8" useDefaultWebProxy="true" allowCookies="false"> <readerQuotas maxDepth="2147483647" maxStringContentLength="2147483647" maxArrayLength="2147483647" maxBytesPerRead="2147483647" maxNameTableCharCount="2147483647"/> <reliableSession ordered="true" inactivityTimeout="00:10:00" enabled="false"/> <security mode="Message"> <transport clientCredentialType="Windows" proxyCredentialType="None" realm=""/> <message clientCredentialType="Windows" negotiateServiceCredential="true" algorithmSuite="Default" establishSecurityContext="true"/> </security> </binding> </wsHttpBinding> </bindings> <services> <service behaviorConfiguration="AdminCentral.Business.Web.Service1Behavior" name="AdminCentral.Business.Web.AdminCentralService"> <endpoint address="" binding="wsHttpBinding" contract="AdminCentral.Business.Web.ICommandInvoker"> <identity> <dns value="localhost" /> </identity> </endpoint> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange" /> </service> </services>

    Read the article

  • How to expose MEX when I need the service to have NTLM authentication

    - by Ram Amos
    I'm developing a WCF service that is RESTful and SOAP, now both of them needs to be with NTLM authentication. I also want to expose a MEX endpoint so that others can easily reference the service and work with it. Now when I set IIS to require windows authentication I can use the REST service and make calls to the service succesfully, but when I want to reference the service with SVCUTIL it throws an error that it requires to be anonymous. Here's my web.config: <system.serviceModel> <serviceHostingEnvironment aspNetCompatibilityEnabled="true" multipleSiteBindingsEnabled="true"/> <bindings> <basicHttpBinding> <binding name="basicHttpBinding" maxReceivedMessageSize="214748563" maxBufferSize="214748563" maxBufferPoolSize="214748563"> <security mode="TransportCredentialOnly"> <transport clientCredentialType="Ntlm"> </transport> </security> </binding> </basicHttpBinding> <webHttpBinding> <binding name="webHttpBinding" maxReceivedMessageSize="214748563" maxBufferSize="214748563" maxBufferPoolSize="214748563"> <security mode="TransportCredentialOnly"> <transport clientCredentialType="Ntlm"> </transport> </security> </binding> </webHttpBinding> <mexHttpBinding> <binding name="mexHttpBinding"></binding> </mexHttpBinding> </bindings> <standardEndpoints> <webHttpEndpoint> <standardEndpoint name="" automaticFormatSelectionEnabled="true" helpEnabled="True"> </standardEndpoint> </webHttpEndpoint> </standardEndpoints> <services> <service name="Intel.ResourceScheduler.Service" behaviorConfiguration="Meta"> <clear /> <endpoint address="soap" name="SOAP" binding="basicHttpBinding" contract="Intel.ResourceScheduler.Service.IResourceSchedulerService" listenUriMode="Explicit" /> <endpoint address="" name="rest" binding="webHttpBinding" behaviorConfiguration="REST" contract="Intel.ResourceScheduler.Service.IResourceSchedulerService" /> <endpoint address="mex" name="mex" binding="mexHttpBinding" behaviorConfiguration="" contract="IMetadataExchange" /> </service> </services> <behaviors> <endpointBehaviors> <behavior name="REST"> <webHttp /> </behavior> <behavior name="WCFBehavior"> <dataContractSerializer maxItemsInObjectGraph="2147483647" /> </behavior> </endpointBehaviors> <serviceBehaviors> <behavior name="Meta"> <serviceMetadata httpGetEnabled="true"/> </behavior> <behavior name="REST"> <dataContractSerializer maxItemsInObjectGraph="2147483647" /> </behavior> <behavior name="WCFBehavior"> <serviceMetadata httpGetEnabled="true"/> <dataContractSerializer maxItemsInObjectGraph="2147483647" /> </behavior> <behavior name=""> <!-- To avoid disclosing metadata information, set the value below to false and remove the metadata endpoint above before deployment --> <serviceMetadata httpGetEnabled="true" /> <!-- To receive exception details in faults for debugging purposes, set the value below to true. Set to false before deployment to avoid disclosing exception information --> <serviceDebug includeExceptionDetailInFaults="false" /> </behavior> </serviceBehaviors> </behaviors> Any help will be appreciated.

    Read the article

  • ssh + tinyproxy: poor performance

    - by Paul
    I am currently in China and I would like to still visit some blocked websites (facebook, youtube). I have VPS in the USA and I have installed tinyproxy on it. I log in on my VPS with SSH port-forwarding and I have configured my browser appropriately. Everything works more or less: I can surf to those websites but everything is inusually slow and sometimes data transfer stops abruptly. This probably has to do with the fact that I see some errors in my shell on the VPS like : channel 6: open failed: connect failed: Also in the log-file of tinyproxy I see some bad things: ERROR Sep 06 14:52:14 [28150]: getpeer_information: getpeername() error: Transport endpoint is not connected ERROR Sep 06 14:52:15 [28153]: writebuff: write() error "Connection reset by peer" on file descriptor 7 ERROR Sep 06 14:52:15 [28168]: readbuff: recv() error "Connection reset by peer" on file descriptor 7 ERROR Sep 06 14:52:15 [28151]: readbuff: recv() error "Connection reset by peer" on file descriptor 7 ERROR Sep 06 14:52:15 [28143]: readbuff: recv() error "Connection reset by peer" on file descriptor 7 ERROR Sep 06 14:52:17 [28147]: writebuff: write() error "Connection reset by peer" on file descriptor 7 ERROR Sep 06 14:52:23 [28137]: writebuff: write() error "Connection reset by peer" on file descriptor 7 ERROR Sep 06 14:52:26 [28168]: getpeer_information: getpeername() error: Transport endpoint is not connected ERROR Sep 06 14:52:27 [28186]: read_request_line: Client (file descriptor: 7) closed socket before read. ERROR Sep 06 14:52:31 [28160]: getpeer_information: getpeername() error: Transport endpoint is not connected

    Read the article

  • Squid on an Azure VM

    - by LantisGaius
    I can't get it to work. Here's exactly what I did: Create a new Azure VM, Windows Server 2012. RDP to the new VM Download & Extract Squid for Windows (2.7.STABLE8) Rename the conf files (squid, mime & cachemgr) Add the following lines on the end of squid.conf auth_param basic program c:/squid/libexec/ncsa_auth.exe c:/squid/etc/passwd.txt auth_param basic children 5 auth_param basic realm Welcome to http://abcde.fg Squid Proxy! auth_param basic credentialsttl 12 hours auth_param basic casesensitive off acl ncsa_users proxy_auth REQUIRED http_access allow ncsa_users Use http://www.htaccesstools.com/htpasswd-generator-windows/ to create passwd.txt Test passwd.txt via c:/squid/libexec/ncsa_auth.exe c:/squid/etc/passwd.txt (success) squid -z squid -i net start squid (No errors so far). go to https://manage.windowsazure.com, Virtual Machines - myVM - Endpoints Add Endpoint: Name: Squid Protocol: TCP Public Port: 80 Private Port: 3128 That's it. Unfortunately, it doesn't work. I think I screwed something up at the endpoint? I'm not sure.. help? EDIT: I'm testing it via Firefox - Options - Advanced - Network, and the exact error is "The Proxy Server is refusing connections." I'm using my DNS as the Proxy server "abcdef.cloudapp.net" and port 80 (since that's my public endpoint).

    Read the article

  • Adding new SPNs to existing service ids

    - by jmh
    We have a tomcat server using spring-security kerberos to authenticate users to the webpage against active directory. There are around 25 domain controllers. The site has two CNAME based DNS aliases. The site currently has one Service ID with SPNs registered for the DNS A record as well as each of the CNAMEs. While everything is working right now, I don't know how to reliably change this configuration without possible downtime. The reason is that clients cache kerberos tickets: http://www.juniper.net/techpubs/en_US/uac4.2/topics/concept/user-role-active-directory-about.html The 'kerbtray.exe' program is helpful for viewing and deleting Kerberos tickets on the endpoint. Old tickets must be purged from the endpoint if SPNs are updated or passwords are changed (assuming the endpoint still has a cached copy of the ticket from a prior SPNEGO request to the MAG Series device. During testing, you should purge tickets before each authentication request. Description of "klist" program used to inspect/delete cached tickets: http://technet.microsoft.com/en-us/library/hh134826.aspx So if each of the clients (users running windows) who connect to my web server have kerberos tickets that become invalid as soon as I update the SPNs or passwords, how do I ensure changes are seamless? Are there any operations that can be done safely? I can't just ask all of the users to install klist and delete their old tickets.

    Read the article

  • Running HTTP and HTTPS connections for a single domain (say, www.example.com) through a Cisco ACE SS

    - by Paddu
    My web application config has a Cisco ACE load balancing across a server farm and I want to use the ACE as an SSL endpoint as well. To make this work, the network architect has come up with a design where all secure pages have to be served from secure.my-domain.com, while non-secure pages are served up from www.my-domain.com. The reason for this is apparently that the configuring the Cisco ACE to accept HTTPS requests on port 443 for a particular public IP prevents the simultaneous acceptance of HTTP requests on port 80 for the same IP. While I'm not a networking (or Cisco) expert, this seems to be intuitively wrong, as it would prevent any website using the Cisco ACE to serve pages on http://www.my-domain.com and https://www.my-domain.com simultaneously. In this situation, my questions are: Is this truly a limitation of the Cisco ACE when used as an SSL endpoint? If not, then can I assume that we can set up the ACE to accept connections for a particular IP on ports 80 and 443, and function as an SSL endpoint for the incoming requests on 443? Links to appropriate documentation most welcome here. Assuming the setup in the previous question, can I then redirect both sets of requests to the same server farm on the same port?

    Read the article

  • How can I use WCF with only basichttpbinding, SSL and Basic Authentication in IIS?

    - by Tim
    Hello, Is it possible to setup a WCF service with SSL and Basic Authentication in IIS using only BasicHttpBinding-binding? (I can’t use the wsHttpBinding-binding) The site is hosted on IIS 7, with the following authentication set up: - Anonymous access: off - Basic authentication: on - Integrated Windows authentication: off !! Service Config: <services> <service name="NameSpace.SomeService"> <host> <baseAddresses> <add baseAddress="https://hostname/SomeService/" /> </baseAddresses> </host> <!-- Service Endpoints --> <endpoint address="" binding="basicHttpBinding" bindingNamespace="http://hostname/SomeMethodName/1" contract="NameSpace.ISomeInterfaceService" name="Default" /> <endpoint address="mex" binding="mexHttpsBinding" contract="IMetadataExchange"/> </service> </services> <behaviors> <serviceBehaviors> <behavior> <!-- To avoid disclosing metadata information, set the value below to false and remove the metadata endpoint above before deployment --> <serviceMetadata httpsGetEnabled="true"/> <!-- To receive exception details in faults for debugging purposes, set the value below to true. Set to false before deployment to avoid disclosing exception information --> <serviceDebug includeExceptionDetailInFaults="false"/> <exceptionShielding/> </behavior> </serviceBehaviors> </behaviors> I tried 2 types of bindings with two different errors: 1 - IIS Error: 'Could not find a base address that matches scheme http for the endpoint with binding BasicHttpBinding. Registered base address schemes are [https]. <bindings> <basicHttpBinding> <binding> <security mode="TransportCredentialOnly"> <transport clientCredentialType="Basic"/> </security> </binding> </basicHttpBinding> </bindings> 2 - IIS Error: Security settings for this service require 'Anonymous' Authentication but it is not enabled for the IIS application that hosts this service. <bindings> <basicHttpBinding> <binding> <security mode="Transport"> <transport clientCredentialType="Basic"/> </security> </binding> </basicHttpBinding> </bindings> Does somebody know how to configure this correctly? (if possible?)

    Read the article

  • Interesting issue with WCF wsHttpBinding through a Firewall

    - by Marko
    I have a web application deployed in an internet hosting provider. This web application consumes a WCF Service deployed at an IIS server located at my company’s application server, in order to have data access to the company’s database, the network guys allowed me to expose this WCF service through a firewall for security reasons. A diagram would look like this. [Hosted page] --- (Internet) --- |Firewall <Public IP>:<Port-X >| --- [IIS with WCF Service <Comp. Network Ip>:<Port-Y>] link text I also wanted to use wsHttpBinding to take advantage of its security features, and encrypt sensible information. After trying it out I get the following error: Exception Details: System.ServiceModel.EndpointNotFoundException: The message with To 'http://<IP>:<Port>/service/WCFService.svc' cannot be processed at the receiver, due to an AddressFilter mismatch at the EndpointDispatcher. Check that the sender and receiver's EndpointAddresses agree. Doing some research I found out that wsHttpBinding uses WS-Addressing standards, and reading about this standard I learned that the SOAP header is enhanced to include tags like ‘MessageID’, ‘ReplyTo’, ‘Action’ and ‘To’. So I’m guessing that, because the client application endpoint specifies the Firewall IP address and Port, and the service replies with its internal network address which is different from the Firewall’s IP, then WS-Addressing fires the above message. Which I think it’s a very good security measure, but it’s not quite useful in my scenario. Quoting the WS-Addressing standard submission (http://www.w3.org/Submission/ws-addressing/) "Due to the range of network technologies currently in wide-spread use (e.g., NAT, DHCP, firewalls), many deployments cannot assign a meaningful global URI to a given endpoint. To allow these ‘anonymous’ endpoints to initiate message exchange patterns and receive replies, WS-Addressing defines the following well-known URI for use by endpoints that cannot have a stable, resolvable URI. http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous" HOW can I configure my wsHttpBinding Endpoint to address my Firewall’s IP and to ignore or bypass the address specified in the ‘To’ WS-Addressing tag in the SOAP message header? Or do I have to change something in my service endpoint configuration? Help and guidance will be much appreciated. Marko. P.S.: While I find any solution to this, I’m using basicHttpBinding with absolutely no problem of course.

    Read the article

  • WCF - Windows authentication - Security settings require Anonymous...

    - by Rashack
    Hi, I am struggling hard with getting WCF service running on IIS on our server. After deployment I end up with an error message: Security settings for this service require 'Anonymous' Authentication but it is not enabled for the IIS application that hosts this service. I want to use Windows authentication and thus I have Anonymous access disabled. Also note that there is aspNetCompatibilityEnabled (if that makes any difference). Here's my web.config: <system.serviceModel> <serviceHostingEnvironment aspNetCompatibilityEnabled="true" /> <bindings> <webHttpBinding> <binding name="default"> <security mode="TransportCredentialOnly"> <transport clientCredentialType="Windows" proxyCredentialType="Windows"/> </security> </binding> </webHttpBinding> </bindings> <behaviors> <endpointBehaviors> <behavior name="AspNetAjaxBehavior"> <enableWebScript /> <webHttp /> </behavior> </endpointBehaviors> <serviceBehaviors> <behavior name="defaultServiceBehavior"> <serviceMetadata httpGetEnabled="true" httpsGetEnabled="false" /> <serviceDebug includeExceptionDetailInFaults="true" /> <serviceAuthorization principalPermissionMode="UseWindowsGroups" /> </behavior> </serviceBehaviors> </behaviors> <services> <service name="xxx.Web.Services.RequestService" behaviorConfiguration="defaultServiceBehavior"> <endpoint behaviorConfiguration="AspNetAjaxBehavior" binding="webHttpBinding" contract="xxx.Web.Services.IRequestService" bindingConfiguration="default"> </endpoint> <endpoint address="mex" binding="mexHttpBinding" name="mex" contract="IMetadataExchange"></endpoint> </service> </services> </system.serviceModel> I have searched all over the internet with no luck. Any clues are greatly appreciated.

    Read the article

< Previous Page | 7 8 9 10 11 12 13 14 15 16 17 18  | Next Page >