Search Results

Search found 300 results on 12 pages for 'johnny mnemonic'.

Page 11/12 | < Previous Page | 7 8 9 10 11 12  | Next Page >

  • Project Euler 12: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 12.  As always, any feedback is welcome. # Euler 12 # http://projecteuler.net/index.php?section=problems&id=12 # The sequence of triangle numbers is generated by adding # the natural numbers. So the 7th triangle number would be # 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms # would be: # 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... # Let us list the factors of the first seven triangle # numbers: # 1: 1 # 3: 1,3 # 6: 1,2,3,6 # 10: 1,2,5,10 # 15: 1,3,5,15 # 21: 1,3,7,21 # 28: 1,2,4,7,14,28 # We can see that 28 is the first triangle number to have # over five divisors. What is the value of the first # triangle number to have over five hundred divisors? import time start = time.time() from math import sqrt def divisor_count(x): count = 2 # itself and 1 for i in xrange(2, int(sqrt(x)) + 1): if ((x % i) == 0): if (i != sqrt(x)): count += 2 else: count += 1 return count def triangle_generator(): i = 1 while True: yield int(0.5 * i * (i + 1)) i += 1 triangles = triangle_generator() answer = 0 while True: num = triangles.next() if (divisor_count(num) >= 501): answer = num break; print answer print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 17: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 17.  As always, any feedback is welcome. # Euler 17 # http://projecteuler.net/index.php?section=problems&id=17 # If the numbers 1 to 5 are written out in words: # one, two, three, four, five, then there are # 3 + 3 + 5 + 4 + 4 = 19 letters used in total. # If all the numbers from 1 to 1000 (one thousand) # inclusive were written out in words, how many letters # would be used? # # NOTE: Do not count spaces or hyphens. For example, 342 # (three hundred and forty-two) contains 23 letters and # 115 (one hundred and fifteen) contains 20 letters. The # use of "and" when writing out numbers is in compliance # with British usage. import time start = time.time() def to_word(n): h = { 1 : "one", 2 : "two", 3 : "three", 4 : "four", 5 : "five", 6 : "six", 7 : "seven", 8 : "eight", 9 : "nine", 10 : "ten", 11 : "eleven", 12 : "twelve", 13 : "thirteen", 14 : "fourteen", 15 : "fifteen", 16 : "sixteen", 17 : "seventeen", 18 : "eighteen", 19 : "nineteen", 20 : "twenty", 30 : "thirty", 40 : "forty", 50 : "fifty", 60 : "sixty", 70 : "seventy", 80 : "eighty", 90 : "ninety", 100 : "hundred", 1000 : "thousand" } word = "" # Reverse the numbers so position (ones, tens, # hundreds,...) can be easily determined a = [int(x) for x in str(n)[::-1]] # Thousands position if (len(a) == 4 and a[3] != 0): # This can only be one thousand based # on the problem/method constraints word = h[a[3]] + " thousand " # Hundreds position if (len(a) >= 3 and a[2] != 0): word += h[a[2]] + " hundred" # Add "and" string if the tens or ones # position is occupied with a non-zero value. # Note: routine is broken up this way for [my] clarity. if (len(a) >= 2 and a[1] != 0): # catch 10 - 99 word += " and" elif len(a) >= 1 and a[0] != 0: # catch 1 - 9 word += " and" # Tens and ones position tens_position_value = 99 if (len(a) >= 2 and a[1] != 0): # Calculate the tens position value per the # first and second element in array # e.g. (8 * 10) + 1 = 81 tens_position_value = int(a[1]) * 10 + a[0] if tens_position_value <= 20: # If the tens position value is 20 or less # there's an entry in the hash. Use it and there's # no need to consider the ones position word += " " + h[tens_position_value] else: # Determine the tens position word by # dividing by 10 first. E.g. 8 * 10 = h[80] # We will pick up the ones position word later in # the next part of the routine word += " " + h[(a[1] * 10)] if (len(a) >= 1 and a[0] != 0 and tens_position_value > 20): # Deal with ones position where tens position is # greater than 20 or we have a single digit number word += " " + h[a[0]] # Trim the empty spaces off both ends of the string return word.replace(" ","") def to_word_length(n): return len(to_word(n)) print sum([to_word_length(i) for i in xrange(1,1001)]) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 19: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 19.  As always, any feedback is welcome. # Euler 19 # http://projecteuler.net/index.php?section=problems&id=19 # You are given the following information, but you may # prefer to do some research for yourself. # # - 1 Jan 1900 was a Monday. # - Thirty days has September, # April, June and November. # All the rest have thirty-one, # Saving February alone, # Which has twenty-eight, rain or shine. # And on leap years, twenty-nine. # - A leap year occurs on any year evenly divisible by 4, # but not on a century unless it is divisible by 400. # # How many Sundays fell on the first of the month during # the twentieth century (1 Jan 1901 to 31 Dec 2000)? import time start = time.time() import datetime sundays = 0 for y in range(1901,2001): for m in range(1,13): # monday == 0, sunday == 6 if datetime.datetime(y,m,1).weekday() == 6: sundays += 1 print sundays print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 2: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 2.  As always, any feedback is welcome. # Euler 2 # http://projecteuler.net/index.php?section=problems&id=2 # Find the sum of all the even-valued terms in the # Fibonacci sequence which do not exceed four million. # Each new term in the Fibonacci sequence is generated # by adding the previous two terms. By starting with 1 # and 2, the first 10 terms will be: # 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... # Find the sum of all the even-valued terms in the # sequence which do not exceed four million. import time start = time.time() total = 0 previous = 0 i = 1 while i <= 4000000: if i % 2 == 0: total +=i # variable swapping removes the need for a temp variable i, previous = previous, previous + i print total print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 11: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 11.  As always, any feedback is welcome. # Euler 11 # http://projecteuler.net/index.php?section=problems&id=11 # What is the greatest product # of four adjacent numbers in any direction (up, down, left, # right, or diagonally) in the 20 x 20 grid? import time start = time.time() grid = [\ [8,02,22,97,38,15,00,40,00,75,04,05,07,78,52,12,50,77,91,8],\ [49,49,99,40,17,81,18,57,60,87,17,40,98,43,69,48,04,56,62,00],\ [81,49,31,73,55,79,14,29,93,71,40,67,53,88,30,03,49,13,36,65],\ [52,70,95,23,04,60,11,42,69,24,68,56,01,32,56,71,37,02,36,91],\ [22,31,16,71,51,67,63,89,41,92,36,54,22,40,40,28,66,33,13,80],\ [24,47,32,60,99,03,45,02,44,75,33,53,78,36,84,20,35,17,12,50],\ [32,98,81,28,64,23,67,10,26,38,40,67,59,54,70,66,18,38,64,70],\ [67,26,20,68,02,62,12,20,95,63,94,39,63,8,40,91,66,49,94,21],\ [24,55,58,05,66,73,99,26,97,17,78,78,96,83,14,88,34,89,63,72],\ [21,36,23,9,75,00,76,44,20,45,35,14,00,61,33,97,34,31,33,95],\ [78,17,53,28,22,75,31,67,15,94,03,80,04,62,16,14,9,53,56,92],\ [16,39,05,42,96,35,31,47,55,58,88,24,00,17,54,24,36,29,85,57],\ [86,56,00,48,35,71,89,07,05,44,44,37,44,60,21,58,51,54,17,58],\ [19,80,81,68,05,94,47,69,28,73,92,13,86,52,17,77,04,89,55,40],\ [04,52,8,83,97,35,99,16,07,97,57,32,16,26,26,79,33,27,98,66],\ [88,36,68,87,57,62,20,72,03,46,33,67,46,55,12,32,63,93,53,69],\ [04,42,16,73,38,25,39,11,24,94,72,18,8,46,29,32,40,62,76,36],\ [20,69,36,41,72,30,23,88,34,62,99,69,82,67,59,85,74,04,36,16],\ [20,73,35,29,78,31,90,01,74,31,49,71,48,86,81,16,23,57,05,54],\ [01,70,54,71,83,51,54,69,16,92,33,48,61,43,52,01,89,19,67,48]] # left and right max, product = 0, 0 for x in range(0,17): for y in xrange(0,20): product = grid[y][x] * grid[y][x+1] * \ grid[y][x+2] * grid[y][x+3] if product > max : max = product # up and down for x in range(0,20): for y in xrange(0,17): product = grid[y][x] * grid[y+1][x] * \ grid[y+2][x] * grid[y+3][x] if product > max : max = product # diagonal right for x in range(0,17): for y in xrange(0,17): product = grid[y][x] * grid[y+1][x+1] * \ grid[y+2][x+2] * grid[y+3][x+3] if product > max: max = product # diagonal left for x in range(0,17): for y in xrange(0,17): product = grid[y][x+3] * grid[y+1][x+2] * \ grid[y+2][x+1] * grid[y+3][x] if product > max : max = product print max print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 16: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 16.  As always, any feedback is welcome. # Euler 16 # http://projecteuler.net/index.php?section=problems&id=16 # 2^15 = 32768 and the sum of its digits is # 3 + 2 + 7 + 6 + 8 = 26. # What is the sum of the digits of the number 2^1000? import time start = time.time() print sum([int(i) for i in str(2**1000)]) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 4: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 4.  As always, any feedback is welcome. # Euler 4 # http://projecteuler.net/index.php?section=problems&id=4 # Find the largest palindrome made from the product of # two 3-digit numbers. A palindromic number reads the # same both ways. The largest palindrome made from the # product of two 2-digit numbers is 9009 = 91 x 99. # Find the largest palindrome made from the product of # two 3-digit numbers. import time start = time.time() def isPalindrome(s): return s == s[::-1] max = 0 for i in xrange(100, 999): for j in xrange(i, 999): n = i * j; if (isPalindrome(str(n))): if (n > max): max = n print max print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 7: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 7.  As always, any feedback is welcome. # Euler 7 # http://projecteuler.net/index.php?section=problems&id=7 # By listing the first six prime numbers: 2, 3, 5, 7, # 11, and 13, we can see that the 6th prime is 13. What # is the 10001st prime number? import time start = time.time() def nthPrime(nth): primes = [2] number = 3 while len(primes) < nth: isPrime = True for prime in primes: if number % prime == 0: isPrime = False break if (prime * prime > number): break if isPrime: primes.append(number) number += 2 return primes[nth - 1] print nthPrime(10001) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 13: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 13.  As always, any feedback is welcome. # Euler 13 # http://projecteuler.net/index.php?section=problems&id=13 # Work out the first ten digits of the sum of the # following one-hundred 50-digit numbers. import time start = time.time() number_string = '\ 37107287533902102798797998220837590246510135740250\ 46376937677490009712648124896970078050417018260538\ 74324986199524741059474233309513058123726617309629\ 91942213363574161572522430563301811072406154908250\ 23067588207539346171171980310421047513778063246676\ 89261670696623633820136378418383684178734361726757\ 28112879812849979408065481931592621691275889832738\ 44274228917432520321923589422876796487670272189318\ 47451445736001306439091167216856844588711603153276\ 70386486105843025439939619828917593665686757934951\ 62176457141856560629502157223196586755079324193331\ 64906352462741904929101432445813822663347944758178\ 92575867718337217661963751590579239728245598838407\ 58203565325359399008402633568948830189458628227828\ 80181199384826282014278194139940567587151170094390\ 35398664372827112653829987240784473053190104293586\ 86515506006295864861532075273371959191420517255829\ 71693888707715466499115593487603532921714970056938\ 54370070576826684624621495650076471787294438377604\ 53282654108756828443191190634694037855217779295145\ 36123272525000296071075082563815656710885258350721\ 45876576172410976447339110607218265236877223636045\ 17423706905851860660448207621209813287860733969412\ 81142660418086830619328460811191061556940512689692\ 51934325451728388641918047049293215058642563049483\ 62467221648435076201727918039944693004732956340691\ 15732444386908125794514089057706229429197107928209\ 55037687525678773091862540744969844508330393682126\ 18336384825330154686196124348767681297534375946515\ 80386287592878490201521685554828717201219257766954\ 78182833757993103614740356856449095527097864797581\ 16726320100436897842553539920931837441497806860984\ 48403098129077791799088218795327364475675590848030\ 87086987551392711854517078544161852424320693150332\ 59959406895756536782107074926966537676326235447210\ 69793950679652694742597709739166693763042633987085\ 41052684708299085211399427365734116182760315001271\ 65378607361501080857009149939512557028198746004375\ 35829035317434717326932123578154982629742552737307\ 94953759765105305946966067683156574377167401875275\ 88902802571733229619176668713819931811048770190271\ 25267680276078003013678680992525463401061632866526\ 36270218540497705585629946580636237993140746255962\ 24074486908231174977792365466257246923322810917141\ 91430288197103288597806669760892938638285025333403\ 34413065578016127815921815005561868836468420090470\ 23053081172816430487623791969842487255036638784583\ 11487696932154902810424020138335124462181441773470\ 63783299490636259666498587618221225225512486764533\ 67720186971698544312419572409913959008952310058822\ 95548255300263520781532296796249481641953868218774\ 76085327132285723110424803456124867697064507995236\ 37774242535411291684276865538926205024910326572967\ 23701913275725675285653248258265463092207058596522\ 29798860272258331913126375147341994889534765745501\ 18495701454879288984856827726077713721403798879715\ 38298203783031473527721580348144513491373226651381\ 34829543829199918180278916522431027392251122869539\ 40957953066405232632538044100059654939159879593635\ 29746152185502371307642255121183693803580388584903\ 41698116222072977186158236678424689157993532961922\ 62467957194401269043877107275048102390895523597457\ 23189706772547915061505504953922979530901129967519\ 86188088225875314529584099251203829009407770775672\ 11306739708304724483816533873502340845647058077308\ 82959174767140363198008187129011875491310547126581\ 97623331044818386269515456334926366572897563400500\ 42846280183517070527831839425882145521227251250327\ 55121603546981200581762165212827652751691296897789\ 32238195734329339946437501907836945765883352399886\ 75506164965184775180738168837861091527357929701337\ 62177842752192623401942399639168044983993173312731\ 32924185707147349566916674687634660915035914677504\ 99518671430235219628894890102423325116913619626622\ 73267460800591547471830798392868535206946944540724\ 76841822524674417161514036427982273348055556214818\ 97142617910342598647204516893989422179826088076852\ 87783646182799346313767754307809363333018982642090\ 10848802521674670883215120185883543223812876952786\ 71329612474782464538636993009049310363619763878039\ 62184073572399794223406235393808339651327408011116\ 66627891981488087797941876876144230030984490851411\ 60661826293682836764744779239180335110989069790714\ 85786944089552990653640447425576083659976645795096\ 66024396409905389607120198219976047599490197230297\ 64913982680032973156037120041377903785566085089252\ 16730939319872750275468906903707539413042652315011\ 94809377245048795150954100921645863754710598436791\ 78639167021187492431995700641917969777599028300699\ 15368713711936614952811305876380278410754449733078\ 40789923115535562561142322423255033685442488917353\ 44889911501440648020369068063960672322193204149535\ 41503128880339536053299340368006977710650566631954\ 81234880673210146739058568557934581403627822703280\ 82616570773948327592232845941706525094512325230608\ 22918802058777319719839450180888072429661980811197\ 77158542502016545090413245809786882778948721859617\ 72107838435069186155435662884062257473692284509516\ 20849603980134001723930671666823555245252804609722\ 53503534226472524250874054075591789781264330331690' total = 0 for i in xrange(0, 100 * 50 - 1, 50): total += int(number_string[i:i+49]) print str(total)[:10] print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 6: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 6.  As always, any feedback is welcome. # Euler 6 # http://projecteuler.net/index.php?section=problems&id=6 # Find the difference between the sum of the squares of # the first one hundred natural numbers and the square # of the sum. import time start = time.time() square_of_sums = sum(range(1,101)) ** 2 sum_of_squares = reduce(lambda agg, i: agg+i**2, range(1,101)) print square_of_sums - sum_of_squares print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 20: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 20.  As always, any feedback is welcome. # Euler 20 # http://projecteuler.net/index.php?section=problems&id=20 # n! means n x (n - 1) x ... x 3 x 2 x 1 # Find the sum of digits in 100! import time start = time.time() def factorial(n): if n == 0: return 1 else: return n * factorial(n-1) print sum([int(i) for i in str(factorial(100))]) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • Project Euler 1: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 1.  As always, any feedback is welcome. # Euler 1 # http://projecteuler.net/index.php?section=problems&amp;id=1 # If we list all the natural numbers below 10 that are # multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of # these multiples is 23. Find the sum of all the multiples # of 3 or 5 below 1000. import time start = time.time() print sum([x for x in range(1000) if x % 3== 0 or x % 5== 0]) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue') # Also cool def constraint(x): return x % 3 == 0 or x % 5 == 0 print sum(filter(constraint, range(1000)))

    Read the article

  • Project Euler 3: (Iron)Python

    - by Ben Griswold
    In my attempt to learn (Iron)Python out in the open, here’s my solution for Project Euler Problem 3.  As always, any feedback is welcome. # Euler 3 # http://projecteuler.net/index.php?section=problems&id=3 # The prime factors of 13195 are 5, 7, 13 and 29. # What is the largest prime factor of the number # 600851475143? import time start = time.time() def largest_prime_factor(n): max = n divisor = 2 while (n >= divisor ** 2): if n % divisor == 0: max, n = n, n / divisor else: divisor += 1 return max print largest_prime_factor(600851475143) print "Elapsed Time:", (time.time() - start) * 1000, "millisecs" a=raw_input('Press return to continue')

    Read the article

  • What's the best Open Php newsletter manager ?

    - by Bilel
    Hi :) I'm looking for a nice newsletter management solution. I tried CCmail a good script but whaere I can't imort usernames !!! I would like to find a system that is able to import Opt-in lists in the following format : John Smith;[email protected];other paramaeters...;[like] ;Male;Age... I will develop my own module if I could find another emailing manager Are you already satisfied with a similar application with a trusted (spam-prevention) emailer ? Thank you :)

    Read the article

  • Algorithm to compare people names to detect identicalness

    - by Pentium10
    I am working on address book synchronization algorithm. I would like to reuse some code if there exists, but couldn't find one yet. Does someone know about an algorithm that will tell me in numbers/float/procent how much two names are identical. Levenstein distance is not good in this approach, as names and our adddress books are matching the begining of each of the name sections. John Smith should match Smith Jon, Jonathan Smith, Johnny Smith

    Read the article

  • SQL & Linq To SQL Help

    - by cre-johnny07
    I have a table which is some thing like below.. Date ID 2009-07-01 1 2009-07-01 2 2009-07-01 3 2009-08-01 4 2009-08-01 5 2009-08-01 6 2009-09-01 7 2009-09-01 8 2009-10-01 9 2009-10-01 10 2009-11-01 11 .... Now I need to write a query which will show a output like below. Date Start End 2009-07 1 3 2009-08 4 6 2009-09 7 8 ... How can I do this.. Any help would be highly appreciated Thanking In Advance Johnny

    Read the article

  • Efficient way to store tuples in the datastore

    - by Drew Sears
    If I have a pair of floats, is it any more efficient (computationally or storage-wise) to store them as a GeoPtProperty than it would be pickle the tuple and store it as a BlobProperty? If GeoPt is doing something more clever to keep multiple values in a single property, can it be leveraged for arbitrary data? Can I store the tuple ("Johnny", 5) in a single entity property in a similarly efficient manner?

    Read the article

  • Emacs and Dvorak

    - by Nate
    I'm a dvorak typist and a vim power user, and I'm just starting to do some heavy development in a LISP and I figured I'd give emacs a shot. The trouble is, some of the commands are awkward on dvorak. How do I swap commands around? At the moment I'd like to make C-k act like C-x, C-t act like C-k, and C-x at like C-t, but I'm sure that I'll want to swap more things around as I learn what key combinations I actually use. I know that there are some emacs dvorak modes, but most of them remap all of the commands such that you can keep the qwerty bindings: however, I don't know the qwerty bindings, and most of the bindings are mnemonic, so I'd rather not use any of those. Thanks.

    Read the article

  • Alice In Wonderland: Good, but not Great

    - by Theo Moore
    We went to see Alice In Wonderland today. We both like Tim Burton a lot (the stranger the better) and like Johnny Depp very well also. After seeing all the previews and such, we were fired up to see this film. Honestly, I thought it was good but not great. I was prepared to be wow-ed, but I wasn't. Perhaps I expected too much. I did like it, but I'll not own it nor would I expect to see it again...unless someone I know decides they want to see it. I was about to say something to reassure you that I wasn't going to provide any spoilers but two things occurred to me: one, I never give spoilers and two, why worry about spoilers for a film that so closely follows a book? My comments about the film are hard to describe, but the basic gist is that it doesn't really feel like it..."works" to me. I can't get any more specific than that, much as I'd like to do so. Something about it seems sort of disjointed and not in that Alice way you'd expect. My only specific comment is that I didn't like the actor who plays Alice very well. She was very flat and just didn't sell he character to me. She seemed a bit, well, plastic. Depp was as good as you'd expect him to be, I am happy to say. Obviously Lewis Carroll couldn't have imagined this made into film, but I can't help thinking that he'd see this and say that Depp was the perfect Mad Hatter. So, I'd definitely recommend seeing it (we saw it in 3D which was cool, but not really necessary) at least once, but don't be surprised if you're kinda meh afterwards.

    Read the article

  • JavaOne 2012 Day 1

    - by Geertjan
    Day 1, Sunday, started the night before for those attending the NetBeans Party at Johnny Foley's: Invitations had been sent out prior to the party to all speakers for NetBeans Day, as well as speakers in JavaOne sessions where NetBeans is going to be used. That turns out to be around 40 people, who hung out until quite late, with snacks and drinks. Next day, NetBeans Day had most sessions with completely packed rooms, which means there were around 300 people! Panel discussions around central themes in the NetBeans ecosystem (Java EE, JavaFX, and NetBeans Platform) were held, which resulted in a whole bunch of people up on stage throughout the day, such as this group of speakers in the Java EE session: From left to right above you see Sean Comerford from ESPN.com, John Yeary the Java EE panel moderator and JUG lead from Greenville, Cagatay Civici the PrimeFaces lead developer, Glenn Holmer long time NetBeans enthusiast (more on him below) from the Weyco Group, and NetBeans/Java EE book author David Heffelfinger. There were panels just like the above for JavaFX and the NetBeans Platform too, with very interesting and dynamic talks, such as one by JavaFX book authors Gail and Paul Anderson, who showed off this brilliant JavaFX/NetBeans Platform mashup: NetBeans Day ended with a good discussion about how to get involved in the NetBeans community, wrapping up with an award ceremony with two very special NetBeans community awards: Then everyone caught buses to the Masonic Auditorium, where 4 hours of keynotes took place. This is what the room looked like: The 4 hours ended with a very well received HTML5/NetBeans demo, showing of NetBeans IDE 7.3 features, by NetBeans director John Ceccarelli. And I liked this slide during an earlier keynote session by Oracle VP Hasan Rizvi: There was really a lot of love for NetBeans during the JavaOne keynote sessions and I don't remember hearing any other IDE being mentioned, in any way at all. Next there was the Duke's Choice Award ceremony, outside the Hilton in a cool lounge area, where, among others, Timon and Angelo from the NetBeans Platform community received their awards for AgroSense and MICE. In between all of the above, I met very many friends from previous conferences, as well as several new ones. It was clearly a great start to the conference. Looking forward to what the rest of the week will bring!

    Read the article

  • New Feature! Automatic Categories for Geekswithblogs.net

    - by Jeff Julian
    One of the features we have been working on is a way to categorize posts without the need of all our bloggers getting on the same page with what categories we have and making them select the categories.  Johnny Kauffman, one of our team members at AJI Software, developed what we call the Sherlock Project over the past few months.  Sherlock is a category suggestion engine based on the content within the posts.  Now, after a post is published, Sherlock will investigate the content and come up with the suggested categories that content fits in.  This will now allow you to go to the specific topics you are interested in and see all the related posts. This is just the beginning, so many more opportunities will arise now that we have our content organized.  One of the first features I will be adding is RSS feeds for each category and sub category.  If you are into ALM, we will have a feed for that! I hope you enjoy these and the engine will continue to get better as we start testing the data.  I hope you are as excited about this as I am :D.  Technorati Tags: Geekswithblogs.net,Categories,Sherlock

    Read the article

  • Name of the concept of designing an interface to allow expert users to become more efficient?

    - by Grundlefleck
    I'm searching for sources and further information on a particular concept in user experience design. It's not a particularly complicated concept, just that when designing user interfaces, you should both make it intuitive and simple for new users, but also provide way for users to become more efficient as they become more familiar with the application. An example could be including a prominent button for a common action for new users, but also providing a keyboard shortcut / mnemonic for expert users. However, that's just an example, another example could be providing full functionality through a GUI, but allow expert users to script the same actions. The point is it's more difficult to learn, but it makes them more efficient. I'm pretty sure there's a name for that which I can't recall, and I'm having trouble searching for sources and references on it. Name of the concept of designing an interface to allow expert users to become more efficient?

    Read the article

  • Untar, ungz, gz, tar - how do you remember all the useful options?

    - by deadprogrammer
    I am pretty sure I am not the only one with the following problem: every time I need to uncompress a file in *nix I can't remember all the switches, and end up googling it, which is surprizing considering how often I need to do this. Do you have a good compression cheat sheet? Or how about a mnemonic for all those nasty switches in tar? I am making this article a wiki so that we can create a nice cheat sheet here. Oh, and about man pages: is there's one thing they are not helpful for, it's for figuring out how to uncompress a file.

    Read the article

< Previous Page | 7 8 9 10 11 12  | Next Page >