Search Results

Search found 57030 results on 2282 pages for 'asp net mvc controllers'.

Page 112/2282 | < Previous Page | 108 109 110 111 112 113 114 115 116 117 118 119  | Next Page >

  • Directory.exist method issue in Firefox browser.

    - by swapna
    Hi All, I have a asp.net page which is checking a UNC path on a listbox item change event using Directory.exist method. This works fine in Internet explorer. But when i use firefox and debugging this method returns false even though the directory exists. What could be the reason for this strange problem. Please someone answer this Thanks SNA

    Read the article

  • trace an asp.net website in production - c#/asp.net

    - by uno
    Is there a way that I can trace every method, basically a line trace, in an asp.net web site in production environment? I dont want to go about creating db logging for every line - i see an intermittent error and would like to see every line called and performed by the website per user.

    Read the article

  • How to search a hybrid ASP.NET Intranet site?

    - by user343416
    How would you implement a search facility within an ASP.NET hybrid application? I'm really tempted to start rebuilding our Intranet application using ASP.NET MVC & Web Forms (mainly MVC though). I know how to search the dynamic content from a database, but I'm struggling with the static content in the Views. Surely this should be an easy task with routing and a sitemap.

    Read the article

  • Using the Katana Authentication handlers with NancyFx

    - by cibrax
    Once you write an OWIN Middleware service, it can be reused everywhere as long as OWIN is supported. In my last post, I discussed how you could write an Authentication Handler in Katana for Hawk (HMAC Authentication). Good news is NancyFx can be run as an OWIN handler, so you can use many of existing middleware services, including the ones that are ship with Katana. Running NancyFx as a OWIN handler is pretty straightforward, and discussed in detail as part of the NancyFx documentation here. After run the steps described there and you have the application working, only a few more steps are required to register the additional middleware services. The example bellow shows how the Startup class is modified to include Hawk authentication. public class Startup { public void Configuration(IAppBuilder app) { app.UseHawkAuthentication(new HawkAuthenticationOptions { Credentials = (id) => { return new HawkCredential { Id = "dh37fgj492je", Key = "werxhqb98rpaxn39848xrunpaw3489ruxnpa98w4rxn", Algorithm = "hmacsha256", User = "steve" }; } }); app.UseNancy(); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This code registers the Hawk Authentication Handler on top of the OWIN pipeline, so it will try to authenticate the calls before the request messages are passed over to NancyFx. The authentication handlers in Katana set the user principal in the OWIN environment using the key “server.User”. The following code shows how you can get that principal in a NancyFx module, public class HomeModule : NancyModule { public HomeModule() { Get["/"] = x => { var env = (IDictionary<string, object>)Context.Items[NancyOwinHost.RequestEnvironmentKey]; if (!env.ContainsKey("server.User") || env["server.User"] == null) { return HttpStatusCode.Unauthorized; } var identity = (ClaimsPrincipal)env["server.User"]; return "Hello " + identity.Identity.Name; }; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Thanks to OWIN, you don’t know any details of how these cross cutting concerns can be implemented in every possible web application framework.

    Read the article

  • CacheAdapter 2.4 – Bug fixes and minor functional update

    - by Glav
    Note: If you are unfamiliar with the CacheAdapter library and what it does, you can read all about its awesome ability to utilise memory, Asp.Net Web, Windows Azure AppFabric and memcached caching implementations via a single unified, simple to use API from here and here.. The CacheAdapter library is receiving an update to version 2.4 and is currently available on Nuget here. Update: The CacheAdapter has actualy just had a minor revision to 2.4.1. This significantly increases the performance and reliability in memcached scenario under more extreme loads. General to moderate usage wont see any noticeable difference though. Bugs This latest version fixes a big that is only present in the memcached implementation and is only seen in rare, intermittent times (making i particularly hard to find). The bug is where a cache node would be removed from the farm when errors in deserialization of cached objects would occur due to serialised data not being read from the stream in entirety. The code also contains enhancements to better surface serialization exceptions to aid in the debugging process. This is also specifically targeted at the memcached implementation. This is important when moving from something like memory or Asp.Web caching mechanisms to memcached where the serialization rules are not as lenient. There are a few other minor bug fixes, code cleanup and a little refactoring. Minor feature addition In addition to this bug fix, many people have asked for a single setting to either enable or disable the cache.In this version, you can disable the cache by setting the IsCacheEnabled flag to false in the application configuration file. Something like the example below: <Glav.CacheAdapter.MainConfig> <setting name="CacheToUse" serializeAs="String"> <value>memcached</value> </setting> <setting name="DistributedCacheServers" serializeAs="String"> <value>localhost:11211</value> </setting> <setting name="IsCacheEnabled" serializeAs="String"> <value>False</value> </setting> </Glav.CacheAdapter.MainConfig> Your reasons to use this feature may vary (perhaps some performance testing or problem diagnosis). At any rate, disabling the cache will cause every attempt to retrieve data from the cache, resulting in a cache miss and returning null. If you are using the ICacheProvider with the delegate/Func<T> syntax to populate the cache, this delegate method will get executed every single time. For example, when the cache is disabled, the following delegate/Func<T> code will be executed every time: var data1 = cacheProvider.Get<SomeData>("cache-key", DateTime.Now.AddHours(1), () => { // With the cache disabled, this data access code is executed every attempt to // get this data via the CacheProvider. var someData = new SomeData() { SomeText = "cache example1", SomeNumber = 1 }; return someData; }); One final note: If you access the cache directly via the ICache instance, instead of the higher level ICacheProvider API, you bypass this setting and still access the underlying cache implementation. Only the ICacheProvider instance observes the IsCacheEnabled setting. Thanks to those individuals who have used this library and provided feedback. Ifyou have any suggestions or ideas, please submit them to the issue register on bitbucket (which is where you can grab all the source code from too)

    Read the article

  • Asp.net Ajax problem

    - by Vinzcent
    Hey I installed the Asp.net Ajax toolkit. In my site I use the NummericUpDown from that toolkit. Now, I want that a label changes when the NummericUpDown Textboxes changes. I try to use JavaScript for this, but I always get the following error: 'ASP.orders_aspx' does not contain a definition for 'changeAmount' and no extension method 'changeAmount' accepting a first argument of type 'ASP.orders_aspx' could be found (are you missing a using directive or an assembly reference?) This is my code: <%@ Page Language="C#" MasterPageFile="~/MasterPage.master" AutoEventWireup="true" CodeFile="orders.aspx.cs" Inherits="orders" Title="the BookStore" %> <%@ Register Assembly="AjaxControlToolkit" Namespace="AjaxControlToolkit" TagPrefix="ajaxToolkit" %> <asp:Content ID="Content1" ContentPlaceHolderID="head" runat="Server"> <script type="text/javascript"> function changeAmount() { var amount = document.getElementById("txtCount"); var total = 10 * amount.value; document.getElementById("lblPrice").value = total; } </script> </asp:Content> <asp:Content ID="Content2" ContentPlaceHolderID="ContentPlaceHolder1" runat="Server"> <ajaxToolkit:ToolkitScriptManager runat="Server" EnablePartialRendering="true" ID="ScriptManager1" /> <h1 id="H1" runat="server"> Bestellen</h1> <asp:Panel ID="pnlZoeken" runat="server" Visible="true"> <asp:ObjectDataSource ID="objdsSelectedBooks" runat="server" OnSelecting="objdsSelectedBooks_Selecting" TypeName="DAL.BooksDAL"></asp:ObjectDataSource> <h3> Overzicht van het gekozen boek</h3> <asp:FormView ID="fvBestelBoek" runat="server" Width="650"> <ItemTemplate> <h3> Aantal boeken bestellen</h3> <table width="650"> <tr class="txtBox"> <td> Boek </td> <td> Prijs </td> <td> Aantal </td> <td> Korting </td> <td> Totale Prijs </td> </tr> <tr> <td> <%# Eval("TITLE") %> </td> <td> <asp:Label ID="lblPrice" runat="server" Text='<%# Eval("PRICE") %>' /> </td> <td> <asp:TextBox OnTextChanged="changeAmount()" ID="txtCount" runat="server"></asp:TextBox> <ajaxToolkit:NumericUpDownExtender ID="NumericUpDownExtender1" runat="server" TargetControlID="txtCount" Width="50" Minimum="1" ServiceDownMethod="" ServiceUpMethod="" /> </td> <td> - </td> <td> <asp:Label ID="lblAmount" runat="server" /> </td> </tr> </table> </ItemTemplate> </asp:FormView> <asp:Button ID="btnBestel" runat="server" CssClass="btn" Text="Bestel" OnClick="btnBestel_Click1" /> <asp:Button ID="btnReChoose" runat="server" CssClass="btnDelete" Text="Kies een ander boek" OnClick="btnRechoose_Click" /> </asp:Panel> </asp:Content> Does anyone know the answer? Thanks a lot, Vincent

    Read the article

  • ASP.NET - Call required field validator before AJAX modalpopup, client side

    - by odinel
    I have an ASP.NET/C# application. The user fills out a form with required fields, then clicks a submit button. An AJAX popup message is then displayed, and if they confirm, their information is posted back to the server. The problem is that the AJAX popup is fired BEFORE the req validator. I need to interrupt this and run the req validator, and then if successful show the popup. I know the req validator is working, because if you cancel the popup message, the req text is shown next to the fields. Textbox and AJAX control code is here: <table> <tr> <td>Name</td> <td> <asp:TextBox ID="txtName" runat="server" CssClass="textBox" AutoPostBack="true"></asp:TextBox> <asp:RequiredFieldValidator ID="reqName" runat="server" Text="*" ControlToValidate="txtName" ValidationGroup="trade" ForeColor="White"></asp:RequiredFieldValidator> </td> </tr> <tr> <td>Address</td> <td> <asp:TextBox ID="txtAdd1" runat="server" CssClass="textBox"></asp:TextBox> <asp:RequiredFieldValidator ID="RequiredFieldValidator1" runat="server" Text="*" ControlToValidate="txtAdd1" ValidationGroup="trade" ForeColor="White"></asp:RequiredFieldValidator> </td> </tr> <tr> <td></td> <td> <asp:Button ID="btnSubmitEnquiry" runat="server" CssClass="buttonText" Text="Submit Enquiry" ValidationGroup="trade" /> </td> </tr> </table> <ajax:ModalPopupExtender ID="ModalPopupExtender1" runat="server" okcontrolid="lnkCancel" targetcontrolid="btnSubmitEnquiry" popupcontrolid="pnlConfirm" popupdraghandlecontrolid="PopupHeader" drag="true" ></ajax:ModalPopupExtender> <asp:Button Text="targetbutton" ID="btnConfTgt" runat="server" Style="display: none" /> <asp:Panel ID="pnlConfirm" style="display:none" runat="server"> <div class="PopupContainer"> <div class="PopupBody"> <br /> <div align="center"> <asp:label ID="Label1" runat="server" CssClass="lblConfirmpopup"> Message goes here </asp:label> </div> <br /><br /><br /> <div align="center"> <asp:LinkButton ID="lnkCancel" runat="server" visible="true" Text="Cancel" CommandName="Update" BorderColor="#FFFFFF" BackColor="#000000" BorderWidth="3" BorderStyle="Double" ForeColor="White" Font-Size="13pt" Font-Underline="False"></asp:LinkButton> <asp:LinkButton ID="lnkConfirm" runat="server" visible="true" Text="Submit Enquiry" CommandName="Update" BorderColor="#FFFFFF" BackColor="#000000" BorderWidth="3" BorderStyle="Double" ForeColor="White" Font-Size="13pt" Font-Underline="False" OnClick="btnSubmitEnquiry_Click"></asp:LinkButton> </div> </div> </div> </asp:Panel> I've tried coding the first submit button to call the client-side req validator method, but no joy; it still shows the popup before the req validator. If there's no simple solution, I was thinking of perhaps an 'outside the box' solution, maybe hiding the initial Submit button after the req validation has passed, then showing an additional button with the popup control attached to it. Not sure how I'd be able to achieve this though. Thanks

    Read the article

  • Displaying an image on a LED matrix with a Netduino

    - by Bertrand Le Roy
    In the previous post, we’ve been flipping bits manually on three ports of the Netduino to simulate the data, clock and latch pins that a shift register expected. We did all that in order to control one line of a LED matrix and create a simple Knight Rider effect. It was rightly pointed out in the comments that the Netduino has built-in knowledge of the sort of serial protocol that this shift register understands through a feature called SPI. That will of course make our code a whole lot simpler, but it will also make it a whole lot faster: writing to the Netduino ports is actually not that fast, whereas SPI is very, very fast. Unfortunately, the Netduino documentation for SPI is severely lacking. Instead, we’ve been reliably using the documentation for the Fez, another .NET microcontroller. To send data through SPI, we’ll just need  to move a few wires around and update the code. SPI uses pin D11 for writing, pin D12 for reading (which we won’t do) and pin D13 for the clock. The latch pin is a parameter that can be set by the user. This is very close to the wiring we had before (data on D11, clock on D12 and latch on D13). We just have to move the latch from D13 to D10, and the clock from D12 to D13. The code that controls the shift register has slimmed down considerably with that change. Here is the new version, which I invite you to compare with what we had before: public class ShiftRegister74HC595 { protected SPI Spi; public ShiftRegister74HC595(Cpu.Pin latchPin) : this(latchPin, SPI.SPI_module.SPI1) { } public ShiftRegister74HC595(Cpu.Pin latchPin, SPI.SPI_module spiModule) { var spiConfig = new SPI.Configuration( SPI_mod: spiModule, ChipSelect_Port: latchPin, ChipSelect_ActiveState: false, ChipSelect_SetupTime: 0, ChipSelect_HoldTime: 0, Clock_IdleState: false, Clock_Edge: true, Clock_RateKHz: 1000 ); Spi = new SPI(spiConfig); } public void Write(byte buffer) { Spi.Write(new[] {buffer}); } } All we have to do here is configure SPI. The write method couldn’t be any simpler. Everything is now handled in hardware by the Netduino. We set the frequency to 1MHz, which is largely sufficient for what we’ll be doing, but it could potentially go much higher. The shift register addresses the columns of the matrix. The rows are directly wired to ports D0 to D7 of the Netduino. The code writes to only one of those eight lines at a time, which will make it fast enough. The way an image is displayed is that we light the lines one after the other so fast that persistence of vision will give the illusion of a stable image: foreach (var bitmap in matrix.MatrixBitmap) { matrix.OnRow(row, bitmap, true); matrix.OnRow(row, bitmap, false); row++; } Now there is a twist here: we need to run this code as fast as possible in order to display the image with as little flicker as possible, but we’ll eventually have other things to do. In other words, we need the code driving the display to run in the background, except when we want to change what’s being displayed. Fortunately, the .NET Micro Framework supports multithreading. In our implementation, we’ve added an Initialize method that spins a new thread that is tied to the specific instance of the matrix it’s being called on. public LedMatrix Initialize() { DisplayThread = new Thread(() => DoDisplay(this)); DisplayThread.Start(); return this; } I quite like this way to spin a thread. As you may know, there is another, built-in way to contextualize a thread by passing an object into the Start method. For the method to work, the thread must have been constructed with a ParameterizedThreadStart delegate, which takes one parameter of type object. I like to use object as little as possible, so instead I’m constructing a closure with a Lambda, currying it with the current instance. This way, everything remains strongly-typed and there’s no casting to do. Note that this method would extend perfectly to several parameters. Of note as well is the return value of Initialize, a common technique to add some fluency to the API and enabling the matrix to be instantiated and initialized in a single line: using (var matrix = new LedMS88SR74HC595().Initialize()) The “using” in the previous line is because we have implemented IDisposable so that the matrix kills the thread and clears the display when the user code is done with it: public void Dispose() { Clear(); DisplayThread.Abort(); } Thanks to the multi-threaded version of the matrix driver class, we can treat the display as a simple bitmap with a very synchronous programming model: matrix.Set(someimage); while (button.Read()) { Thread.Sleep(10); } Here, the call into Set returns immediately and from the moment the bitmap is set, the background display thread will constantly continue refreshing no matter what happens in the main thread. That enables us to wait or read a button’s port on the main thread knowing that the current image will continue displaying unperturbed and without requiring manual refreshing. We’ve effectively hidden the implementation of the display behind a convenient, synchronous-looking API. Pretty neat, eh? Before I wrap up this post, I want to talk about one small caveat of using SPI rather than driving the shift register directly: when we got to the point where we could actually display images, we noticed that they were a mirror image of what we were sending in. Oh noes! Well, the reason for it is that SPI is sending the bits in a big-endian fashion, in other words backwards. Now sure you could fix that in software by writing some bit-level code to reverse the bits we’re sending in, but there is a far more efficient solution than that. We are doing hardware here, so we can simply reverse the order in which the outputs of the shift register are connected to the columns of the matrix. That’s switching 8 wires around once, as compared to doing bit operations every time we send a line to display. All right, so bringing it all together, here is the code we need to write to display two images in succession, separated by a press on the board’s button: var button = new InputPort(Pins.ONBOARD_SW1, false, Port.ResistorMode.Disabled); using (var matrix = new LedMS88SR74HC595().Initialize()) { // Oh, prototype is so sad! var sad = new byte[] { 0x66, 0x24, 0x00, 0x18, 0x00, 0x3C, 0x42, 0x81 }; DisplayAndWait(sad, matrix, button); // Let's make it smile! var smile = new byte[] { 0x42, 0x18, 0x18, 0x81, 0x7E, 0x3C, 0x18, 0x00 }; DisplayAndWait(smile, matrix, button); } And here is a video of the prototype running: The prototype in action I’ve added an artificial delay between the display of each row of the matrix to clearly show what’s otherwise happening very fast. This way, you can clearly see each of the two images being displayed line by line. Next time, we’ll do no hardware changes, focusing instead on building a nice programming model for the matrix, with sprites, text and hardware scrolling. Fun stuff. By the way, can any of my reader guess where we’re going with all that? The code for this prototype can be downloaded here: http://weblogs.asp.net/blogs/bleroy/Samples/NetduinoLedMatrixDriver.zip

    Read the article

  • Tulsa SharePoint Interest Group – Meeting Reminder

    - by dmccollough
    Just a quick reminder that the Tulsa SharePoint Interest Group is having it’s monthly meeting this coming Monday April 12th @6:00 PM.   Please come see Corey Roth’s presentation on SharePoint 2010 Business Connectivity Services   We are going to be giving away some GREAT prizes XBox 360 – Halo 3 ODST Telerik Premium Collection ($1,300.00 value) ReSharper ($199.00 value) SQL Sets ($149.00 value) 64 Bit Windows 7 Infragistics NetAdvantage for .NET Platform ($1,195.00 value) You can click here for more information. You can click here to RSVP for the meeting.

    Read the article

  • Using delegates in C# (Part 2)

    - by rajbk
    Part 1 of this post can be read here. We are now about to see the different syntaxes for invoking a delegate and some c# syntactic sugar which allows you to code faster. We have the following console application. 1: public delegate double Operation(double x, double y); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: Operation op1 = new Operation(Division); 9: double result = op1.Invoke(10, 5); 10: 11: Console.WriteLine(result); 12: Console.ReadLine(); 13: } 14: 15: static double Division(double x, double y) { 16: return x / y; 17: } 18: } Line 1 defines a delegate type called Operation with input parameters (double x, double y) and a return type of double. On Line 8, we create an instance of this delegate and set the target to be a static method called Division (Line 15) On Line 9, we invoke the delegate (one entry in the invocation list). The program outputs 5 when run. The language provides shortcuts for creating a delegate and invoking it (see line 9 and 11). Line 9 is a syntactical shortcut for creating an instance of the Delegate. The C# compiler will infer on its own what the delegate type is and produces intermediate language that creates a new instance of that delegate. Line 11 uses a a syntactical shortcut for invoking the delegate by removing the Invoke method. The compiler sees the line and generates intermediate language which invokes the delegate. When this code is compiled, the generated IL will look exactly like the IL of the compiled code above. 1: public delegate double Operation(double x, double y); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: //shortcut constructor syntax 9: Operation op1 = Division; 10: //shortcut invoke syntax 11: double result = op1(10, 2); 12: 13: Console.WriteLine(result); 14: Console.ReadLine(); 15: } 16: 17: static double Division(double x, double y) { 18: return x / y; 19: } 20: } C# 2.0 introduced Anonymous Methods. Anonymous methods avoid the need to create a separate method that contains the same signature as the delegate type. Instead you write the method body in-line. There is an interesting fact about Anonymous methods and closures which won’t be covered here. Use your favorite search engine ;-)We rewrite our code to use anonymous methods (see line 9): 1: public delegate double Operation(double x, double y); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: //Anonymous method 9: Operation op1 = delegate(double x, double y) { 10: return x / y; 11: }; 12: double result = op1(10, 2); 13: 14: Console.WriteLine(result); 15: Console.ReadLine(); 16: } 17: 18: static double Division(double x, double y) { 19: return x / y; 20: } 21: } We could rewrite our delegate to be of a generic type like so (see line 2 and line 9). You will see why soon. 1: //Generic delegate 2: public delegate T Operation<T>(T x, T y); 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: Operation<double> op1 = delegate(double x, double y) { 10: return x / y; 11: }; 12: double result = op1(10, 2); 13: 14: Console.WriteLine(result); 15: Console.ReadLine(); 16: } 17: 18: static double Division(double x, double y) { 19: return x / y; 20: } 21: } The .NET 3.5 framework introduced a whole set of predefined delegates for us including public delegate TResult Func<T1, T2, TResult>(T1 arg1, T2 arg2); Our code can be modified to use this delegate instead of the one we declared. Our delegate declaration has been removed and line 7 has been changed to use the Func delegate type. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: //Func is a delegate defined in the .NET 3.5 framework 7: Func<double, double, double> op1 = delegate (double x, double y) { 8: return x / y; 9: }; 10: double result = op1(10, 2); 11: 12: Console.WriteLine(result); 13: Console.ReadLine(); 14: } 15: 16: static double Division(double x, double y) { 17: return x / y; 18: } 19: } .NET 3.5 also introduced lambda expressions. A lambda expression is an anonymous function that can contain expressions and statements, and can be used to create delegates or expression tree types. We change our code to use lambda expressions. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: //lambda expression 7: Func<double, double, double> op1 = (x, y) => x / y; 8: double result = op1(10, 2); 9: 10: Console.WriteLine(result); 11: Console.ReadLine(); 12: } 13: 14: static double Division(double x, double y) { 15: return x / y; 16: } 17: } C# 3.0 introduced the keyword var (implicitly typed local variable) where the type of the variable is inferred based on the type of the associated initializer expression. We can rewrite our code to use var as shown below (line 7).  The implicitly typed local variable op1 is inferred to be a delegate of type Func<double, double, double> at compile time. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: //implicitly typed local variable 7: var op1 = (x, y) => x / y; 8: double result = op1(10, 2); 9: 10: Console.WriteLine(result); 11: Console.ReadLine(); 12: } 13: 14: static double Division(double x, double y) { 15: return x / y; 16: } 17: } You have seen how we can write code in fewer lines by using a combination of the Func delegate type, implicitly typed local variables and lambda expressions.

    Read the article

  • Oi! What's going on with the .NET Reflector update mechanism?

    - by Bart Read
    Anyone who's been using .NET Reflector for any length of time will by now be used to its built-in update mechanism. Every 6 months or so it will ask you to upgrade to the latest version and, if you don't, will refuse to work after a few weeks have passed. Love it or hate it, it mostly works pretty well, unless your internet connection is down, in which case it can be a pain in the ass (we're discussing options to improve this situation at the moment because, if you haven't fired it up for a while,...(read more)

    Read the article

  • Using MAC Authentication for simple Web API’s consumption

    - by cibrax
    For simple scenarios of Web API consumption where identity delegation is not required, traditional http authentication schemas such as basic, certificates or digest are the most used nowadays. All these schemas rely on sending the caller credentials or some representation of it in every request message as part of the Authorization header, so they are prone to suffer phishing attacks if they are not correctly secured at transport level with https. In addition, most client applications typically authenticate two different things, the caller application and the user consuming the API on behalf of that application. For most cases, the schema is simplified by using a single set of username and password for authenticating both, making necessary to store those credentials temporally somewhere in memory. The true is that you can use two different identities, one for the user running the application, which you might authenticate just once during the first call when the application is initialized, and another identity for the application itself that you use on every call. Some cloud vendors like Windows Azure or Amazon Web Services have adopted an schema to authenticate the caller application based on a Message Authentication Code (MAC) generated with a symmetric algorithm using a key known by the two parties, the caller and the Web API. The caller must include a MAC as part of the Authorization header created from different pieces of information in the request message such as the address, the host, and some other headers. The Web API can authenticate the caller by using the key associated to it and validating the attached MAC in the request message. In that way, no credentials are sent as part of the request message, so there is no way an attacker to intercept the message and get access to those credentials. Anyways, this schema also suffers from some deficiencies that can generate attacks. For example, brute force can be still used to infer the key used for generating the MAC, and impersonate the original caller. This can be mitigated by renewing keys in a relative short period of time. This schema as any other can be complemented with transport security. Eran Rammer, one of the brains behind OAuth, has recently published an specification of a protocol based on MAC for Http authentication called Hawk. The initial version of the spec is available here. A curious fact is that the specification per se does not exist, and the specification itself is the code that Eran initially wrote using node.js. In that implementation, you can associate a key to an user, so once the MAC has been verified on the Web API, the user can be inferred from that key. Also a timestamp is used to avoid replay attacks. As a pet project, I decided to port that code to .NET using ASP.NET Web API, which is available also in github under https://github.com/pcibraro/hawknet Enjoy!.

    Read the article

  • Transposition - the success story of VB6 migration

    - by Visual WebGui
    Since all of you VB developers in the present or past would probably find it hard to believe that the old VB code can be migrated and modernized into the latest .NET based HTML5 without having to rewrite the application I am feeling I need to write another post on our migration solution. Hopefully, after reading this and the previous post you will be able to understand the different approach of our solution which already helps organizations around the world move away from the constraints of VB6 and...(read more)

    Read the article

  • Academy Webcast: Moving C/S applications to Windows Azure

    - by Visual WebGui
    The Cloud and SaaS models are changing the face of enterprise IT in terms of economics, scalability and accessibility. As I wrote before Visual WebGui Instant CloudMove transforms your Client / Server application code to run natively as .NET on Windows Azure and enables your Azure Client / Server application to have a secured-by-design plain Web or Mobile browser based accessibility. On Tuesday 8 March at 8am (USA Pacific Time) Itzik Spitzen VP of R&D @ Gizmox will present a webcast on Microsoft...(read more)

    Read the article

  • DotNetNuke is switching to C#, uh oh

    - by Chris Hammond
    If you didn’t see Shaun’s blog post earlier this week you should give it a good read through . The post announced the fact that starting with Version 6.0 (targeted for Q2 2011) DotNetNuke will no longer be developed/released as a VB.NET Application. All development of the core platform will be in C# (this does not mean that the community modules for the platform will change languages). Most of the feedback I have seen so far has been rather positive, most folks who use DotNetNuke on a regular basis...(read more)

    Read the article

  • 'Microsoft.Practices.EnterpriseLibrary.Caching.CacheFactory' threw an exception

    - by user281180
    Hi I`m having the error message: The type initializer for 'Microsoft.Practices.EnterpriseLibrary.Caching.CacheFactory' threw an exception. Description: An unhandled exception occurred during the execution of the current web request. Please review the stack trace for more information about the error and where it originated in the code. Exception Details: System.IO.FileNotFoundException: Could not load file or assembly 'Microsoft.Practices.ObjectBuilder2, Version=2.2.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35' or one of its dependencies. The system cannot find the file specified. Source Error: Line 30: private static ICacheManager GetCacheManager() Line 31: { Line 32: return CacheFactory.GetCacheManager(cacheManagerName); Line 33: } Line 34: } Source File: C:\Dev\DEV\HotHouse\HotHousetest3_rtmClone107\Code\MvcUI\State\PersistentCache.cs Line: 32 Assembly Load Trace: The following information can be helpful to determine why the assembly 'Microsoft.Practices.ObjectBuilder2, Version=2.2.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35' could not be loaded. , whereas my colleages using the same dll, are not having the error message. Help please. I have Microsoft.Practices.EnterpriseLibrary.Caching and Microsoft.Practices.EnterpriseLibrary.Common as references both version 4.1.0.0 and runtime version v2.0.50727.

    Read the article

< Previous Page | 108 109 110 111 112 113 114 115 116 117 118 119  | Next Page >