Search Results

Search found 267 results on 11 pages for 'stateless'.

Page 11/11 | < Previous Page | 7 8 9 10 11 

  • War wont deploy "Unresolved <ejb-link>" Glassfish 3, Netbeans 7

    - by Ime Imee
    I have enterprise aplication with ejb and war module, and since I created local interface web module wont deploy. It builds fine. EJB project is referenced inside web project. Also when I delete <ejb-local-ref> from web.xml it deploys, but then lookup method fails. Glassfish error: SEVERE: Exception while deploying the app [Projekat-war] : Error: Unresolved <ejb-link>: Projekat-ejb.jar#ZaWebSessionBean Simple interface: @Local public interface ZaWebSessionBeanLocal { String vrati(String str); } @Stateless public class ZaWebSessionBean implements ZaWebSessionBeanLocal { @Override public String vrati(String str) { return "vrati"; } // Add business logic below. (Right-click in editor and choose // "Insert Code > Add Business Method") } And web.xml <ejb-local-ref> <ejb-ref-name>ZaWebSessionBean</ejb-ref-name> <ejb-ref-type>Session</ejb-ref-type> <local>za_web.ZaWebSessionBeanLocal</local> <ejb-link>Projekat-ejb.jar#ZaWebSessionBean</ejb-link> </ejb-local-ref> Lookup method (generated) : public class HeaderBean { ZaWebSessionBeanLocal zaWebSessionBean = lookupZaWebSessionBeanLocal(); private ZaWebSessionBeanLocal lookupZaWebSessionBeanLocal() { try { Context c = new InitialContext(); return (ZaWebSessionBeanLocal) c.lookup("java:global/Projekat/Projekat-ejb/ZaWebSessionBean!za_web.ZaWebSessionBeanLocal"); } catch (NamingException ne) { Logger.getLogger(getClass().getName()).log(Level.SEVERE, "exception caught", ne); throw new RuntimeException(ne); } } Full log: SEVERE: Exception while deploying the app [Projekat-war] : Error: Unresolved <ejb-link>: Projekat-ejb.jar#ZaWebSessionBean SEVERE: Unresolved <ejb-link>: Projekat-ejb.jar#ZaWebSessionBean SEVERE: Exception while deploying the app [Projekat-war] SEVERE: Error: Unresolved <ejb-link>: Projekat-ejb.jar#ZaWebSessionBean java.lang.RuntimeException: Error: Unresolved <ejb-link>: Projekat-ejb.jar#ZaWebSessionBean at com.sun.enterprise.deployment.util.EjbBundleValidator.accept(EjbBundleValidator.java:724) at com.sun.enterprise.deployment.WebBundleDescriptor.visit(WebBundleDescriptor.java:2004) at com.sun.enterprise.deployment.Application.visit(Application.java:1777) at com.sun.enterprise.deployment.archivist.ApplicationFactory.openArchive(ApplicationFactory.java:195) at org.glassfish.javaee.core.deployment.DolProvider.load(DolProvider.java:185) at org.glassfish.javaee.core.deployment.DolProvider.load(DolProvider.java:94) at com.sun.enterprise.v3.server.ApplicationLifecycle.loadDeployer(ApplicationLifecycle.java:827) at com.sun.enterprise.v3.server.ApplicationLifecycle.setupContainerInfos(ApplicationLifecycle.java:769) at com.sun.enterprise.v3.server.ApplicationLifecycle.deploy(ApplicationLifecycle.java:368) at com.sun.enterprise.v3.server.ApplicationLifecycle.deploy(ApplicationLifecycle.java:240) at org.glassfish.deployment.admin.DeployCommand.execute(DeployCommand.java:389) at com.sun.enterprise.v3.admin.CommandRunnerImpl$1.execute(CommandRunnerImpl.java:348) at com.sun.enterprise.v3.admin.CommandRunnerImpl.doCommand(CommandRunnerImpl.java:363) at com.sun.enterprise.v3.admin.CommandRunnerImpl.doCommand(CommandRunnerImpl.java:1085) at com.sun.enterprise.v3.admin.CommandRunnerImpl.access$1200(CommandRunnerImpl.java:95) at com.sun.enterprise.v3.admin.CommandRunnerImpl$ExecutionContext.execute(CommandRunnerImpl.java:1291) at com.sun.enterprise.v3.admin.CommandRunnerImpl$ExecutionContext.execute(CommandRunnerImpl.java:1259) at com.sun.enterprise.v3.admin.AdminAdapter.doCommand(AdminAdapter.java:461) at com.sun.enterprise.v3.admin.AdminAdapter.service(AdminAdapter.java:212) at com.sun.grizzly.tcp.http11.GrizzlyAdapter.service(GrizzlyAdapter.java:179) at com.sun.enterprise.v3.server.HK2Dispatcher.dispath(HK2Dispatcher.java:117) at com.sun.enterprise.v3.services.impl.ContainerMapper$Hk2DispatcherCallable.call(ContainerMapper.java:354) at com.sun.enterprise.v3.services.impl.ContainerMapper.service(ContainerMapper.java:195) at com.sun.grizzly.http.ProcessorTask.invokeAdapter(ProcessorTask.java:849) at com.sun.grizzly.http.ProcessorTask.doProcess(ProcessorTask.java:746) at com.sun.grizzly.http.ProcessorTask.process(ProcessorTask.java:1045) at com.sun.grizzly.http.DefaultProtocolFilter.execute(DefaultProtocolFilter.java:228) at com.sun.grizzly.DefaultProtocolChain.executeProtocolFilter(DefaultProtocolChain.java:137) at com.sun.grizzly.DefaultProtocolChain.execute(DefaultProtocolChain.java:104) at com.sun.grizzly.DefaultProtocolChain.execute(DefaultProtocolChain.java:90) at com.sun.grizzly.http.HttpProtocolChain.execute(HttpProtocolChain.java:79) at com.sun.grizzly.ProtocolChainContextTask.doCall(ProtocolChainContextTask.java:54) at com.sun.grizzly.SelectionKeyContextTask.call(SelectionKeyContextTask.java:59) at com.sun.grizzly.ContextTask.run(ContextTask.java:71) at com.sun.grizzly.util.AbstractThreadPool$Worker.doWork(AbstractThreadPool.java:532) at com.sun.grizzly.util.AbstractThreadPool$Worker.run(AbstractThreadPool.java:513) at java.lang.Thread.run(Thread.java:619) SEVERE: Exception while deploying the app [Projekat-war] : Error: Unresolved <ejb-link>: Projekat-ejb.jar#ZaWebSessionBean

    Read the article

  • Is the Cloud ready for an Enterprise Java web application? Seeking a JEE hosting advice.

    - by Jakub Holý
    Greetings to all the smart people around here! I'd like to ask whether it is feasible or a good idea at all to deploy a Java enterprise web application to a Cloud such as Amazon EC2. More exactly, I'm looking for infrastructure options for an application that shall handle few hundred users with long but neither CPU nor memory intensive sessions. I'm considering dedicated servers, virtual private servers (VPSs) and EC2. I've noticed that there is a project called JBoss Cloud so people are working on enabling such a deployment, on the other hand it doesn't seem to be mature yet and I'm not sure that the cloud is ready for this kind of applications, which differs from the typical cloud-based applications like Twitter. Would you recommend to deploy it to the cloud? What are the pros and cons? The application is a Java EE 5 web application whose main function is to enable users to compose their own customized Product by combining the available Parts. It uses stateless and stateful session beans and JPA for persistence of entities to a RDBMS and fetches information about Parts from the company's inventory system via a web service. Aside of external users it's used also by few internal ones, who are authenticated against the company's LDAP. The application should handle around 300-400 concurrent users building their product and should be reasonably scalable and available though these qualities are only of a medium importance at this stage. I've proposed an architecture consisting of a firewall (FW) and load balancer supporting sticky sessions and https (in the Cloud this would be replaced with EC2's Elastic Load Balancing service and FW on the app. servers, in a physical architecture the load-balancer would be a HW), then two physical clustered application servers combined with web servers (so that if one fails, a user doesn't loose his/her long built product) and finally a database server. The DB server would need a slave backup instance that can replace the master instance if it fails. This should provide reasonable availability and fault tolerance and provide good scalability as long as a single RDBMS can keep with the load, which should be OK for quite a while because most of the operations are done in the memory using a stateful bean and only occasionally stored or retrieved from the DB and the amount of data is low too. A problematic part could be the dependency on the remote inventory system webservice but with good caching of its outputs in the application it should be OK too. Unfortunately I've only vague idea of the system resources (memory size, number and speed of CPUs/cores) that such an "average Java EE application" for few hundred users needs. My rough and mostly unfounded estimate based on actual Amazon offerings is that 1.7GB and a single, 2-core "modern CPU" with speed around 2.5GHz (the High-CPU Medium Instance) should be sufficient for any of the two application servers (since we can handle higher load by provisioning more of them). Alternatively I would consider using the Large instance (64b, 7.5GB RAM, 2 cores at 1GHz) So my question is whether such a deployment to the cloud is technically and financially feasible or whether dedicated/VPS servers would be a better option and whether there are some real-world experiences with something similar. Thank you very much! /Jakub Holy PS: I've found the JBoss EAP in a Cloud Case Study that shows that it is possible to deploy a real-world Java EE application to the EC2 cloud but unfortunately there're no details regarding topology, instance types, or anything :-(

    Read the article

  • Defines JEE 5 the handling of commit error using bean managed transactions?

    - by marabol
    I'm using glassfish 2.1 and 2.1.1. If I've a bean method annotated by @TransactionAttribute(value = TransactionAttributeType.REQUIRES_NEW). After doing some JPA stuff the commit fails in the afterCompletion-Phase of JTS. GlassFish logs this failure only. And the caller of this bean method has no chance to know something goes wrong. So I wonder, if there is any definition how a jee 5 server has to handle exceptions while commiting. I would expect any runtime exception. I'm using stateless beans. With SessionSynchronisation I could get the commit failue, if I use statefull beans. Is it possible to intercept, so I can throw an exception, that I've declared in my interface? This is the whole exception stacktrace: [#|2010-05-06T12:15:54.840+0000|WARNING|sun-appserver2.1|oracle.toplink.essentials.session.file:/C:/glassfish/domains/domain1/applications/j2ee-apps/my-ear-1.0.0-SNAPSHOT/my-jar-1.1.8_jar/-myPu.transaction|_ThreadID=25;_ThreadName=p: thread-pool-1; w: 15;_RequestID=67a475a1-25c3-4416-abea-0d159f715373;| java.lang.RuntimeException: Got exception during XAResource.end: oracle.jdbc.xa.OracleXAException at com.sun.enterprise.distributedtx.J2EETransactionManagerOpt.delistResource(J2EETransactionManagerOpt.java:224) at com.sun.enterprise.resource.ResourceManagerImpl.unregisterResource(ResourceManagerImpl.java:265) at com.sun.enterprise.resource.ResourceManagerImpl.delistResource(ResourceManagerImpl.java:223) at com.sun.enterprise.resource.PoolManagerImpl.resourceClosed(PoolManagerImpl.java:400) at com.sun.enterprise.resource.ConnectorAllocator$ConnectionListenerImpl.connectionClosed(ConnectorAllocator.java:72) at com.sun.gjc.spi.ManagedConnection.connectionClosed(ManagedConnection.java:639) at com.sun.gjc.spi.base.ConnectionHolder.close(ConnectionHolder.java:201) at com.sun.gjc.spi.jdbc40.ConnectionHolder40.close(ConnectionHolder40.java:519) at oracle.toplink.essentials.internal.databaseaccess.DatabaseAccessor.closeDatasourceConnection(DatabaseAccessor.java:394) at oracle.toplink.essentials.internal.databaseaccess.DatasourceAccessor.closeConnection(DatasourceAccessor.java:382) at oracle.toplink.essentials.internal.databaseaccess.DatabaseAccessor.closeConnection(DatabaseAccessor.java:417) at oracle.toplink.essentials.internal.databaseaccess.DatasourceAccessor.afterJTSTransaction(DatasourceAccessor.java:115) at oracle.toplink.essentials.threetier.ClientSession.afterTransaction(ClientSession.java:119) at oracle.toplink.essentials.internal.sessions.UnitOfWorkImpl.afterTransaction(UnitOfWorkImpl.java:1841) at oracle.toplink.essentials.transaction.AbstractSynchronizationListener.afterCompletion(AbstractSynchronizationListener.java:170) at oracle.toplink.essentials.transaction.JTASynchronizationListener.afterCompletion(JTASynchronizationListener.java:102) at com.sun.jts.jta.SynchronizationImpl.after_completion(SynchronizationImpl.java:154) at com.sun.jts.CosTransactions.RegisteredSyncs.distributeAfter(RegisteredSyncs.java:210) at com.sun.jts.CosTransactions.TopCoordinator.afterCompletion(TopCoordinator.java:2585) at com.sun.jts.CosTransactions.CoordinatorTerm.commit(CoordinatorTerm.java:433) at com.sun.jts.CosTransactions.TerminatorImpl.commit(TerminatorImpl.java:250) at com.sun.jts.CosTransactions.CurrentImpl.commit(CurrentImpl.java:623) at com.sun.jts.jta.TransactionManagerImpl.commit(TransactionManagerImpl.java:309) at com.sun.enterprise.distributedtx.J2EETransactionManagerImpl.commit(J2EETransactionManagerImpl.java:1029) at com.sun.enterprise.distributedtx.J2EETransactionManagerOpt.commit(J2EETransactionManagerOpt.java:398) at com.sun.ejb.containers.BaseContainer.completeNewTx(BaseContainer.java:3817) at com.sun.ejb.containers.BaseContainer.postInvokeTx(BaseContainer.java:3610) at com.sun.ejb.containers.BaseContainer.postInvoke(BaseContainer.java:1379) at com.sun.ejb.containers.BaseContainer.postInvoke(BaseContainer.java:1316) at com.sun.ejb.containers.EJBLocalObjectInvocationHandler.invoke(EJBLocalObjectInvocationHandler.java:205) at com.sun.ejb.containers.EJBLocalObjectInvocationHandlerDelegate.invoke(EJBLocalObjectInvocationHandlerDelegate.java:127) at $Proxy127.myNewTxMethod(Unknown Source) at mypackage.MyBean2.myMethod(MyBean2.java:197) at mypackage.MyBean2.myMethod2(MyBean2.java:166) at mypackage.MyBean2.myMethod3(MyBean2.java:105) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at com.sun.enterprise.security.application.EJBSecurityManager.runMethod(EJBSecurityManager.java:1011) at com.sun.enterprise.security.SecurityUtil.invoke(SecurityUtil.java:175) at com.sun.ejb.containers.BaseContainer.invokeTargetBeanMethod(BaseContainer.java:2920) at com.sun.ejb.containers.BaseContainer.intercept(BaseContainer.java:4011) at com.sun.ejb.containers.EJBLocalObjectInvocationHandler.invoke(EJBLocalObjectInvocationHandler.java:197) at com.sun.ejb.containers.EJBLocalObjectInvocationHandlerDelegate.invoke(EJBLocalObjectInvocationHandlerDelegate.java:127) at $Proxy158.myMethod3(Unknown Source) at mypackage.MyBean3.myMethod4(MyBean3.java:94) at mypackage.MyBean3.onMessage(MyBean3.java:85) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at com.sun.enterprise.security.SecurityUtil$2.run(SecurityUtil.java:181) at java.security.AccessController.doPrivileged(Native Method) at com.sun.enterprise.security.application.EJBSecurityManager.doAsPrivileged(EJBSecurityManager.java:985) at com.sun.enterprise.security.SecurityUtil.invoke(SecurityUtil.java:186) at com.sun.ejb.containers.BaseContainer.invokeTargetBeanMethod(BaseContainer.java:2920) at com.sun.ejb.containers.BaseContainer.intercept(BaseContainer.java:4011) at com.sun.ejb.containers.MessageBeanContainer.deliverMessage(MessageBeanContainer.java:1111) at com.sun.ejb.containers.MessageBeanListenerImpl.deliverMessage(MessageBeanListenerImpl.java:74) at com.sun.enterprise.connectors.inflow.MessageEndpointInvocationHandler.invoke(MessageEndpointInvocationHandler.java:179) at $Proxy192.onMessage(Unknown Source) at com.sun.messaging.jms.ra.OnMessageRunner.run(OnMessageRunner.java:258) at com.sun.enterprise.connectors.work.OneWork.doWork(OneWork.java:76) at com.sun.corba.ee.impl.orbutil.threadpool.ThreadPoolImpl$WorkerThread.run(ThreadPoolImpl.java:555) |#]

    Read the article

  • Looking for a better design: A readonly in-memory cache mechanism

    - by Dylan Lin
    Hi all, I have a Category entity (class), which has zero or one parent Category and many child Categories -- it's a tree structure. The Category data is stored in a RDBMS, so for better performance, I want to load all categories and cache them in memory while launching the applicaiton. Our system can have plugins, and we allow the plugin authors to access the Category Tree, but they should not modify the cached items and the tree(I think a non-readonly design might cause some subtle bugs in this senario), only the system knows when and how to refresh the tree. Here are some demo codes: public interface ITreeNode<T> where T : ITreeNode<T> { // No setter T Parent { get; } IEnumerable<T> ChildNodes { get; } } // This class is generated by O/R Mapping tool (e.g. Entity Framework) public class Category : EntityObject { public string Name { get; set; } } // Because Category is not stateless, so I create a cleaner view class for Category. // And this class is the Node Type of the Category Tree public class CategoryView : ITreeNode<CategoryView> { public string Name { get; private set; } #region ITreeNode Memebers public CategoryView Parent { get; private set; } private List<CategoryView> _childNodes; public IEnumerable<CategoryView> ChildNodes { return _childNodes; } #endregion public static CategoryView CreateFrom(Category category) { // here I can set the CategoryView.Name property } } So far so good. However, I want to make ITreeNode interface reuseable, and for some other types, the tree should not be readonly. We are not able to do this with the above readonly ITreeNode, so I want the ITreeNode to be like this: public interface ITreeNode<T> { // has setter T Parent { get; set; } // use ICollection<T> instead of IEnumerable<T> ICollection<T> ChildNodes { get; } } But if we make the ITreeNode writable, then we cannot make the Category Tree readonly, it's not good. So I think if we can do like this: public interface ITreeNode<T> { T Parent { get; } IEnumerable<T> ChildNodes { get; } } public interface IWritableTreeNode<T> : ITreeNode<T> { new T Parent { get; set; } new ICollection<T> ChildNodes { get; } } Is this good or bad? Are there some better designs? Thanks a lot! :)

    Read the article

  • Losing sessions on GlassFish

    - by synti
    I have a web application that logs users in a @SessionScoped managed bean. It's all the basic stuff, pretty much like this: users logs in using regular http form and gets redirect to user area (wich is protected using a filter). But if any resource on that area is accessed, the request somehow uses a new session, wich has no managed bean, no user, and the filter does his job, redirecting him to login page. Here's the login form: <h:form> <h:outputLabel for="email" value="Email "/> <p:inputText id="email" size="30" value="#{loginManager.email}"/> <h:outputLabel for="password" value="Password "/> <p:password id="password" size="12" value="#{loginManager.password}"/> <p:commandButton value="Login" action="#{loginManager.login()}"/> </h:form> The loginManager managed bean: @ManagedBean @SessionScoped public class LoginManager implements Serializable { @EJB private UserService userService; private User user; private String email; private String password; public String login() { user = userService.findBy(email, password); if (user == null) { // FacesMessage stuff } else { return "/user/welcome.xhtml?faces-redirect=true"; } } public String logout() { FacesContext.getCurrentInstance().getExternalContext().invalidateSession(); return "/index.xhtml?faces-redirect=true"; } // Getters, setters (no setter for user) and serialVersionUID And then comes the filter that protects the user area: @WebFilter(urlPatterns="/user/*", displayName="UserFilter") public class UserFilter implements Filter { @Override public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain) throws IOException, ServletException { HttpSession session = ((HttpServletRequest)request).getSession(false); LoginManager loginManager = (LoginManager) session.getAttribute("loginManager"); if (loginManager == null || !loginManager.hasUser()) { HttpServletResponse resp = (HttpServletResponse) response; resp.sendRedirect("index.xhtml"); } final User user = loginManager.getUser(); if (user.isValid()) { chain.doFilter(request, response); } else { HttpServletResponse resp = (HttpServletResponse) response; resp.sendRedirect("index.xhtml"); } } The UserService is just a stateless EJB that handles persistence. Part of the JSF for user area: <h:form> <p:panelMenu> <p:submenu label="Items"> <p:menuitem value="Add item" action="#{userItens.addItems}" ajax="false"/> <p:menuitem value="My items" /> </p:submenu> </p:panelMenu> </h:form> And finally the userItens managed bean. @ManagedBean @RequestScoped public class UserItens { private User user; @PostConstruct private void init() { HttpSession session = (HttpSession) FacesContext.getCurrentInstance() .getExternalContext().getSession(false); LoginManager loginManager = (LoginManager) session.getAttribute("loginManager"); if (loginManager != null) user = loginManager.getUser(); } public String addItems() { // Doesn't get here. Seems like UserFilter comes first, doesn't find // an user and redirects. } I'm using glassfish and session timeout is now on 0.

    Read the article

  • Perl not closing TCP sockets if clients are no longer connected?

    - by LM
    The purpose of the application is to listen for a specific UDP multicast and then to forward the data to any TCP clients connected to the server. The code works fine, but I have a problem with the sockets not closing after the TCP clients disconnects. A socketsniffer utility shows the the sockets remain open and all the UDP data continues to be forwarded to the clients. The problem I believe is with the "if ($write-connected())" block as it always return true, even if the TCP client is no longer connected. I use standard Windows Telnet to connect to the server and to see the data. When I close telnet, the TCP socket is suppose to close on the server. Any reason why connected() show the connections as active even if they are not? Also, what alternative should I use then? Code: #!/usr/bin/perl use IO::Socket::Multicast; use IO::Socket; use IO::Select; my $tcp_port = "4550"; my $tcp_socket = IO::Socket::INET->new( Listen => SOMAXCONN, LocalAddr => '0.0.0.0', LocalPort => $tcp_port, Proto => 'tcp', ReuseAddr => 1, ); use Socket qw(IPPROTO_TCP TCP_NODELAY); setsockopt( $tcp_socket, IPPROTO_TCP, TCP_NODELAY, 1); use constant GROUP => '239.2.0.81'; use constant PORT => '6550'; my $udp_socket= IO::Socket::Multicast->new(Proto=>'udp',LocalPort=>PORT); $udp_socket->mcast_add(GROUP) || die "Couldn't set group: $!\n"; my $read_select = IO::Select->new(); my $write_select = IO::Select->new(); $read_select->add($tcp_socket); $read_select->add($udp_socket); ## Loop forever, reading data from the UDP socket and writing it to the ## TCP socket(s). while (1) { ## No timeout specified (see docs for IO::Select). This will block until a TCP ## client connects or we have data. my @read = $read_select->can_read(); foreach my $read (@read) { if ($read == $tcp_socket) { ## Handle connect from TCP client. Note that UDP connections are ## stateless (no accept necessary)... my $new_tcp = $read->accept(); $write_select->add($new_tcp); } elsif ($read == $udp_socket) { ## Handle data received from UDP socket... my $recv_buffer; $udp_socket->recv($recv_buffer, 1024, undef); ## Write the data read from UDP out to the TCP client(s). Again, no ## timeout. This will block until a TCP socket is writable. my @write = $write_select->can_write(); foreach my $write (@write) { ## Make sure the socket is still connected before writing. if ($write->connected()) { $write->send($recv_buffer); } else { $write_select->remove($write); close $write; } } } } }

    Read the article

  • Fitting it together, database, reporting, applications in C#

    - by alvonellos
    Introduction Preamble I was hesitant to post this, since it's an application whose intricate details are defined elsewhere, and answers may not be helpful to others. Within the past few weeks (I was actually going to write a blog post about this after I finished) I've discovered that the barrier I'm encountering is one that's actually quite common for newer developers. This question is not so much about a specific thing as it is about piecing those things together. I've searched the internet far and wide, and found many tutorials on how to create applications that are kind of similar to what I'm looking for. I've also looked at hiring another, more experienced, developer to help me along, but all I've gotten are unqualified candidates that don't have the experience necessary and won't take care of the client or project like I will. I'd rather have the project never transpire than to release a solution that is half-baked. I've asked professors at my school, but they've not turned up answers to my question. I'm an experienced developer, and I've written many applications that are -- very abstractly -- close to what I'm doing, but my experiences from those applications aren't giving me enough leverage to solve this particular problem. I just hope that posting this article isn't a mistake for me to write. Project Description I have a project I'm working on for a client that is a rewrite of an application, originally written in Foxpro 2.6 by someone before me, that performs some analysis (which, sadly, I'm not allowed to disclose as per of my employment contract) on financial data. One day, after a long talk between the client and I -- where he intimately described his frustrations with all the bugs I've been hacking out of this code for 6 months now -- he told me to just rewrite it and gave me a month to write a good 1/8 of this 65k LOC Foxpro monstrosity. this 65k line of code foxpro monstrosity. It'll take me a good 3 - 6 months to rewrite this software (I know things the original programmer did not, like inheritance) going as I am right now, but I'm quickly discovering that I'm going to need to use databases. Prior to this contract I didn't even know about foxpro, and so I've had to learn foxpro on the fly, write procedures and make modifications to the database. I've actually come to like it, and this project would be rewritten in Foxpro if it were still a supported language, because over the past few months, I've come to like the features of Foxpro that make it so easy to develop data-driven applications. I once perfomed an experiment, comparing C# to Foxpro. What took me 45 minutes in C# took me two in Foxpro, and I knew C# prior to Foxpro. I was hoping to leverage the power of C#, but it intimidates me that in foxpro, you can have one line of code and be using a database. Prior to this, I have never written any serious database development from scratch. All the applications that I've written are in a different league. They are either completely data-naive or data-naive enough that I can get away with not using a database through serialization or by designing algorithms that work with the data in a manner that is stateless, so there is no need to worry about databases. I've come to realize, very quickly, that serialization and my efficacy with data structures has been my crutch all these years that's prevented me from adventuring into databases, and has consequently hindered my success in real-world programming. Sure, I've written some database stuff in Perl and Python, and I've done forms and worked with relational databases and tables, I'm a wizard in Access and Excel (seriously) and can do just about anything, but it just feels unnatural writing SQL code in another language... I don't mind writing SQL, and I don't It's that bridge between the database and the program code that drives me absolutely bonkers. I hope I'm not the only one to think this, but it bothers me that I have to create statements like the following string sSql = "SELECT * from tablename" When there's really no reason for that kind of unchecked language binding between two languages and two API's. Don't get my wrong, SQL is great, but I don't like the idea that, when executing commands on a SQL database, that one must intermix database and application software, and there's no database independence, which means that different versions of different databases can break code. This isn't very nice. The nicest thing about Foxpro is the cohesiveness between programming language and database. It's so easy, and Foxpro makes it easy, because the tool just fits the task. I can see why so many developers have created a career with this language, because it lowered the barrier of entry to data-driven applications that so many businesses need. It was wonderful. For my purposes today, with the demands and need for community support, extensibility, and language features, Foxpro isn't a solution that I feel would be the right tool for the job. I'm also worried about working too heavy with the database, because I've seen data-driven .NET applications have issues with database caches, running out of memory, and objects in the database not being collected. (Memory leaks) And OH the queries. Which one, how, and why? There are a plethora of different ways that a database can be setup, I think I counted 5 or 6 different kinds of database applications alone that I can chose from. That is a great mountain for me to climb when I don't even know where to begin when it comes to writing data-driven applications. The problem isn't that I don't know SQL or that I don't know C#. I know both and have worked with both extensively. It's making them work together that's the problem, and it's something I've never done in C# before. Reports The client likes paper. The data needs to be printed out in a format that is extensible, layered, and easy to use. I have never done reporting before, and so this is a bit of a problem. From the data source comes crystal reports, and so there's a dependency on the database, from what I understand. Code reuse A large part of the design decision that I've gone through so far is to break the task of writing a piece of this software into routines and modular DLL's and so forth such that much of the code can be reused. For example, when I setup this database, I want to be able to reuse the same database code over and over again. I also want to make sure that when the day comes that another developer is here, that he/she will be able to pick up just where I left off. The quicker I develop these applications, the better off I am. Tasks & Goals In my project, I need to write routines that apply algorithms and look for predefined patterns in financial data. Additionally, I need to simulate trading based on predefined algorithms and data. Then I need to prepare reports on that data. Additionally, I need to have a way to change the code base for this application quickly and effectively, without hacking together some band-aid solution for a problem that really needs a trauma ward. Special Considerations The solution must be fast, run quickly on existing hardware, and not be too much of a pain to maintain and write. I understand that anything I write I'm married to -- I'm responsible for the things that I write because my reputation and livelihood is dependent on it. Do I really need a database? What about performance? Performance was such a big issue that I hand wrote a data structure that is capable of performing 2 billion operations, using a total of 4 gigs of memory in under 1/4 of a second using the standard core two duo processor. I could not find a similar, pre-written data structure in C# to perform this task. What setup do I use in terms of database? What about reporting? I'd prefer to have PDF's generated, but I'd like to be able to visually sketch those reports and then just have a ReportFactory of some sort, that when I pass some variables in, it just does that data. About Me I'm a lone developer for a small business in this area. This is the first time I've done this and I've never had the breadth and depth of my knowledge tested. I'm incredibly frustrated with this project because I feel incredibly overwhelmed with the task at hand. I'm looking for that entry level point where I can draw a line and say "this is what I need to do" Conclusion I may have not been clear enough on my post. I'm still new to this whole thing, and I've been doing my best to contribute back to the community that I've leached so much knowledge from. I'd be glad to edit my post and add more information if possible. I'm looking for a big-picture solution or design process that helps me get off the ground in this world of data-driven applications, because I have a feeling that it's going to be concentric to my entire career as a programmer for some time. Specifically, if you didn't get it from the rest of the post (I may not have been clear enough) I really need some guidance as to where to go in terms of the design decisions for this project. Some things that'll be useful will be a pro/con list for the different kinds of database projects available in VS2010. I've tried, but generating that list has been as hard as solving the problem itself... If you could walk a developer writing a data-driven application for the first time in C#, how would you do that? Where would you point them to?

    Read the article

  • Can static methods be called using object/instance in .NET

    Ans is Yes and No   Yes in C++, Java and VB.NET No in C#   This is only compiler restriction in c#. You might see in some websites that we can break this restriction using reflection and delegates, but we can’t, according to my little research J I shall try to explain you…   Following is code sample to break this rule using reflection, it seems that it is possible to call a static method using an object, p1 using System; namespace T {     class Program     {         static void Main()         {             var p1 = new Person() { Name = "Smith" };             typeof(Person).GetMethod("TestStatMethod").Invoke(p1, new object[] { });                     }         class Person         {             public string Name { get; set; }             public static void TestStatMethod()             {                 Console.WriteLine("Hello");             }         }     } } but I do not think so this method is being called using p1 rather Type Name “Person”. I shall try to prove this… look at another example…  Test2 has been inherited from Test1. Let’s see various scenarios… Scenario1 using System; namespace T {     class Program     {         static void Main()         {             Test1 t = new Test1();            typeof(Test2).GetMethod("Method1").Invoke(t,                                  new object[] { });         }     }     class Test1     {         public static void Method1()         {             Console.WriteLine("At test1::Method1");         }     }       class Test2 : Test1     {         public static void Method1()         {             Console.WriteLine("At test1::Method2");         }     } } Output:   At test1::Method2 Scenario2         static void Main()         {             Test2 t = new Test2();            typeof(Test2).GetMethod("Method1").Invoke(t,                                          new object[] { });         }   Output:   At test1::Method2   Scenario3         static void Main()         {             Test1 t = new Test2();            typeof(Test2).GetMethod("Method1").Invoke(t,                             new object[] { });         }   Output: At test1::Method2 In all above scenarios output is same, that means, Reflection also not considering the object what you pass to Invoke method in case of static methods. It is always considering the type which you specify in typeof(). So, what is the use passing instance to “Invoke”. Let see below sample using System; namespace T {     class Program     {         static void Main()         {            typeof(Test2).GetMethod("Method1").                Invoke(null, new object[] { });         }     }       class Test1     {         public static void Method1()         {             Console.WriteLine("At test1::Method1");         }     }     class Test2 : Test1     {         public static void Method1()         {             Console.WriteLine("At test1::Method2");         }     } }   Output is   At test1::Method2   I was able to call Invoke “Method1” of Test2 without any object.  Yes, there no wonder here as Method1 is static. So we may conclude that static methods cannot be called using instances (only in c#) Why Microsoft has restricted it in C#? Ans: Really there Is no use calling static methods using objects because static methods are stateless. but still Java and C++ latest compilers allow calling static methods using instances. Java sample class Test {      public static void main(String str[])      {            Person p = new Person();            System.out.println(p.GetCount());      } }   class Person {   public static int GetCount()   {      return 100;   } }   Output          100 span.fullpost {display:none;}

    Read the article

  • ASPNET WebAPI REST Guidance

    - by JoshReuben
    ASP.NET Web API is an ideal platform for building RESTful applications on the .NET Framework. While I may be more partial to NodeJS these days, there is no denying that WebAPI is a well engineered framework. What follows is my investigation of how to leverage WebAPI to construct a RESTful frontend API.   The Advantages of REST Methodology over SOAP Simpler API for CRUD ops Standardize Development methodology - consistent and intuitive Standards based à client interop Wide industry adoption, Ease of use à easy to add new devs Avoid service method signature blowout Smaller payloads than SOAP Stateless à no session data means multi-tenant scalability Cache-ability Testability   General RESTful API Design Overview · utilize HTTP Protocol - Usage of HTTP methods for CRUD, standard HTTP response codes, common HTTP headers and Mime Types · Resources are mapped to URLs, actions are mapped to verbs and the rest goes in the headers. · keep the API semantic, resource-centric – A RESTful, resource-oriented service exposes a URI for every piece of data the client might want to operate on. A REST-RPC Hybrid exposes a URI for every operation the client might perform: one URI to fetch a piece of data, a different URI to delete that same data. utilize Uri to specify CRUD op, version, language, output format: http://api.MyApp.com/{ver}/{lang}/{resource_type}/{resource_id}.{output_format}?{key&filters} · entity CRUD operations are matched to HTTP methods: · Create - POST / PUT · Read – GET - cacheable · Update – PUT · Delete - DELETE · Use Uris to represent a hierarchies - Resources in RESTful URLs are often chained · Statelessness allows for idempotency – apply an op multiple times without changing the result. POST is non-idempotent, the rest are idempotent (if DELETE flags records instead of deleting them). · Cache indication - Leverage HTTP headers to label cacheable content and indicate the permitted duration of cache · PUT vs POST - The client uses PUT when it determines which URI (Id key) the new resource should have. The client uses POST when the server determines they key. PUT takes a second param – the id. POST creates a new resource. The server assigns the URI for the new object and returns this URI as part of the response message. Note: The PUT method replaces the entire entity. That is, the client is expected to send a complete representation of the updated product. If you want to support partial updates, the PATCH method is preferred DELETE deletes a resource at a specified URI – typically takes an id param · Leverage Common HTTP Response Codes in response headers 200 OK: Success 201 Created - Used on POST request when creating a new resource. 304 Not Modified: no new data to return. 400 Bad Request: Invalid Request. 401 Unauthorized: Authentication. 403 Forbidden: Authorization 404 Not Found – entity does not exist. 406 Not Acceptable – bad params. 409 Conflict - For POST / PUT requests if the resource already exists. 500 Internal Server Error 503 Service Unavailable · Leverage uncommon HTTP Verbs to reduce payload sizes HEAD - retrieves just the resource meta-information. OPTIONS returns the actions supported for the specified resource. PATCH - partial modification of a resource. · When using PUT, POST or PATCH, send the data as a document in the body of the request. Don't use query parameters to alter state. · Utilize Headers for content negotiation, caching, authorization, throttling o Content Negotiation – choose representation (e.g. JSON or XML and version), language & compression. Signal via RequestHeader.Accept & ResponseHeader.Content-Type Accept: application/json;version=1.0 Accept-Language: en-US Accept-Charset: UTF-8 Accept-Encoding: gzip o Caching - ResponseHeader: Expires (absolute expiry time) or Cache-Control (relative expiry time) o Authorization - basic HTTP authentication uses the RequestHeader.Authorization to specify a base64 encoded string "username:password". can be used in combination with SSL/TLS (HTTPS) and leverage OAuth2 3rd party token-claims authorization. Authorization: Basic sQJlaTp5ZWFslylnaNZ= o Rate Limiting - Not currently part of HTTP so specify non-standard headers prefixed with X- in the ResponseHeader. X-RateLimit-Limit: 10000 X-RateLimit-Remaining: 9990 · HATEOAS Methodology - Hypermedia As The Engine Of Application State – leverage API as a state machine where resources are states and the transitions between states are links between resources and are included in their representation (hypermedia) – get API metadata signatures from the response Link header - in a truly REST based architecture any URL, except the initial URL, can be changed, even to other servers, without worrying about the client. · error responses - Do not just send back a 200 OK with every response. Response should consist of HTTP error status code (JQuery has automated support for this), A human readable message , A Link to a meaningful state transition , & the original data payload that was problematic. · the URIs will typically map to a server-side controller and a method name specified by the type of request method. Stuff all your calls into just four methods is not as crazy as it sounds. · Scoping - Path variables look like you’re traversing a hierarchy, and query variables look like you’re passing arguments into an algorithm · Mapping URIs to Controllers - have one controller for each resource is not a rule – can consolidate - route requests to the appropriate controller and action method · Keep URls Consistent - Sometimes it’s tempting to just shorten our URIs. not recommend this as this can cause confusion · Join Naming – for m-m entity relations there may be multiple hierarchy traversal paths · Routing – useful level of indirection for versioning, server backend mocking in development ASPNET WebAPI Considerations ASPNET WebAPI implements a lot (but not all) RESTful API design considerations as part of its infrastructure and via its coding convention. Overview When developing an API there are basically three main steps: 1. Plan out your URIs 2. Setup return values and response codes for your URIs 3. Implement a framework for your API.   Design · Leverage Models MVC folder · Repositories – support IoC for tests, abstraction · Create DTO classes – a level of indirection decouples & allows swap out · Self links can be generated using the UrlHelper · Use IQueryable to support projections across the wire · Models can support restful navigation properties – ICollection<T> · async mechanism for long running ops - return a response with a ticket – the client can then poll or be pushed the final result later. · Design for testability - Test using HttpClient , JQuery ( $.getJSON , $.each) , fiddler, browser debug. Leverage IDependencyResolver – IoC wrapper for mocking · Easy debugging - IE F12 developer tools: Network tab, Request Headers tab     Routing · HTTP request method is matched to the method name. (This rule applies only to GET, POST, PUT, and DELETE requests.) · {id}, if present, is matched to a method parameter named id. · Query parameters are matched to parameter names when possible · Done in config via Routes.MapHttpRoute – similar to MVC routing · Can alternatively: o decorate controller action methods with HttpDelete, HttpGet, HttpHead,HttpOptions, HttpPatch, HttpPost, or HttpPut., + the ActionAttribute o use AcceptVerbsAttribute to support other HTTP verbs: e.g. PATCH, HEAD o use NonActionAttribute to prevent a method from getting invoked as an action · route table Uris can support placeholders (via curly braces{}) – these can support default values and constraints, and optional values · The framework selects the first route in the route table that matches the URI. Response customization · Response code: By default, the Web API framework sets the response status code to 200 (OK). But according to the HTTP/1.1 protocol, when a POST request results in the creation of a resource, the server should reply with status 201 (Created). Non Get methods should return HttpResponseMessage · Location: When the server creates a resource, it should include the URI of the new resource in the Location header of the response. public HttpResponseMessage PostProduct(Product item) {     item = repository.Add(item);     var response = Request.CreateResponse<Product>(HttpStatusCode.Created, item);     string uri = Url.Link("DefaultApi", new { id = item.Id });     response.Headers.Location = new Uri(uri);     return response; } Validation · Decorate Models / DTOs with System.ComponentModel.DataAnnotations properties RequiredAttribute, RangeAttribute. · Check payloads using ModelState.IsValid · Under posting – leave out values in JSON payload à JSON formatter assigns a default value. Use with RequiredAttribute · Over-posting - if model has RO properties à use DTO instead of model · Can hook into pipeline by deriving from ActionFilterAttribute & overriding OnActionExecuting Config · Done in App_Start folder > WebApiConfig.cs – static Register method: HttpConfiguration param: The HttpConfiguration object contains the following members. Member Description DependencyResolver Enables dependency injection for controllers. Filters Action filters – e.g. exception filters. Formatters Media-type formatters. by default contains JsonFormatter, XmlFormatter IncludeErrorDetailPolicy Specifies whether the server should include error details, such as exception messages and stack traces, in HTTP response messages. Initializer A function that performs final initialization of the HttpConfiguration. MessageHandlers HTTP message handlers - plug into pipeline ParameterBindingRules A collection of rules for binding parameters on controller actions. Properties A generic property bag. Routes The collection of routes. Services The collection of services. · Configure JsonFormatter for circular references to support links: PreserveReferencesHandling.Objects Documentation generation · create a help page for a web API, by using the ApiExplorer class. · The ApiExplorer class provides descriptive information about the APIs exposed by a web API as an ApiDescription collection · create the help page as an MVC view public ILookup<string, ApiDescription> GetApis()         {             return _explorer.ApiDescriptions.ToLookup(                 api => api.ActionDescriptor.ControllerDescriptor.ControllerName); · provide documentation for your APIs by implementing the IDocumentationProvider interface. Documentation strings can come from any source that you like – e.g. extract XML comments or define custom attributes to apply to the controller [ApiDoc("Gets a product by ID.")] [ApiParameterDoc("id", "The ID of the product.")] public HttpResponseMessage Get(int id) · GlobalConfiguration.Configuration.Services – add the documentation Provider · To hide an API from the ApiExplorer, add the ApiExplorerSettingsAttribute Plugging into the Message Handler pipeline · Plug into request / response pipeline – derive from DelegatingHandler and override theSendAsync method – e.g. for logging error codes, adding a custom response header · Can be applied globally or to a specific route Exception Handling · Throw HttpResponseException on method failures – specify HttpStatusCode enum value – examine this enum, as its values map well to typical op problems · Exception filters – derive from ExceptionFilterAttribute & override OnException. Apply on Controller or action methods, or add to global HttpConfiguration.Filters collection · HttpError object provides a consistent way to return error information in the HttpResponseException response body. · For model validation, you can pass the model state to CreateErrorResponse, to include the validation errors in the response public HttpResponseMessage PostProduct(Product item) {     if (!ModelState.IsValid)     {         return Request.CreateErrorResponse(HttpStatusCode.BadRequest, ModelState); Cookie Management · Cookie header in request and Set-Cookie headers in a response - Collection of CookieState objects · Specify Expiry, max-age resp.Headers.AddCookies(new CookieHeaderValue[] { cookie }); Internet Media Types, formatters and serialization · Defaults to application/json · Request Accept header and response Content-Type header · determines how Web API serializes and deserializes the HTTP message body. There is built-in support for XML, JSON, and form-urlencoded data · customizable formatters can be inserted into the pipeline · POCO serialization is opt out via JsonIgnoreAttribute, or use DataMemberAttribute for optin · JSON serializer leverages NewtonSoft Json.NET · loosely structured JSON objects are serialzed as JObject which derives from Dynamic · to handle circular references in json: json.SerializerSettings.PreserveReferencesHandling =    PreserveReferencesHandling.All à {"$ref":"1"}. · To preserve object references in XML [DataContract(IsReference=true)] · Content negotiation Accept: Which media types are acceptable for the response, such as “application/json,” “application/xml,” or a custom media type such as "application/vnd.example+xml" Accept-Charset: Which character sets are acceptable, such as UTF-8 or ISO 8859-1. Accept-Encoding: Which content encodings are acceptable, such as gzip. Accept-Language: The preferred natural language, such as “en-us”. o Web API uses the Accept and Accept-Charset headers. (At this time, there is no built-in support for Accept-Encoding or Accept-Language.) · Controller methods can take JSON representations of DTOs as params – auto-deserialization · Typical JQuery GET request: function find() {     var id = $('#prodId').val();     $.getJSON("api/products/" + id,         function (data) {             var str = data.Name + ': $' + data.Price;             $('#product').text(str);         })     .fail(         function (jqXHR, textStatus, err) {             $('#product').text('Error: ' + err);         }); }            · Typical GET response: HTTP/1.1 200 OK Server: ASP.NET Development Server/10.0.0.0 Date: Mon, 18 Jun 2012 04:30:33 GMT X-AspNet-Version: 4.0.30319 Cache-Control: no-cache Pragma: no-cache Expires: -1 Content-Type: application/json; charset=utf-8 Content-Length: 175 Connection: Close [{"Id":1,"Name":"TomatoSoup","Price":1.39,"ActualCost":0.99},{"Id":2,"Name":"Hammer", "Price":16.99,"ActualCost":10.00},{"Id":3,"Name":"Yo yo","Price":6.99,"ActualCost": 2.05}] True OData support · Leverage Query Options $filter, $orderby, $top and $skip to shape the results of controller actions annotated with the [Queryable]attribute. [Queryable]  public IQueryable<Supplier> GetSuppliers()  · Query: ~/Suppliers?$filter=Name eq ‘Microsoft’ · Applies the following selection filter on the server: GetSuppliers().Where(s => s.Name == “Microsoft”)  · Will pass the result to the formatter. · true support for the OData format is still limited - no support for creates, updates, deletes, $metadata and code generation etc · vnext: ability to configure how EditLinks, SelfLinks and Ids are generated Self Hosting no dependency on ASPNET or IIS: using (var server = new HttpSelfHostServer(config)) {     server.OpenAsync().Wait(); Tracing · tracability tools, metrics – e.g. send to nagios · use your choice of tracing/logging library, whether that is ETW,NLog, log4net, or simply System.Diagnostics.Trace. · To collect traces, implement the ITraceWriter interface public class SimpleTracer : ITraceWriter {     public void Trace(HttpRequestMessage request, string category, TraceLevel level,         Action<TraceRecord> traceAction)     {         TraceRecord rec = new TraceRecord(request, category, level);         traceAction(rec);         WriteTrace(rec); · register the service with config · programmatically trace – has helper extension methods: Configuration.Services.GetTraceWriter().Info( · Performance tracing - pipeline writes traces at the beginning and end of an operation - TraceRecord class includes aTimeStamp property, Kind property set to TraceKind.Begin / End Security · Roles class methods: RoleExists, AddUserToRole · WebSecurity class methods: UserExists, .CreateUserAndAccount · Request.IsAuthenticated · Leverage HTTP 401 (Unauthorized) response · [AuthorizeAttribute(Roles="Administrator")] – can be applied to Controller or its action methods · See section in WebApi document on "Claim-based-security for ASP.NET Web APIs using DotNetOpenAuth" – adapt this to STS.--> Web API Host exposes secured Web APIs which can only be accessed by presenting a valid token issued by the trusted issuer. http://zamd.net/2012/05/04/claim-based-security-for-asp-net-web-apis-using-dotnetopenauth/ · Use MVC membership provider infrastructure and add a DelegatingHandler child class to the WebAPI pipeline - http://stackoverflow.com/questions/11535075/asp-net-mvc-4-web-api-authentication-with-membership-provider - this will perform the login actions · Then use AuthorizeAttribute on controllers and methods for role mapping- http://sixgun.wordpress.com/2012/02/29/asp-net-web-api-basic-authentication/ · Alternate option here is to rely on MVC App : http://forums.asp.net/t/1831767.aspx/1

    Read the article

  • SecurityException when accessing (ejb2-) session bean via local interface in JBoss 5

    - by sme
    I have the following problem with an EJB 2 SessionBean when deploying in JBoss 5: The SessionBean (called LVSKeepAliveDispatcher) requires a specific user role (called "LVSUser"), specified by <method-permission > <description></description> <role-name>LVSUser</role-name> <method > <description></description> <ejb-name>LVSKeepAliveDispatcher</ejb-name> <method-name>*</method-name> </method> </method-permission> in ejb-jar.xml. I now want to access this SessionBean from a Service (i.e. a class implementing the org.jboss.varia.scheduler.Schedulable interface that is then registered as a service) running inside the same JBoss instance. This is my jboss-service.xml: <server> <mbean code="org.jboss.varia.scheduler.Scheduler" name="lvs:service=TranslationService"> <attribute name="StartAtStartup">true</attribute> <attribute name="SchedulableClass">de.repower.lvs.server.service.translation.TranslationService</attribute> <attribute name="SchedulableArguments"></attribute> <attribute name="SchedulableArgumentTypes"></attribute> <attribute name="InitialStartDate">NOW</attribute> <attribute name="SchedulePeriod">60000</attribute> <attribute name="InitialRepetitions">1</attribute> <attribute name="TimerName">jboss:service=Timer,name=TranslationServiceTimer</attribute> <depends><mbean code="javax.management.timer.Timer" name="jboss:service=Timer,name=TranslationServiceTimer"/></depends> <depends>jboss.j2ee:service=EJB,jndiName=de/repower/lvs/i18n/sessionbeans/LVSTranslation</depends> </mbean> As the service is deployed in the same vm as the session bean I want to call the session bean via the local interface, but I get a SecurityException when I try to create an instance. When instead I do a lookup of the RemoteInterface it works. This is the code inside the perform method of my service class: public void perform(Date now, long remainingRepetitions) { try { final UsernamePasswordHandler handler = new UsernamePasswordHandler(USERNAME, PASSWORD); final LoginContext lc = new LoginContext("client-login", handler); lc.login(); // Trying to instantiate an LVSKeepAliveDispatcher via remote interface // This part works LVSKeepAliveDispatcher localvHome = LVSKeepAliveDispatcherUtil.getHome().create(); LOGGER.info("Successfully instantiated an LVSKeepAliveDispatcher " + localvHome.toString()); // Trying to instantiate an LVSKeepAliveDispatcherLocal via local interface LVSKeepAliveDispatcherLocal localvLocalHome = LVSKeepAliveDispatcherUtil.getLocalHome().create(); // this code is unforunately never reached LOGGER.info("Successfully instantiated an LVSKeepAliveDispatcherLocal " + localvLocalHome.toString()); lc.logout(); } catch (final Exception ex) { LOGGER.error("Error: ", ex); } } Exception: 2009-02-17 10:38:02,266 INFO [lvsi18n] (Timer-2) Successfully instantiated an LVSKeepAliveDispatcher de/repower/lvs/server/service/alive/sessionbeans/LVSKeepAliveDispatcher:Stateless 2009-02-17 10:38:02,297 ERROR [org.jboss.ejb.plugins.SecurityInterceptor] (Timer-2) Error in Security Interceptor java.lang.SecurityException: Authentication exception, principal=internalSystemUser at org.jboss.ejb.plugins.SecurityInterceptor.checkSecurityContext(SecurityInterceptor.java:321) at org.jboss.ejb.plugins.SecurityInterceptor.process(SecurityInterceptor.java:243) at org.jboss.ejb.plugins.SecurityInterceptor.invokeHome(SecurityInterceptor.java:205) at org.jboss.ejb.plugins.security.PreSecurityInterceptor.process(PreSecurityInterceptor.java:136) at org.jboss.ejb.plugins.security.PreSecurityInterceptor.invokeHome(PreSecurityInterceptor.java:88) at org.jboss.ejb.plugins.LogInterceptor.invokeHome(LogInterceptor.java:132) at org.jboss.ejb.plugins.ProxyFactoryFinderInterceptor.invokeHome(ProxyFactoryFinderInterceptor.java:107) at org.jboss.ejb.SessionContainer.internalInvokeHome(SessionContainer.java:639) at org.jboss.ejb.Container.invoke(Container.java:1046) at org.jboss.ejb.plugins.local.BaseLocalProxyFactory.invokeHome(BaseLocalProxyFactory.java:362) at org.jboss.ejb.plugins.local.LocalHomeProxy.invoke(LocalHomeProxy.java:133) at $Proxy193.create(Unknown Source) at de.repower.lvs.server.service.translation.TranslationService.perform(TranslationService.java:68) at org.jboss.varia.scheduler.Scheduler$PojoScheduler.invoke(Scheduler.java:1267) at org.jboss.varia.scheduler.Scheduler$BaseListener.handleNotification(Scheduler.java:1235) at sun.reflect.GeneratedMethodAccessor281.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.jboss.mx.notification.NotificationListenerProxy.invoke(NotificationListenerProxy.java:153) at $Proxy87.handleNotification(Unknown Source) at javax.management.NotificationBroadcasterSupport.handleNotification(NotificationBroadcasterSupport.java:257) at javax.management.NotificationBroadcasterSupport$SendNotifJob.run(NotificationBroadcasterSupport.java:322) at javax.management.NotificationBroadcasterSupport$1.execute(NotificationBroadcasterSupport.java:307) at javax.management.NotificationBroadcasterSupport.sendNotification(NotificationBroadcasterSupport.java:229) at javax.management.timer.Timer.sendNotification(Timer.java:1234) at javax.management.timer.Timer.notifyAlarmClock(Timer.java:1203) at javax.management.timer.TimerAlarmClock.run(Timer.java:1286) at java.util.TimerThread.mainLoop(Timer.java:512) at java.util.TimerThread.run(Timer.java:462) To further diagnose the error I debugged through the SecurityInterceptor and found that in the first case (successful creating an instance via the remote interface) the security context "lvs-security" (which I defined in login-config.xml) is being used whereas in the second case (failure when creating an instance via the local interface) the generic security context "CLIENT-LOGIN" is being used. This is the definition of the securit context "lvs-security" in login-config.xml: <application-policy name = "lvs-security"> <authentication> <login-module code = "org.jboss.security.ClientLoginModule" flag = "required"> </login-module> <login-module code = "de.repower.lvs.security.UsersRolesLoginModule" flag = "sufficient"> </login-module> <login-module code = "de.repower.lvs.security.login.LVSLoginModule" flag = "required"> <module-option name = "lvs-jboss-host">localhost</module-option> <module-option name = "lvs-jboss-jndi-port">1099</module-option> </login-module> </authentication> </application-policy> I'm now kind of stuck and hope someone can give me a hint about where to further look for the cause of the problem. This worked fine in JBoss 3.2.7. Edit: My current workaround for this problem: create a new container configuration in jboss.xml and remove the security interceptor stuff from this configuration use this newly created container configuration for all my session beans that I only use locally (i.e. via local interface).

    Read the article

  • JPA behaviour...

    - by Marcel
    Hi I have some trouble understanding a JPA behaviour. Mabye someone could give me a hint. Situation: Product entity: @Entity public class Product implements Serializable { ... @OneToMany(mappedBy="product", fetch=FetchType.EAGER) private List<ProductResource> productResources = new ArrayList<ProductResource>(); .... public List<ProductResource> getProductResources() { return productResources; } public boolean equals(Object obj) { if (obj == this) return true; if (obj == null) return false; if (!(obj instanceof Product)) return false; Product p = (Product) obj; return p.productId == productId; } } Resource entity: @Entity public class Resource implements Serializable { ... @OneToMany(mappedBy="resource", fetch=FetchType.EAGER) private List<ProductResource> productResources = new ArrayList<ProductResource>(); ... public void setProductResource(List<ProductResource> productResource) { this.productResources = productResource; } public List<ProductResource> getProductResources() { return productResources; } public boolean equals(Object obj) { if (obj == this) return true; if (obj == null) return false; if (!(obj instanceof Resource)) return false; Resource r = (Resource) obj; return (long)resourceId==(long)r.resourceId; } } ProductResource Entity: This is a JoinTable (association class) with additional properties (amount). It maps Product and Resources. @Entity public class ProductResource implements Serializable { ... @JoinColumn(nullable=false, updatable=false) @ManyToOne(fetch=FetchType.EAGER, cascade=CascadeType.PERSIST) private Product product; @JoinColumn(nullable=false, updatable=false) @ManyToOne(fetch=FetchType.EAGER, cascade=CascadeType.PERSIST) private Resource resource; private int amount; public void setProduct(Product product) { this.product = product; if(!product.getProductResources().contains((this))){ product.getProductResources().add(this); } } public Product getProduct() { return product; } public void setResource(Resource resource) { this.resource = resource; if(!resource.getProductResources().contains((this))){ resource.getProductResources().add(this); } } public Resource getResource() { return resource; } ... public boolean equals(Object obj) { if (obj == this) return true; if (obj == null) return false; if (!(obj instanceof ProductResource)) return false; ProductResource pr = (ProductResource) obj; return (long)pr.productResourceId == (long)productResourceId; } } This is the Session Bean (running on glassfish). @Stateless(mappedName="PersistenceManager") public class PersistenceManagerBean implements PersistenceManager { @PersistenceContext(unitName = "local_mysql") private EntityManager em; public Object create(Object entity) { em.persist(entity); return entity; } public void delete(Object entity) { em.remove(em.merge(entity)); } public Object retrieve(Class entityClass, Long id) { Object entity = em.find(entityClass, id); return entity; } public void update(Object entity) { em.merge(entity); } } I call the session Bean from a java client: public class Start { public static void main(String[] args) throws NamingException { PersistenceManager pm = (PersistenceManager) new InitialContext().lookup("java:global/BackITServer/PersistenceManagerBean"); ProductResource pr = new ProductResource(); Product p = new Product(); Resource r = new Resource(); pr.setProduct(p); pr.setResource(r); ProductResource pr_stored = (ProductResource) pm.create(pr); pm.delete(pr_stored); Product p_ret = (Product) pm.retrieve(Product.class, pr_stored.getProduct().getProductId()); // prints out true ???????????????????????????????????? System.out.println(p_ret.getProductResources().contains(pr_stored)); } } So here comes my problem. Why is the ProductResource entity still in the List productResources(see code above). The productResource tuple in the db is gone after the deletion and I do newly retrieve the Product entity. If I understood right every method call of the client happens in a new persistence context, but here i obviously get back the non-refreshed product object!? Any help is appreciated Thanks Marcel

    Read the article

  • Hibernate Lazy initialization exception problem with Gilead in GWT 2.0 integration

    - by sylsau
    Hello, I use GWT 2.0 as UI layer on my project. On server side, I use Hibernate. For example, this is 2 domains entities that I have : public class User { private Collection<Role> roles; @ManyToMany(cascade = CascadeType.ALL, fetch = FetchType.LAZY, mappedBy = "users", targetEntity = Role.class) public Collection<Role> getRoles() { return roles; } ... } public class Role { private Collection<User> users; @ManyToMany(cascade = CascadeType.ALL, fetch = FetchType.LAZY, targetEntity = User.class) public Collection<User> getUsers() { return users; } ... } On my DAO layer, I use UserDAO that extends HibernateDAOSupport from Spring. UserDAO has getAll method to return all of Users. And on my DAO service, I use UserService that uses userDAO to getAll of Users. So, when I get all of Users from UsersService, Users entities returned are detached from Hibernate session. For that reason, I don't want to use getRoles() method on Users instance that I get from my service. What I want is just to transfer my list of Users thanks to a RPC Service to be able to use others informations of Users in client side with GWT. Thus, my main problem is to be able to convert PersistentBag in Users.roles in simple List to be able to transfer via RPC the Users. To do that, I have seen that Gilead Framework could be a solution. In order to use Gilead, I have changed my domains entities. Now, they extend net.sf.gilead.pojo.gwt.LightEntity and they respect JavaBean specification. On server, I expose my services via RPC thanks to GwtRpcSpring framework (http://code.google.com/p/gwtrpc-spring/). This framework has an advice that makes easier Gilead integration. My applicationContext contains the following configuration for Gilead : <bean id="gileadAdapterAdvisor" class="org.gwtrpcspring.gilead.GileadAdapterAdvice" /> <aop:config> <aop:aspect id="gileadAdapterAspect" ref="gileadAdapterAdvisor"> <aop:pointcut id="gileadPointcut" expression="execution(public * com.google.gwt.user.client.rpc.RemoteService.*(..))" /> <aop:around method="doBasicProfiling" pointcut-ref="gileadPointcut" /> </aop:aspect> </aop:config> <bean id="proxySerializer" class="net.sf.gilead.core.serialization.GwtProxySerialization" /> <bean id="proxyStore" class="net.sf.gilead.core.store.stateless.StatelessProxyStore"> <property name="proxySerializer" ref="proxySerializer" /> </bean> <bean id="persistenceUtil" class="net.sf.gilead.core.hibernate.HibernateUtil"> <property name="sessionFactory" ref="sessionFactory" /> </bean> <bean class="net.sf.gilead.core.PersistentBeanManager"> <property name="proxyStore" ref="proxyStore" /> <property name="persistenceUtil" ref="persistenceUtil" /> </bean> The code of the the method doBasicProfiling is the following : @Around("within(com.google.gwt.user.client.rpc.RemoteService..*)") public Object doBasicProfiling(ProceedingJoinPoint pjp) throws Throwable { if (log.isDebugEnabled()) { String className = pjp.getSignature().getDeclaringTypeName(); String methodName = className .substring(className.lastIndexOf(".") + 1) + "." + pjp.getSignature().getName(); log.debug("Wrapping call to " + methodName + " for PersistentBeanManager"); } GileadHelper.parseInputParameters(pjp.getArgs(), beanManager, RemoteServiceUtil.getThreadLocalSession()); Object retVal = pjp.proceed(); retVal = GileadHelper.parseReturnValue(retVal, beanManager); return retVal; } With that configuration, when I run my application and I use my RPC Service that gets all of Users, I obtain a lazy initialization exception from Hibernate from Users.roles. I am disappointed because I thought that Gilead would let me to serialize my domain entities even if these entities contained PersistentBag. It's not one of the goals of Gilead ? So, someone would know how to configure Gilead (with GwtRpcSpring or other solution) to be able to transfer domain entities without Lazy exception ? Thanks by advance for your help. Sylvain

    Read the article

  • Why is Java EE 6 better than Spring ?

    - by arungupta
    Java EE 6 was released over 2 years ago and now there are 14 compliant application servers. In all my talks around the world, a question that is frequently asked is Why should I use Java EE 6 instead of Spring ? There are already several blogs covering that topic: Java EE wins over Spring by Bill Burke Why will I use Java EE instead of Spring in new Enterprise Java projects in 2012 ? by Kai Waehner (more discussion on TSS) Spring to Java EE migration (Part 1 and 2, 3 and 4 coming as well) by David Heffelfinger Spring to Java EE - A Migration Experience by Lincoln Baxter Migrating Spring to Java EE 6 by Bert Ertman and Paul Bakker at NLJUG Moving from Spring to Java EE 6 - The Age of Frameworks is Over at TSS Java EE vs Spring Shootout by Rohit Kelapure and Reza Rehman at JavaOne 2011 Java EE 6 and the Ewoks by Murat Yener Definite excuse to avoid Spring forever - Bert Ertman and Arun Gupta I will try to share my perspective in this blog. First of all, I'd like to start with a note: Thank you Spring framework for filling the interim gap and providing functionality that is now included in the mainstream Java EE 6 application servers. The Java EE platform has evolved over the years learning from frameworks like Spring and provides all the functionality to build an enterprise application. Thank you very much Spring framework! While Spring was revolutionary in its time and is still very popular and quite main stream in the same way Struts was circa 2003, it really is last generation's framework - some people are even calling it legacy. However my theory is "code is king". So my approach is to build/take a simple Hello World CRUD application in Java EE 6 and Spring and compare the deployable artifacts. I started looking at the official tutorial Developing a Spring Framework MVC Application Step-by-Step but it is using the older version 2.5. I wasn't able to find any updated version in the current 3.1 release. Next, I downloaded Spring Tool Suite and thought that would provide some template samples to get started. A least a quick search did not show any handy tutorials - either video or text-based. So I searched and found a link to their SVN repository at src.springframework.org/svn/spring-samples/. I tried the "mvc-basic" sample and the generated WAR file was 4.43 MB. While it was named a "basic" sample it seemed to come with 19 different libraries bundled but it was what I could find: ./WEB-INF/lib/aopalliance-1.0.jar./WEB-INF/lib/hibernate-validator-4.1.0.Final.jar./WEB-INF/lib/jcl-over-slf4j-1.6.1.jar./WEB-INF/lib/joda-time-1.6.2.jar./WEB-INF/lib/joda-time-jsptags-1.0.2.jar./WEB-INF/lib/jstl-1.2.jar./WEB-INF/lib/log4j-1.2.16.jar./WEB-INF/lib/slf4j-api-1.6.1.jar./WEB-INF/lib/slf4j-log4j12-1.6.1.jar./WEB-INF/lib/spring-aop-3.0.5.RELEASE.jar./WEB-INF/lib/spring-asm-3.0.5.RELEASE.jar./WEB-INF/lib/spring-beans-3.0.5.RELEASE.jar./WEB-INF/lib/spring-context-3.0.5.RELEASE.jar./WEB-INF/lib/spring-context-support-3.0.5.RELEASE.jar./WEB-INF/lib/spring-core-3.0.5.RELEASE.jar./WEB-INF/lib/spring-expression-3.0.5.RELEASE.jar./WEB-INF/lib/spring-web-3.0.5.RELEASE.jar./WEB-INF/lib/spring-webmvc-3.0.5.RELEASE.jar./WEB-INF/lib/validation-api-1.0.0.GA.jar And it is not even using any database! The app deployed fine on GlassFish 3.1.2 but the "@Controller Example" link did not work as it was missing the context root. With a bit of tweaking I could deploy the application and assume that the account got created because no error was displayed in the browser or server log. Next I generated the WAR for "mvc-ajax" and the 5.1 MB WAR had 20 JARs (1 removed, 2 added): ./WEB-INF/lib/aopalliance-1.0.jar./WEB-INF/lib/hibernate-validator-4.1.0.Final.jar./WEB-INF/lib/jackson-core-asl-1.6.4.jar./WEB-INF/lib/jackson-mapper-asl-1.6.4.jar./WEB-INF/lib/jcl-over-slf4j-1.6.1.jar./WEB-INF/lib/joda-time-1.6.2.jar./WEB-INF/lib/jstl-1.2.jar./WEB-INF/lib/log4j-1.2.16.jar./WEB-INF/lib/slf4j-api-1.6.1.jar./WEB-INF/lib/slf4j-log4j12-1.6.1.jar./WEB-INF/lib/spring-aop-3.0.5.RELEASE.jar./WEB-INF/lib/spring-asm-3.0.5.RELEASE.jar./WEB-INF/lib/spring-beans-3.0.5.RELEASE.jar./WEB-INF/lib/spring-context-3.0.5.RELEASE.jar./WEB-INF/lib/spring-context-support-3.0.5.RELEASE.jar./WEB-INF/lib/spring-core-3.0.5.RELEASE.jar./WEB-INF/lib/spring-expression-3.0.5.RELEASE.jar./WEB-INF/lib/spring-web-3.0.5.RELEASE.jar./WEB-INF/lib/spring-webmvc-3.0.5.RELEASE.jar./WEB-INF/lib/validation-api-1.0.0.GA.jar 2 more JARs for just doing Ajax. Anyway, deploying this application gave the following error: Caused by: java.lang.NoSuchMethodError: org.codehaus.jackson.map.SerializationConfig.<init>(Lorg/codehaus/jackson/map/ClassIntrospector;Lorg/codehaus/jackson/map/AnnotationIntrospector;Lorg/codehaus/jackson/map/introspect/VisibilityChecker;Lorg/codehaus/jackson/map/jsontype/SubtypeResolver;)V    at org.springframework.samples.mvc.ajax.json.ConversionServiceAwareObjectMapper.<init>(ConversionServiceAwareObjectMapper.java:20)    at org.springframework.samples.mvc.ajax.json.JacksonConversionServiceConfigurer.postProcessAfterInitialization(JacksonConversionServiceConfigurer.java:40)    at org.springframework.beans.factory.support.AbstractAutowireCapableBeanFactory.applyBeanPostProcessorsAfterInitialization(AbstractAutowireCapableBeanFactory.java:407) Seems like some incorrect repos in the "pom.xml". Next one is "mvc-showcase" and the 6.49 MB WAR now has 28 JARs as shown below: ./WEB-INF/lib/aopalliance-1.0.jar./WEB-INF/lib/aspectjrt-1.6.10.jar./WEB-INF/lib/commons-fileupload-1.2.2.jar./WEB-INF/lib/commons-io-2.0.1.jar./WEB-INF/lib/el-api-2.2.jar./WEB-INF/lib/hibernate-validator-4.1.0.Final.jar./WEB-INF/lib/jackson-core-asl-1.8.1.jar./WEB-INF/lib/jackson-mapper-asl-1.8.1.jar./WEB-INF/lib/javax.inject-1.jar./WEB-INF/lib/jcl-over-slf4j-1.6.1.jar./WEB-INF/lib/jdom-1.0.jar./WEB-INF/lib/joda-time-1.6.2.jar./WEB-INF/lib/jstl-api-1.2.jar./WEB-INF/lib/jstl-impl-1.2.jar./WEB-INF/lib/log4j-1.2.16.jar./WEB-INF/lib/rome-1.0.0.jar./WEB-INF/lib/slf4j-api-1.6.1.jar./WEB-INF/lib/slf4j-log4j12-1.6.1.jar./WEB-INF/lib/spring-aop-3.1.0.RELEASE.jar./WEB-INF/lib/spring-asm-3.1.0.RELEASE.jar./WEB-INF/lib/spring-beans-3.1.0.RELEASE.jar./WEB-INF/lib/spring-context-3.1.0.RELEASE.jar./WEB-INF/lib/spring-context-support-3.1.0.RELEASE.jar./WEB-INF/lib/spring-core-3.1.0.RELEASE.jar./WEB-INF/lib/spring-expression-3.1.0.RELEASE.jar./WEB-INF/lib/spring-web-3.1.0.RELEASE.jar./WEB-INF/lib/spring-webmvc-3.1.0.RELEASE.jar./WEB-INF/lib/validation-api-1.0.0.GA.jar The app at least deployed and showed results this time. But still no database! Next I tried building "jpetstore" and got the error: [ERROR] Failed to execute goal on project org.springframework.samples.jpetstore:Could not resolve dependencies for project org.springframework.samples:org.springframework.samples.jpetstore:war:1.0.0-SNAPSHOT: Failed to collect dependencies for [commons-fileupload:commons-fileupload:jar:1.2.1 (compile), org.apache.struts:com.springsource.org.apache.struts:jar:1.2.9 (compile), javax.xml.rpc:com.springsource.javax.xml.rpc:jar:1.1.0 (compile), org.apache.commons:com.springsource.org.apache.commons.dbcp:jar:1.2.2.osgi (compile), commons-io:commons-io:jar:1.3.2 (compile), hsqldb:hsqldb:jar:1.8.0.7 (compile), org.apache.tiles:tiles-core:jar:2.2.0 (compile), org.apache.tiles:tiles-jsp:jar:2.2.0 (compile), org.tuckey:urlrewritefilter:jar:3.1.0 (compile), org.springframework:spring-webmvc:jar:3.0.0.BUILD-SNAPSHOT (compile), org.springframework:spring-orm:jar:3.0.0.BUILD-SNAPSHOT (compile), org.springframework:spring-context-support:jar:3.0.0.BUILD-SNAPSHOT (compile), org.springframework.webflow:spring-js:jar:2.0.7.RELEASE (compile), org.apache.ibatis:com.springsource.com.ibatis:jar:2.3.4.726 (runtime), com.caucho:com.springsource.com.caucho:jar:3.2.1 (compile), org.apache.axis:com.springsource.org.apache.axis:jar:1.4.0 (compile), javax.wsdl:com.springsource.javax.wsdl:jar:1.6.1 (compile), javax.servlet:jstl:jar:1.2 (runtime), org.aspectj:aspectjweaver:jar:1.6.5 (compile), javax.servlet:servlet-api:jar:2.5 (provided), javax.servlet.jsp:jsp-api:jar:2.1 (provided), junit:junit:jar:4.6 (test)]: Failed to read artifact descriptor for org.springframework:spring-webmvc:jar:3.0.0.BUILD-SNAPSHOT: Could not transfer artifact org.springframework:spring-webmvc:pom:3.0.0.BUILD-SNAPSHOT from/to JBoss repository (http://repository.jboss.com/maven2): Access denied to: http://repository.jboss.com/maven2/org/springframework/spring-webmvc/3.0.0.BUILD-SNAPSHOT/spring-webmvc-3.0.0.BUILD-SNAPSHOT.pom It appears the sample is broken - maybe I was pulling from the wrong repository - would be great if someone were to point me at a good target to use here. With a 50% hit on samples in this repository, I started searching through numerous blogs, most of which have either outdated information (using XML-heavy Spring 2.5), some piece of configuration (which is a typical "feature" of Spring) is missing, or too much complexity in the sample. I finally found this blog that worked like a charm. This blog creates a trivial Spring MVC 3 application using Hibernate and MySQL. This application performs CRUD operations on a single table in a database using typical Spring technologies.  I downloaded the sample code from the blog, deployed it on GlassFish 3.1.2 and could CRUD the "person" entity. The source code for this application can be downloaded here. More details on the application statistics below. And then I built a similar CRUD application in Java EE 6 using NetBeans wizards in a couple of minutes. The source code for the application can be downloaded here and the WAR here. The Spring Source Tool Suite may also offer similar wizard-driven capabilities but this blog focus primarily on comparing the runtimes. The lack of STS tutorials was slightly disappointing as well. NetBeans however has tons of text-based and video tutorials and tons of material even by the community. One more bit on the download size of tools bundle ... NetBeans 7.1.1 "All" is 211 MB (which includes GlassFish and Tomcat) Spring Tool Suite  2.9.0 is 347 MB (~ 65% bigger) This blog is not about the tooling comparison so back to the Java EE 6 version of the application .... In order to run the Java EE version on GlassFish, copy the MySQL Connector/J to glassfish3/glassfish/domains/domain1/lib/ext directory and create a JDBC connection pool and JDBC resource as: ./bin/asadmin create-jdbc-connection-pool --datasourceclassname \\ com.mysql.jdbc.jdbc2.optional.MysqlDataSource --restype \\ javax.sql.DataSource --property \\ portNumber=3306:user=mysql:password=mysql:databaseName=mydatabase \\ myConnectionPool ./bin/asadmin create-jdbc-resource --connectionpoolid myConnectionPool jdbc/myDataSource I generated WARs for the two projects and the table below highlights some differences between them: Java EE 6 Spring WAR File Size 0.021030 MB 10.87 MB (~516x) Number of files 20 53 (> 2.5x) Bundled libraries 0 36 Total size of libraries 0 12.1 MB XML files 3 5 LoC in XML files 50 (11 + 15 + 24) 129 (27 + 46 + 16 + 11 + 19) (~ 2.5x) Total .properties files 1 Bundle.properties 2 spring.properties, log4j.properties Cold Deploy 5,339 ms 11,724 ms Second Deploy 481 ms 6,261 ms Third Deploy 528 ms 5,484 ms Fourth Deploy 484 ms 5,576 ms Runtime memory ~73 MB ~101 MB Some points worth highlighting from the table ... 516x WAR file, 10x deployment time - With 12.1 MB of libraries (for a very basic application) bundled in your application, the WAR file size and the deployment time will naturally go higher. The WAR file for Spring-based application is 516x bigger and the deployment time is double during the first deployment and ~ 10x during subsequent deployments. The Java EE 6 application is fully portable and will run on any Java EE 6 compliant application server. 36 libraries in the WAR - There are 14 Java EE 6 compliant application servers today. Each of those servers provide all the functionality like transactions, dependency injection, security, persistence, etc typically required of an enterprise or web application. There is no need to bundle 36 libraries worth 12.1 MB for a trivial CRUD application. These 14 compliant application servers provide all the functionality baked in. Now you can also deploy these libraries in the container but then you don't get the "portability" offered by Spring in that case. Does your typical Spring deployment actually do that ? 3x LoC in XML - The number of XML files is about 1.6x and the LoC is ~ 2.5x. So much XML seems circa 2003 when the Java language had no annotations. The XML files can be further reduced, e.g. faces-config.xml can be replaced without providing i18n, but I just want to compare stock applications. Memory usage - Both the applications were deployed on default GlassFish 3.1.2 installation and any additional memory consumed as part of deployment/access was attributed to the application. This is by no means scientific but at least provides an initial ballpark. This area definitely needs more investigation. Another table that compares typical Java EE 6 compliant application servers and the custom-stack created for a Spring application ... Java EE 6 Spring Web Container ? 53 MB (tcServer 2.6.3 Developer Edition) Security ? 12 MB (Spring Security 3.1.0) Persistence ? 6.3 MB (Hibernate 4.1.0, required) Dependency Injection ? 5.3 MB (Framework) Web Services ? 796 KB (Spring WS 2.0.4) Messaging ? 3.4 MB (RabbitMQ Server 2.7.1) 936 KB (Java client 936) OSGi ? 1.3 MB (Spring OSGi 1.2.1) GlassFish and WebLogic (starting at 33 MB) 83.3 MB There are differentiating factors on both the stacks. But most of the functionality like security, persistence, and dependency injection is baked in a Java EE 6 compliant application server but needs to be individually managed and patched for a Spring application. This very quickly leads to a "stack explosion". The Java EE 6 servers are tested extensively on a variety of platforms in different combinations whereas a Spring application developer is responsible for testing with different JDKs, Operating Systems, Versions, Patches, etc. Oracle has both the leading OSS lightweight server with GlassFish and the leading enterprise Java server with WebLogic Server, both Java EE 6 and both with lightweight deployment options. The Web Container offered as part of a Java EE 6 application server not only deploys your enterprise Java applications but also provide operational management, diagnostics, and mission-critical capabilities required by your applications. The Java EE 6 platform also introduced the Web Profile which is a subset of the specifications from the entire platform. It is targeted at developers of modern web applications offering a reasonably complete stack, composed of standard APIs, and is capable out-of-the-box of addressing the needs of a large class of Web applications. As your applications grow, the stack can grow to the full Java EE 6 platform. The GlassFish Server Web Profile starting at 33MB (smaller than just the non-standard tcServer) provides most of the functionality typically required by a web application. WebLogic provides battle-tested functionality for a high throughput, low latency, and enterprise grade web application. No individual managing or patching, all tested and commercially supported for you! Note that VMWare does have a server, tcServer, but it is non-standard and not even certified to the level of the standard Web Profile most customers expect these days. Customers who choose this risk proprietary lock-in since VMWare does not seem to want to formally certify with either Java EE 6 Enterprise Platform or with Java EE 6 Web Profile but of course it would be great if they were to join the community and help their customers reduce the risk of deploying on VMWare software. Some more points to help you decide choose between Java EE 6 and Spring ... Freedom to choose container - There are 14 Java EE 6 compliant application servers today, with a variety of open source and commercial offerings. A Java EE 6 application can be deployed on any of those containers. So if you deployed your application on GlassFish today and would like to scale up with your demands then you can deploy the same application to WebLogic. And because of the portability of a Java EE 6 application, you can even take it a different vendor altogether. Spring requires a runtime which could be any of these app servers as well. But why use Spring when all the required functionality is already baked into the application server itself ? Spring also has a different definition of portability where they claim to bundle all the libraries in the WAR file and move to any application server. But we saw earlier how bloated that archive could be. The equivalent features in Spring runtime offerings (mainly tcServer) are not all open source, not as mature, and often require manual assembly.  Vendor choice - The Java EE 6 platform is created using the Java Community Process where all the big players like Oracle, IBM, RedHat, and Apache are conritbuting to make the platform successful. Each application server provides the basic Java EE 6 platform compliance and has its own competitive offerings. This allows you to choose an application server for deploying your Java EE 6 applications. If you are not happy with the support or feature of one vendor then you can move your application to a different vendor because of the portability promise offered by the platform. Spring is a set of products from a single company, one price book, one support organization, one sustaining organization, one sales organization, etc. If any of those cause a customer headache, where do you go ? Java EE, backed by multiple vendors, is a safer bet for those that are risk averse. Production support - With Spring, typically you need to get support from two vendors - VMWare and the container provider. With Java EE 6, all of this is typically provided by one vendor. For example, Oracle offers commercial support from systems, operating systems, JDK, application server, and applications on top of them. VMWare certainly offers complete production support but do you really want to put all your eggs in one basket ? Do you really use tcServer ? ;-) Maintainability - With Spring, you are likely building your own distribution with multiple JAR files, integrating, patching, versioning, etc of all those components. Spring's claim is that multiple JAR files allow you to go à la carte and pick the latest versions of different components. But who is responsible for testing whether all these versions work together ? Yep, you got it, its YOU! If something does not work, who patches and maintains the JARs ? Of course, you! Commercial support for such a configuration ? On your own! The Java EE application servers manage all of this for you and provide a well-tested and commercially supported bundle. While it is always good to realize that there is something new and improved that updates and replaces older frameworks like Spring, the good news is not only does a Java EE 6 container offer what is described here, most also will let you deploy and run your Spring applications on them while you go through an upgrade to a more modern architecture. End result, you get the best of both worlds - keeping your legacy investment but moving to a more agile, lightweight world of Java EE 6. A message to the Spring lovers ... The complexity in J2EE 1.2, 1.3, and 1.4 led to the genesis of Spring but that was in 2004. This is 2012 and the name has changed to "Java EE 6" :-) There are tons of improvements in the Java EE platform to make it easy-to-use and powerful. Some examples: Adding @Stateless on a POJO makes it an EJB EJBs can be packaged in a WAR with no special packaging or deployment descriptors "web.xml" and "faces-config.xml" are optional in most of the common cases Typesafe dependency injection is now part of the Java EE platform Add @Path on a POJO allows you to publish it as a RESTful resource EJBs can be used as backing beans for Facelets-driven JSF pages providing full MVC Java EE 6 WARs are known to be kilobytes in size and deployed in milliseconds Tons of other simplifications in the platform and application servers So if you moved away from J2EE to Spring many years ago and have not looked at Java EE 6 (which has been out since Dec 2009) then you should definitely try it out. Just be at least aware of what other alternatives are available instead of restricting yourself to one stack. Here are some workshops and screencasts worth trying: screencast #37 shows how to build an end-to-end application using NetBeans screencast #36 builds the same application using Eclipse javaee-lab-feb2012.pdf is a 3-4 hours self-paced hands-on workshop that guides you to build a comprehensive Java EE 6 application using NetBeans Each city generally has a "spring cleanup" program every year. It allows you to clean up the mess from your house. For your software projects, you don't need to wait for an annual event, just get started and reduce the technical debt now! Move away from your legacy Spring-based applications to a lighter and more modern approach of building enterprise Java applications using Java EE 6. Watch this beautiful presentation that explains how to migrate from Spring -> Java EE 6: List of files in the Java EE 6 project: ./index.xhtml./META-INF./person./person/Create.xhtml./person/Edit.xhtml./person/List.xhtml./person/View.xhtml./resources./resources/css./resources/css/jsfcrud.css./template.xhtml./WEB-INF./WEB-INF/classes./WEB-INF/classes/Bundle.properties./WEB-INF/classes/META-INF./WEB-INF/classes/META-INF/persistence.xml./WEB-INF/classes/org./WEB-INF/classes/org/javaee./WEB-INF/classes/org/javaee/javaeemysql./WEB-INF/classes/org/javaee/javaeemysql/AbstractFacade.class./WEB-INF/classes/org/javaee/javaeemysql/Person.class./WEB-INF/classes/org/javaee/javaeemysql/Person_.class./WEB-INF/classes/org/javaee/javaeemysql/PersonController$1.class./WEB-INF/classes/org/javaee/javaeemysql/PersonController$PersonControllerConverter.class./WEB-INF/classes/org/javaee/javaeemysql/PersonController.class./WEB-INF/classes/org/javaee/javaeemysql/PersonFacade.class./WEB-INF/classes/org/javaee/javaeemysql/util./WEB-INF/classes/org/javaee/javaeemysql/util/JsfUtil.class./WEB-INF/classes/org/javaee/javaeemysql/util/PaginationHelper.class./WEB-INF/faces-config.xml./WEB-INF/web.xml List of files in the Spring 3.x project: ./META-INF ./META-INF/MANIFEST.MF./WEB-INF./WEB-INF/applicationContext.xml./WEB-INF/classes./WEB-INF/classes/log4j.properties./WEB-INF/classes/org./WEB-INF/classes/org/krams ./WEB-INF/classes/org/krams/tutorial ./WEB-INF/classes/org/krams/tutorial/controller ./WEB-INF/classes/org/krams/tutorial/controller/MainController.class ./WEB-INF/classes/org/krams/tutorial/domain ./WEB-INF/classes/org/krams/tutorial/domain/Person.class ./WEB-INF/classes/org/krams/tutorial/service ./WEB-INF/classes/org/krams/tutorial/service/PersonService.class ./WEB-INF/hibernate-context.xml ./WEB-INF/hibernate.cfg.xml ./WEB-INF/jsp ./WEB-INF/jsp/addedpage.jsp ./WEB-INF/jsp/addpage.jsp ./WEB-INF/jsp/deletedpage.jsp ./WEB-INF/jsp/editedpage.jsp ./WEB-INF/jsp/editpage.jsp ./WEB-INF/jsp/personspage.jsp ./WEB-INF/lib ./WEB-INF/lib/antlr-2.7.6.jar ./WEB-INF/lib/aopalliance-1.0.jar ./WEB-INF/lib/c3p0-0.9.1.2.jar ./WEB-INF/lib/cglib-nodep-2.2.jar ./WEB-INF/lib/commons-beanutils-1.8.3.jar ./WEB-INF/lib/commons-collections-3.2.1.jar ./WEB-INF/lib/commons-digester-2.1.jar ./WEB-INF/lib/commons-logging-1.1.1.jar ./WEB-INF/lib/dom4j-1.6.1.jar ./WEB-INF/lib/ejb3-persistence-1.0.2.GA.jar ./WEB-INF/lib/hibernate-annotations-3.4.0.GA.jar ./WEB-INF/lib/hibernate-commons-annotations-3.1.0.GA.jar ./WEB-INF/lib/hibernate-core-3.3.2.GA.jar ./WEB-INF/lib/javassist-3.7.ga.jar ./WEB-INF/lib/jstl-1.1.2.jar ./WEB-INF/lib/jta-1.1.jar ./WEB-INF/lib/junit-4.8.1.jar ./WEB-INF/lib/log4j-1.2.14.jar ./WEB-INF/lib/mysql-connector-java-5.1.14.jar ./WEB-INF/lib/persistence-api-1.0.jar ./WEB-INF/lib/slf4j-api-1.6.1.jar ./WEB-INF/lib/slf4j-log4j12-1.6.1.jar ./WEB-INF/lib/spring-aop-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-asm-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-beans-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-context-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-context-support-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-core-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-expression-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-jdbc-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-orm-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-tx-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-web-3.0.5.RELEASE.jar ./WEB-INF/lib/spring-webmvc-3.0.5.RELEASE.jar ./WEB-INF/lib/standard-1.1.2.jar ./WEB-INF/lib/xml-apis-1.0.b2.jar ./WEB-INF/spring-servlet.xml ./WEB-INF/spring.properties ./WEB-INF/web.xml So, are you excited about Java EE 6 ? Want to get started now ? Here are some resources: Java EE 6 SDK (including runtime, samples, tutorials etc) GlassFish Server Open Source Edition 3.1.2 (Community) Oracle GlassFish Server 3.1.2 (Commercial) Java EE 6 using WebLogic 12c and NetBeans (Video) Java EE 6 with NetBeans and GlassFish (Video) Java EE with Eclipse and GlassFish (Video)

    Read the article

  • Setting up a local AI server - easy with Solaris 11

    - by Stefan Hinker
    Many things are new in Solaris 11, Autoinstall is one of them.  If, like me, you've known Jumpstart for the last 2 centuries or so, you'll have to start from scratch.  Well, almost, as the concepts are similar, and it's not all that difficult.  Just new. I wanted to have an AI server that I could use for demo purposes, on the train if need be.  That answers the question of hardware requirements: portable.  But let's start at the beginning. First, you need an OS image, of course.  In the new world of Solaris 11, it is now called a repository.  The original can be downloaded from the Solaris 11 page at Oracle.   What you want is the "Oracle Solaris 11 11/11 Repository Image", which comes in two parts that can be combined using cat.  MD5 checksums for these (and all other downloads from that page) are available closer to the top of the page. With that, building the repository is quick and simple: # zfs create -o mountpoint=/export/repo rpool/ai/repo # zfs create rpool/ai/repo/s11 # mount -o ro -F hsfs /tmp/sol-11-1111-repo-full.iso /mnt # rsync -aP /mnt/repo /export/repo/s11 # umount /mnt # pkgrepo rebuild -s /export/repo/sol11/repo # zfs snapshot rpool/ai/repo/sol11@fcs # pkgrepo info -s /export/repo/sol11/repo PUBLISHER PACKAGES STATUS UPDATED solaris 4292 online 2012-03-12T20:47:15.378639Z That's all there's to it.  Let's make a snapshot, just to be on the safe side.  You never know when one will come in handy.  To use this repository, you could just add it as a file-based publisher: # pkg set-publisher -g file:///export/repo/sol11/repo solaris In case I'd want to access this repository through a (virtual) network, i'll now quickly activate the repository-service: # svccfg -s application/pkg/server \ setprop pkg/inst_root=/export/repo/sol11/repo # svccfg -s application/pkg/server setprop pkg/readonly=true # svcadm refresh application/pkg/server # svcadm enable application/pkg/server That's all you need - now point your browser to http://localhost/ to view your beautiful repository-server. Step 1 is done.  All of this, by the way, is nicely documented in the README file that's contained in the repository image. Of course, we already have updates to the original release.  You can find them in MOS in the Oracle Solaris 11 Support Repository Updates (SRU) Index.  You can simply add these to your existing repository or create separate repositories for each SRU.  The individual SRUs are self-sufficient and incremental - SRU4 includes all updates from SRU2 and SRU3.  With ZFS, you can also get both: A full repository with all updates and at the same time incremental ones up to each of the updates: # mount -o ro -F hsfs /tmp/sol-11-1111-sru4-05-incr-repo.iso /mnt # pkgrecv -s /mnt/repo -d /export/repo/sol11/repo '*' # umount /mnt # pkgrepo rebuild -s /export/repo/sol11/repo # zfs snapshot rpool/ai/repo/sol11@sru4 # zfs set snapdir=visible rpool/ai/repo/sol11 # svcadm restart svc:/application/pkg/server:default The normal repository is now updated to SRU4.  Thanks to the ZFS snapshots, there is also a valid repository of Solaris 11 11/11 without the update located at /export/repo/sol11/.zfs/snapshot/fcs . If you like, you can also create another repository service for each update, running on a separate port. But now lets continue with the AI server.  Just a little bit of reading in the dokumentation makes it clear that we will need to run a DHCP server for this.  Since I already have one active (for my SunRay installation) and since it's a good idea to have these kinds of services separate anyway, I decided to create this in a Zone.  So, let's create one first: # zfs create -o mountpoint=/export/install rpool/ai/install # zfs create -o mountpoint=/zones rpool/zones # zonecfg -z ai-server zonecfg:ai-server> create create: Using system default template 'SYSdefault' zonecfg:ai-server> set zonepath=/zones/ai-server zonecfg:ai-server> add dataset zonecfg:ai-server:dataset> set name=rpool/ai/install zonecfg:ai-server:dataset> set alias=install zonecfg:ai-server:dataset> end zonecfg:ai-server> commit zonecfg:ai-server> exit # zoneadm -z ai-server install # zoneadm -z ai-server boot ; zlogin -C ai-server Give it a hostname and IP address at first boot, and there's the Zone.  For a publisher for Solaris packages, it will be bound to the "System Publisher" from the Global Zone.  The /export/install filesystem, of course, is intended to be used by the AI server.  Let's configure it now: #zlogin ai-server root@ai-server:~# pkg install install/installadm root@ai-server:~# installadm create-service -n x86-fcs -a i386 \ -s pkg://solaris/install-image/[email protected],5.11-0.175.0.0.0.2.1482 \ -d /export/install/fcs -i 192.168.2.20 -c 3 With that, the core AI server is already done.  What happened here?  First, I installed the AI server software.  IPS makes that nice and easy.  If necessary, it'll also pull in the required DHCP-Server and anything else that might be missing.  Watch out for that DHCP server software.  In Solaris 11, there are two different versions.  There's the one you might know from Solaris 10 and earlier, and then there's a new one from ISC.  The latter is the one we need for AI.  The SMF service names of both are very similar.  The "old" one is "svc:/network/dhcp-server:default". The ISC-server comes with several SMF-services. We at least need "svc:/network/dhcp/server:ipv4".  The command "installadm create-service" creates the installation-service. It's called "x86-fcs", serves the "i386" architecture and gets its boot image from the repository of the system publisher, using version 5.11,5.11-0.175.0.0.0.2.1482, which is Solaris 11 11/11.  (The option "-a i386" in this example is optional, since the installserver itself runs on a x86 machine.) The boot-environment for clients is created in /export/install/fcs and the DHCP-server is configured for 3 IP-addresses starting at 192.168.2.20.  This configuration is stored in a very human readable form in /etc/inet/dhcpd4.conf.  An AI-service for SPARC systems could be created in the very same way, using "-a sparc" as the architecture option. Now we would be ready to register and install the first client.  It would be installed with the default "solaris-large-server" using the publisher "http://pkg.oracle.com/solaris/release" and would query it's configuration interactively at first boot.  This makes it very clear that an AI-server is really only a boot-server.  The true source of packets to install can be different.  Since I don't like these defaults for my demo setup, I did some extra config work for my clients. The configuration of a client is controlled by manifests and profiles.  The manifest controls which packets are installed and how the filesystems are layed out.  In that, it's very much like the old "rules.ok" file in Jumpstart.  Profiles contain additional configuration like root passwords, primary user account, IP addresses, keyboard layout etc.  Hence, profiles are very similar to the old sysid.cfg file. The easiest way to get your hands on a manifest is to ask the AI server we just created to give us it's default one.  Then modify that to our liking and give it back to the installserver to use: root@ai-server:~# mkdir -p /export/install/configs/manifests root@ai-server:~# cd /export/install/configs/manifests root@ai-server:~# installadm export -n x86-fcs -m orig_default \ -o orig_default.xml root@ai-server:~# cp orig_default.xml s11-fcs.small.local.xml root@ai-server:~# vi s11-fcs.small.local.xml root@ai-server:~# more s11-fcs.small.local.xml <!DOCTYPE auto_install SYSTEM "file:///usr/share/install/ai.dtd.1"> <auto_install> <ai_instance name="S11 Small fcs local"> <target> <logical> <zpool name="rpool" is_root="true"> <filesystem name="export" mountpoint="/export"/> <filesystem name="export/home"/> <be name="solaris"/> </zpool> </logical> </target> <software type="IPS"> <destination> <image> <!-- Specify locales to install --> <facet set="false">facet.locale.*</facet> <facet set="true">facet.locale.de</facet> <facet set="true">facet.locale.de_DE</facet> <facet set="true">facet.locale.en</facet> <facet set="true">facet.locale.en_US</facet> </image> </destination> <source> <publisher name="solaris"> <origin name="http://192.168.2.12/"/> </publisher> </source> <!-- By default the latest build available, in the specified IPS repository, is installed. If another build is required, the build number has to be appended to the 'entire' package in the following form: <name>pkg:/[email protected]#</name> --> <software_data action="install"> <name>pkg:/[email protected],5.11-0.175.0.0.0.2.0</name> <name>pkg:/group/system/solaris-small-server</name> </software_data> </software> </ai_instance> </auto_install> root@ai-server:~# installadm create-manifest -n x86-fcs -d \ -f ./s11-fcs.small.local.xml root@ai-server:~# installadm list -m -n x86-fcs Manifest Status Criteria -------- ------ -------- S11 Small fcs local Default None orig_default Inactive None The major points in this new manifest are: Install "solaris-small-server" Install a few locales less than the default.  I'm not that fluid in French or Japanese... Use my own package service as publisher, running on IP address 192.168.2.12 Install the initial release of Solaris 11:  pkg:/[email protected],5.11-0.175.0.0.0.2.0 Using a similar approach, I'll create a default profile interactively and use it as a template for a few customized building blocks, each defining a part of the overall system configuration.  The modular approach makes it easy to configure numerous clients later on: root@ai-server:~# mkdir -p /export/install/configs/profiles root@ai-server:~# cd /export/install/configs/profiles root@ai-server:~# sysconfig create-profile -o default.xml root@ai-server:~# cp default.xml general.xml; cp default.xml mars.xml root@ai-server:~# cp default.xml user.xml root@ai-server:~# vi general.xml mars.xml user.xml root@ai-server:~# more general.xml mars.xml user.xml :::::::::::::: general.xml :::::::::::::: <!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.dtd.1"> <service_bundle type="profile" name="sysconfig"> <service version="1" type="service" name="system/timezone"> <instance enabled="true" name="default"> <property_group type="application" name="timezone"> <propval type="astring" name="localtime" value="Europe/Berlin"/> </property_group> </instance> </service> <service version="1" type="service" name="system/environment"> <instance enabled="true" name="init"> <property_group type="application" name="environment"> <propval type="astring" name="LANG" value="C"/> </property_group> </instance> </service> <service version="1" type="service" name="system/keymap"> <instance enabled="true" name="default"> <property_group type="system" name="keymap"> <propval type="astring" name="layout" value="US-English"/> </property_group> </instance> </service> <service version="1" type="service" name="system/console-login"> <instance enabled="true" name="default"> <property_group type="application" name="ttymon"> <propval type="astring" name="terminal_type" value="vt100"/> </property_group> </instance> </service> <service version="1" type="service" name="network/physical"> <instance enabled="true" name="default"> <property_group type="application" name="netcfg"> <propval type="astring" name="active_ncp" value="DefaultFixed"/> </property_group> </instance> </service> <service version="1" type="service" name="system/name-service/switch"> <property_group type="application" name="config"> <propval type="astring" name="default" value="files"/> <propval type="astring" name="host" value="files dns"/> <propval type="astring" name="printer" value="user files"/> </property_group> <instance enabled="true" name="default"/> </service> <service version="1" type="service" name="system/name-service/cache"> <instance enabled="true" name="default"/> </service> <service version="1" type="service" name="network/dns/client"> <property_group type="application" name="config"> <property type="net_address" name="nameserver"> <net_address_list> <value_node value="192.168.2.1"/> </net_address_list> </property> </property_group> <instance enabled="true" name="default"/> </service> </service_bundle> :::::::::::::: mars.xml :::::::::::::: <!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.dtd.1"> <service_bundle type="profile" name="sysconfig"> <service version="1" type="service" name="network/install"> <instance enabled="true" name="default"> <property_group type="application" name="install_ipv4_interface"> <propval type="astring" name="address_type" value="static"/> <propval type="net_address_v4" name="static_address" value="192.168.2.100/24"/> <propval type="astring" name="name" value="net0/v4"/> <propval type="net_address_v4" name="default_route" value="192.168.2.1"/> </property_group> <property_group type="application" name="install_ipv6_interface"> <propval type="astring" name="stateful" value="yes"/> <propval type="astring" name="stateless" value="yes"/> <propval type="astring" name="address_type" value="addrconf"/> <propval type="astring" name="name" value="net0/v6"/> </property_group> </instance> </service> <service version="1" type="service" name="system/identity"> <instance enabled="true" name="node"> <property_group type="application" name="config"> <propval type="astring" name="nodename" value="mars"/> </property_group> </instance> </service> </service_bundle> :::::::::::::: user.xml :::::::::::::: <!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.dtd.1"> <service_bundle type="profile" name="sysconfig"> <service version="1" type="service" name="system/config-user"> <instance enabled="true" name="default"> <property_group type="application" name="root_account"> <propval type="astring" name="login" value="root"/> <propval type="astring" name="password" value="noIWillNotTellYouMyPasswordNotEvenEncrypted"/> <propval type="astring" name="type" value="role"/> </property_group> <property_group type="application" name="user_account"> <propval type="astring" name="login" value="stefan"/> <propval type="astring" name="password" value="noIWillNotTellYouMyPasswordNotEvenEncrypted"/> <propval type="astring" name="type" value="normal"/> <propval type="astring" name="description" value="Stefan Hinker"/> <propval type="count" name="uid" value="12345"/> <propval type="count" name="gid" value="10"/> <propval type="astring" name="shell" value="/usr/bin/bash"/> <propval type="astring" name="roles" value="root"/> <propval type="astring" name="profiles" value="System Administrator"/> <propval type="astring" name="sudoers" value="ALL=(ALL) ALL"/> </property_group> </instance> </service> </service_bundle> root@ai-server:~# installadm create-profile -n x86-fcs -f general.xml root@ai-server:~# installadm create-profile -n x86-fcs -f user.xml root@ai-server:~# installadm create-profile -n x86-fcs -f mars.xml \ -c ipv4=192.168.2.100 root@ai-server:~# installadm list -p Service Name Profile ------------ ------- x86-fcs general.xml mars.xml user.xml root@ai-server:~# installadm list -n x86-fcs -p Profile Criteria ------- -------- general.xml None mars.xml ipv4 = 192.168.2.100 user.xml None Here's the idea behind these files: "general.xml" contains settings valid for all my clients.  Stuff like DNS servers, for example, which in my case will always be the same. "user.xml" only contains user definitions.  That is, a root password and a primary user.Both of these profiles will be valid for all clients (for now). "mars.xml" defines network settings for an individual client.  This profile is associated with an IP-Address.  For this to work, I'll have to tweak the DHCP-settings in the next step: root@ai-server:~# installadm create-client -e 08:00:27:AA:3D:B1 -n x86-fcs root@ai-server:~# vi /etc/inet/dhcpd4.conf root@ai-server:~# tail -5 /etc/inet/dhcpd4.conf host 080027AA3DB1 { hardware ethernet 08:00:27:AA:3D:B1; fixed-address 192.168.2.100; filename "01080027AA3DB1"; } This completes the client preparations.  I manually added the IP-Address for mars to /etc/inet/dhcpd4.conf.  This is needed for the "mars.xml" profile.  Disabling arbitrary DHCP-replies will shut up this DHCP server, making my life in a shared environment a lot more peaceful ;-)Now, I of course want this installation to be completely hands-off.  For this to work, I'll need to modify the grub boot menu for this client slightly.  You can find it in /etc/netboot.  "installadm create-client" will create a new boot menu for every client, identified by the client's MAC address.  The template for this can be found in a subdirectory with the name of the install service, /etc/netboot/x86-fcs in our case.  If you don't want to change this manually for every client, modify that template to your liking instead. root@ai-server:~# cd /etc/netboot root@ai-server:~# cp menu.lst.01080027AA3DB1 menu.lst.01080027AA3DB1.org root@ai-server:~# vi menu.lst.01080027AA3DB1 root@ai-server:~# diff menu.lst.01080027AA3DB1 menu.lst.01080027AA3DB1.org 1,2c1,2 < default=1 < timeout=10 --- > default=0 > timeout=30 root@ai-server:~# more menu.lst.01080027AA3DB1 default=1 timeout=10 min_mem64=0 title Oracle Solaris 11 11/11 Text Installer and command line kernel$ /x86-fcs/platform/i86pc/kernel/$ISADIR/unix -B install_media=htt p://$serverIP:5555//export/install/fcs,install_service=x86-fcs,install_svc_addre ss=$serverIP:5555 module$ /x86-fcs/platform/i86pc/$ISADIR/boot_archive title Oracle Solaris 11 11/11 Automated Install kernel$ /x86-fcs/platform/i86pc/kernel/$ISADIR/unix -B install=true,inst all_media=http://$serverIP:5555//export/install/fcs,install_service=x86-fcs,inst all_svc_address=$serverIP:5555,livemode=text module$ /x86-fcs/platform/i86pc/$ISADIR/boot_archive Now just boot the client off the network using PXE-boot.  For my demo purposes, that's a client from VirtualBox, of course.  That's all there's to it.  And despite the fact that this blog entry is a little longer - that wasn't that hard now, was it?

    Read the article

  • C#/.NET Little Wonders: The ConcurrentDictionary

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In this series of posts, we will discuss how the concurrent collections have been developed to help alleviate these multi-threading concerns.  Last week’s post began with a general introduction and discussed the ConcurrentStack<T> and ConcurrentQueue<T>.  Today's post discusses the ConcurrentDictionary<T> (originally I had intended to discuss ConcurrentBag this week as well, but ConcurrentDictionary had enough information to create a very full post on its own!).  Finally next week, we shall close with a discussion of the ConcurrentBag<T> and BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. Recap As you'll recall from the previous post, the original collections were object-based containers that accomplished synchronization through a Synchronized member.  While these were convenient because you didn't have to worry about writing your own synchronization logic, they were a bit too finely grained and if you needed to perform multiple operations under one lock, the automatic synchronization didn't buy much. With the advent of .NET 2.0, the original collections were succeeded by the generic collections which are fully type-safe, but eschew automatic synchronization.  This cuts both ways in that you have a lot more control as a developer over when and how fine-grained you want to synchronize, but on the other hand if you just want simple synchronization it creates more work. With .NET 4.0, we get the best of both worlds in generic collections.  A new breed of collections was born called the concurrent collections in the System.Collections.Concurrent namespace.  These amazing collections are fine-tuned to have best overall performance for situations requiring concurrent access.  They are not meant to replace the generic collections, but to simply be an alternative to creating your own locking mechanisms. Among those concurrent collections were the ConcurrentStack<T> and ConcurrentQueue<T> which provide classic LIFO and FIFO collections with a concurrent twist.  As we saw, some of the traditional methods that required calls to be made in a certain order (like checking for not IsEmpty before calling Pop()) were replaced in favor of an umbrella operation that combined both under one lock (like TryPop()). Now, let's take a look at the next in our series of concurrent collections!For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here. ConcurrentDictionary – the fully thread-safe dictionary The ConcurrentDictionary<TKey,TValue> is the thread-safe counterpart to the generic Dictionary<TKey, TValue> collection.  Obviously, both are designed for quick – O(1) – lookups of data based on a key.  If you think of algorithms where you need lightning fast lookups of data and don’t care whether the data is maintained in any particular ordering or not, the unsorted dictionaries are generally the best way to go. Note: as a side note, there are sorted implementations of IDictionary, namely SortedDictionary and SortedList which are stored as an ordered tree and a ordered list respectively.  While these are not as fast as the non-sorted dictionaries – they are O(log2 n) – they are a great combination of both speed and ordering -- and still greatly outperform a linear search. Now, once again keep in mind that if all you need to do is load a collection once and then allow multi-threaded reading you do not need any locking.  Examples of this tend to be situations where you load a lookup or translation table once at program start, then keep it in memory for read-only reference.  In such cases locking is completely non-productive. However, most of the time when we need a concurrent dictionary we are interleaving both reads and updates.  This is where the ConcurrentDictionary really shines!  It achieves its thread-safety with no common lock to improve efficiency.  It actually uses a series of locks to provide concurrent updates, and has lockless reads!  This means that the ConcurrentDictionary gets even more efficient the higher the ratio of reads-to-writes you have. ConcurrentDictionary and Dictionary differences For the most part, the ConcurrentDictionary<TKey,TValue> behaves like it’s Dictionary<TKey,TValue> counterpart with a few differences.  Some notable examples of which are: Add() does not exist in the concurrent dictionary. This means you must use TryAdd(), AddOrUpdate(), or GetOrAdd().  It also means that you can’t use a collection initializer with the concurrent dictionary. TryAdd() replaced Add() to attempt atomic, safe adds. Because Add() only succeeds if the item doesn’t already exist, we need an atomic operation to check if the item exists, and if not add it while still under an atomic lock. TryUpdate() was added to attempt atomic, safe updates. If we want to update an item, we must make sure it exists first and that the original value is what we expected it to be.  If all these are true, we can update the item under one atomic step. TryRemove() was added to attempt atomic, safe removes. To safely attempt to remove a value we need to see if the key exists first, this checks for existence and removes under an atomic lock. AddOrUpdate() was added to attempt an thread-safe “upsert”. There are many times where you want to insert into a dictionary if the key doesn’t exist, or update the value if it does.  This allows you to make a thread-safe add-or-update. GetOrAdd() was added to attempt an thread-safe query/insert. Sometimes, you want to query for whether an item exists in the cache, and if it doesn’t insert a starting value for it.  This allows you to get the value if it exists and insert if not. Count, Keys, Values properties take a snapshot of the dictionary. Accessing these properties may interfere with add and update performance and should be used with caution. ToArray() returns a static snapshot of the dictionary. That is, the dictionary is locked, and then copied to an array as a O(n) operation.  GetEnumerator() is thread-safe and efficient, but allows dirty reads. Because reads require no locking, you can safely iterate over the contents of the dictionary.  The only downside is that, depending on timing, you may get dirty reads. Dirty reads during iteration The last point on GetEnumerator() bears some explanation.  Picture a scenario in which you call GetEnumerator() (or iterate using a foreach, etc.) and then, during that iteration the dictionary gets updated.  This may not sound like a big deal, but it can lead to inconsistent results if used incorrectly.  The problem is that items you already iterated over that are updated a split second after don’t show the update, but items that you iterate over that were updated a split second before do show the update.  Thus you may get a combination of items that are “stale” because you iterated before the update, and “fresh” because they were updated after GetEnumerator() but before the iteration reached them. Let’s illustrate with an example, let’s say you load up a concurrent dictionary like this: 1: // load up a dictionary. 2: var dictionary = new ConcurrentDictionary<string, int>(); 3:  4: dictionary["A"] = 1; 5: dictionary["B"] = 2; 6: dictionary["C"] = 3; 7: dictionary["D"] = 4; 8: dictionary["E"] = 5; 9: dictionary["F"] = 6; Then you have one task (using the wonderful TPL!) to iterate using dirty reads: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); And one task to attempt updates in a separate thread (probably): 1: // attempt updates in a separate thread 2: var updateTask = new Task(() => 3: { 4: // iterates, and updates the value by one 5: foreach (var pair in dictionary) 6: { 7: dictionary[pair.Key] = pair.Value + 1; 8: } 9: }); Now that we’ve done this, we can fire up both tasks and wait for them to complete: 1: // start both tasks 2: updateTask.Start(); 3: iterationTask.Start(); 4:  5: // wait for both to complete. 6: Task.WaitAll(updateTask, iterationTask); Now, if I you didn’t know about the dirty reads, you may have expected to see the iteration before the updates (such as A:1, B:2, C:3, D:4, E:5, F:6).  However, because the reads are dirty, we will quite possibly get a combination of some updated, some original.  My own run netted this result: 1: F:6 2: E:6 3: D:5 4: C:4 5: B:3 6: A:2 Note that, of course, iteration is not in order because ConcurrentDictionary, like Dictionary, is unordered.  Also note that both E and F show the value 6.  This is because the output task reached F before the update, but the updates for the rest of the items occurred before their output (probably because console output is very slow, comparatively). If we want to always guarantee that we will get a consistent snapshot to iterate over (that is, at the point we ask for it we see precisely what is in the dictionary and no subsequent updates during iteration), we should iterate over a call to ToArray() instead: 1: // attempt iteration in a separate thread 2: var iterationTask = new Task(() => 3: { 4: // iterates using a dirty read 5: foreach (var pair in dictionary.ToArray()) 6: { 7: Console.WriteLine(pair.Key + ":" + pair.Value); 8: } 9: }); The atomic Try…() methods As you can imagine TryAdd() and TryRemove() have few surprises.  Both first check the existence of the item to determine if it can be added or removed based on whether or not the key currently exists in the dictionary: 1: // try add attempts an add and returns false if it already exists 2: if (dictionary.TryAdd("G", 7)) 3: Console.WriteLine("G did not exist, now inserted with 7"); 4: else 5: Console.WriteLine("G already existed, insert failed."); TryRemove() also has the virtue of returning the value portion of the removed entry matching the given key: 1: // attempt to remove the value, if it exists it is removed and the original is returned 2: int removedValue; 3: if (dictionary.TryRemove("C", out removedValue)) 4: Console.WriteLine("Removed C and its value was " + removedValue); 5: else 6: Console.WriteLine("C did not exist, remove failed."); Now TryUpdate() is an interesting creature.  You might think from it’s name that TryUpdate() first checks for an item’s existence, and then updates if the item exists, otherwise it returns false.  Well, note quite... It turns out when you call TryUpdate() on a concurrent dictionary, you pass it not only the new value you want it to have, but also the value you expected it to have before the update.  If the item exists in the dictionary, and it has the value you expected, it will update it to the new value atomically and return true.  If the item is not in the dictionary or does not have the value you expected, it is not modified and false is returned. 1: // attempt to update the value, if it exists and if it has the expected original value 2: if (dictionary.TryUpdate("G", 42, 7)) 3: Console.WriteLine("G existed and was 7, now it's 42."); 4: else 5: Console.WriteLine("G either didn't exist, or wasn't 7."); The composite Add methods The ConcurrentDictionary also has composite add methods that can be used to perform updates and gets, with an add if the item is not existing at the time of the update or get. The first of these, AddOrUpdate(), allows you to add a new item to the dictionary if it doesn’t exist, or update the existing item if it does.  For example, let’s say you are creating a dictionary of counts of stock ticker symbols you’ve subscribed to from a market data feed: 1: public sealed class SubscriptionManager 2: { 3: private readonly ConcurrentDictionary<string, int> _subscriptions = new ConcurrentDictionary<string, int>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public void AddSubscription(string tickerKey) 7: { 8: // add a new subscription with count of 1, or update existing count by 1 if exists 9: var resultCount = _subscriptions.AddOrUpdate(tickerKey, 1, (symbol, count) => count + 1); 10:  11: // now check the result to see if we just incremented the count, or inserted first count 12: if (resultCount == 1) 13: { 14: // subscribe to symbol... 15: } 16: } 17: } Notice the update value factory Func delegate.  If the key does not exist in the dictionary, the add value is used (in this case 1 representing the first subscription for this symbol), but if the key already exists, it passes the key and current value to the update delegate which computes the new value to be stored in the dictionary.  The return result of this operation is the value used (in our case: 1 if added, existing value + 1 if updated). Likewise, the GetOrAdd() allows you to attempt to retrieve a value from the dictionary, and if the value does not currently exist in the dictionary it will insert a value.  This can be handy in cases where perhaps you wish to cache data, and thus you would query the cache to see if the item exists, and if it doesn’t you would put the item into the cache for the first time: 1: public sealed class PriceCache 2: { 3: private readonly ConcurrentDictionary<string, double> _cache = new ConcurrentDictionary<string, double>(); 4:  5: // adds a new subscription, or increments the count of the existing one. 6: public double QueryPrice(string tickerKey) 7: { 8: // check for the price in the cache, if it doesn't exist it will call the delegate to create value. 9: return _cache.GetOrAdd(tickerKey, symbol => GetCurrentPrice(symbol)); 10: } 11:  12: private double GetCurrentPrice(string tickerKey) 13: { 14: // do code to calculate actual true price. 15: } 16: } There are other variations of these two methods which vary whether a value is provided or a factory delegate, but otherwise they work much the same. Oddities with the composite Add methods The AddOrUpdate() and GetOrAdd() methods are totally thread-safe, on this you may rely, but they are not atomic.  It is important to note that the methods that use delegates execute those delegates outside of the lock.  This was done intentionally so that a user delegate (of which the ConcurrentDictionary has no control of course) does not take too long and lock out other threads. This is not necessarily an issue, per se, but it is something you must consider in your design.  The main thing to consider is that your delegate may get called to generate an item, but that item may not be the one returned!  Consider this scenario: A calls GetOrAdd and sees that the key does not currently exist, so it calls the delegate.  Now thread B also calls GetOrAdd and also sees that the key does not currently exist, and for whatever reason in this race condition it’s delegate completes first and it adds its new value to the dictionary.  Now A is done and goes to get the lock, and now sees that the item now exists.  In this case even though it called the delegate to create the item, it will pitch it because an item arrived between the time it attempted to create one and it attempted to add it. Let’s illustrate, assume this totally contrived example program which has a dictionary of char to int.  And in this dictionary we want to store a char and it’s ordinal (that is, A = 1, B = 2, etc).  So for our value generator, we will simply increment the previous value in a thread-safe way (perhaps using Interlocked): 1: public static class Program 2: { 3: private static int _nextNumber = 0; 4:  5: // the holder of the char to ordinal 6: private static ConcurrentDictionary<char, int> _dictionary 7: = new ConcurrentDictionary<char, int>(); 8:  9: // get the next id value 10: public static int NextId 11: { 12: get { return Interlocked.Increment(ref _nextNumber); } 13: } Then, we add a method that will perform our insert: 1: public static void Inserter() 2: { 3: for (int i = 0; i < 26; i++) 4: { 5: _dictionary.GetOrAdd((char)('A' + i), key => NextId); 6: } 7: } Finally, we run our test by starting two tasks to do this work and get the results… 1: public static void Main() 2: { 3: // 3 tasks attempting to get/insert 4: var tasks = new List<Task> 5: { 6: new Task(Inserter), 7: new Task(Inserter) 8: }; 9:  10: tasks.ForEach(t => t.Start()); 11: Task.WaitAll(tasks.ToArray()); 12:  13: foreach (var pair in _dictionary.OrderBy(p => p.Key)) 14: { 15: Console.WriteLine(pair.Key + ":" + pair.Value); 16: } 17: } If you run this with only one task, you get the expected A:1, B:2, ..., Z:26.  But running this in parallel you will get something a bit more complex.  My run netted these results: 1: A:1 2: B:3 3: C:4 4: D:5 5: E:6 6: F:7 7: G:8 8: H:9 9: I:10 10: J:11 11: K:12 12: L:13 13: M:14 14: N:15 15: O:16 16: P:17 17: Q:18 18: R:19 19: S:20 20: T:21 21: U:22 22: V:23 23: W:24 24: X:25 25: Y:26 26: Z:27 Notice that B is 3?  This is most likely because both threads attempted to call GetOrAdd() at roughly the same time and both saw that B did not exist, thus they both called the generator and one thread got back 2 and the other got back 3.  However, only one of those threads can get the lock at a time for the actual insert, and thus the one that generated the 3 won and the 3 was inserted and the 2 got discarded.  This is why on these methods your factory delegates should be careful not to have any logic that would be unsafe if the value they generate will be pitched in favor of another item generated at roughly the same time.  As such, it is probably a good idea to keep those generators as stateless as possible. Summary The ConcurrentDictionary is a very efficient and thread-safe version of the Dictionary generic collection.  It has all the benefits of type-safety that it’s generic collection counterpart does, and in addition is extremely efficient especially when there are more reads than writes concurrently. Tweet Technorati Tags: C#, .NET, Concurrent Collections, Collections, Little Wonders, Black Rabbit Coder,James Michael Hare

    Read the article

  • javax.ejb.NoSuchEJBException after redeploying EJBs

    - by vetler
    Using Glassfish 3.0.1 ... If I have a web application accessing EJBs in another application remotely, and the remote application containing the EJBs is redeployed, I get a javax.ejb.NoSuchEJBException (see stacktrace below). Shouldn't this work? I can see that the EJB in question was successfully deployed, using the exact same JNDI name. Is there any other way to fix this than to restart the web application? It should be noted that in this particular example that the stacktrace is from, I'm accessing a servlet that injects the bean with CDI: public class StatusServlet extends HttpServlet { @Inject private StatusService statusService; @Override public void doGet(final HttpServletRequest req, final HttpServletResponse res) throws IOException { res.getWriter().write(statusService.getStatus()); } } The injection is done with the following producer to get the right EJB: public class StatusServiceProducer extends AbstractServiceProducer { @EJB(name = "StatusService") private StatusService service; @Produces public StatusService getService(final InjectionPoint ip) { return service; } } A producer is used to make it easier to wrap the service in a proxy, and to make it easier to change how the EJBs are looked up. The StatusService interface and implementation is as follows: @Stateless(name = "StatusService") public class StatusServiceImpl implements StatusService { private static final String OK = "OK"; public String getStatus() { // Some code return OK; } } public interface StatusService { String getStatus(); } Full stacktrace: [#|2011-01-12T10:45:28.273+0100|WARNING|glassfish3.0.1|javax.enterprise.system.container.web.com.sun.enterprise.web|_ThreadID=50;_ThreadName=http-thread-pool-8080-(1);|StandardWrapperValve[Load Balancer status servlet]: PWC1406: Servlet.service() for servlet Load Balancer status servlet threw exception javax.ejb.NoSuchEJBException at org.example.service._StatusService_Wrapper.getStatus(org/example/service/_StatusService_Wrapper.java) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at no.evote.service.cache.ServiceInvocationHandler.invoke(ServiceInvocationHandler.java:34) at $Proxy760.getStatus(Unknown Source) at no.evote.presentation.StatusServlet.doGet(StatusServlet.java:25) at javax.servlet.http.HttpServlet.service(HttpServlet.java:734) at javax.servlet.http.HttpServlet.service(HttpServlet.java:847) at org.apache.catalina.core.StandardWrapper.service(StandardWrapper.java:1523) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:343) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:215) at net.balusc.http.multipart.MultipartFilter.doFilter(MultipartFilter.java:78) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:256) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:215) at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:277) at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:188) at org.apache.catalina.core.StandardPipeline.invoke(StandardPipeline.java:641) at com.sun.enterprise.web.WebPipeline.invoke(WebPipeline.java:97) at com.sun.enterprise.web.PESessionLockingStandardPipeline.invoke(PESessionLockingStandardPipeline.java:85) at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:185) at org.apache.catalina.connector.CoyoteAdapter.doService(CoyoteAdapter.java:325) at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:226) at com.sun.enterprise.v3.services.impl.ContainerMapper.service(ContainerMapper.java:165) at com.sun.grizzly.http.ProcessorTask.invokeAdapter(ProcessorTask.java:791) at com.sun.grizzly.http.ProcessorTask.doProcess(ProcessorTask.java:693) at com.sun.grizzly.http.ProcessorTask.process(ProcessorTask.java:954) at com.sun.grizzly.http.DefaultProtocolFilter.execute(DefaultProtocolFilter.java:170) at com.sun.grizzly.DefaultProtocolChain.executeProtocolFilter(DefaultProtocolChain.java:135) at com.sun.grizzly.DefaultProtocolChain.execute(DefaultProtocolChain.java:102) at com.sun.grizzly.DefaultProtocolChain.execute(DefaultProtocolChain.java:88) at com.sun.grizzly.http.HttpProtocolChain.execute(HttpProtocolChain.java:76) at com.sun.grizzly.ProtocolChainContextTask.doCall(ProtocolChainContextTask.java:53) at com.sun.grizzly.SelectionKeyContextTask.call(SelectionKeyContextTask.java:57) at com.sun.grizzly.ContextTask.run(ContextTask.java:69) at com.sun.grizzly.util.AbstractThreadPool$Worker.doWork(AbstractThreadPool.java:330) at com.sun.grizzly.util.AbstractThreadPool$Worker.run(AbstractThreadPool.java:309) at java.lang.Thread.run(Thread.java:662) Caused by: java.rmi.NoSuchObjectException: CORBA OBJECT_NOT_EXIST 1330446338 No; nested exception is: org.omg.CORBA.OBJECT_NOT_EXIST: ----------BEGIN server-side stack trace---------- org.omg.CORBA.OBJECT_NOT_EXIST: vmcid: OMG minor code: 2 completed: No at com.sun.corba.ee.impl.logging.OMGSystemException.noObjectAdaptor(OMGSystemException.java:3457) at com.sun.corba.ee.impl.logging.OMGSystemException.noObjectAdaptor(OMGSystemException.java:3475) at com.sun.corba.ee.impl.oa.poa.POAFactory.find(POAFactory.java:222) at com.sun.corba.ee.impl.protocol.CorbaServerRequestDispatcherImpl.findObjectAdapter(CorbaServerRequestDispatcherImpl.java:450) at com.sun.corba.ee.impl.protocol.CorbaServerRequestDispatcherImpl.dispatch(CorbaServerRequestDispatcherImpl.java:209) at com.sun.corba.ee.impl.protocol.CorbaMessageMediatorImpl.handleRequestRequest(CorbaMessageMediatorImpl.java:1841) at com.sun.corba.ee.impl.protocol.SharedCDRClientRequestDispatcherImpl.marshalingComplete(SharedCDRClientRequestDispatcherImpl.java:119) at com.sun.corba.ee.impl.protocol.CorbaClientDelegateImpl.invoke(CorbaClientDelegateImpl.java:235) at com.sun.corba.ee.impl.presentation.rmi.StubInvocationHandlerImpl.privateInvoke(StubInvocationHandlerImpl.java:187) at com.sun.corba.ee.impl.presentation.rmi.StubInvocationHandlerImpl.invoke(StubInvocationHandlerImpl.java:147) at com.sun.corba.ee.impl.presentation.rmi.codegen.CodegenStubBase.invoke(CodegenStubBase.java:225) at no.evote.service.__StatusService_Remote_DynamicStub.getStatus(no/evote/service/__StatusService_Remote_DynamicStub.java) at no.evote.service._StatusService_Wrapper.getStatus(no/evote/service/_StatusService_Wrapper.java) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at no.evote.service.cache.ServiceInvocationHandler.invoke(ServiceInvocationHandler.java:34) at $Proxy760.getStatus(Unknown Source) at no.evote.presentation.StatusServlet.doGet(StatusServlet.java:25) at javax.servlet.http.HttpServlet.service(HttpServlet.java:734) at javax.servlet.http.HttpServlet.service(HttpServlet.java:847) at org.apache.catalina.core.StandardWrapper.service(StandardWrapper.java:1523) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:343) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:215) at net.balusc.http.multipart.MultipartFilter.doFilter(MultipartFilter.java:78) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:256) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:215) at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:277) at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:188) at org.apache.catalina.core.StandardPipeline.invoke(StandardPipeline.java:641) at com.sun.enterprise.web.WebPipeline.invoke(WebPipeline.java:97) at com.sun.enterprise.web.PESessionLockingStandardPipeline.invoke(PESessionLockingStandardPipeline.java:85) at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:185) at org.apache.catalina.connector.CoyoteAdapter.doService(CoyoteAdapter.java:325) at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:226) at com.sun.enterprise.v3.services.impl.ContainerMapper.service(ContainerMapper.java:165) at com.sun.grizzly.http.ProcessorTask.invokeAdapter(ProcessorTask.java:791) at com.sun.grizzly.http.ProcessorTask.doProcess(ProcessorTask.java:693) at com.sun.grizzly.http.ProcessorTask.process(ProcessorTask.java:954) at com.sun.grizzly.http.DefaultProtocolFilter.execute(DefaultProtocolFilter.java:170) at com.sun.grizzly.DefaultProtocolChain.executeProtocolFilter(DefaultProtocolChain.java:135) at com.sun.grizzly.DefaultProtocolChain.execute(DefaultProtocolChain.java:102) at com.sun.grizzly.DefaultProtocolChain.execute(DefaultProtocolChain.java:88) at com.sun.grizzly.http.HttpProtocolChain.execute(HttpProtocolChain.java:76) at com.sun.grizzly.ProtocolChainContextTask.doCall(ProtocolChainContextTask.java:53) at com.sun.grizzly.SelectionKeyContextTask.call(SelectionKeyContextTask.java:57) at com.sun.grizzly.ContextTask.run(ContextTask.java:69) at com.sun.grizzly.util.AbstractThreadPool$Worker.doWork(AbstractThreadPool.java:330) at com.sun.grizzly.util.AbstractThreadPool$Worker.run(AbstractThreadPool.java:309) at java.lang.Thread.run(Thread.java:662) Caused by: org.omg.PortableServer.POAPackage.AdapterNonExistent: IDL:omg.org/PortableServer/POA/AdapterNonExistent:1.0 at com.sun.corba.ee.impl.oa.poa.POAImpl.find_POA(POAImpl.java:1057) at com.sun.corba.ee.impl.oa.poa.POAFactory.find(POAFactory.java:218) ... 48 more ----------END server-side stack trace---------- vmcid: OMG minor code: 2 completed: No at com.sun.corba.ee.impl.javax.rmi.CORBA.Util.mapSystemException(Util.java:280) at com.sun.corba.ee.impl.presentation.rmi.StubInvocationHandlerImpl.privateInvoke(StubInvocationHandlerImpl.java:200) at com.sun.corba.ee.impl.presentation.rmi.StubInvocationHandlerImpl.invoke(StubInvocationHandlerImpl.java:147) at com.sun.corba.ee.impl.presentation.rmi.codegen.CodegenStubBase.invoke(CodegenStubBase.java:225) at no.evote.service.__StatusService_Remote_DynamicStub.getStatus(no/evote/service/__StatusService_Remote_DynamicStub.java) ... 39 more Caused by: org.omg.CORBA.OBJECT_NOT_EXIST: ----------BEGIN server-side stack trace---------- org.omg.CORBA.OBJECT_NOT_EXIST: vmcid: OMG minor code: 2 completed: No at com.sun.corba.ee.impl.logging.OMGSystemException.noObjectAdaptor(OMGSystemException.java:3457) at com.sun.corba.ee.impl.logging.OMGSystemException.noObjectAdaptor(OMGSystemException.java:3475) at com.sun.corba.ee.impl.oa.poa.POAFactory.find(POAFactory.java:222) at com.sun.corba.ee.impl.protocol.CorbaServerRequestDispatcherImpl.findObjectAdapter(CorbaServerRequestDispatcherImpl.java:450) at com.sun.corba.ee.impl.protocol.CorbaServerRequestDispatcherImpl.dispatch(CorbaServerRequestDispatcherImpl.java:209) at com.sun.corba.ee.impl.protocol.CorbaMessageMediatorImpl.handleRequestRequest(CorbaMessageMediatorImpl.java:1841) at com.sun.corba.ee.impl.protocol.SharedCDRClientRequestDispatcherImpl.marshalingComplete(SharedCDRClientRequestDispatcherImpl.java:119) at com.sun.corba.ee.impl.protocol.CorbaClientDelegateImpl.invoke(CorbaClientDelegateImpl.java:235) at com.sun.corba.ee.impl.presentation.rmi.StubInvocationHandlerImpl.privateInvoke(StubInvocationHandlerImpl.java:187) at com.sun.corba.ee.impl.presentation.rmi.StubInvocationHandlerImpl.invoke(StubInvocationHandlerImpl.java:147) at com.sun.corba.ee.impl.presentation.rmi.codegen.CodegenStubBase.invoke(CodegenStubBase.java:225) at no.evote.service.__StatusService_Remote_DynamicStub.getStatus(no/evote/service/__StatusService_Remote_DynamicStub.java) at no.evote.service._StatusService_Wrapper.getStatus(no/evote/service/_StatusService_Wrapper.java) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at no.evote.service.cache.ServiceInvocationHandler.invoke(ServiceInvocationHandler.java:34) at $Proxy760.getStatus(Unknown Source) at no.evote.presentation.StatusServlet.doGet(StatusServlet.java:25) at javax.servlet.http.HttpServlet.service(HttpServlet.java:734) at javax.servlet.http.HttpServlet.service(HttpServlet.java:847) at org.apache.catalina.core.StandardWrapper.service(StandardWrapper.java:1523) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:343) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:215) at net.balusc.http.multipart.MultipartFilter.doFilter(MultipartFilter.java:78) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:256) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:215) at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:277) at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:188) at org.apache.catalina.core.StandardPipeline.invoke(StandardPipeline.java:641) at com.sun.enterprise.web.WebPipeline.invoke(WebPipeline.java:97) at com.sun.enterprise.web.PESessionLockingStandardPipeline.invoke(PESessionLockingStandardPipeline.java:85) at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:185) at org.apache.catalina.connector.CoyoteAdapter.doService(CoyoteAdapter.java:325) at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:226) at com.sun.enterprise.v3.services.impl.ContainerMapper.service(ContainerMapper.java:165) at com.sun.grizzly.http.ProcessorTask.invokeAdapter(ProcessorTask.java:791) at com.sun.grizzly.http.ProcessorTask.doProcess(ProcessorTask.java:693) at com.sun.grizzly.http.ProcessorTask.process(ProcessorTask.java:954) at com.sun.grizzly.http.DefaultProtocolFilter.execute(DefaultProtocolFilter.java:170) at com.sun.grizzly.DefaultProtocolChain.executeProtocolFilter(DefaultProtocolChain.java:135) at com.sun.grizzly.DefaultProtocolChain.execute(DefaultProtocolChain.java:102) at com.sun.grizzly.DefaultProtocolChain.execute(DefaultProtocolChain.java:88) at com.sun.grizzly.http.HttpProtocolChain.execute(HttpProtocolChain.java:76) at com.sun.grizzly.ProtocolChainContextTask.doCall(ProtocolChainContextTask.java:53) at com.sun.grizzly.SelectionKeyContextTask.call(SelectionKeyContextTask.java:57) at com.sun.grizzly.ContextTask.run(ContextTask.java:69) at com.sun.grizzly.util.AbstractThreadPool$Worker.doWork(AbstractThreadPool.java:330) at com.sun.grizzly.util.AbstractThreadPool$Worker.run(AbstractThreadPool.java:309) at java.lang.Thread.run(Thread.java:662) Caused by: org.omg.PortableServer.POAPackage.AdapterNonExistent: IDL:omg.org/PortableServer/POA/AdapterNonExistent:1.0 at com.sun.corba.ee.impl.oa.poa.POAImpl.find_POA(POAImpl.java:1057) at com.sun.corba.ee.impl.oa.poa.POAFactory.find(POAFactory.java:218) ... 48 more ----------END server-side stack trace---------- vmcid: OMG minor code: 2 completed: No at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:39) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:27) at java.lang.reflect.Constructor.newInstance(Constructor.java:513) at com.sun.corba.ee.impl.protocol.giopmsgheaders.MessageBase.getSystemException(MessageBase.java:913) at com.sun.corba.ee.impl.protocol.giopmsgheaders.ReplyMessage_1_2.getSystemException(ReplyMessage_1_2.java:129) at com.sun.corba.ee.impl.protocol.CorbaMessageMediatorImpl.getSystemExceptionReply(CorbaMessageMediatorImpl.java:681) at com.sun.corba.ee.impl.protocol.CorbaClientRequestDispatcherImpl.processResponse(CorbaClientRequestDispatcherImpl.java:510) at com.sun.corba.ee.impl.protocol.SharedCDRClientRequestDispatcherImpl.marshalingComplete(SharedCDRClientRequestDispatcherImpl.java:153) at com.sun.corba.ee.impl.protocol.CorbaClientDelegateImpl.invoke(CorbaClientDelegateImpl.java:235) at com.sun.corba.ee.impl.presentation.rmi.StubInvocationHandlerImpl.privateInvoke(StubInvocationHandlerImpl.java:187) ... 42 more |#]

    Read the article

  • Is there a Telecommunications Reference Architecture?

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Abstract   Reference architecture provides needed architectural information that can be provided in advance to an enterprise to enable consistent architectural best practices. Enterprise Reference Architecture helps business owners to actualize their strategies, vision, objectives, and principles. It evaluates the IT systems, based on Reference Architecture goals, principles, and standards. It helps to reduce IT costs by increasing functionality, availability, scalability, etc. Telecom Reference Architecture provides customers with the flexibility to view bundled service bills online with the provision of multiple services. It provides real-time, flexible billing and charging systems, to handle complex promotions, discounts, and settlements with multiple parties. This paper attempts to describe the Reference Architecture for the Telecom Enterprises. It lays the foundation for a Telecom Reference Architecture by articulating the requirements, drivers, and pitfalls for telecom service providers. It describes generic reference architecture for telecom enterprises and moves on to explain how to achieve Enterprise Reference Architecture by using SOA.   Introduction   A Reference Architecture provides a methodology, set of practices, template, and standards based on a set of successful solutions implemented earlier. These solutions have been generalized and structured for the depiction of both a logical and a physical architecture, based on the harvesting of a set of patterns that describe observations in a number of successful implementations. It helps as a reference for the various architectures that an enterprise can implement to solve various problems. It can be used as the starting point or the point of comparisons for various departments/business entities of a company, or for the various companies for an enterprise. It provides multiple views for multiple stakeholders.   Major artifacts of the Enterprise Reference Architecture are methodologies, standards, metadata, documents, design patterns, etc.   Purpose of Reference Architecture   In most cases, architects spend a lot of time researching, investigating, defining, and re-arguing architectural decisions. It is like reinventing the wheel as their peers in other organizations or even the same organization have already spent a lot of time and effort defining their own architectural practices. This prevents an organization from learning from its own experiences and applying that knowledge for increased effectiveness.   Reference architecture provides missing architectural information that can be provided in advance to project team members to enable consistent architectural best practices.   Enterprise Reference Architecture helps an enterprise to achieve the following at the abstract level:   ·       Reference architecture is more of a communication channel to an enterprise ·       Helps the business owners to accommodate to their strategies, vision, objectives, and principles. ·       Evaluates the IT systems based on Reference Architecture Principles ·       Reduces IT spending through increasing functionality, availability, scalability, etc ·       A Real-time Integration Model helps to reduce the latency of the data updates Is used to define a single source of Information ·       Provides a clear view on how to manage information and security ·       Defines the policy around the data ownership, product boundaries, etc. ·       Helps with cost optimization across project and solution portfolios by eliminating unused or duplicate investments and assets ·       Has a shorter implementation time and cost   Once the reference architecture is in place, the set of architectural principles, standards, reference models, and best practices ensure that the aligned investments have the greatest possible likelihood of success in both the near term and the long term (TCO).     Common pitfalls for Telecom Service Providers   Telecom Reference Architecture serves as the first step towards maturity for a telecom service provider. During the course of our assignments/experiences with telecom players, we have come across the following observations – Some of these indicate a lack of maturity of the telecom service provider:   ·       In markets that are growing and not so mature, it has been observed that telcos have a significant amount of in-house or home-grown applications. In some of these markets, the growth has been so rapid that IT has been unable to cope with business demands. Telcos have shown a tendency to come up with workarounds in their IT applications so as to meet business needs. ·       Even for core functions like provisioning or mediation, some telcos have tried to manage with home-grown applications. ·       Most of the applications do not have the required scalability or maintainability to sustain growth in volumes or functionality. ·       Applications face interoperability issues with other applications in the operator's landscape. Integrating a new application or network element requires considerable effort on the part of the other applications. ·       Application boundaries are not clear, and functionality that is not in the initial scope of that application gets pushed onto it. This results in the development of the multiple, small applications without proper boundaries. ·       Usage of Legacy OSS/BSS systems, poor Integration across Multiple COTS Products and Internal Systems. Most of the Integrations are developed on ad-hoc basis and Point-to-Point Integration. ·       Redundancy of the business functions in different applications • Fragmented data across the different applications and no integrated view of the strategic data • Lot of performance Issues due to the usage of the complex integration across OSS and BSS systems   However, this is where the maturity of the telecom industry as a whole can be of help. The collaborative efforts of telcos to overcome some of these problems have resulted in bodies like the TM Forum. They have come up with frameworks for business processes, data, applications, and technology for telecom service providers. These could be a good starting point for telcos to clean up their enterprise landscape.   Industry Trends in Telecom Reference Architecture   Telecom reference architectures are evolving rapidly because telcos are facing business and IT challenges.   “The reality is that there probably is no killer application, no silver bullet that the telcos can latch onto to carry them into a 21st Century.... Instead, there are probably hundreds – perhaps thousands – of niche applications.... And the only way to find which of these works for you is to try out lots of them, ramp up the ones that work, and discontinue the ones that fail.” – Martin Creaner President & CTO TM Forum.   The following trends have been observed in telecom reference architecture:   ·       Transformation of business structures to align with customer requirements ·       Adoption of more Internet-like technical architectures. The Web 2.0 concept is increasingly being used. ·       Virtualization of the traditional operations support system (OSS) ·       Adoption of SOA to support development of IP-based services ·       Adoption of frameworks like Service Delivery Platforms (SDPs) and IP Multimedia Subsystem ·       (IMS) to enable seamless deployment of various services over fixed and mobile networks ·       Replacement of in-house, customized, and stove-piped OSS/BSS with standards-based COTS products ·       Compliance with industry standards and frameworks like eTOM, SID, and TAM to enable seamless integration with other standards-based products   Drivers of Reference Architecture   The drivers of the Reference Architecture are Reference Architecture Goals, Principles, and Enterprise Vision and Telecom Transformation. The details are depicted below diagram. @font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }div.Section1 { page: Section1; } Figure 1. Drivers for Reference Architecture @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Today’s telecom reference architectures should seamlessly integrate traditional legacy-based applications and transition to next-generation network technologies (e.g., IP multimedia subsystems). This has resulted in new requirements for flexible, real-time billing and OSS/BSS systems and implications on the service provider’s organizational requirements and structure.   Telecom reference architectures are today expected to:   ·       Integrate voice, messaging, email and other VAS over fixed and mobile networks, back end systems ·       Be able to provision multiple services and service bundles • Deliver converged voice, video and data services ·       Leverage the existing Network Infrastructure ·       Provide real-time, flexible billing and charging systems to handle complex promotions, discounts, and settlements with multiple parties. ·       Support charging of advanced data services such as VoIP, On-Demand, Services (e.g.  Video), IMS/SIP Services, Mobile Money, Content Services and IPTV. ·       Help in faster deployment of new services • Serve as an effective platform for collaboration between network IT and business organizations ·       Harness the potential of converging technology, networks, devices and content to develop multimedia services and solutions of ever-increasing sophistication on a single Internet Protocol (IP) ·       Ensure better service delivery and zero revenue leakage through real-time balance and credit management ·       Lower operating costs to drive profitability   Enterprise Reference Architecture   The Enterprise Reference Architecture (RA) fills the gap between the concepts and vocabulary defined by the reference model and the implementation. Reference architecture provides detailed architectural information in a common format such that solutions can be repeatedly designed and deployed in a consistent, high-quality, supportable fashion. This paper attempts to describe the Reference Architecture for the Telecom Application Usage and how to achieve the Enterprise Level Reference Architecture using SOA.   • Telecom Reference Architecture • Enterprise SOA based Reference Architecture   Telecom Reference Architecture   Tele Management Forum’s New Generation Operations Systems and Software (NGOSS) is an architectural framework for organizing, integrating, and implementing telecom systems. NGOSS is a component-based framework consisting of the following elements:   ·       The enhanced Telecom Operations Map (eTOM) is a business process framework. ·       The Shared Information Data (SID) model provides a comprehensive information framework that may be specialized for the needs of a particular organization. ·       The Telecom Application Map (TAM) is an application framework to depict the functional footprint of applications, relative to the horizontal processes within eTOM. ·       The Technology Neutral Architecture (TNA) is an integrated framework. TNA is an architecture that is sustainable through technology changes.   NGOSS Architecture Standards are:   ·       Centralized data ·       Loosely coupled distributed systems ·       Application components/re-use  ·       A technology-neutral system framework with technology specific implementations ·       Interoperability to service provider data/processes ·       Allows more re-use of business components across multiple business scenarios ·       Workflow automation   The traditional operator systems architecture consists of four layers,   ·       Business Support System (BSS) layer, with focus toward customers and business partners. Manages order, subscriber, pricing, rating, and billing information. ·       Operations Support System (OSS) layer, built around product, service, and resource inventories. ·       Networks layer – consists of Network elements and 3rd Party Systems. ·       Integration Layer – to maximize application communication and overall solution flexibility.   Reference architecture for telecom enterprises is depicted below. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 2. Telecom Reference Architecture   The major building blocks of any Telecom Service Provider architecture are as follows:   1. Customer Relationship Management   CRM encompasses the end-to-end lifecycle of the customer: customer initiation/acquisition, sales, ordering, and service activation, customer care and support, proactive campaigns, cross sell/up sell, and retention/loyalty.   CRM also includes the collection of customer information and its application to personalize, customize, and integrate delivery of service to a customer, as well as to identify opportunities for increasing the value of the customer to the enterprise.   The key functionalities related to Customer Relationship Management are   ·       Manage the end-to-end lifecycle of a customer request for products. ·       Create and manage customer profiles. ·       Manage all interactions with customers – inquiries, requests, and responses. ·       Provide updates to Billing and other south bound systems on customer/account related updates such as customer/ account creation, deletion, modification, request bills, final bill, duplicate bills, credit limits through Middleware. ·       Work with Order Management System, Product, and Service Management components within CRM. ·       Manage customer preferences – Involve all the touch points and channels to the customer, including contact center, retail stores, dealers, self service, and field service, as well as via any media (phone, face to face, web, mobile device, chat, email, SMS, mail, the customer's bill, etc.). ·       Support single interface for customer contact details, preferences, account details, offers, customer premise equipment, bill details, bill cycle details, and customer interactions.   CRM applications interact with customers through customer touch points like portals, point-of-sale terminals, interactive voice response systems, etc. The requests by customers are sent via fulfillment/provisioning to billing system for ordering processing.   2. Billing and Revenue Management   Billing and Revenue Management handles the collection of appropriate usage records and production of timely and accurate bills – for providing pre-bill usage information and billing to customers; for processing their payments; and for performing payment collections. In addition, it handles customer inquiries about bills, provides billing inquiry status, and is responsible for resolving billing problems to the customer's satisfaction in a timely manner. This process grouping also supports prepayment for services.   The key functionalities provided by these applications are   ·       To ensure that enterprise revenue is billed and invoices delivered appropriately to customers. ·       To manage customers’ billing accounts, process their payments, perform payment collections, and monitor the status of the account balance. ·       To ensure the timely and effective fulfillment of all customer bill inquiries and complaints. ·       Collect the usage records from mediation and ensure appropriate rating and discounting of all usage and pricing. ·       Support revenue sharing; split charging where usage is guided to an account different from the service consumer. ·       Support prepaid and post-paid rating. ·       Send notification on approach / exceeding the usage thresholds as enforced by the subscribed offer, and / or as setup by the customer. ·       Support prepaid, post paid, and hybrid (where some services are prepaid and the rest of the services post paid) customers and conversion from post paid to prepaid, and vice versa. ·       Support different billing function requirements like charge prorating, promotion, discount, adjustment, waiver, write-off, account receivable, GL Interface, late payment fee, credit control, dunning, account or service suspension, re-activation, expiry, termination, contract violation penalty, etc. ·       Initiate direct debit to collect payment against an invoice outstanding. ·       Send notification to Middleware on different events; for example, payment receipt, pre-suspension, threshold exceed, etc.   Billing systems typically get usage data from mediation systems for rating and billing. They get provisioning requests from order management systems and inquiries from CRM systems. Convergent and real-time billing systems can directly get usage details from network elements.   3. Mediation   Mediation systems transform/translate the Raw or Native Usage Data Records into a general format that is acceptable to billing for their rating purposes.   The following lists the high-level roles and responsibilities executed by the Mediation system in the end-to-end solution.   ·       Collect Usage Data Records from different data sources – like network elements, routers, servers – via different protocol and interfaces. ·       Process Usage Data Records – Mediation will process Usage Data Records as per the source format. ·       Validate Usage Data Records from each source. ·       Segregates Usage Data Records coming from each source to multiple, based on the segregation requirement of end Application. ·       Aggregates Usage Data Records based on the aggregation rule if any from different sources. ·       Consolidates multiple Usage Data Records from each source. ·       Delivers formatted Usage Data Records to different end application like Billing, Interconnect, Fraud Management, etc. ·       Generates audit trail for incoming Usage Data Records and keeps track of all the Usage Data Records at various stages of mediation process. ·       Checks duplicate Usage Data Records across files for a given time window.   4. Fulfillment   This area is responsible for providing customers with their requested products in a timely and correct manner. It translates the customer's business or personal need into a solution that can be delivered using the specific products in the enterprise's portfolio. This process informs the customers of the status of their purchase order, and ensures completion on time, as well as ensuring a delighted customer. These processes are responsible for accepting and issuing orders. They deal with pre-order feasibility determination, credit authorization, order issuance, order status and tracking, customer update on customer order activities, and customer notification on order completion. Order management and provisioning applications fall into this category.   The key functionalities provided by these applications are   ·       Issuing new customer orders, modifying open customer orders, or canceling open customer orders; ·       Verifying whether specific non-standard offerings sought by customers are feasible and supportable; ·       Checking the credit worthiness of customers as part of the customer order process; ·       Testing the completed offering to ensure it is working correctly; ·       Updating of the Customer Inventory Database to reflect that the specific product offering has been allocated, modified, or cancelled; ·       Assigning and tracking customer provisioning activities; ·       Managing customer provisioning jeopardy conditions; and ·       Reporting progress on customer orders and other processes to customer.   These applications typically get orders from CRM systems. They interact with network elements and billing systems for fulfillment of orders.   5. Enterprise Management   This process area includes those processes that manage enterprise-wide activities and needs, or have application within the enterprise as a whole. They encompass all business management processes that   ·       Are necessary to support the whole of the enterprise, including processes for financial management, legal management, regulatory management, process, cost, and quality management, etc.;   ·       Are responsible for setting corporate policies, strategies, and directions, and for providing guidelines and targets for the whole of the business, including strategy development and planning for areas, such as Enterprise Architecture, that are integral to the direction and development of the business;   ·       Occur throughout the enterprise, including processes for project management, performance assessments, cost assessments, etc.     (i) Enterprise Risk Management:   Enterprise Risk Management focuses on assuring that risks and threats to the enterprise value and/or reputation are identified, and appropriate controls are in place to minimize or eliminate the identified risks. The identified risks may be physical or logical/virtual. Successful risk management ensures that the enterprise can support its mission critical operations, processes, applications, and communications in the face of serious incidents such as security threats/violations and fraud attempts. Two key areas covered in Risk Management by telecom operators are:   ·       Revenue Assurance: Revenue assurance system will be responsible for identifying revenue loss scenarios across components/systems, and will help in rectifying the problems. The following lists the high-level roles and responsibilities executed by the Revenue Assurance system in the end-to-end solution. o   Identify all usage information dropped when networks are being upgraded. o   Interconnect bill verification. o   Identify where services are routinely provisioned but never billed. o   Identify poor sales policies that are intensifying collections problems. o   Find leakage where usage is sent to error bucket and never billed for. o   Find leakage where field service, CRM, and network build-out are not optimized.   ·       Fraud Management: Involves collecting data from different systems to identify abnormalities in traffic patterns, usage patterns, and subscription patterns to report suspicious activity that might suggest fraudulent usage of resources, resulting in revenue losses to the operator.   The key roles and responsibilities of the system component are as follows:   o   Fraud management system will capture and monitor high usage (over a certain threshold) in terms of duration, value, and number of calls for each subscriber. The threshold for each subscriber is decided by the system and fixed automatically. o   Fraud management will be able to detect the unauthorized access to services for certain subscribers. These subscribers may have been provided unauthorized services by employees. The component will raise the alert to the operator the very first time of such illegal calls or calls which are not billed. o   The solution will be to have an alarm management system that will deliver alarms to the operator/provider whenever it detects a fraud, thus minimizing fraud by catching it the first time it occurs. o   The Fraud Management system will be capable of interfacing with switches, mediation systems, and billing systems   (ii) Knowledge Management   This process focuses on knowledge management, technology research within the enterprise, and the evaluation of potential technology acquisitions.   Key responsibilities of knowledge base management are to   ·       Maintain knowledge base – Creation and updating of knowledge base on ongoing basis. ·       Search knowledge base – Search of knowledge base on keywords or category browse ·       Maintain metadata – Management of metadata on knowledge base to ensure effective management and search. ·       Run report generator. ·       Provide content – Add content to the knowledge base, e.g., user guides, operational manual, etc.   (iii) Document Management   It focuses on maintaining a repository of all electronic documents or images of paper documents relevant to the enterprise using a system.   (iv) Data Management   It manages data as a valuable resource for any enterprise. For telecom enterprises, the typical areas covered are Master Data Management, Data Warehousing, and Business Intelligence. It is also responsible for data governance, security, quality, and database management.   Key responsibilities of Data Management are   ·       Using ETL, extract the data from CRM, Billing, web content, ERP, campaign management, financial, network operations, asset management info, customer contact data, customer measures, benchmarks, process data, e.g., process inputs, outputs, and measures, into Enterprise Data Warehouse. ·       Management of data traceability with source, data related business rules/decisions, data quality, data cleansing data reconciliation, competitors data – storage for all the enterprise data (customer profiles, products, offers, revenues, etc.) ·       Get online update through night time replication or physical backup process at regular frequency. ·       Provide the data access to business intelligence and other systems for their analysis, report generation, and use.   (v) Business Intelligence   It uses the Enterprise Data to provide the various analysis and reports that contain prospects and analytics for customer retention, acquisition of new customers due to the offers, and SLAs. It will generate right and optimized plans – bolt-ons for the customers.   The following lists the high-level roles and responsibilities executed by the Business Intelligence system at the Enterprise Level:   ·       It will do Pattern analysis and reports problem. ·       It will do Data Analysis – Statistical analysis, data profiling, affinity analysis of data, customer segment wise usage patterns on offers, products, service and revenue generation against services and customer segments. ·       It will do Performance (business, system, and forecast) analysis, churn propensity, response time, and SLAs analysis. ·       It will support for online and offline analysis, and report drill down capability. ·       It will collect, store, and report various SLA data. ·       It will provide the necessary intelligence for marketing and working on campaigns, etc., with cost benefit analysis and predictions.   It will advise on customer promotions with additional services based on loyalty and credit history of customer   ·       It will Interface with Enterprise Data Management system for data to run reports and analysis tasks. It will interface with the campaign schedules, based on historical success evidence.   (vi) Stakeholder and External Relations Management   It manages the enterprise's relationship with stakeholders and outside entities. Stakeholders include shareholders, employee organizations, etc. Outside entities include regulators, local community, and unions. Some of the processes within this grouping are Shareholder Relations, External Affairs, Labor Relations, and Public Relations.   (vii) Enterprise Resource Planning   It is used to manage internal and external resources, including tangible assets, financial resources, materials, and human resources. Its purpose is to facilitate the flow of information between all business functions inside the boundaries of the enterprise and manage the connections to outside stakeholders. ERP systems consolidate all business operations into a uniform and enterprise wide system environment.   The key roles and responsibilities for Enterprise System are given below:   ·        It will handle responsibilities such as core accounting, financial, and management reporting. ·       It will interface with CRM for capturing customer account and details. ·       It will interface with billing to capture the billing revenue and other financial data. ·       It will be responsible for executing the dunning process. Billing will send the required feed to ERP for execution of dunning. ·       It will interface with the CRM and Billing through batch interfaces. Enterprise management systems are like horizontals in the enterprise and typically interact with all major telecom systems. E.g., an ERP system interacts with CRM, Fulfillment, and Billing systems for different kinds of data exchanges.   6. External Interfaces/Touch Points   The typical external parties are customers, suppliers/partners, employees, shareholders, and other stakeholders. External interactions from/to a Service Provider to other parties can be achieved by a variety of mechanisms, including:   ·       Exchange of emails or faxes ·       Call Centers ·       Web Portals ·       Business-to-Business (B2B) automated transactions   These applications provide an Internet technology driven interface to external parties to undertake a variety of business functions directly for themselves. These can provide fully or partially automated service to external parties through various touch points.   Typical characteristics of these touch points are   ·       Pre-integrated self-service system, including stand-alone web framework or integration front end with a portal engine ·       Self services layer exposing atomic web services/APIs for reuse by multiple systems across the architectural environment ·       Portlets driven connectivity exposing data and services interoperability through a portal engine or web application   These touch points mostly interact with the CRM systems for requests, inquiries, and responses.   7. Middleware   The component will be primarily responsible for integrating the different systems components under a common platform. It should provide a Standards-Based Platform for building Service Oriented Architecture and Composite Applications. The following lists the high-level roles and responsibilities executed by the Middleware component in the end-to-end solution.   ·       As an integration framework, covering to and fro interfaces ·       Provide a web service framework with service registry. ·       Support SOA framework with SOA service registry. ·       Each of the interfaces from / to Middleware to other components would handle data transformation, translation, and mapping of data points. ·       Receive data from the caller / activate and/or forward the data to the recipient system in XML format. ·       Use standard XML for data exchange. ·       Provide the response back to the service/call initiator. ·       Provide a tracking until the response completion. ·       Keep a store transitional data against each call/transaction. ·       Interface through Middleware to get any information that is possible and allowed from the existing systems to enterprise systems; e.g., customer profile and customer history, etc. ·       Provide the data in a common unified format to the SOA calls across systems, and follow the Enterprise Architecture directive. ·       Provide an audit trail for all transactions being handled by the component.   8. Network Elements   The term Network Element means a facility or equipment used in the provision of a telecommunications service. Such terms also includes features, functions, and capabilities that are provided by means of such facility or equipment, including subscriber numbers, databases, signaling systems, and information sufficient for billing and collection or used in the transmission, routing, or other provision of a telecommunications service.   Typical network elements in a GSM network are Home Location Register (HLR), Intelligent Network (IN), Mobile Switching Center (MSC), SMS Center (SMSC), and network elements for other value added services like Push-to-talk (PTT), Ring Back Tone (RBT), etc.   Network elements are invoked when subscribers use their telecom devices for any kind of usage. These elements generate usage data and pass it on to downstream systems like mediation and billing system for rating and billing. They also integrate with provisioning systems for order/service fulfillment.   9. 3rd Party Applications   3rd Party systems are applications like content providers, payment gateways, point of sale terminals, and databases/applications maintained by the Government.   Depending on applicability and the type of functionality provided by 3rd party applications, the integration with different telecom systems like CRM, provisioning, and billing will be done.   10. Service Delivery Platform   A service delivery platform (SDP) provides the architecture for the rapid deployment, provisioning, execution, management, and billing of value added telecom services. SDPs are based on the concept of SOA and layered architecture. They support the delivery of voice, data services, and content in network and device-independent fashion. They allow application developers to aggregate network capabilities, services, and sources of content. SDPs typically contain layers for web services exposure, service application development, and network abstraction.   SOA Reference Architecture   SOA concept is based on the principle of developing reusable business service and building applications by composing those services, instead of building monolithic applications in silos. It’s about bridging the gap between business and IT through a set of business-aligned IT services, using a set of design principles, patterns, and techniques.   In an SOA, resources are made available to participants in a value net, enterprise, line of business (typically spanning multiple applications within an enterprise or across multiple enterprises). It consists of a set of business-aligned IT services that collectively fulfill an organization’s business processes and goals. We can choreograph these services into composite applications and invoke them through standard protocols. SOA, apart from agility and reusability, enables:   ·       The business to specify processes as orchestrations of reusable services ·       Technology agnostic business design, with technology hidden behind service interface ·       A contractual-like interaction between business and IT, based on service SLAs ·       Accountability and governance, better aligned to business services ·       Applications interconnections untangling by allowing access only through service interfaces, reducing the daunting side effects of change ·       Reduced pressure to replace legacy and extended lifetime for legacy applications, through encapsulation in services   ·       A Cloud Computing paradigm, using web services technologies, that makes possible service outsourcing on an on-demand, utility-like, pay-per-usage basis   The following section represents the Reference Architecture of logical view for the Telecom Solution. The new custom built application needs to align with this logical architecture in the long run to achieve EA benefits.   Packaged implementation applications, such as ERP billing applications, need to expose their functions as service providers (as other applications consume) and interact with other applications as service consumers.   COT applications need to expose services through wrappers such as adapters to utilize existing resources and at the same time achieve Enterprise Architecture goal and objectives.   The following are the various layers for Enterprise level deployment of SOA. This diagram captures the abstract view of Enterprise SOA layers and important components of each layer. Layered architecture means decomposition of services such that most interactions occur between adjacent layers. However, there is no strict rule that top layers should not directly communicate with bottom layers.   The diagram below represents the important logical pieces that would result from overall SOA transformation. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 3. Enterprise SOA Reference Architecture 1.          Operational System Layer: This layer consists of all packaged applications like CRM, ERP, custom built applications, COTS based applications like Billing, Revenue Management, Fulfilment, and the Enterprise databases that are essential and contribute directly or indirectly to the Enterprise OSS/BSS Transformation.   ERP holds the data of Asset Lifecycle Management, Supply Chain, and Advanced Procurement and Human Capital Management, etc.   CRM holds the data related to Order, Sales, and Marketing, Customer Care, Partner Relationship Management, Loyalty, etc.   Content Management handles Enterprise Search and Query. Billing application consists of the following components:   ·       Collections Management, Customer Billing Management, Invoices, Real-Time Rating, Discounting, and Applying of Charges ·       Enterprise databases will hold both the application and service data, whether structured or unstructured.   MDM - Master data majorly consists of Customer, Order, Product, and Service Data.     2.          Enterprise Component Layer:   This layer consists of the Application Services and Common Services that are responsible for realizing the functionality and maintaining the QoS of the exposed services. This layer uses container-based technologies such as application servers to implement the components, workload management, high availability, and load balancing.   Application Services: This Service Layer enables application, technology, and database abstraction so that the complex accessing logic is hidden from the other service layers. This is a basic service layer, which exposes application functionalities and data as reusable services. The three types of the Application access services are:   ·       Application Access Service: This Service Layer exposes application level functionalities as a reusable service between BSS to BSS and BSS to OSS integration. This layer is enabled using disparate technology such as Web Service, Integration Servers, and Adaptors, etc.   ·       Data Access Service: This Service Layer exposes application data services as a reusable reference data service. This is done via direct interaction with application data. and provides the federated query.   ·       Network Access Service: This Service Layer exposes provisioning layer as a reusable service from OSS to OSS integration. This integration service emphasizes the need for high performance, stateless process flows, and distributed design.   Common Services encompasses management of structured, semi-structured, and unstructured data such as information services, portal services, interaction services, infrastructure services, and security services, etc.   3.          Integration Layer:   This consists of service infrastructure components like service bus, service gateway for partner integration, service registry, service repository, and BPEL processor. Service bus will carry the service invocation payloads/messages between consumers and providers. The other important functions expected from it are itinerary based routing, distributed caching of routing information, transformations, and all qualities of service for messaging-like reliability, scalability, and availability, etc. Service registry will hold all contracts (wsdl) of services, and it helps developers to locate or discover service during design time or runtime.   • BPEL processor would be useful in orchestrating the services to compose a complex business scenario or process. • Workflow and business rules management are also required to support manual triggering of certain activities within business process. based on the rules setup and also the state machine information. Application, data, and service mediation layer typically forms the overall composite application development framework or SOA Framework.   4.          Business Process Layer: These are typically the intermediate services layer and represent Shared Business Process Services. At Enterprise Level, these services are from Customer Management, Order Management, Billing, Finance, and Asset Management application domains.   5.          Access Layer: This layer consists of portals for Enterprise and provides a single view of Enterprise information management and dashboard services.   6.          Channel Layer: This consists of various devices; applications that form part of extended enterprise; browsers through which users access the applications.   7.          Client Layer: This designates the different types of users accessing the enterprise applications. The type of user typically would be an important factor in determining the level of access to applications.   8.          Vertical pieces like management, monitoring, security, and development cut across all horizontal layers Management and monitoring involves all aspects of SOA-like services, SLAs, and other QoS lifecycle processes for both applications and services surrounding SOA governance.     9.          EA Governance, Reference Architecture, Roadmap, Principles, and Best Practices:   EA Governance is important in terms of providing the overall direction to SOA implementation within the enterprise. This involves board-level involvement, in addition to business and IT executives. At a high level, this involves managing the SOA projects implementation, managing SOA infrastructure, and controlling the entire effort through all fine-tuned IT processes in accordance with COBIT (Control Objectives for Information Technology).   Devising tools and techniques to promote reuse culture, and the SOA way of doing things needs competency centers to be established in addition to training the workforce to take up new roles that are suited to SOA journey.   Conclusions   Reference Architectures can serve as the basis for disparate architecture efforts throughout the organization, even if they use different tools and technologies. Reference architectures provide best practices and approaches in the independent way a vendor deals with technology and standards. Reference Architectures model the abstract architectural elements for an enterprise independent of the technologies, protocols, and products that are used to implement an SOA. Telecom enterprises today are facing significant business and technology challenges due to growing competition, a multitude of services, and convergence. Adopting architectural best practices could go a long way in meeting these challenges. The use of SOA-based architecture for communication to each of the external systems like Billing, CRM, etc., in OSS/BSS system has made the architecture very loosely coupled, with greater flexibility. Any change in the external systems would be absorbed at the Integration Layer without affecting the rest of the ecosystem. The use of a Business Process Management (BPM) tool makes the management and maintenance of the business processes easy, with better performance in terms of lead time, quality, and cost. Since the Architecture is based on standards, it will lower the cost of deploying and managing OSS/BSS applications over their lifecycles.

    Read the article

< Previous Page | 7 8 9 10 11