Search Results

Search found 22333 results on 894 pages for 'sys dm exec query stats'.

Page 11/894 | < Previous Page | 7 8 9 10 11 12 13 14 15 16 17 18  | Next Page >

  • FastGate A20 Line And Himem.sys Issue With Updating BIOS

    - by Boris_yo
    I have been persistent with a thought to perform my first BIOS update ever through MS-DOS but have been postponing this task until today. Despite people telling me any bootable ISO will do it either through CD-ROM or RAMDRIVE, I am still having problems. First is the problem with CD-ROM driver trying to make it work with 4 driver files (cd1.SYS, cd2.SYS, cd3.SYS, cd4.SYS) as well as starting RAMDISK proved to be failure: CD-ROM XMS Allocation Error RAMDISK XMS Allocaton Error (X: and R: drives not working) This A20 line seemed to be the obstacle which then after a couple of searches pointed me to this article on Microsoft website. It seems that FastGate is the culprit which takes over A20 line and conflicts with himem.sys which should be handling it causing the driver to be unable to allocate memory resources. Albeit article suggests 2 workarounds which is disabling FastGate option or adding switch, I read that the former workaround could cause problems which involves later tinkering BIOS, disabling shadow copy etc. while the latter workaround can just hang system as stated in the link above. I assume it just hangs the boot process from image file though. Summing up the above, I am cautious and think it is risky to follow both workarounds because disabling FastGate or trying adding switch by trying available switches from 1-14 or 16, could crash the BIOS update process by itself. I could do this without the need for himem.sys with bootable USB thumbdrive by making it to be seen as USB-HDD, but some time ago I read that it is never a good idea to update BIOS from hard drive so even thought it is simulation, who knows... Maybe it will deactivate hard drive in the middle of the BIOS update process or even USB thumbdrive per se? One forum discussion was about updating BIOS and somebody suggested to not load himem.sys for some reason, but now that I think of it, what if BIOS update needs upper memory?

    Read the article

  • July, the 31 Days of SQL Server DMO’s – Day 21 (sys.dm_db_partition_stats)

    - by Tamarick Hill
    The sys.dm_db_partition_stats DMV returns page count and row count information for each table or index within your database. Lets have a quick look at this DMV so we can review some of the results. **NOTE: I am going to create an ‘ObjectName’ column in our result set so that we can more easily identify tables. SELECT object_name(object_id) ObjectName, * FROM sys.dm_db_partition_stats As stated above, the first column in our result set is an Object name based on the object_id column of this result set. The partition_id column refers to the partition_id of the index in question. Each index will have at least 1 unique partition_id and will have more depending on if the object has been partitioned. The index_id column relates back to the sys.indexes table and uniquely identifies an index on a given object. A value of 0 (zero) in this column would indicate the object is a HEAP and a value of 1 (one) would signify the Clustered Index. Next is the partition_number which would signify the number of the partition for a particular object_id. Since none of my tables in my result set have been partitioned, they all display 1 for the partition_number. Next we have the in_row_data_page_count which tells us the number of data pages used to store in-row data for a given index. The in_row_used_page_count is the number of pages used to store and manage the in-row data. If we look at the first row in the result set, we will see we have 700 for this column and 680 for the previous. This means that just to manage the data (not store it) is requiring 20 pages. The next column in_row_reserved_page_count is how many pages have been reserved, regardless if they are being used or not. The next 2 columns are used for storing LOB (Large Object) data which could be text, image, varchar(max), or varbinary(max) columns. The next two columns, row_overflow, represent pages used for data that exceed the 8,060 byte row size limit for the in-row data pages. The next columns used_page_count and reserved_page_count represent the sum of the in_row, lob, and row_overflow columns discussed earlier. Lastly is a row_count column which displays the number of rows that are in a particular index. This DMV is a very powerful resource for identifying page and row count information. By knowing the page counts for indexes within your database, you are able to easily calculate the size of indexes. For more information on this DMV, please see the below Books Online link: http://msdn.microsoft.com/en-us/library/ms187737.aspx Follow me on Twitter @PrimeTimeDBA

    Read the article

  • July, the 31 Days of SQL Server DMO’s – Day 24 (sys.dm_db_index_operational_stats)

    - by Tamarick Hill
    The sys.dm_db_index_operational_stats Dynamic Management Function returns information about the IO, locking, and access methods for the indexes that you currently have on your SQL Server Instance. This function takes four input parameters which are (1) database_id, (2) object_id, (3) index_id, and (4) partition_number. Let’s have a look at the results from this function against our AdventureWorks2012 database. This function returns a ton of columns, so not only will I not attempt to describe each of the columns, I wont even attempt to display all of them here. My query below will give you a subset of the columns returned from this function. SELECT database_id, object_id, index_id, partition_number, leaf_insert_count, leaf_delete_count, leaf_update_count, leaf_ghost_count, nonleaf_insert_count, nonleaf_delete_count, nonleaf_update_count, range_scan_count, forwarded_fetch_count, row_lock_count, row_lock_wait_count, page_lock_count, page_lock_wait_count, Index_lock_promotion_attempt_count, index_lock_promotion_count, page_compression_attempt_count, page_compression_success_count FROM sys.dm_db_index_operational_stats(db_id('AdventureWorks2012'), NULL, NULL, NULL) The first four columns in the result set represent the values that we passed in as our input parameters. If you use NULL’s as I did, then you will see results for every index on your system. I specified a database_id so my result set only shows those records pertaining to my AdventureWorks2012 database. The next columns in the result set provide you with information on how may inserts, deletes, or updates that have taken place on your leaf and nonleaf index levels. The nonleaf levels would refer to the intermediate and root index levels. In the middle of these you see a leaf_ghost_count column, which represents the number of records that have been logically deleted and marked as “ghosted”  and are waiting on the background ghost cleanup process to physically remove them. The range_scan_count column represents the number of range or table scans that have been performed against an index. The forwarded_fetch_count column represents the number of rows that were returned from a forwarding row pointer. The row_lock_count and row_lock_wait_count represent the number of row locks that have been requested for an index and the number of times SQL has had to wait on a row lock respectively. The page_lock_count and page_lock_wait_count represent the number of page locks that have been requested for an index and the number of times SQL has had to wait on a page lock respectively. The index_lock_promotion_attempt_count represents the number of times the database engine has attempted to promote a lock to the index level. The index_lock_promotion_count column displays how many times that index lock promotion was successful. Lastly the page_compression_attempt_count and page_compression_success_count represents how many times a page was attempted to be compressed and how many times the attempt was successful. As you can see there is a ton of information returned from this DMV. The DMV we reviewed on yesterday (sys.dm_db_index_usage_stats) provided you with good information on when and how indexes have been used, but this DMF takes an even deeper dive into these statistics. If you are interested in performing a very detailed analysis on the operational stats of your indexes, this is not only a good place to start, but more than likely the best place. For more information on this Dynamic Management Function, please see the below Books Online link: http://msdn.microsoft.com/en-us/library/ms174281.aspx Follow me on Twitter @PrimeTimeDBA

    Read the article

  • July, the 31 Days of SQL Server DMO’s – Day 30 (sys.dm_server_registry)

    - by Tamarick Hill
    The sys.dm_server_registry DMV is used to provide SQL Server configuration and installation information that is currently stored in your Windows Registry. It is a very simple DMV that returns only three columns. The first column returned is the registry_key. The second column returned is the value_name which is the name of the actual registry key value. The third and final column returned is the value_data which is the value of the registry key data. Lets have a look at the information this DMV returns as well as some key values from the Windows Registy. SELECT * FROM sys.dm_server_registry View using RegEdit to view the registy: This DMV provides you with a quick and easy way to view SQL Server Instance registry values. For more information about this DMV, please see the below Books Online link: http://msdn.microsoft.com/en-us/library/hh204561.aspx Follow me on Twitter @PrimeTimeDBA

    Read the article

  • July, the 31 Days of SQL Server DMO’s – Day 26 (sys.dm_db_log_space_usage)

    - by Tamarick Hill
    The sys.dm_db_log_space_usage DMV is a new DMV for SQL Server 2012. It returns Total Size, Used Size, and Used Percent size for a transaction log file of a given database. To illustrate this DMV, I will query the DMV against my AdventureWorks2012 database. SELECT * FROM sys.dm_db_log_space_usage As mentioned above, the result set gives us the total size of the transaction log in bytes, the used size of the log in bytes, and the percent of the log that has been used. This is a very simplistic DMV but returns valuable information. Being able to detect when a transaction log is close to being full is always a valuable thing to alert on, and this DMV just provided an additional method for acquiring the necessary information. Follow me on Twitter @PrimeTimeDBA

    Read the article

  • Problem with JMX query of Coherence node MBeans visible in JConsole

    - by Quinn Taylor
    I'm using JMX to build a custom tool for monitoring remote Coherence clusters at work. I'm able to connect just fine and query MBeans directly, and I've acquired nearly all the information I need. However, I've run into a snag when trying to query MBeans for specific caches within a cluster, which is where I can find stats about total number of gets/puts, average time for each, etc. The MBeans I'm trying to access programatically are visible when I connect to the remote process using JConsole, and have names like this: Coherence:type=Cache,service=SequenceQueue,name=SEQ%GENERATOR,nodeId=1,tier=back It would make it more flexible if I can dynamically grab all type=Cache MBeans for a particular node ID without specifying all the caches. I'm trying to query them like this: QueryExp specifiedNodeId = Query.eq(Query.attr("nodeId"), Query.value(nodeId)); QueryExp typeIsCache = Query.eq(Query.attr("type"), Query.value("Cache")); QueryExp cacheNodes = Query.and(specifiedNodeId, typeIsCache); ObjectName coherence = new ObjectName("Coherence:*"); Set<ObjectName> cacheMBeans = mBeanServer.queryMBeans(coherence, cacheNodes); However, regardless of whether I use queryMBeans() or queryNames(), the query returns a Set containing... ...0 objects if I pass the arguments shown above ...0 objects if I pass null for the first argument ...all MBeans in the Coherence:* domain (112) if I pass null for the second argument ...every single MBean (128) if I pass null for both arguments The first two results are the unexpected ones, and suggest a problem in the QueryExp I'm passing, but I can't figure out what the problem is. I even tried just passing typeIsCache or specifiedNodeId for the second parameter (with either coherence or null as the first parameter) and I always get 0 results. I'm pretty green with JMX — any insight on what the problem is? (FYI, the monitoring tool will be run on Java 5, so things like JMX 2.0 won't help me at this point.)

    Read the article

  • MySQL select query result set changes based on column order

    - by user197191
    I have a drupal 7 site using the Views module to back-end site content search results. The same query with the same dataset returns different results from MySQL 5.5.28 to MySQL 5.6.14. The results from 5.5.28 are the correct, expected results. The results from 5.6.14 are not. If, however, I simply move a column in the select statement, the query returns the correct results. Here is the code-generated query in question (modified for readability). I apologize for the length; I couldn't find a way to reproduce it without the whole query: SELECT DISTINCT node_node_revision.nid AS node_node_revision_nid, node_revision.title AS node_revision_title, node_field_revision_field_position_institution_ref.nid AS node_field_revision_field_position_institution_ref_nid, node_revision.vid AS vid, node_revision.nid AS node_revision_nid, node_node_revision.title AS node_node_revision_title, SUM(search_index.score * search_total.count) AS score, 'node' AS field_data_field_system_inst_name_node_entity_type, 'node' AS field_revision_field_position_college_division_node_entity_t, 'node' AS field_revision_field_position_department_node_entity_type, 'node' AS field_revision_field_search_lvl_degree_lvls_node_entity_type, 'node' AS field_revision_field_position_app_deadline_node_entity_type, 'node' AS field_revision_field_position_start_date_node_entity_type, 'node' AS field_revision_body_node_entity_type FROM node_revision node_revision LEFT JOIN node node_node_revision ON node_revision.nid = node_node_revision.nid LEFT JOIN field_revision_field_position_institution_ref field_revision_field_position_institution_ref ON node_revision.vid = field_revision_field_position_institution_ref.revision_id AND (field_revision_field_position_institution_ref.entity_type = 'node' AND field_revision_field_position_institution_ref.deleted = '0') LEFT JOIN node node_field_revision_field_position_institution_ref ON field_revision_field_position_institution_ref.field_position_institution_ref_target_id = node_field_revision_field_position_institution_ref.nid LEFT JOIN field_revision_field_position_cip_code field_revision_field_position_cip_code ON node_revision.vid = field_revision_field_position_cip_code.revision_id AND (field_revision_field_position_cip_code.entity_type = 'node' AND field_revision_field_position_cip_code.deleted = '0') LEFT JOIN node node_field_revision_field_position_cip_code ON field_revision_field_position_cip_code.field_position_cip_code_target_id = node_field_revision_field_position_cip_code.nid LEFT JOIN node node_node_revision_1 ON node_revision.nid = node_node_revision_1.nid LEFT JOIN field_revision_field_position_vacancy_status field_revision_field_position_vacancy_status ON node_revision.vid = field_revision_field_position_vacancy_status.revision_id AND (field_revision_field_position_vacancy_status.entity_type = 'node' AND field_revision_field_position_vacancy_status.deleted = '0') LEFT JOIN search_index search_index ON node_revision.nid = search_index.sid LEFT JOIN search_total search_total ON search_index.word = search_total.word WHERE ( ( (node_node_revision.status = '1') AND (node_node_revision.type IN ('position')) AND (field_revision_field_position_vacancy_status.field_position_vacancy_status_target_id IN ('38')) AND( (search_index.type = 'node') AND( (search_index.word = 'accountant') ) ) AND ( (node_revision.vid=node_node_revision.vid AND node_node_revision.status=1) ) ) ) GROUP BY search_index.sid, vid, score, field_data_field_system_inst_name_node_entity_type, field_revision_field_position_college_division_node_entity_t, field_revision_field_position_department_node_entity_type, field_revision_field_search_lvl_degree_lvls_node_entity_type, field_revision_field_position_app_deadline_node_entity_type, field_revision_field_position_start_date_node_entity_type, field_revision_body_node_entity_type HAVING ( ( (COUNT(*) >= '1') ) ) ORDER BY node_node_revision_title ASC LIMIT 20 OFFSET 0; Again, this query returns different sets of results from MySQL 5.5.28 (correct) to 5.6.14 (incorrect). If I move the column named "score" (the SUM() column) to the end of the column list, the query returns the correct set of results in both versions of MySQL. My question is: Is this expected behavior (and why), or is this a bug? I'm on the verge of reverting my entire environment back to 5.5 because of this.

    Read the article

  • SQL SERVER – Plan Cache and Data Cache in Memory

    - by pinaldave
    I get following question almost all the time when I go for consultations or training. I often end up providing the scripts to my clients and attendees. Instead of writing new blog post, today in this single blog post, I am going to cover both the script and going to link to original blog posts where I have mentioned about this blog post. Plan Cache in Memory USE AdventureWorks GO SELECT [text], cp.size_in_bytes, plan_handle FROM sys.dm_exec_cached_plans AS cp CROSS APPLY sys.dm_exec_sql_text(plan_handle) WHERE cp.cacheobjtype = N'Compiled Plan' ORDER BY cp.size_in_bytes DESC GO Further explanation of this script is over here: SQL SERVER – Plan Cache – Retrieve and Remove – A Simple Script Data Cache in Memory USE AdventureWorks GO SELECT COUNT(*) AS cached_pages_count, name AS BaseTableName, IndexName, IndexTypeDesc FROM sys.dm_os_buffer_descriptors AS bd INNER JOIN ( SELECT s_obj.name, s_obj.index_id, s_obj.allocation_unit_id, s_obj.OBJECT_ID, i.name IndexName, i.type_desc IndexTypeDesc FROM ( SELECT OBJECT_NAME(OBJECT_ID) AS name, index_id ,allocation_unit_id, OBJECT_ID FROM sys.allocation_units AS au INNER JOIN sys.partitions AS p ON au.container_id = p.hobt_id AND (au.TYPE = 1 OR au.TYPE = 3) UNION ALL SELECT OBJECT_NAME(OBJECT_ID) AS name, index_id, allocation_unit_id, OBJECT_ID FROM sys.allocation_units AS au INNER JOIN sys.partitions AS p ON au.container_id = p.partition_id AND au.TYPE = 2 ) AS s_obj LEFT JOIN sys.indexes i ON i.index_id = s_obj.index_id AND i.OBJECT_ID = s_obj.OBJECT_ID ) AS obj ON bd.allocation_unit_id = obj.allocation_unit_id WHERE database_id = DB_ID() GROUP BY name, index_id, IndexName, IndexTypeDesc ORDER BY cached_pages_count DESC; GO Further explanation of this script is over here: SQL SERVER – Get Query Plan Along with Query Text and Execution Count Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Optimization, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL Tagged: SQL Memory

    Read the article

  • OOP implementation of BUFFS and Stats. Suggestion

    - by Mattia Manzo Manzati
    I am developing an MMORPG server using NodeJS. I am not sure how to implement Buffs, i mean, equipped objects or used skills have effects on the Player() which has many Stats(), some of them have a max cap... Effects can change the Stat value, increasing or decreasing it by a value, a percentage or completly rewrite the value of the stat. After a while I have decided to create a base class for buffs, which can be hidden (if they are casted from an equipped object) or shown if they came from an ability (Spell). Anyway I need suggestion how to implement it, use an array for all active buffs for a stat and have a function calculate the value of the stat affected by buffs each time I need the value of the stat or...? Other more OOP's ways to do it? I have read this What's a way to implement a flexible buff/debuff system? but this implements only a percentage system, which buffs can only say "+10%, +20%, etc...", but I would love to have an hybrid system, which can have percentage values or static values (like WoW does), and using modifiers it's hard to implement, because modifiers refers to the current value of stat :/ Thanks for suggestions :)

    Read the article

  • emacs for sys admins

    - by mbac32768
    Are you a sys admin that uses emacs? What tools/plugins do you find essential? In my organization the programmers tend to use emacs whereas the sys admins gravitate towards vim. Since we have 4:1 programmers:sys admins, the global emacs config has a lot more goodness but it doesn't fit nicely into my workflow since I'm used to starting/stopping vim on remote hosts 1000 times a day Does emacs have a place in your sys admin workflow?

    Read the article

  • In MySQL, what is the most effective query design for joining large tables with many to many relatio

    - by lighthouse65
    In our application, we collect data on automotive engine performance -- basically source data on engine performance based on the engine type, the vehicle running it and the engine design. Currently, the basis for new row inserts is an engine on-off period; we monitor performance variables based on a change in engine state from active to inactive and vice versa. The related engineState table looks like this: +---------+-----------+---------------+---------------------+---------------------+-----------------+ | vehicle | engine | engine_state | state_start_time | state_end_time | engine_variable | +---------+-----------+---------------+---------------------+---------------------+-----------------+ | 080025 | E01 | active | 2008-01-24 16:19:15 | 2008-01-24 16:24:45 | 720 | | 080028 | E02 | inactive | 2008-01-24 16:19:25 | 2008-01-24 16:22:17 | 304 | +---------+-----------+---------------+---------------------+---------------------+-----------------+ For a specific analysis, we would like to analyze table content based on a row granularity of minutes, rather than the current basis of active / inactive engine state. For this, we are thinking of creating a simple productionMinute table with a row for each minute in the period we are analyzing and joining the productionMinute and engineEvent tables on the date-time columns in each table. So if our period of analysis is from 2009-12-01 to 2010-02-28, we would create a new table with 129,600 rows, one for each minute of each day for that three-month period. The first few rows of the productionMinute table: +---------------------+ | production_minute | +---------------------+ | 2009-12-01 00:00 | | 2009-12-01 00:01 | | 2009-12-01 00:02 | | 2009-12-01 00:03 | +---------------------+ The join between the tables would be engineState AS es LEFT JOIN productionMinute AS pm ON es.state_start_time <= pm.production_minute AND pm.production_minute <= es.event_end_time. This join, however, brings up multiple environmental issues: The engineState table has 5 million rows and the productionMinute table has 130,000 rows When an engineState row spans more than one minute (i.e. the difference between es.state_start_time and es.state_end_time is greater than one minute), as is the case in the example above, there are multiple productionMinute table rows that join to a single engineState table row When there is more than one engine in operation during any given minute, also as per the example above, multiple engineState table rows join to a single productionMinute row In testing our logic and using only a small table extract (one day rather than 3 months, for the productionMinute table) the query takes over an hour to generate. In researching this item in order to improve performance so that it would be feasible to query three months of data, our thoughts were to create a temporary table from the engineEvent one, eliminating any table data that is not critical for the analysis, and joining the temporary table to the productionMinute table. We are also planning on experimenting with different joins -- specifically an inner join -- to see if that would improve performance. What is the best query design for joining tables with the many:many relationship between the join predicates as outlined above? What is the best join type (left / right, inner)?

    Read the article

  • Why does concatenating strings in the argument of EXEC sometimes cause a syntax error in T-SQL?

    - by Tim Goodman
    In MS SQL Server Management Studio 2005, running this code EXEC('SELECT * FROM employees WHERE employeeID = ' + CAST(3 AS VARCHAR)) gives this error: Incorrect syntax near 'CAST' However, if I do this, it works: DECLARE @temp VARCHAR(4000) SET @temp = 'SELECT * FROM employees WHERE employeeID = ' + CAST(3 AS VARCHAR) EXEC(@temp) I found an explanation here: http://stackoverflow.com/questions/1044831/t-sql-cannot-pass-concatenated-string-as-argument-to-stored-procedure According to the accepted answer, EXEC can take a local variable or a value as its argument, but not an expression. However, if that's the case, why does this work: DECLARE @temp VARCHAR(4000) SET @temp = CAST(3 AS VARCHAR) EXEC('SELECT * FROM employees WHERE employeeID = ' + @temp) 'SELECT * FROM employees WHERE employeeID = ' + @temp sure looks like an expression to me, but the code executes with no errors.

    Read the article

  • How to restore a hidden loadable kernel module from /sys/module and dealing with restoring holders_dir?

    - by user1833005
    I'm playing with kernel module hiding on Linux Kernel 3.x. I try to hide and recover the module from /sys/module. Everything works fine on Kernel Version 3.0 and 3.2.6, I can load and unload the module and hide and unhide it. When I'm unloading the module on kernel 3.6.6 I get the following error: rmmod: ERROR: could not open '/sys/module/xxx/holders': No such file or directory rmmod: ERROR: Module xxx is in use Has anybody an idea how I could restore of the module so that I am able to unload it without errors? Here is my code: /* hide from /sys/module */ kobject_del(&__this_module.mkobj.kobj); list_del(&__this_module.mkobj.kobj.entry); /* add to /sys/module */ kobject_add(&__this_module.mkobj.kobj,__this_module.mkobj.kobj.parent,"xxx"); Thank you four help :)

    Read the article

  • PHP: How to know when exec() function is finish?

    - by skiria
    I have an exec function in php file that execs a bash script. It script calls fmpeg to transcode a video file. How can I know when transcoding is finish?? $script = "/opt/lamp../name.sh" exec("$script $videoIn $id") I will try using next code but it doesn't workd. if (exec("$script $videoIn $id")) { //print on screen that the video has been transcoded }

    Read the article

  • July, the 31 Days of SQL Server DMO’s – Day 22 (sys.dm_db_index_physical_stats)

    - by Tamarick Hill
    The sys.dm_db_index_physical_stats Dynamic Management Function is used to return information about the fragmentation levels, page counts, depth, number of levels, record counts, etc. about the indexes on your database instance. One row is returned for each level in a given index, which we will discuss more later. The function takes a total of 5 input parameters which are (1) database_id, (2) object_id, (3) index_id, (4) partition_number, and (5) the mode of the scan level that you would like to run. Let’s use this function with our AdventureWorks2012 database to better illustrate the information it provides. SELECT * FROM sys.dm_db_index_physical_stats(db_id('AdventureWorks2012'), NULL, NULL, NULL, NULL) As you can see from the result set, there is a lot of beneficial information returned from this DMF. The first couple of columns in the result set (database_id, object_id, index_id, partition_number, index_type_desc, alloc_unit_type_desc) are either self-explanatory or have been explained in our previous blog sessions so I will not go into detail about these at this time. The next column in the result set is the index_depth which represents how deep the index goes. For example, If we have a large index that contains 1 root page, 3 intermediate levels, and 1 leaf level, our index depth would be 5. The next column is the index_level which refers to what level (of the depth) a particular row is referring to. Next is probably one of the most beneficial columns in this result set, which is the avg_fragmentation_in_percent. This column shows you how fragmented a particular level of an index may be. Many people use this column within their index maintenance jobs to dynamically determine whether they should do REORG’s or full REBUILD’s of a given index. The fragment count represents the number of fragments in a leaf level while the avg_fragment_size_in_pages represents the number of pages in a fragment. The page_count column tells you how many pages are in a particular index level. From my result set above, you see the the remaining columns all have NULL values. This is because I did not specify a ‘mode’ in my query and as a result it used the ‘LIMITED’ mode by default. The LIMITED mode is meant to be lightweight so it does collect information for every column in the result set. I will re-run my query again using the ‘DETAILED’ mode and you will see we now have results for these rows. SELECT * FROM sys.dm_db_index_physical_stats(db_id('AdventureWorks2012'), NULL, NULL, NULL, ‘DETAILED’)   From the remaining columns, you see we get even more detailed information such as how many records are in a particular index level (record_count). We have a column for ghost_record_count which represents the number of records that have been marked for deletion, but have not physically been removed by the background ghost cleanup process. We later see information on the MIN, MAX, and AVG record size in bytes. The forwarded_record_count column refers to records that have been updated and now no longer fit within the row on the page anymore and thus have to be moved. A forwarded record is left in the original location with a pointer to the new location. The last column in the result set is the compressed_page_count column which tells you how many pages in your index have been compressed. This is a very powerful DMF that returns good information about the current indexes in your system. However, based on the mode you select, it could be a very resource intensive function so be careful with how you use it. For more information on this Dynamic Management Function, please see the below Books Online link: http://msdn.microsoft.com/en-us/library/ms188917.aspx Follow me on Twitter @PrimeTimeDBA

    Read the article

  • Wipe free space on LVM-LUKS (dm-crypt) Volume

    - by peter4887
    My three partitions for my system are created with LVM on a LUKS partition (dm-crypt). These are /home, / and swap. The filesystem is ext4. They are encrypted, because they are on my laptop and I don't want that some laptop thieves get my data. But I often share my laptop with other people so they can access my encrypted partitions. I don't want that these people can recover my cache and all the data I deleted. So I'm now trying to wipe all my free space on /home to prevent against recovering with tools like photorec. (one overwrite should do, the need of multiple overwriting is just a rumor) But still I haven't found any solution to wipe this free space successfully. I tried dd if=/dev/zero of=/home/fillitup bs=512 count=[count of free sectiors] so my partition was complete full of data. df /dev/mapper/home said 100% is used and there are 0 sectors available. But I could still recover gigs of data with photorec, although I selected to recover just form the free space. photorec displays: /dev/mapper/home - 340 GB / 317 GiB (RO) , but df displays that the size of /home is just 313G, why are there these differences and what did the 340GB means? It looks like there is a place on my /dev/mapper/home partition, that I can't access to overwrite, but I can access it to recover. I also checked for corrupted sectors, but there aren't any. Maybe this is the space between my existing files? Did anyone knows why I can't wipe my free space with dd, and how I can find the location of the loads of recoverable files, to securely delete them?

    Read the article

  • Query returns too few rows

    - by Tareq
    setup: mysql> create table product_stock( product_id integer, qty integer, branch_id integer); Query OK, 0 rows affected (0.17 sec) mysql> create table product( product_id integer, product_name varchar(255)); Query OK, 0 rows affected (0.11 sec) mysql> insert into product(product_id, product_name) values(1, 'Apsana White DX Pencil'); Query OK, 1 row affected (0.05 sec) mysql> insert into product(product_id, product_name) values(2, 'Diamond Glass Marking Pencil'); Query OK, 1 row affected (0.03 sec) mysql> insert into product(product_id, product_name) values(3, 'Apsana Black Pencil'); Query OK, 1 row affected (0.03 sec) mysql> insert into product_stock(product_id, qty, branch_id) values(1, 100, 1); Query OK, 1 row affected (0.03 sec) mysql> insert into product_stock(product_id, qty, branch_id) values(1, 50, 2); Query OK, 1 row affected (0.03 sec) mysql> insert into product_stock(product_id, qty, branch_id) values(2, 80, 1); Query OK, 1 row affected (0.03 sec) my query: mysql> SELECT IFNULL(SUM(s.qty),0) AS stock, product_name FROM product_stock s RIGHT JOIN product p ON s.product_id=p.product_id WHERE branch_id=1 GROUP BY product_name ORDER BY product_name; returns: +-------+-------------------------------+ | stock | product_name | +-------+-------------------------------+ | 100 | Apsana White DX Pencil | | 80 | Diamond Glass Marking Pencil | +-------+-------------------------------+ 1 row in set (0.00 sec) But I want to have the following result: +-------+------------------------------+ | stock | product_name | +-------+------------------------------+ | 0 | Apsana Black Pencil | | 100 | Apsana White DX Pencil | | 80 | Diamond Glass Marking Pencil | +-------+------------------------------+ To get this result what mysql query should I run?

    Read the article

  • How do I filter one of the columns in a SQL Server SQL Query

    - by Kent S. Clarkson
    I have a table (that relates to a number of other tables) where I would like to filter ONE of the columns (RequesterID) - that column will be a combobox where only people that are not sales people should be selectable. Here is the "unfiltered" query, lets call it QUERY 1: SELECT RequestsID, RequesterID, ProductsID FROM dbo.Requests If using a separate query, lets call it QUERY 2, to filter RequesterID (which is a People related column, connected to People.PeopleID), it would look like this: SELECT People.PeopleID FROM People INNER JOIN Roles ON People.RolesID = Roles.RolesID INNER JOIN Requests ON People.PeopleID = Requests.RequesterID WHERE (Roles.Role <> N'SalesGuy') ORDER BY Requests.RequestsID Now, is there a way of "merging" the QUERY 2 into QUERY 1? (dbo.Requests in QUERY 1 has RequesterID populated as a Foreign Key from dbo.People, so no problem there... The connections are all right, just not know how to write the SQL query!)

    Read the article

  • shell_exec() Doesn't Show The Output

    - by Nathan Campos
    I'm doing a PHP site that uses a shell_exec() function like this: $file = "upload/" . $_FILES["file"]["name"]; $output = shell_exec("leaf $file"); echo "<pre>$output</pre>"; Where leaf is a program that is located in the same directory of my script, but when I tried to run this script on the server, I just got nothing. What is wrong?

    Read the article

  • System_Daemon and shell_exec

    - by Jesse
    Hey Everyone, I've set up a daemon (daemon.php) using PEAR's System_Daemon which waits for something to appear in the database. Once something is there, the daemon gets enough information and sends it out to another script (execute.php) using the shell_exec command this way I'm not worried about waiting for a response and holding up the daemon. Both of the scripts work fine alone and I'm even able to call shell_exec before calling System_Daemon::start(); . However, if I trying calling it AFTER System_Daemon::start();, then I get an Access Denied only when outputting to a file. I'm still new to Daemons in general, so any ideas or thoughts would be great! Thanks Guys!

    Read the article

  • MySQL slow query log logging all queries

    - by Blanka
    We have a MySQL 5.1.52 Percona Server 11.6 instance that suddenly started logging every single query to the slow query log. The long_query_time configuration is set to 1, yet, suddenly we're seeing every single query (e.g. just saw one that took 0.000563s!). As a result, our log files are growing at an insane pace. We just had to truncate a 180G slow query log file. I tried setting the long_query_time variable to a really large number to see if it stopped altogether (1000000), but same result. show global variables like 'general_log%'; +------------------+--------------------------+ | Variable_name | Value | +------------------+--------------------------+ | general_log | OFF | | general_log_file | /usr2/mysql/data/db4.log | +------------------+--------------------------+ 2 rows in set (0.00 sec) show global variables like 'slow_query_log%'; +---------------------------------------+-------------------------------+ | Variable_name | Value | +---------------------------------------+-------------------------------+ | slow_query_log | ON | | slow_query_log_file | /usr2/mysql/data/db4-slow.log | | slow_query_log_microseconds_timestamp | OFF | +---------------------------------------+-------------------------------+ 3 rows in set (0.00 sec) show global variables like 'long%'; +-----------------+----------+ | Variable_name | Value | +-----------------+----------+ | long_query_time | 1.000000 | +-----------------+----------+ 1 row in set (0.00 sec)

    Read the article

  • July, the 31 Days of SQL Server DMO’s – Day 20 (sys.dm_tran_locks)

    - by Tamarick Hill
    The sys.dm_tran_locks DMV is used to return active lock resources on your server. Locking is a mechanism used by SQL Server to protect the integrity of data when you have multiple users that may potentially access the same data at the same time. Let’s run a query against this DMV so we can analyze the results. SELECT * FROM sys.dm_tran_locks As we can see, its a lot of lock information returned from this DMV. I will not go into detail about each of the columns returned, but I will touch on the ones that I feel are the most important. The first column in the output is the resource_type column which tells you the type of lock a particular row represents. It could be a PAGE lock, RID, OBJECT, DATABASE, or several other lock types. The resource_database_id represents the id of the database for a particular lock resource. The resource_lock_partition column represents the ID of a lock partition. When you have a table that is partitioned, locks can be escalated to the partition level before going to a table level lock. The request_mode column gives us information about the type of lock that is being requested. From the screenshots above we see RangeS-S locks which represent a share range lock and IS locks which represent Intent Shared locks. The request_status column displays whether the lock has been granted or whether the lock is waiting to be acquired. The request_session_id  shows the session_id that is requesting the lock. This DMV is the best place to go when you need to identify the exact locks that are being held or pending for individual requests. You might need this information when you are troubleshooting severe blocking or deadlocking problems on your server. For more information on this DMV, please see the below Books Online link: http://msdn.microsoft.com/en-us/library/ms190345.aspx Follow me on Twitter @PrimeTimeDBA

    Read the article

  • July, the 31 Days of SQL Server DMO’s – Day 18 (sys.dm_io_virtual_file_stats)

    - by Tamarick Hill
    The sys.dm_io_virtual_file_stats Dynamic Management Function is used to return IO statistic information about each of your database files on your server. As input parameters, this function takes a database_id and a file_id. If you want to return IO statistic information for all files, you can simply pass in NULL values for both of these. Let’s have a look at this function  and examine its results: SELECT db_name(database_id) DatabaseName, * FROM sys.dm_io_virtual_file_stats(NULL, NULL) The first column in the result set is the DatabaseName which is just a column I created using the db_name() system function and the database_id column from this function. Next we have a file_id which represent the ID for the file, whether it be a data file or transaction log file. The ‘sample_ms’ column represents the total time in milliseconds that the instance has been up and running. Next we have the ‘num_of_reads’, ‘num_of_bytes_read’, and later ‘num_of_writes’, and ‘num_of_bytes_written’. These columns represent the number of reads or writes and number of bytes read or written against a particular file. These columns are beneficial when determining how often a particular file is being accessed. The ‘io_stall_read_ms’ and io_stall_write_ms’ columns each represent the the total time in milliseconds that users have had to wait for reads or writes against a file respectively. The ‘io_stall’ column is the sum of both read and write io stalls. The ‘size_on_disk_bytes’ column represents the size of the respective file on your disk subsystem. Lastly the ‘file_handle’ column is simply the Windows File handle. This Dynamic Management Function is useful when you are needing to analyze your database files for the purposes of segregating high IO databases. This DMF gives you a good view of which of your database files are being accessed the most and which ones may be generating the largest IO stalls. These could be your best candidates for moving into separate IO channels. For more information about this DMF, please see the below Books Online link: http://msdn.microsoft.com/en-us/library/ms190326.aspx Follow me on Twitter @PrimeTimeDBA

    Read the article

  • July, the 31 Days of SQL Server DMO’s – Day 27 (sys.dm_db_file_space_usage)

    - by Tamarick Hill
    The sys.dm_db_file_space usage DMV returns information about database file space usage.  This DMV was enhanced for the 2012 version to include 3 additional columns. Let’s query this DMV against our AdventureWorks2012 database and view the results. SELECT * FROM sys.dm_db_file_space_usage The column returned from this DMV are really self-explanatory, but I will give you a description, paraphrased from books online, below. The first three columns returned from this DMV represent the Database, File, and Filegroup for the current database context that executed the DMV query. The next column is the total_page_count which represents the total number of pages in the file. The allocated_extent_page_count represents the total number of pages in all extents that have been allocated. The unallocated_extent_page_count represents the number of pages in the unallocated extents within the file. The version_store_reserved_page_count column represents the number of pages that are allocated to the version store. The user_object_reserved_page_count represents the number of pages allocated for user objects. The internal_object_reserved_page_count represents the number of pages allocated for internal objects.  Lastly is the mixed_extent_page_count which represents the total number of pages that are part of mixed extents. This is a great DMV for retrieving usage space information from your database files. For more information about this DMV, please see the below Books Online link: http://msdn.microsoft.com/en-us/library/ms174412.aspx Follow me on Twitter @PrimeTimeDBA

    Read the article

  • July, the 31 Days of SQL Server DMO’s – Day 31 (sys.dm_server_services)

    - by Tamarick Hill
    The last DMV for this month long blog session is the sys.dm_server_services DMV. This DMV returns information about your SQL Server, Full-Text, and SQL Server Agent related services. To further illustrate the information this DMV contains, lets run it against our Training instance that we have been using for this blog series. SELECT * FROM sys.dm_server_services The first column returned by this DMV is the actual Service Name. The next columns are the startup_type and startup_type_desc columns which display your chosen method for how a particular method should be started. The next columns status and status_desc display the current status for each of your Services on the instance. The process_id column represents the server process id. The last_startup_time column gives you the last time that a particular service was started. The service_account column provides you with the name of the account that is used to control the service. The filename column gives you the full path to the executable for the service. Lastly we have the is_clustered column and the cluster_nodename which indicates whether or not a particular service is clustered and is part of a resource cluster group, and if so, the cluster node that the service is installed on. This is a good DMV to provide you with a quick snapshot view of the current SQL Server services you have on your instance. For more information on this DMV, please see the below Books Online link: http://msdn.microsoft.com/en-us/library/hh204542.aspx Follow me on Twitter @PrimeTimeDBA

    Read the article

< Previous Page | 7 8 9 10 11 12 13 14 15 16 17 18  | Next Page >