Search Results

Search found 1525 results on 61 pages for 'pair'.

Page 11/61 | < Previous Page | 7 8 9 10 11 12 13 14 15 16 17 18  | Next Page >

  • Memory efficient int-int dict in Python

    - by Bolo
    Hi, I need a memory efficient int-int dict in Python that would support the following operations in O(log n) time: d[k] = v # replace if present v = d[k] # None or a negative number if not present I need to hold ~250M pairs, so it really has to be tight. Do you happen to know a suitable implementation (Python 2.7)? EDIT Removed impossible requirement and other nonsense. Thanks, Craig and Kylotan! To rephrase. Here's a trivial int-int dictionary with 1M pairs: >>> import random, sys >>> from guppy import hpy >>> h = hpy() >>> h.setrelheap() >>> d = {} >>> for _ in xrange(1000000): ... d[random.randint(0, sys.maxint)] = random.randint(0, sys.maxint) ... >>> h.heap() Partition of a set of 1999530 objects. Total size = 49161112 bytes. Index Count % Size % Cumulative % Kind (class / dict of class) 0 1 0 25165960 51 25165960 51 dict (no owner) 1 1999521 100 23994252 49 49160212 100 int On average, a pair of integers uses 49 bytes. Here's an array of 2M integers: >>> import array, random, sys >>> from guppy import hpy >>> h = hpy() >>> h.setrelheap() >>> a = array.array('i') >>> for _ in xrange(2000000): ... a.append(random.randint(0, sys.maxint)) ... >>> h.heap() Partition of a set of 14 objects. Total size = 8001108 bytes. Index Count % Size % Cumulative % Kind (class / dict of class) 0 1 7 8000028 100 8000028 100 array.array On average, a pair of integers uses 8 bytes. I accept that 8 bytes/pair in a dictionary is rather hard to achieve in general. Rephrased question: is there a memory-efficient implementation of int-int dictionary that uses considerably less than 49 bytes/pair?

    Read the article

  • I need to speed this code at least 2 times!

    - by Dominating
    include include include include using namespace std; inline void PrintMapName(multimap pN, string s) { pair::iterator, multimap::iterator ii; multimap::iterator it; ii = pN.equal_range(s); multimap tmp; for(it = ii.first; it != ii.second; ++it) { tmp.insert(pair(it-second,1)); } multimap::iterator i; bool flag = false; for(i = tmp.begin(); i != tmp.end(); i++) { if(flag) { cout<<" "; } cout<first; if(flag) { cout<<" "; } flag = true; } cout< int main() { multimap phoneNums; multimap numPhones; int N; cinN; int tests; string tmp, tmp1,tmp2; while(N 0) { cintests; while(tests 0) { cintmp; if(tmp == "add") { cintmp1tmp2; phoneNums.insert(pair(tmp1,tmp2)); numPhones.insert(pair(tmp2,tmp1)); } else { if(tmp == "delnum") { cintmp1; multimap::iterator it; multimap::iterator tmpr; for(it = phoneNums.begin(); it != phoneNums.end();it++) { tmpr = it; if(it-second == tmp1) { phoneNums.erase(it,tmpr); } } numPhones.erase(tmp1); } else { if(tmp == "delname") { cintmp1; phoneNums.erase(tmp1); multimap::iterator it; multimap::iterator tmpr; for(it = numPhones.begin(); it != numPhones.end();it++) { tmpr = it; if(it-second == tmp1) { numPhones.erase(it,tmpr); } } } else { if(tmp =="queryname") { cintmp1; PrintMapName(phoneNums, tmp1); } else//querynum { cintmp1; PrintMapName(numPhones, tmp1); } } } } tests--; } N--; } return 0; }

    Read the article

  • Counting the amount of letters in all permutations of words in R

    - by Rhodo
    I have some words: shapes<- c("Square", "Triangle","Octagon","Hexagon") I want to arrange them in pairs: shapescount<-combn(shapes, 2) shapescount [,1] [,2] [,3] [,4] [,5] [,6] [1,] "Square" "Square" "Square" "Triangle" "Triangle" "Octagon" [2,] "Triangle" "Octagon" "Hexagon" "Octagon" "Hexagon" "Hexagon" I want to count each of the groupings of the letters in the pairs, for instance first pair is "6" for "Square" and "8" for "Triangle" giving me "14" for the first pair, and so on.

    Read the article

  • How to optimize the login option in android?

    - by Praween k
    HI, I want to create Login option in my application , so that once a person gets login that device creates token which is saved over server. From next time whenever he/she operates the application, directly goes to next label by checking that token keyvalue pair over server.IT requires login page only when that keyvalue pair is deleted from the server. Can anyone help me from this.I will be very grateful to you. Looking for reply. Regards, Praween

    Read the article

  • Regular expression that matches valid IPv6 addresses

    - by Readonly
    I'm having trouble writing a regular expression that matches valid IPv6 addresses, including those in their compressed form (with "::" or leading zeros omitted from each byte pair). Can someone suggest a regular expression that would fulfill the requirement? I'm considering expanding each byte pair and matching the result with a simpler regex.

    Read the article

  • Forcing driver to device match

    - by shodanex
    I have a piece of usb hardware, for which I know the driver. However, the vendor id and product id do not match the VID, PID pair registered in the driver. Is there a way in linux to force a driver to be associated with a known device, that do not involve kernel module recompilation to add a PID / VID pair ?

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Testing Workflows &ndash; Test-First

    - by Timothy Klenke
    Originally posted on: http://geekswithblogs.net/TimothyK/archive/2014/05/30/testing-workflows-ndash-test-first.aspxThis is the second of two posts on some common strategies for approaching the job of writing tests.  The previous post covered test-after workflows where as this will focus on test-first.  Each workflow presented is a method of attack for adding tests to a project.  The more tools in your tool belt the better.  So here is a partial list of some test-first methodologies. Ping Pong Ping Pong is a methodology commonly used in pair programing.  One developer will write a new failing test.  Then they hand the keyboard to their partner.  The partner writes the production code to get the test passing.  The partner then writes the next test before passing the keyboard back to the original developer. The reasoning behind this testing methodology is to facilitate pair programming.  That is to say that this testing methodology shares all the benefits of pair programming, including ensuring multiple team members are familiar with the code base (i.e. low bus number). Test Blazer Test Blazing, in some respects, is also a pairing strategy.  The developers don’t work side by side on the same task at the same time.  Instead one developer is dedicated to writing tests at their own desk.  They write failing test after failing test, never touching the production code.  With these tests they are defining the specification for the system.  The developer most familiar with the specifications would be assigned this task. The next day or later in the same day another developer fetches the latest test suite.  Their job is to write the production code to get those tests passing.  Once all the tests pass they fetch from source control the latest version of the test project to get the newer tests. This methodology has some of the benefits of pair programming, namely lowering the bus number.  This can be good way adding an extra developer to a project without slowing it down too much.  The production coder isn’t slowed down writing tests.  The tests are in another project from the production code, so there shouldn’t be any merge conflicts despite two developers working on the same solution. This methodology is also a good test for the tests.  Can another developer figure out what system should do just by reading the tests?  This question will be answered as the production coder works there way through the test blazer’s tests. Test Driven Development (TDD) TDD is a highly disciplined practice that calls for a new test and an new production code to be written every few minutes.  There are strict rules for when you should be writing test or production code.  You start by writing a failing (red) test, then write the simplest production code possible to get the code working (green), then you clean up the code (refactor).  This is known as the red-green-refactor cycle. The goal of TDD isn’t the creation of a suite of tests, however that is an advantageous side effect.  The real goal of TDD is to follow a practice that yields a better design.  The practice is meant to push the design toward small, decoupled, modularized components.  This is generally considered a better design that large, highly coupled ball of mud. TDD accomplishes this through the refactoring cycle.  Refactoring is only possible to do safely when tests are in place.  In order to use TDD developers must be trained in how to look for and repair code smells in the system.  Through repairing these sections of smelly code (i.e. a refactoring) the design of the system emerges. For further information on TDD, I highly recommend the series “Is TDD Dead?”.  It discusses its pros and cons and when it is best used. Acceptance Test Driven Development (ATDD) Whereas TDD focuses on small unit tests that concentrate on a small piece of the system, Acceptance Tests focuses on the larger integrated environment.  Acceptance Tests usually correspond to user stories, which come directly from the customer. The unit tests focus on the inputs and outputs of smaller parts of the system, which are too low level to be of interest to the customer. ATDD generally uses the same tools as TDD.  However, ATDD uses fewer mocks and test doubles than TDD. ATDD often complements TDD; they aren’t competing methods.  A full test suite will usually consist of a large number of unit (created via TDD) tests and a smaller number of acceptance tests. Behaviour Driven Development (BDD) BDD is more about audience than workflow.  BDD pushes the testing realm out towards the client.  Developers, managers and the client all work together to define the tests. Typically different tooling is used for BDD than acceptance and unit testing.  This is done because the audience is not just developers.  Tools using the Gherkin family of languages allow for test scenarios to be described in an English format.  Other tools such as MSpec or FitNesse also strive for highly readable behaviour driven test suites. Because these tests are public facing (viewable by people outside the development team), the terminology usually changes.  You can’t get away with the same technobabble you can with unit tests written in a programming language that only developers understand.  For starters, they usually aren’t called tests.  Usually they’re called “examples”, “behaviours”, “scenarios”, or “specifications”. This may seem like a very subtle difference, but I’ve seen this small terminology change have a huge impact on the acceptance of the process.  Many people have a bias that testing is something that comes at the end of a project.  When you say we need to define the tests at the start of the project many people will immediately give that a lower priority on the project schedule.  But if you say we need to define the specification or behaviour of the system before we can start, you’ll get more cooperation.   Keep these test-first and test-after workflows in your tool belt.  With them you’ll be able to find new opportunities to apply them.

    Read the article

  • How to reproject a shapefile from WGS 84 to Spherical/Web Mercator projection.

    - by samkea
    Definitions: You will need to know the meaning of these terms below. I have given a small description to the acronyms but you can google and know more about them. #1:WGS-84- World Geodetic Systems (1984)- is a standard reference coordinate system used for Cartography, Geodesy and Navigation. #2: EPGS-European Petroleum Survey Group-was a scientific organization with ties to the European petroleum industry consisting of specialists working in applied geodesy, surveying, and cartography related to oil exploration. EPSG::4326 is a common coordinate reference system that refers to WGS84 as (latitude, longitude) pair coordinates in degrees with Greenwich as the central meridian. Any degree representation (e.g., decimal or DMSH: degrees minutes seconds hemisphere) may be used. Which degree representation is used must be declared for the user by the supplier of data. So, the Spherical/Web Mercator projection is referred to as EPGS::3785 which is renamed to EPSG:900913 by google for use in googlemaps. The associated CRS(Coordinate Reference System) for this is the "Popular Visualisation CRS / Mercator ". This is the kind of projection that is used by GoogleMaps, BingMaps,OSM,Virtual Earth, Deep Earth excetra...to show interactive maps over the web with thier nearly precise coordinates.  Reprojection: After reading alot about reprojecting my coordinates from the deepearth project on Codeplex, i still could not do it. After some help from a colleague, i got my ball rolling.This is how i did it. #1 You need to download and open your shapefile using Q-GIS; its the one with the biggest number of coordinate reference systems/ projections. #2 Use the plugins menu, and enable ftools and the WFS plugin. #3 Use the Vector menu--> Data Management Tools and choose define current projection. Enable, use predefined reference system and choose WGS 84 coodinate system. I am personally in zone 36, so i chose WGS84-UTM Zone 36N under ( Projected Coordinate Systems--> Universal Transverse Mercator) and click ok. #4 Now use the Vector menu--> Data Management Tools and choose export to new projection. The same dialog will pop-up. Now choose WGS 84 EPGS::4326 under Geodetic Coordinate Systems. My Input user Defined Spatial Reference System should looks like this: +proj=tmerc +lat_0=0 +lon_0=33 +k=0.9996 +x_0=500000 +y_0=200000 +ellps=WGS84 +datum=WGS84 +units=m +no_defs Your Output user Defined Spatial Reference System should look like this: +proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs Browse for the place where the shapefile is going to be and give the shapefile a name(like origna_reprojected). If it prompts you to add the projected layer to the TOC, accept. There, you have your re-projected map with latitude and longitude pair of coordinates. #5 Now, this is not the actual Spherical/Web Mercator projection, but dont worry, this is where you have to stop. All the other custom web-mapping portals will pick this projection and transform it into EPGS::3785 or EPSG:900913 but the coordinates will still remain as the LatLon pair of the projected shapefile. If you want to test, a particular know point, Q-GIS has a lot of room for that. Go ahead and test it.

    Read the article

  • Big Data – Operational Databases Supporting Big Data – Columnar, Graph and Spatial Database – Day 14 of 21

    - by Pinal Dave
    In yesterday’s blog post we learned the importance of the Key-Value Pair Databases and Document Databases in the Big Data Story. In this article we will understand the role of Columnar, Graph and Spatial Database supporting Big Data Story. Now we will see a few of the examples of the operational databases. Relational Databases (The day before yesterday’s post) NoSQL Databases (The day before yesterday’s post) Key-Value Pair Databases (Yesterday’s post) Document Databases (Yesterday’s post) Columnar Databases (Tomorrow’s post) Graph Databases (Today’s post) Spatial Databases (Today’s post) Columnar Databases  Relational Database is a row store database or a row oriented database. Columnar databases are column oriented or column store databases. As we discussed earlier in Big Data we have different kinds of data and we need to store different kinds of data in the database. When we have columnar database it is very easy to do so as we can just add a new column to the columnar database. HBase is one of the most popular columnar databases. It uses Hadoop file system and MapReduce for its core data storage. However, remember this is not a good solution for every application. This is particularly good for the database where there is high volume incremental data is gathered and processed. Graph Databases For a highly interconnected data it is suitable to use Graph Database. This database has node relationship structure. Nodes and relationships contain a Key Value Pair where data is stored. The major advantage of this database is that it supports faster navigation among various relationships. For example, Facebook uses a graph database to list and demonstrate various relationships between users. Neo4J is one of the most popular open source graph database. One of the major dis-advantage of the Graph Database is that it is not possible to self-reference (self joins in the RDBMS terms) and there might be real world scenarios where this might be required and graph database does not support it. Spatial Databases  We all use Foursquare, Google+ as well Facebook Check-ins for location aware check-ins. All the location aware applications figure out the position of the phone with the help of Global Positioning System (GPS). Think about it, so many different users at different location in the world and checking-in all together. Additionally, the applications now feature reach and users are demanding more and more information from them, for example like movies, coffee shop or places see. They are all running with the help of Spatial Databases. Spatial data are standardize by the Open Geospatial Consortium known as OGC. Spatial data helps answering many interesting questions like “Distance between two locations, area of interesting places etc.” When we think of it, it is very clear that handing spatial data and returning meaningful result is one big task when there are millions of users moving dynamically from one place to another place & requesting various spatial information. PostGIS/OpenGIS suite is very popular spatial database. It runs as a layer implementation on the RDBMS PostgreSQL. This makes it totally unique as it offers best from both the worlds. Courtesy: mushroom network Tomorrow In tomorrow’s blog post we will discuss about very important components of the Big Data Ecosystem – Hive. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • boost.serialization and lazy initialization

    - by niXman
    i need to serialize directory tree. i have no trouble with this type: std::map< std::string, // string(path name) std::vector<std::string> // string array(file names in the path) > tree; but for the serialization the directory tree with the content i need other type: std::map< std::string, // string(path name) std::vector< // files array std::pair< std::string, // file name std::vector< // array of file pieces std::pair< // <<<<<<<<<<<<<<<<<<<<<< for this i need lazy initialization std::string, // piece buf boost::uint32_t // crc32 summ on piece > > > > > tree; how can i serialize the object of type "std::pair" in the moment of its serialization?

    Read the article

  • XNA Xbox 360 Content Manager Thread freezing Draw Thread

    - by Alikar
    I currently have a game that takes in large images, easily bigger than 1MB, to serve as backgrounds. I know exactly when this transition is supposed to take place, so I made a loader class to handle loading these large images in the background, but when I load the images it still freezes the main thread where the drawing takes place. Since this code runs on the 360 I move the thread to the 4th hardware thread, but that doesn't seem to help. Below is the class I am using. Any thoughts as to why my new content manager which should be in its own thread is interrupting the draw in my main thread would be appreciated. namespace FileSystem { /// <summary> /// This is used to reference how many objects reference this texture. /// Everytime someone references a texture we increase the iNumberOfReferences. /// When a class calls remove on a specific texture we check to see if anything /// else is referencing the class, if it is we don't remove it. If there isn't /// anything referencing the texture its safe to dispose of. /// </summary> class TextureContainer { public uint uiNumberOfReferences = 0; public Texture2D texture; } /// <summary> /// This class loads all the files from the Content. /// </summary> static class FileManager { static Microsoft.Xna.Framework.Content.ContentManager Content; static EventWaitHandle wh = new AutoResetEvent(false); static Dictionary<string, TextureContainer> Texture2DResourceDictionary; static List<Texture2D> TexturesToDispose; static List<String> TexturesToLoad; static int iProcessor = 4; private static object threadMutex = new object(); private static object Texture2DMutex = new object(); private static object loadingMutex = new object(); private static bool bLoadingTextures = false; /// <summary> /// Returns if we are loading textures or not. /// </summary> public static bool LoadingTexture { get { lock (loadingMutex) { return bLoadingTextures; } } } /// <summary> /// Since this is an static class. This is the constructor for the file loadeder. This is the version /// for the Xbox 360. /// </summary> /// <param name="_Content"></param> public static void Initalize(IServiceProvider serviceProvider, string rootDirectory, int _iProcessor ) { Content = new Microsoft.Xna.Framework.Content.ContentManager(serviceProvider, rootDirectory); Texture2DResourceDictionary = new Dictionary<string, TextureContainer>(); TexturesToDispose = new List<Texture2D>(); iProcessor = _iProcessor; CreateThread(); } /// <summary> /// Since this is an static class. This is the constructor for the file loadeder. /// </summary> /// <param name="_Content"></param> public static void Initalize(IServiceProvider serviceProvider, string rootDirectory) { Content = new Microsoft.Xna.Framework.Content.ContentManager(serviceProvider, rootDirectory); Texture2DResourceDictionary = new Dictionary<string, TextureContainer>(); TexturesToDispose = new List<Texture2D>(); CreateThread(); } /// <summary> /// Creates the thread incase we wanted to set up some parameters /// Outside of the constructor. /// </summary> static public void CreateThread() { Thread t = new Thread(new ThreadStart(StartThread)); t.Start(); } // This is the function that we thread. static public void StartThread() { //BBSThreadClass BBSTC = (BBSThreadClass)_oData; FileManager.Execute(); } /// <summary> /// This thread shouldn't be called by the outside world. /// It allows the File Manager to loop. /// </summary> static private void Execute() { // Make sure our thread is on the correct processor on the XBox 360. #if WINDOWS #else Thread.CurrentThread.SetProcessorAffinity(new int[] { iProcessor }); Thread.CurrentThread.IsBackground = true; #endif // This loop will load textures into ram for us away from the main thread. while (true) { wh.WaitOne(); // Locking down our data while we process it. lock (threadMutex) { lock (loadingMutex) { bLoadingTextures = true; } bool bContainsKey = false; for (int con = 0; con < TexturesToLoad.Count; con++) { // If we have already loaded the texture into memory reference // the one in the dictionary. lock (Texture2DMutex) { bContainsKey = Texture2DResourceDictionary.ContainsKey(TexturesToLoad[con]); } if (bContainsKey) { // Do nothing } // Otherwise load it into the dictionary and then reference the // copy in the dictionary else { TextureContainer TC = new TextureContainer(); TC.uiNumberOfReferences = 1; // We start out with 1 referece. // Loading the texture into memory. try { TC.texture = Content.Load<Texture2D>(TexturesToLoad[con]); // This is passed into the dictionary, thus there is only one copy of // the texture in memory. // There is an issue with Sprite Batch and disposing textures. // This will have to wait until its figured out. lock (Texture2DMutex) { bContainsKey = Texture2DResourceDictionary.ContainsKey(TexturesToLoad[con]); Texture2DResourceDictionary.Add(TexturesToLoad[con], TC); } // We don't have the find the reference to the container since we // already have it. } // Occasionally our texture will already by loaded by another thread while // this thread is operating. This mainly happens on the first level. catch (Exception e) { // If this happens we don't worry about it since this thread only loads // texture data and if its already there we don't need to load it. } } Thread.Sleep(100); } } lock (loadingMutex) { bLoadingTextures = false; } } } static public void LoadTextureList(List<string> _textureList) { // Ensuring that we can't creating threading problems. lock (threadMutex) { TexturesToLoad = _textureList; } wh.Set(); } /// <summary> /// This loads a 2D texture which represents a 2D grid of Texels. /// </summary> /// <param name="_textureName">The name of the picture you wish to load.</param> /// <returns>Holds the image data.</returns> public static Texture2D LoadTexture2D( string _textureName ) { TextureContainer temp; lock (Texture2DMutex) { bool bContainsKey = false; // If we have already loaded the texture into memory reference // the one in the dictionary. lock (Texture2DMutex) { bContainsKey = Texture2DResourceDictionary.ContainsKey(_textureName); if (bContainsKey) { temp = Texture2DResourceDictionary[_textureName]; temp.uiNumberOfReferences++; // Incrementing the number of references } // Otherwise load it into the dictionary and then reference the // copy in the dictionary else { TextureContainer TC = new TextureContainer(); TC.uiNumberOfReferences = 1; // We start out with 1 referece. // Loading the texture into memory. try { TC.texture = Content.Load<Texture2D>(_textureName); // This is passed into the dictionary, thus there is only one copy of // the texture in memory. } // Occasionally our texture will already by loaded by another thread while // this thread is operating. This mainly happens on the first level. catch(Exception e) { temp = Texture2DResourceDictionary[_textureName]; temp.uiNumberOfReferences++; // Incrementing the number of references } // There is an issue with Sprite Batch and disposing textures. // This will have to wait until its figured out. Texture2DResourceDictionary.Add(_textureName, TC); // We don't have the find the reference to the container since we // already have it. temp = TC; } } } // Return a reference to the texture return temp.texture; } /// <summary> /// Go through our dictionary and remove any references to the /// texture passed in. /// </summary> /// <param name="texture">Texture to remove from texture dictionary.</param> public static void RemoveTexture2D(Texture2D texture) { foreach (KeyValuePair<string, TextureContainer> pair in Texture2DResourceDictionary) { // Do our references match? if (pair.Value.texture == texture) { // Only one object or less holds a reference to the // texture. Logically it should be safe to remove. if (pair.Value.uiNumberOfReferences <= 1) { // Grabing referenc to texture TexturesToDispose.Add(pair.Value.texture); // We are about to release the memory of the texture, // thus we make sure no one else can call this member // in the dictionary. Texture2DResourceDictionary.Remove(pair.Key); // Once we have removed the texture we don't want to create an exception. // So we will stop looking in the list since it has changed. break; } // More than one Object has a reference to this texture. // So we will not be removing it from memory and instead // simply marking down the number of references by 1. else { pair.Value.uiNumberOfReferences--; } } } } /*public static void DisposeTextures() { int Count = TexturesToDispose.Count; // If there are any textures to dispose of. if (Count > 0) { for (int con = 0; con < TexturesToDispose.Count; con++) { // =!THIS REMOVES THE TEXTURE FROM MEMORY!= // This is not like a normal dispose. This will actually // remove the object from memory. Texture2D is inherited // from GraphicsResource which removes it self from // memory on dispose. Very nice for game efficency, // but "dangerous" in managed land. Texture2D Temp = TexturesToDispose[con]; Temp.Dispose(); } // Remove textures we've already disposed of. TexturesToDispose.Clear(); } }*/ /// <summary> /// This loads a 2D texture which represnets a font. /// </summary> /// <param name="_textureName">The name of the font you wish to load.</param> /// <returns>Holds the font data.</returns> public static SpriteFont LoadFont( string _fontName ) { SpriteFont temp = Content.Load<SpriteFont>( _fontName ); return temp; } /// <summary> /// This loads an XML document. /// </summary> /// <param name="_textureName">The name of the XML document you wish to load.</param> /// <returns>Holds the XML data.</returns> public static XmlDocument LoadXML( string _fileName ) { XmlDocument temp = Content.Load<XmlDocument>( _fileName ); return temp; } /// <summary> /// This loads a sound file. /// </summary> /// <param name="_fileName"></param> /// <returns></returns> public static SoundEffect LoadSound( string _fileName ) { SoundEffect temp = Content.Load<SoundEffect>(_fileName); return temp; } } }

    Read the article

  • Android - Launch Intent within ExpandableListView

    - by Ryan
    Hello, I'm trying to figure out if it is possible to launch an intent within an ExpandableListView. Basically one of the "Groups" is Phone Number and it's child is the number. I want the user to be able to click it and have it automatically call that number. Is this possible? How? Here is my code to populate the ExpandableListView using a Map called "data". ExpandableListView myList = (ExpandableListView) findViewById(R.id.myList); //ExpandableListAdapter adapter = new MyExpandableListAdapter(data); List<Map<String, String>> groupData = new ArrayList<Map<String, String>>(); List<List<Map<String, String>>> childData = new ArrayList<List<Map<String, String>>>(); Iterator it = data.entrySet().iterator(); while (it.hasNext()) { //Get the key name and value for it Map.Entry pair = (Map.Entry)it.next(); String keyName = (String) pair.getKey(); String value = pair.getValue().toString(); //Add the parents -- aka main categories Map<String, String> curGroupMap = new HashMap<String, String>(); groupData.add(curGroupMap); curGroupMap.put("NAME", keyName); //Add the child data List<Map<String, String>> children = new ArrayList<Map<String, String>>(); Map<String, String> curChildMap = new HashMap<String, String>(); children.add(curChildMap); curChildMap.put("NAME", value); childData.add(children); } // Set up our adapter mAdapter = new SimpleExpandableListAdapter( mContext, groupData, R.layout.exp_list_parent, new String[] { "NAME", "IS_EVEN" }, new int[] { R.id.rowText1, R.id.rowText2 }, childData, R.layout.exp_list_child, new String[] { "NAME", "IS_EVEN" }, new int[] { R.id.rowText3, R.id.rowText4} ); myList.setAdapter(mAdapter);

    Read the article

  • Bouncycastle encryption algorithms not provided

    - by David Read
    I'm trying to use BouncyCastle with android to implement ECDH and EL Gamal. I've added the bouncycastle jar file (bcprov-jdk16-144.jar) and written some code that works with my computers jvm however when I try and port it to my android application it throws: java.security.NoSuchAlgorithmException: KeyPairGenerator ECDH implementation not found A sample of the code is: Security.addProvider(new org.bouncycastle.jce.provider.BouncyCastleProvider()); java.security.KeyPairGenerator keyGen = org.bouncycastle.jce.provider.asymmetric.ec.KeyPairGenerator.getInstance("ECDH", "BC"); ECGenParameterSpec ecSpec = new ECGenParameterSpec("prime192v1"); keyGen.initialize(ecSpec, SecureRandom.getInstance("SHA1PRNG")); KeyPair pair = keyGen.generateKeyPair(); PublicKey pubk = pair.getPublic(); PrivateKey prik = pair.getPrivate(); I then wrote a simple program to see what encryption algorithms are available and ran it on my android emulator and on my computers jvm the code was: Set<Provider.Service> rar = new org.bouncycastle.jce.provider.BouncyCastleProvider().getServices(); Iterator<Provider.Service> ir = rar.iterator(); while(ir.hasNext()) System.out.println(ir.next().getAlgorithm()); On android I do not get any of the EC algorithms while ran normally on my computer it's fine. I'm also getting the following two errors when compiling for a lot of the bouncy castle classes: 01-07 17:17:42.548: INFO/dalvikvm(1054): DexOpt: not resolving ambiguous class 'Lorg/bouncycastle/asn1/ASN1Encodable;' 01-07 17:17:42.548: DEBUG/dalvikvm(1054): DexOpt: not verifying 'Lorg/bouncycastle/asn1/ess/OtherSigningCertificate;': multiple definitions What am I doing wrong?

    Read the article

  • Creating A Single Generic Handler For Agatha?

    - by David
    I'm using the Agatha request/response library (and StructureMap, as utilized by Agatha 1.0.5.0) for a service layer that I'm prototyping, and one thing I've noticed is the large number of handlers that need to be created. It generally makes sense that any request/response type pair would need their own handler. However, as this scales to a large enterprise environment that's going to be A LOT of handlers. What I've started doing is dividing up the enterprise domain into logical processor classes (dozens of processors instead of many hundreds or possibly eventually thousands handlers). The convention is that each request/response type (all of which inherit from a domain base request/response pair, which inherit from Agatha's) gets exactly one function in a processor somewhere. The generic handler (which inherits from Agatha's RequestHandler) then uses reflection in the Handle method to find the method for the given TREQUEST/TRESPONSE and invoke it. If it can't find one or if it finds more than one, it returns a TRESPONSE containing an error message (messages are standardized in the domain's base response class). The goal here is to allow developers across the enterprise to just concern themselves with writing their request/response types and processor functions in the domain and not have to spend additional overhead creating handler classes which would all do exactly the same thing (pass control to a processor function). However, it seems that I still need to have defined a handler class (albeit empty, since the base handler takes care of everything) for each request/response type pair. Otherwise, the following exception is thrown when dispatching a request to the service: StructureMap Exception Code: 202 No Default Instance defined for PluginFamily Agatha.ServiceLayer.IRequestHandler`1[[TSFG.Domain.DTO.Actions.HelloWorldRequest, TSFG.Domain.DTO, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null]], Agatha.ServiceLayer, Version=1.0.5.0, Culture=neutral, PublicKeyToken=6f21cf452a4ffa13 Is there a way that I'm not seeing to tell StructureMap and/or Agatha to always use the base handler class for all request/response type pairs? Or maybe to use Reflection.Emit to generate empty handlers in memory at application start just to satisfy the requirement? I'm not 100% familiar with these libraries and am learning as I go along, but so far my attempts at both those possible approaches have been unsuccessful. Can anybody offer some advice on solving this, or perhaps offer another approach entirely?

    Read the article

  • Replacing specific HTML tags using Regex

    - by matthewpe
    Alright, an easy one for you guys. We are using ActiveReport's RichTextBox to display some random bits of HTML code. The HTML tags supported by ActiveReport can be found here : http://www.datadynamics.com/Help/ARNET3/ar3conSupportedHtmlTagsInRichText.html An example of what I want to do is replace any match of <div style="text-align:*</div> by <p style=\"text-align:*</p> in order to use a supported tag for text-alignment. I have found the following regex expression to find the correct match in my html input: <div style=\"text-align:(.*?)</div> However, I can't find a way to keep the previous text contained in the tags after my replacement. Any clue? Is it me or Regex are generally a PITA? :) private static readonly IDictionary<string, string> _replaceMap = new Dictionary<string, string> { {"<div style=\"text-align:(.*?)</div>", "<p style=\"text-align:(.*?)</p>"} }; public static string FormatHtml(string html) { foreach(var pair in _replaceMap) { html = Regex.Replace(html, pair.Key, pair.Value); } return html; } Thanks!

    Read the article

  • How do I sign requests reliably for the Last.fm api in C#?

    - by Arda Xi
    I'm trying to implement authorization through Last.fm. I'm submitting my arguments as a Dictionary to make the signing easier. This is the code I'm using to sign my calls: public static string SignCall(Dictionary<string, string> args) { IOrderedEnumerable<KeyValuePair<string, string>> sortedArgs = args.OrderBy(arg => arg.Key); string signature = sortedArgs.Select(pair => pair.Key + pair.Value). Aggregate((first, second) => first + second); return MD5(signature + SecretKey); } I've checked the output in the debugger, it's exactly how it should be, however, I'm still getting WebExceptions every time I try. Here's my code I use to generate the URL in case it'll help: public static string GetSignedURI(Dictionary<string, string> args, bool get) { var stringBuilder = new StringBuilder(); if (get) stringBuilder.Append("http://ws.audioscrobbler.com/2.0/?"); foreach (var kvp in args) stringBuilder.AppendFormat("{0}={1}&", kvp.Key, kvp.Value); stringBuilder.Append("api_sig="+SignCall(args)); return stringBuilder.ToString(); } And sample usage to get a SessionKey: var args = new Dictionary<string, string> { {"method", "auth.getSession"}, {"api_key", ApiKey}, {"token", token} }; string url = GetSignedURI(args, true); EDIT: Oh, and the code references an MD5 function implemented like this: public static string MD5(string toHash) { byte[] textBytes = Encoding.UTF8.GetBytes(toHash); var cryptHandler = new System.Security.Cryptography.MD5CryptoServiceProvider(); byte[] hash = cryptHandler.ComputeHash(textBytes); return hash.Aggregate("", (current, a) => current + a.ToString("x2")); }

    Read the article

  • TreeMap sort by value

    - by vito huang
    I'm new to java, i want to write an comparator to that will let me sort TreeMap by value instead of the default natural sorting. i tried something like this, but can't find out what went wrong: import java.util.*; class treeMap { public static void main(String[] args) { System.out.println("the main"); byValue cmp = new byValue(); Map<String, Integer> map = new TreeMap<String, Integer>(cmp); map.put("de",10); map.put("ab", 20); map.put("a",5); for (Map.Entry<String,Integer> pair: map.entrySet()) { System.out.println(pair.getKey()+":"+pair.getValue()); } } } class byValue implements Comparator<Map.Entry<String,Integer>> { public int compare(Map.Entry<String,Integer> e1, Map.Entry<String,Integer> e2) { if (e1.getValue() < e2.getValue()){ return 1; } else if (e1.getValue() == e2.getValue()) { return 0; } else { return -1; } } } I guess what am i asking is what controls what get pass to comparator function, can i get an Map.Entry pass to comparator?

    Read the article

  • Stack usage with MMX intrinsics and Microsoft C++

    - by arik-funke
    I have an inline assembler loop that cumulatively adds elements from an int32 data array with MMX instructions. In particular, it uses the fact that the MMX registers can accommodate 16 int32s to calculate 16 different cumulative sums in parallel. I would now like to convert this piece of code to MMX intrinsics but I am afraid that I will suffer a performance penalty because one cannot explicitly intruct the compiler to use the 8 MMX registers to accomulate 16 independent sums. Can anybody comment on this and maybe propose a solution on how to convert the piece of code below to use intrinsics? == inline assembler (only part within the loop) == paddd mm0, [esi+edx+8*0] ; add first & second pair of int32 elements paddd mm1, [esi+edx+8*1] ; add third & fourth pair of int32 elements ... paddd mm2, [esi+edx+8*2] paddd mm3, [esi+edx+8*3] paddd mm4, [esi+edx+8*4] paddd mm5, [esi+edx+8*5] paddd mm6, [esi+edx+8*6] paddd mm7, [esi+edx+8*7] ; add 15th & 16th pair of int32 elements esi points to the beginning of the data array edx provides the offset in the data array for the current loop iteration the data array is arranged such that the elements for the 16 independent sums are interleaved.

    Read the article

  • Returning objects from another thread?

    - by Mark
    Trying to follow the hints laid out here, but she doesn't mention how to handle it when your collection needs to return a value, like so: private delegate TValue DequeueHandler(); public virtual TValue Dequeue() { if (dispatcher.CheckAccess()) { --count; var pair = dict.First(); var queue = pair.Value; var val = queue.Dequeue(); if (queue.Count == 0) dict.Remove(pair.Key); OnCollectionChanged(new NotifyCollectionChangedEventArgs(NotifyCollectionChangedAction.Remove, val)); return val; } else { dispatcher.BeginInvoke(new DequeueHandler(Dequeue)); } } This obviously won't work, because dispatcher.BeginInvoke doesn't return anything. What am I supposed to do? Or maybe I could replace dequeue with two functions, Peek and Pop, where Peek doesn't really need to be on the UI thread because it doesn't modify anything, right? As a side question, these methods don't need to be "locked" either, do they? If they're all forced to run in the UI thread, then there shouldn't be any concurrency issues, right?

    Read the article

  • strange segmentation fault during function return

    - by Kyle
    I am running a program on 2 different machines. On one it works fine without issue. On the other it results in a segmentation fault. Through debugging, I have figured out where the fault occurs, but I can't figure out a logical reason for it to happen. In one function I have the following code: pass_particles(particle_grid, particle_properties, input_data, coll_eros_track, collision_number_part, world, grid_rank_lookup, grid_locations); cout<<"done passing particles"<<endl; The function pass_particles looks like: void pass_particles(map<int,map<int,Particle> > & particle_grid, std::vector<Particle_props> & particle_properties, User_input& input_data, data_tracking & coll_eros_track, vector<int> & collision_number_part, mpi::communicator & world, std::map<int,int> & grid_rank_lookup, map<int,std::vector<double> > & grid_locations) { //cout<<"east-west"<<endl; //east-west exchange (x direction) map<int, vector<Particle> > particles_to_be_sent_east; map<int, vector<Particle> > particles_to_be_sent_west; vector<Particle> particles_received_east; vector<Particle> particles_received_west; int counter_x_sent=0; int counter_x_received=0; for(grid_iter=particle_grid.begin();grid_iter!=particle_grid.end();grid_iter++) { map<int,Particle>::iterator part_iter; for (part_iter=grid_iter->second.begin();part_iter!=grid_iter->second.end();) { if (particle_properties[part_iter->second.global_part_num()].particle_in_box()[grid_iter->first]) { //decide if a particle has left the box...need to consider whether particle was already outside the box if ((part_iter->second.position().x()<(grid_locations[grid_iter->first][0]) && part_iter->second.position().x()>(grid_locations[grid_iter->first-input_data.z_numboxes()][0])) || (input_data.periodic_walls_x() && (grid_iter->first-floor(grid_iter->first/(input_data.xz_numboxes()))*input_data.xz_numboxes()<input_data.z_numboxes()) && (part_iter->second.position().x()>(grid_locations[input_data.total_boxes()-1][0])))) { particles_to_be_sent_west[grid_iter->first].push_back(part_iter->second); particle_properties[particle_grid[grid_iter->first][part_iter->first].global_part_num()].particle_in_box()[grid_iter->first]=false; counter_sent++; counter_x_sent++; } else if ((part_iter->second.position().x()>(grid_locations[grid_iter->first][1]) && part_iter->second.position().x()<(grid_locations[grid_iter->first+input_data.z_numboxes()][1])) || (input_data.periodic_walls_x() && (grid_iter->first-floor(grid_iter->first/(input_data.xz_numboxes()))*input_data.xz_numboxes())>input_data.xz_numboxes()-input_data.z_numboxes()-1) && (part_iter->second.position().x()<(grid_locations[0][1]))) { particles_to_be_sent_east[grid_iter->first].push_back(part_iter->second); particle_properties[particle_grid[grid_iter->first][part_iter->first].global_part_num()].particle_in_box()[grid_iter->first]=false; counter_sent++; counter_x_sent++; } //select particles in overlap areas to send to neighboring cells else if ((part_iter->second.position().x()>(grid_locations[grid_iter->first][0]) && part_iter->second.position().x()<(grid_locations[grid_iter->first][0]+input_data.diam_large()))) { particles_to_be_sent_west[grid_iter->first].push_back(part_iter->second); counter_sent++; counter_x_sent++; } else if ((part_iter->second.position().x()<(grid_locations[grid_iter->first][1]) && part_iter->second.position().x()>(grid_locations[grid_iter->first][1]-input_data.diam_large()))) { particles_to_be_sent_east[grid_iter->first].push_back(part_iter->second); counter_sent++; counter_x_sent++; } ++part_iter; } else if (particles_received_current[grid_iter->first].find(part_iter->first)!=particles_received_current[grid_iter->first].end()) { if ((part_iter->second.position().x()>(grid_locations[grid_iter->first][0]) && part_iter->second.position().x()<(grid_locations[grid_iter->first][0]+input_data.diam_large()))) { particles_to_be_sent_west[grid_iter->first].push_back(part_iter->second); counter_sent++; counter_x_sent++; } else if ((part_iter->second.position().x()<(grid_locations[grid_iter->first][1]) && part_iter->second.position().x()>(grid_locations[grid_iter->first][1]-input_data.diam_large()))) { particles_to_be_sent_east[grid_iter->first].push_back(part_iter->second); counter_sent++; counter_x_sent++; } part_iter++; } else { particle_grid[grid_iter->first].erase(part_iter++); counter_removed++; } } } world.barrier(); mpi::request reqs_x_send[particles_to_be_sent_west.size()+particles_to_be_sent_east.size()]; vector<multimap<int,int> > box_sent_x_info; box_sent_x_info.resize(world.size()); vector<multimap<int,int> > box_received_x_info; box_received_x_info.resize(world.size()); int counter_x_reqs=0; //send particles for(grid_iter_vec=particles_to_be_sent_west.begin();grid_iter_vec!=particles_to_be_sent_west.end();grid_iter_vec++) { if (grid_iter_vec->second.size()!=0) { //send a particle. 50 will be "west" tag if (input_data.periodic_walls_x() && (grid_iter_vec->first-floor(grid_iter_vec->first/(input_data.xz_numboxes()))*input_data.xz_numboxes()<input_data.z_numboxes())) { reqs_x_send[counter_x_reqs++]=world.isend(grid_rank_lookup[grid_iter_vec->first + input_data.z_numboxes()*(input_data.x_numboxes()-1)], grid_iter_vec->first + input_data.z_numboxes()*(input_data.x_numboxes()-1), particles_to_be_sent_west[grid_iter_vec->first]); box_sent_x_info[grid_rank_lookup[grid_iter_vec->first + input_data.z_numboxes()*(input_data.x_numboxes()-1)]].insert(pair<int,int>(world.rank(), grid_iter_vec->first + input_data.z_numboxes()*(input_data.x_numboxes()-1))); } else if (!(grid_iter_vec->first-floor(grid_iter_vec->first/(input_data.xz_numboxes()))*input_data.xz_numboxes()<input_data.z_numboxes())) { reqs_x_send[counter_x_reqs++]=world.isend(grid_rank_lookup[grid_iter_vec->first - input_data.z_numboxes()], grid_iter_vec->first - input_data.z_numboxes(), particles_to_be_sent_west[grid_iter_vec->first]); box_sent_x_info[grid_rank_lookup[grid_iter_vec->first - input_data.z_numboxes()]].insert(pair<int,int>(world.rank(),grid_iter_vec->first - input_data.z_numboxes())); } } } for(grid_iter_vec=particles_to_be_sent_east.begin();grid_iter_vec!=particles_to_be_sent_east.end();grid_iter_vec++) { if (grid_iter_vec->second.size()!=0) { //send a particle. 60 will be "east" tag if (input_data.periodic_walls_x() && (grid_iter_vec->first-floor(grid_iter_vec->first/(input_data.xz_numboxes())*input_data.xz_numboxes())>input_data.xz_numboxes()-input_data.z_numboxes()-1)) { reqs_x_send[counter_x_reqs++]=world.isend(grid_rank_lookup[grid_iter_vec->first - input_data.z_numboxes()*(input_data.x_numboxes()-1)], 2000000000-(grid_iter_vec->first - input_data.z_numboxes()*(input_data.x_numboxes()-1)), particles_to_be_sent_east[grid_iter_vec->first]); box_sent_x_info[grid_rank_lookup[grid_iter_vec->first - input_data.z_numboxes()*(input_data.x_numboxes()-1)]].insert(pair<int,int>(world.rank(),2000000000-(grid_iter_vec->first - input_data.z_numboxes()*(input_data.x_numboxes()-1)))); } else if (!(grid_iter_vec->first-floor(grid_iter_vec->first/(input_data.xz_numboxes())*input_data.xz_numboxes())>input_data.xz_numboxes()-input_data.z_numboxes()-1)) { reqs_x_send[counter_x_reqs++]=world.isend(grid_rank_lookup[grid_iter_vec->first + input_data.z_numboxes()], 2000000000-(grid_iter_vec->first + input_data.z_numboxes()), particles_to_be_sent_east[grid_iter_vec->first]); box_sent_x_info[grid_rank_lookup[grid_iter_vec->first + input_data.z_numboxes()]].insert(pair<int,int>(world.rank(), 2000000000-(grid_iter_vec->first + input_data.z_numboxes()))); } } } counter=0; for (int i=0;i<world.size();i++) { //if (world.rank()!=i) //{ reqs[counter++]=world.isend(i,1000000000,box_sent_x_info[i]); reqs[counter++]=world.irecv(i,1000000000,box_received_x_info[i]); //} } mpi::wait_all(reqs, reqs + world.size()*2); //receive particles //receive west particles for (int j=0;j<world.size();j++) { multimap<int,int>::iterator received_info_iter; for (received_info_iter=box_received_x_info[j].begin();received_info_iter!=box_received_x_info[j].end();received_info_iter++) { //receive the message if (received_info_iter->second<1000000000) { //receive the message world.recv(received_info_iter->first,received_info_iter->second,particles_received_west); //loop through all the received particles and add them to the particle_grid for this processor for (unsigned int i=0;i<particles_received_west.size();i++) { particle_grid[received_info_iter->second].insert(pair<int,Particle>(particles_received_west[i].global_part_num(),particles_received_west[i])); if(particles_received_west[i].position().x()>grid_locations[received_info_iter->second][0] && particles_received_west[i].position().x()<grid_locations[received_info_iter->second][1]) { particle_properties[particles_received_west[i].global_part_num()].particle_in_box()[received_info_iter->second]=true; } counter_received++; counter_x_received++; } } else { //receive the message world.recv(received_info_iter->first,received_info_iter->second,particles_received_east); //loop through all the received particles and add them to the particle_grid for this processor for (unsigned int i=0;i<particles_received_east.size();i++) { particle_grid[2000000000-received_info_iter->second].insert(pair<int,Particle>(particles_received_east[i].global_part_num(),particles_received_east[i])); if(particles_received_east[i].position().x()>grid_locations[2000000000-received_info_iter->second][0] && particles_received_east[i].position().x()<grid_locations[2000000000-received_info_iter->second][1]) { particle_properties[particles_received_east[i].global_part_num()].particle_in_box()[2000000000-received_info_iter->second]=true; } counter_received++; counter_x_received++; } } } } mpi::wait_all(reqs_y_send, reqs_y_send + particles_to_be_sent_bottom.size()+particles_to_be_sent_top.size()); mpi::wait_all(reqs_z_send, reqs_z_send + particles_to_be_sent_south.size()+particles_to_be_sent_north.size()); mpi::wait_all(reqs_x_send, reqs_x_send + particles_to_be_sent_west.size()+particles_to_be_sent_east.size()); cout<<"x sent "<<counter_x_sent<<" and received "<<counter_x_received<<" from rank "<<world.rank()<<endl; cout<<"rank "<<world.rank()<<" sent "<<counter_sent<<" and received "<<counter_received<<" and removed "<<counter_removed<<endl; cout<<"done passing"<<endl; } I only posted some of the code (so ignore the fact that some variables may appear to be undefined, as they are in a portion of the code I didn't post) When I run the code (on the machine in which it fails), I get done passing but not done passing particles I am lost as to what could possibly cause a segmentation fault between the end of the called function and the next line in the calling function and why it would happen on one machine and not another.

    Read the article

  • Disable MSBuild output of "Processing /ORDER options..."

    - by Jippers
    The output file from our project build has gone from 6MB to over 75MB in text. Diff'ing the last good build and the first time it blew up, there's a section in the output file like this in the latest: Processing /ORDER options External code objects not listed in the /ORDER file: ?onCallDisconnected@CallStateConnected@CallImpl@space@@UAEXV?$shared_ptr@VCallImpl@space@@@boost@@V?$shared_ptr@VGenericCall@space@@@5@K@Z ; framework.lib(CallStates.obj) ??_DBoolSetting@space@@QAEXXZ ; framework.lib(SettingValueImpl.obj) ...... continues for ~50MB ??$?0U?$pair@$$CBV?$basic_string@_WU?$char_traits@_W@std@@V?$allocator@_W@2@@std@@J@std@@@?$allocator@U_Node@?$_Tree_nod@V?$_Tmap_traits@V?$basic_string@_WU?$char_traits@_W@std@@V?$allocator@_W@2@@std@@JU?$less@V?$basic_string@_WU?$char_traits@_W@std@@V?$allocator@_W@2@@std@@@2@V?$allocator@U?$pair@$$CBV?$basic_string@_WU?$char_traits@_W@std@@V?$allocator@_W@2@@std@@J@std@@@2@$0A@@std@@@std@@@std@@QAE@ABV?$allocator@U?$pair@$$CBV?$basic_string@_WU?$char_traits@_W@std@@V?$allocator@_W@2@@std@@J@std@@@1@@Z ; CallStatistics.obj Finished processing /ORDER options I'm not sure how this got in there, but anyone know how to turn it off?

    Read the article

  • clang does not compile but g++ does

    - by user1095108
    Can someone help me with this code: #include <type_traits> #include <vector> struct nonsense { }; template <struct nonsense const* ptr, typename R> typename std::enable_if<!std::is_void<R>::value, int>::type fo(void* const) { return 0; } template <struct nonsense const* ptr, typename R> typename std::enable_if<std::is_void<R>::value, int>::type fo(void* const) { return 1; } typedef int (*func_type)(void*); template <std::size_t O> void run_me() { static struct nonsense data; typedef std::pair<char const* const, func_type> pair_type; std::vector<pair_type> v; v.push_back(pair_type{ "a", fo<&data, int> }); v.push_back(pair_type{ "b", fo<&data, void> }); } int main(int, char*[]) { run_me<2>(); return 0; } clang-3.3 does not compile this code, but g++-4.8.1 does, which of the two compiler is right? Is something wrong with the code, as I suspect? The error reads: a.cpp:32:15: error: no matching constructor for initialization of 'pair_type' (aka 'pair<const char *const, func_type>') v.push_back(pair_type{ "a", fo<&data, int> }); ^ ~~~~~~~~~~~~~~~~~~~~~~~ a.cpp:33:15: error: no matching constructor for initialization of 'pair_type' (aka 'pair<const char *const, func_type>') v.push_back(pair_type{ "b", fo<&data, void> }); ^ ~~~~~~~~~~~~~~~~~~~~~~~~

    Read the article

  • How to calibrate monitor colors to use 3D glasses?

    - by GetFree
    I have a pair of red/cyan 3D glasses and when I use them to view youtube's 3D videos or anaglyph images they dont seem to work properly. The two images are not filtered properly by each colored lens. So I guess the problem is my monitor not showing the exact colors needed for my glasses to work. Is there any way to customize/calibrate the monitor's colors for a specific pair of 3D glasses? PS: I also have green/magenta and amber/blue glasses, but the same problem happens.

    Read the article

  • Bluetooth device won't re-add after being removed (Windows 7)

    - by HericDenis
    I've got a SBH52 headset, it works fine on my android phone, then I tried to use it with my Windows 7 PC, then it won't work because Microsoft Windows dosen't have native support for A2DP connections and one of the answers on the previous link said that removing the device from "devices and printers", running this software and then re-add the device would solve the problem. But the big problem is that they won't pair again: I tried, hopelessly, the suggested fixes from Windows, it won't work. By the way, it is Windows 7 (x64), it just looks like Windows 8. I had this problem once many years ago with other PC and Bluetooth device, I remember it had something to do with drivers that were not removed and I tried to delete them from somewhere, and as far as I remember it worked, but no idea how. In short, how can I pair it again with my PC?

    Read the article

< Previous Page | 7 8 9 10 11 12 13 14 15 16 17 18  | Next Page >