Search Results

Search found 11735 results on 470 pages for 'global variables'.

Page 113/470 | < Previous Page | 109 110 111 112 113 114 115 116 117 118 119 120  | Next Page >

  • Applying WCAG 2.0 to Non-Web ICT: second draft published from WCAG2ICT Task Force - for public review

    - by Peter Korn
    Last Thursday the W3C published an updated Working Draft of Guidance on Applying WCAG 2.0 to Non-Web Information and Communications Technologies. As I noted last July when the first draft was published, the motivation for this guidance comes from the Section 508 refresh draft, and also the European Mandate 376 draft, both of which seek to apply the WCAG 2.0 level A and AA Success Criteria to non-web ICT documents and software. This second Working Draft represents a major step forward in harmonization with the December 5th, 2012 Mandate 376 draft documents, including specifically Draft EN 301549 "European accessibility requirements for public procurement of ICT products and services". This work greatly increases the likelihood of harmonization between the European and American technical standards for accessibility, for web sites and web applications, non-web documents, and non-web software. As I noted last October at the European Policy Centre event: "The Accessibility Act – Ensuring access to goods and services across the EU", and again last month at the follow-up EPC event: "Accessibility - From European challenge to global opportunity", "There isn't a 'German Macular Degernation', a 'French Cerebral Palsy', an 'American Autism Spectrum Disorder'. Disabilities are part of the human condition. They’re not unique to any one country or geography – just like ICT. Even the built environment – phones, trains and cars – is the same worldwide. The definition of ‘accessible’ should be global – and the solutions should be too. Harmonization should be global, and not just EU-wide. It doesn’t make sense for the EU to have a different definition to the US or Japan." With these latest drafts from the W3C and Mandate 376 team, we've moved a major step forward toward that goal of a global "definition of 'accessible' ICT." I strongly encourage all interested parties to read the Call for Review, and to submit comments during the current review period, which runs through 15 February 2013. Comments should be sent to public-wcag2ict-comments-AT-w3.org. I want to thank my colleagues on the WCAG2ICT Task Force for the incredible time and energy and expertise they brought to this work - including particularly my co-authors Judy Brewer, Loïc Martínez Normand, Mike Pluke, Andi Snow-Weaver, and Gregg Vanderheiden; and the document editors Michael Cooper, and Andi Snow-Weaver.

    Read the article

  • JavaScript Class Patterns Revisited: Endgame

    - by Liam McLennan
    I recently described some of the patterns used to simulate classes (types) in JavaScript. But I missed the best pattern of them all. I described a pattern I called constructor function with a prototype that looks like this: function Person(name, age) { this.name = name; this.age = age; } Person.prototype = { toString: function() { return this.name + " is " + this.age + " years old."; } }; var john = new Person("John Galt", 50); console.log(john.toString()); and I mentioned that the problem with this pattern is that it does not provide any encapsulation, that is, it does not allow private variables. Jan Van Ryswyck recently posted the solution, obvious in hindsight, of wrapping the constructor function in another function, thereby allowing private variables through closure. The above example becomes: var Person = (function() { // private variables go here var name,age; function constructor(n, a) { name = n; age = a; } constructor.prototype = { toString: function() { return name + " is " + age + " years old."; } }; return constructor; })(); var john = new Person("John Galt", 50); console.log(john.toString()); Now we have prototypal inheritance and encapsulation. The important thing to understand is that the constructor, and the toString function both have access to the name and age private variables because they are in an outer scope and they become part of the closure.

    Read the article

  • How to expose game data in the game without a singelton?

    - by zardon
    I'm quite new to cocos2d and games programming, and am currently I am writing a game that is currently in Prototype stage. Everything is going okay, but I've realized a potentially big problem and I am not sure how to solve it. I am using a singelton to store a bunch of arrays for everything, a global list of planets, a global list of troops, a global list of products, etc. And only now I'm realizing that all of this will be in memory and this is the wrong way to do it. I am not storing files or anything on the disk just yet, with exception to a save/load state, which is a capture of everything. My game makes use of a map which allows you to select a planet, then it will give you a breakdown of that planets troops and resources, Lets use this scenario: My game has 20 planets. On which you can have 20 troops. Straight away that's an array of 400! This does not add the NPC, which is another 10. So, 20x10 = 200 So, now we have 600 all in arrays inside a Singelton. This is obviously very bad, and very wrong. Especially as the game scales in the amount of data. But I need to expose pretty much everything, especially on the map page, and I am not sure how else to do it. I've been told that I can use a controller for the map page which has the information I need for each planet, and other controllers for other items I require global display for. I've also thought about storing each planet's data in a save file, using initWithCoder however there could be a boatload of files on the user's device? I really don't want to use a database, mainly because I would need to translate NSObjects and non-NSObjects like CGRects and CGPoints and Colors into/from SQL. I am open to other ideas on how to store and read game data to prevent using a singelton to store everything, everywhere. Thanks for your time.

    Read the article

  • Data classes: getters and setters or different method design

    - by Frog
    I've been trying to design an interface for a data class I'm writing. This class stores styles for characters, for example whether the character is bold, italic or underlined. But also the font-size and the font-family. So it has different types of member variables. The easiest way to implement this would be to add getters and setters for every member variable, but this just feels wrong to me. It feels way more logical (and more OOP) to call style.format(BOLD, true) instead of style.setBold(true). So to use logical methods insteads of getters/setters. But I am facing two problems while implementing these methods: I would need a big switch statement with all member variables, since you can't access a variable by the contents of a string in C++. Moreover, you can't overload by return type, which means you can't write one getter like style.getFormatting(BOLD) (I know there are some tricks to do this, but these don't allow for parameters, which I would obviously need). However, if I would implement getters and setters, there are also issues. I would have to duplicate quite some code because styles can also have a parent styles, which means the getters have to look not only at the member variables of this style, but also at the variables of the parent styles. Because I wasn't able to figure out how to do this, I decided to ask a question a couple of weeks ago. See Object Oriented Programming: getters/setters or logical names. But in that question I didn't stress it would be just a data object and that I'm not making a text rendering engine, which was the reason one of the people that answered suggested I ask another question while making that clear (because his solution, the decorator pattern, isn't suitable for my problem). So please note that I'm not creating my own text rendering engine, I just use these classes to store data. Because I still haven't been able to find a solution to this problem I'd like to ask this question again: how would you design a styles class like this? And why would you do that? Thanks on forehand!

    Read the article

  • Using Google App Engine to Perform World Updates vs an Authoritative Server

    - by Error 454
    I am considering different game server architectures that use GAE. The types of games I am considering are turn-based where the world status would need to be updated about once per minute. I am looking for an answer that persuades me to either perform the world update on the google servers OR an authoritative server that syncs with the datastore. The main goal here would be to minimize GAE daily quotas. For some rough numbers, I am assuming 10,000 entities requiring updates. Each entity update would require: Reading 5 private entity variables (fetched from datastore) Fetching as many as 20 static variables (from datastore or persisted in server memory) Writing 5 entity variables Clients of the game would authenticate and set state directly against GAE as well as pull the latest world state from GAE. Running the update on GAE would consist of a cron job launched every minute. This would update all of the entities and save the results to the datastore. This would be more CPU intensive for GAE. Running the update on an authoritative server would consist of fetching entity data from the GAE datastore, calculating the new entity states and pushing the new state variables back to the datastore. This would be more bandwidth intensive for the datastore.

    Read the article

  • How should I start refactoring my mostly-procedural C++ application?

    - by oob
    We have a program written in C++ that is mostly procedural, but we do use some C++ containers from the standard library (vector, map, list, etc). We are constantly making changes to this code, so I wouldn't call it a stagnant piece of legacy code that we can just wrap up. There are a lot of issues with this code making it harder and harder for us to make changes, but I see the three biggest issues being: Many of the functions do more (way more) than one thing We violate the DRY principle left and right We have global variables and global state up the wazoo. I was thinking we should attack areas 1 and 2 first. Along the way, we can "de-globalize" our smaller functions from the bottom up by passing in information that is currently global as parameters to the lower level functions from the higher level functions and then concentrate on figuring out how to removing the need for global variables as much as possible. I just finished reading Code Complete 2 and The Pragmatic Programmer, and I learned a lot, but I am feeling overwhelmed. I would like to implement unit testing, change from a procedural to OO approach, automate testing, use a better logging system, fully validate all input, implement better error handling and many other things, but I know if we start all this at once, we would screw ourselves. I am thinking the three I listed are the most important to start with. Any suggestions are welcome. We are a team of two programmers mostly with experience with in-house scripting. It is going to be hard to justify taking the time to refactor, especially if we can't bill the time to a client. Believe it or not, this project has been successful enough to keep us busy full time and also keep several consultants busy using it for client work.

    Read the article

  • Binding in the view or the controller?

    - by da_b0uncer
    I've seen 2 different approaches with MVC on the web. One, like in ExtJS, is to bind the callbacks to the view via the controller. Finding every element on the view and adding the functionallity. The other, like in angular.js and in the lift-framework server-side, too, is to bind in the views and just write the functionallity in the controller. Which is better and cleaner? The ExtJS approach has dumb views and all the logic in the controller. Which seems clean to me. I had problems with global IDs for GUI-elements or relative navigation to GUI-elements in this approach. When I changed the view, the controller couldn't find the buttons anymore or I had multiple instances of one button with the same ID on a single application, because of the global ID. But I solved this with IDs that are only global in a view and can be on the application multiple times. So I could mess with the (dumb) views layout and design and the functionallity wouldn't break. The angular.js approach with the bindings in the view don't has the problem with global IDs. Also, the person who changes something in the view layout has to know the IDs anyway, so the controller can put the data at the right spot. So if I write <a ng-click="doThis()" /> for angular.js and implement doThis() or <a lid="buttonwhichdoesthis" /> for extjs and find the element with the local id and add doThis() as handler on the controller side, seems to be not so different. The only thing is, the second one has one more layer of indirection, which seems cleaner. The first one seems somehow to cost less effort.

    Read the article

  • Writing an optimised and efficient search engine with mySQL and ColdFusion

    - by Mel
    I have a search page with the following scenarios listed below. I was told there was a better way to do it, but not how, and that I am using too many if statements, and that it's prone to causing an error through url manipulation: Search.cfm will processes a search made from a search bar present on all pages, with one search input (titleName). If search.cfm is accessed manually (through URL not through using the simple search bar on all pages) it displays an advanced search form with three inputs (titleName, genreID, platformID) or it evaluates searchResponse variable and decides what to do. If simple search query is blank, has no results, or less than 3 characters it displays an error If advanced search query is blank, has no results, or less than 3 characters it displays an error If any successful search returns results, they come back normally. The top-of-page logic is as follows: <!---SET DEFAULT VARIABLE---> <cfparam name="variables.searchResponse" default=""> <!---CHECK TO SEE IF SIMPLE SEARCH A FORM WAS SUBMITTED AND EXECUTE SEARCH IF IT WAS---> <cfif IsDefined("Form.simpleSearch") AND Len(Trim(Form.titleName)) LTE 2> <cfset variables.searchResponse = "invalidString"> <cfelseif IsDefined("Form.simpleSearch") AND Len(Trim(Form.titleName)) GTE 3> <!---EXECUTE METHOD AND GET DATA---> <cfinvoke component="myComponent" method="simpleSearch" searchString="#Form.titleName#" returnvariable="simpleSearchResult"> <cfset variables.searchResponse = "simpleSearchResult"> </cfif> <!---CHECK IF ANY RECORDS WERE FOUND---> <cfif IsDefined("variables.simpleSearchResult") AND simpleSearchResult.RecordCount IS 0> <cfset variables.searchResponse = "noResult"> </cfif> <!---CHECK IF ADVANCED SEARCH FORM WAS SUBMITTED---> <cfif IsDefined("Form.AdvancedSearch") AND Len(Trim(Form.titleName)) LTE 2> <cfset variables.searchResponse = "invalidString"> <cfelseif IsDefined("Form.advancedSearch") AND Len(Trim(Form.titleName)) GTE 2> <!---EXECUTE METHOD AND GET DATA---> <cfinvoke component="myComponent" method="advancedSearch" returnvariable="advancedSearchResult" titleName="#Form.titleName#" genreID="#Form.genreID#" platformID="#Form.platformID#"> <cfset variables.searchResponse = "advancedSearchResult"> </cfif> <!---CHECK IF ANY RECORDS WERE FOUND---> <cfif IsDefined("variables.advancedSearchResult") AND advancedSearchResult.RecordCount IS 0> <cfset variables.searchResponse = "noResult"> </cfif> I'm using the searchResponse variable to decide what the the page displays, based on the following scenarios: <!---ALWAYS DISPLAY SIMPLE SEARCH BAR AS IT'S PART OF THE HEADER---> <form name="simpleSearch" action="search.cfm" method="post"> <input type="hidden" name="simpleSearch" /> <input type="text" name="titleName" /> <input type="button" value="Search" onclick="form.submit()" /> </form> <!---IF NO SEARCH WAS SUBMITTED DISPLAY DEFAULT FORM---> <cfif searchResponse IS ""> <h1>Advanced Search</h1> <!---DISPLAY FORM---> <form name="advancedSearch" action="search.cfm" method="post"> <input type="hidden" name="advancedSearch" /> <input type="text" name="titleName" /> <input type="text" name="genreID" /> <input type="text" name="platformID" /> <input type="button" value="Search" onclick="form.submit()" /> </form> </cfif> <!---IF SEARCH IS BLANK OR LESS THAN 3 CHARACTERS DISPLAY ERROR MESSAGE---> <cfif searchResponse IS "invalidString"> <cfoutput> <h1>INVALID SEARCH</h1> </cfoutput> </cfif> <!---IF SEARCH WAS MADE BUT NO RESULTS WERE FOUND---> <cfif searchResponse IS "noResult"> <cfoutput> <h1>NO RESULT FOUND</h1> </cfoutput> </cfif> <!---IF SIMPLE SEARCH WAS MADE A RESULT WAS FOUND---> <cfif searchResponse IS "simpleSearchResult"> <cfoutput> <h1>Search Results</h1> </cfoutput> <cfoutput query="simpleSearchResult"> <!---DISPLAY QUERY DATA---> </cfoutput> </cfif> <!---IF ADVANCED SEARCH WAS MADE A RESULT WAS FOUND---> <cfif searchResponse IS "advancedSearchResult"> <cfoutput> <h1>Search Results</h1> <p>Your search for "#Form.titleName#" returned #advancedSearchResult.RecordCount# result(s).</p> </cfoutput> <cfoutput query="advancedSearchResult"> <!---DISPLAY QUERY DATA---> </cfoutput> </cfif> Is my logic a) not efficient because my if statements/is there a better way to do this? And b) Can you see any scenarios where my code can break? I've tested it but I have not been able to find any issues with it. And I have no way of measuring performance. Any thoughts and ideas would be greatly appreciated. Many thanks

    Read the article

  • Scheduling thread tiles with C++ AMP

    - by Daniel Moth
    This post assumes you are totally comfortable with, what some of us call, the simple model of C++ AMP, i.e. you could write your own matrix multiplication. We are now ready to explore the tiled model, which builds on top of the non-tiled one. Tiling the extent We know that when we pass a grid (which is just an extent under the covers) to the parallel_for_each call, it determines the number of threads to schedule and their index values (including dimensionality). For the single-, two-, and three- dimensional cases you can go a step further and subdivide the threads into what we call tiles of threads (others may call them thread groups). So here is a single-dimensional example: extent<1> e(20); // 20 units in a single dimension with indices from 0-19 grid<1> g(e);      // same as extent tiled_grid<4> tg = g.tile<4>(); …on the 3rd line we subdivided the single-dimensional space into 5 single-dimensional tiles each having 4 elements, and we captured that result in a concurrency::tiled_grid (a new class in amp.h). Let's move on swiftly to another example, in pictures, this time 2-dimensional: So we start on the left with a grid of a 2-dimensional extent which has 8*6=48 threads. We then have two different examples of tiling. In the first case, in the middle, we subdivide the 48 threads into tiles where each has 4*3=12 threads, hence we have 2*2=4 tiles. In the second example, on the right, we subdivide the original input into tiles where each has 2*2=4 threads, hence we have 4*3=12 tiles. Notice how you can play with the tile size and achieve different number of tiles. The numbers you pick must be such that the original total number of threads (in our example 48), remains the same, and every tile must have the same size. Of course, you still have no clue why you would do that, but stick with me. First, we should see how we can use this tiled_grid, since the parallel_for_each function that we know expects a grid. Tiled parallel_for_each and tiled_index It turns out that we have additional overloads of parallel_for_each that accept a tiled_grid instead of a grid. However, those overloads, also expect that the lambda you pass in accepts a concurrency::tiled_index (new in amp.h), not an index<N>. So how is a tiled_index different to an index? A tiled_index object, can have only 1 or 2 or 3 dimensions (matching exactly the tiled_grid), and consists of 4 index objects that are accessible via properties: global, local, tile_origin, and tile. The global index is the same as the index we know and love: the global thread ID. The local index is the local thread ID within the tile. The tile_origin index returns the global index of the thread that is at position 0,0 of this tile, and the tile index is the position of the tile in relation to the overall grid. Confused? Here is an example accompanied by a picture that hopefully clarifies things: array_view<int, 2> data(8, 6, p_my_data); parallel_for_each(data.grid.tile<2,2>(), [=] (tiled_index<2,2> t_idx) restrict(direct3d) { /* todo */ }); Given the code above and the picture on the right, what are the values of each of the 4 index objects that the t_idx variables exposes, when the lambda is executed by T (highlighted in the picture on the right)? If you can't work it out yourselves, the solution follows: t_idx.global       = index<2> (6,3) t_idx.local          = index<2> (0,1) t_idx.tile_origin = index<2> (6,2) t_idx.tile             = index<2> (3,1) Don't move on until you are comfortable with this… the picture really helps, so use it. Tiled Matrix Multiplication Example – part 1 Let's paste here the C++ AMP matrix multiplication example, bolding the lines we are going to change (can you guess what the changes will be?) 01: void MatrixMultiplyTiled_Part1(vector<float>& vC, const vector<float>& vA, const vector<float>& vB, int M, int N, int W) 02: { 03: 04: array_view<const float,2> a(M, W, vA); 05: array_view<const float,2> b(W, N, vB); 06: array_view<writeonly<float>,2> c(M, N, vC); 07: parallel_for_each(c.grid, 08: [=](index<2> idx) restrict(direct3d) { 09: 10: int row = idx[0]; int col = idx[1]; 11: float sum = 0.0f; 12: for(int i = 0; i < W; i++) 13: sum += a(row, i) * b(i, col); 14: c[idx] = sum; 15: }); 16: } To turn this into a tiled example, first we need to decide our tile size. Let's say we want each tile to be 16*16 (which assumes that we'll have at least 256 threads to process, and that c.grid.extent.size() is divisible by 256, and moreover that c.grid.extent[0] and c.grid.extent[1] are divisible by 16). So we insert at line 03 the tile size (which must be a compile time constant). 03: static const int TS = 16; ...then we need to tile the grid to have tiles where each one has 16*16 threads, so we change line 07 to be as follows 07: parallel_for_each(c.grid.tile<TS,TS>(), ...that means that our index now has to be a tiled_index with the same characteristics as the tiled_grid, so we change line 08 08: [=](tiled_index<TS, TS> t_idx) restrict(direct3d) { ...which means, without changing our core algorithm, we need to be using the global index that the tiled_index gives us access to, so we insert line 09 as follows 09: index<2> idx = t_idx.global; ...and now this code just works and it is tiled! Closing thoughts on part 1 The process we followed just shows the mechanical transformation that can take place from the simple model to the tiled model (think of this as step 1). In fact, when we wrote the matrix multiplication example originally, the compiler was doing this mechanical transformation under the covers for us (and it has additional smarts to deal with the cases where the total number of threads scheduled cannot be divisible by the tile size). The point is that the thread scheduling is always tiled, even when you use the non-tiled model. But with this mechanical transformation, we haven't gained anything… Hint: our goal with explicitly using the tiled model is to gain even more performance. In the next post, we'll evolve this further (beyond what the compiler can automatically do for us, in this first release), so you can see the full usage of the tiled model and its benefits… Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • parallel_for_each from amp.h – part 1

    - by Daniel Moth
    This posts assumes that you've read my other C++ AMP posts on index<N> and extent<N>, as well as about the restrict modifier. It also assumes you are familiar with C++ lambdas (if not, follow my links to C++ documentation). Basic structure and parameters Now we are ready for part 1 of the description of the new overload for the concurrency::parallel_for_each function. The basic new parallel_for_each method signature returns void and accepts two parameters: a grid<N> (think of it as an alias to extent) a restrict(direct3d) lambda, whose signature is such that it returns void and accepts an index of the same rank as the grid So it looks something like this (with generous returns for more palatable formatting) assuming we are dealing with a 2-dimensional space: // some_code_A parallel_for_each( g, // g is of type grid<2> [ ](index<2> idx) restrict(direct3d) { // kernel code } ); // some_code_B The parallel_for_each will execute the body of the lambda (which must have the restrict modifier), on the GPU. We also call the lambda body the "kernel". The kernel will be executed multiple times, once per scheduled GPU thread. The only difference in each execution is the value of the index object (aka as the GPU thread ID in this context) that gets passed to your kernel code. The number of GPU threads (and the values of each index) is determined by the grid object you pass, as described next. You know that grid is simply a wrapper on extent. In this context, one way to think about it is that the extent generates a number of index objects. So for the example above, if your grid was setup by some_code_A as follows: extent<2> e(2,3); grid<2> g(e); ...then given that: e.size()==6, e[0]==2, and e[1]=3 ...the six index<2> objects it generates (and hence the values that your lambda would receive) are:    (0,0) (1,0) (0,1) (1,1) (0,2) (1,2) So what the above means is that the lambda body with the algorithm that you wrote will get executed 6 times and the index<2> object you receive each time will have one of the values just listed above (of course, each one will only appear once, the order is indeterminate, and they are likely to call your code at the same exact time). Obviously, in real GPU programming, you'd typically be scheduling thousands if not millions of threads, not just 6. If you've been following along you should be thinking: "that is all fine and makes sense, but what can I do in the kernel since I passed nothing else meaningful to it, and it is not returning any values out to me?" Passing data in and out It is a good question, and in data parallel algorithms indeed you typically want to pass some data in, perform some operation, and then typically return some results out. The way you pass data into the kernel, is by capturing variables in the lambda (again, if you are not familiar with them, follow the links about C++ lambdas), and the way you use data after the kernel is done executing is simply by using those same variables. In the example above, the lambda was written in a fairly useless way with an empty capture list: [ ](index<2> idx) restrict(direct3d), where the empty square brackets means that no variables were captured. If instead I write it like this [&](index<2> idx) restrict(direct3d), then all variables in the some_code_A region are made available to the lambda by reference, but as soon as I try to use any of those variables in the lambda, I will receive a compiler error. This has to do with one of the direct3d restrictions, where only one type can be capture by reference: objects of the new concurrency::array class that I'll introduce in the next post (suffice for now to think of it as a container of data). If I write the lambda line like this [=](index<2> idx) restrict(direct3d), all variables in the some_code_A region are made available to the lambda by value. This works for some types (e.g. an integer), but not for all, as per the restrictions for direct3d. In particular, no useful data classes work except for one new type we introduce with C++ AMP: objects of the new concurrency::array_view class, that I'll introduce in the post after next. Also note that if you capture some variable by value, you could use it as input to your algorithm, but you wouldn’t be able to observe changes to it after the parallel_for_each call (e.g. in some_code_B region since it was passed by value) – the exception to this rule is the array_view since (as we'll see in a future post) it is a wrapper for data, not a container. Finally, for completeness, you can write your lambda, e.g. like this [av, &ar](index<2> idx) restrict(direct3d) where av is a variable of type array_view and ar is a variable of type array - the point being you can be very specific about what variables you capture and how. So it looks like from a large data perspective you can only capture array and array_view objects in the lambda (that is how you pass data to your kernel) and then use the many threads that call your code (each with a unique index) to perform some operation. You can also capture some limited types by value, as input only. When the last thread completes execution of your lambda, the data in the array_view or array are ready to be used in the some_code_B region. We'll talk more about all this in future posts… (a)synchronous Please note that the parallel_for_each executes as if synchronous to the calling code, but in reality, it is asynchronous. I.e. once the parallel_for_each call is made and the kernel has been passed to the runtime, the some_code_B region continues to execute immediately by the CPU thread, while in parallel the kernel is executed by the GPU threads. However, if you try to access the (array or array_view) data that you captured in the lambda in the some_code_B region, your code will block until the results become available. Hence the correct statement: the parallel_for_each is as-if synchronous in terms of visible side-effects, but asynchronous in reality.   That's all for now, we'll revisit the parallel_for_each description, once we introduce properly array and array_view – coming next. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Itautec Accelerates Profitable High Tech Customer Service

    - by charles.knapp
    Itautec is a Brazilian-based global high technology products and services firm with strong performance in the global market of banking and commercial automation, with more than 2,300 global clients. It recently deployed Siebel CRM for sales, customer support, and field service. In the first year of use, Siebel CRM enabled a 30% growth in services revenue. Siebel CRM also reduced support costs. "Oracle's Siebel CRM has minimized costs and made our customer service more agile," said Adriano Rodrigues da Silva, IT Manager. "Before deployment, 95% of our customer service contacts were made by phone. Siebel CRM made it possible to expand' choices, so that now 55% of our customers contact our helpdesk through the newer communications channels." Read more here about Itautec's success, and learn more here about how Siebel CRM can help your firm to grow customer service revenues, improve service levels, and reduce costs.

    Read the article

  • ArcSig Meeting at 04/20/2010 with Sam Abraham

    - by Rainer
    Sam Abraham gave a great presentation, “MVC2 – Do it your way in VS 2010”, at our monthly ArcSig meeting on 04/20/2010 at Global Response. The interest in Sam’s talk was immense, we almost run out of seats. The audience got an in-depth view and walkthrough of the Model View Controller functionality in Visual Studio 2010 with detailed code examples. Sam answered many user questions about practical applications in MVC. Free soft drinks and pizza kept the participants energized during the whole presentation and a raffle of books and software completed this meeting, with a preview about the upcoming meetings and events in May and June. Thank you to Sam for the exciting presentation, and to the Shooster family for hosting us this month at Global Response! Posted: Rainer Habermann ArcSig Site Director CIO @ Global Response

    Read the article

  • ArvinMeritor Sees Business Improvement: Uses Oracle Demand Management, Supply Chain Planning and Tra

    - by [email protected]
    As manufacturers begin repositioning for the economic recovery, they are reevaluating their supply chain networks, extending lean into their supply chains and making logistics visibility a priority. ArvinMeritor leveraged Oracle's Demantra, ASCP and Transportation Management applications to: Optimize operations execution by building consensus-driven demand, sales and operations plans Slash transportation costs by rationalizing shippers, optimizing routes and improving delivery performance Demantra for demand management, forecasting, sales and operations planning and global trade management Advanced Supply Chain Planning for material and capacity planning across global distribution and manufacturing facilities based on consensus forecasts, sales orders, production status, purchase orders, and inventory policy recommendations Transportation Management for transportation planning, execution, freight payment, and business process automation on a single application across all modes of transportation, from full truckload to complex multileg air, ocean, and rail shipments Oracle hosted an 'open-house/showcase" on March 30th, 2010 atArvinMeritor Global Headquarters 2135 West Maple RoadTroy, MI 48084 

    Read the article

  • Asset displays in the UI

    - by Owen Allen
    I've seen a little bit of confusion about how the UI displays assets and asset information, so I thought I'd explain how information and actions are displayed.  In Ops Center, operating systems, servers, zones, Oracle VM Servers, and anything else that you can manage are called assets. When you discover them, Ops Center puts together a model in the navigation pane that shows the relationships between the assets. For example: This tree shows three servers, and the Operating Systems on each one. If one of the operating systems was a global zone, we'd see the non-global zones beneath the global zone as well. However, when you select an asset, the info in the center pane and the actions in the actions pane are the ones that apply to that specific asset, and not to its related assets. If you select a server, for example, you'll see service request info and have the option to provision a new OS. If you select an existing OS, you'll see file system information and have the option to update the OS. Actions that apply directly to the hardware aren't visible from the OS view, and vice versa.

    Read the article

  • Cluster Node Recovery Using Second Node in Solaris Cluster

    - by Onur Bingul
    Assumptions:Node 0a is the cluster node that has crashed and could not boot anymore.Node 0b is the node in cluster and in production with services active.Both nodes have their boot disk mirrored via SDS/SVM.We have many options to clone the boot disk from node 0b:- make a copy via network using the ufsdump command and pipe to ufsrestore - make a copy inserting the disk locally on node 0b and creating the third mirror with SDS- make a copy inserting the disk locally on node 0b using dd commandIn this procedure we are going to use dd command (from my experience this is the best option).Bare in mind that in the examples provided we work on Sun Fire V240 systems which have SCSI internal disks. In the case of Fibre Channel (FC) internal disks you must pay attention to the unique identifier, or World Wide Name (WWN), associated with each FC disk (in this case take a look at infodoc #40133 in order to recreate the device tree correctly).Procedure:On node 0b the boot disk is c1t0d0 (c1t1d0 mirror) and this is the VTOC:* Partition  Tag  Flags    Sector     Count    Sector  Mount Directory      0      2    00          0   2106432   2106431      1      3    01    2106432  74630784  76737215      2      5    00          0 143349312 143349311      4      7    00   76737216  50340672 127077887      5      4    00  127077888  14683968 141761855      6      0    00  141761856   1058304 142820159      7      0    00  142820160    529152 143349311We will insert the new disk on node 0b and it will be seen as c1t2d0.1) On node 0b we make a copy via dd from disk c1t0d0s2 to disk c1t2d0s2# dd if=/dev/rdsk/c1t0d0s2 of=/dev/rdsk/c1t2d0s2 bs=8192kA copy of a 72GB disk will take approximately about 45 minutes.Note: as an alternative to make identical copy of root over network follow Document ID: 47498Title: Sun[TM] Cluster 3.0: How to Rebuild a node with Veritas Volume Manager2) Perform an fsck on disk c1t2d0 data slices:   1.  fsck -o f /dev/rdsk/c1t2d0s0 (root)   2.  fsck -o f /dev/rdsk/c1t2d0s4 (/var)   3.  fsck -o f /dev/rdsk/c1t2d0s5 (/usr)   4.  fsck -o f /dev/rdsk/c1t2d0s6 (/globaldevices)3) Mount the root file system in order to edit following files for changing the node name:# mount /dev/dsk/c1t2d0s0 /mntChange the hostname from 0b to 0a:# cd /mnt/etc# vi hosts # vi hostname.bge0 # vi hostname.bge2 # vi nodename 4) Change the /mnt/etc/vfstab from the actual:/dev/md/dsk/d201        -       -       swap    -       no      -/dev/md/dsk/d200        /dev/md/rdsk/d200       /       ufs     1       no      -/dev/md/dsk/d205        /dev/md/rdsk/d205       /usr    ufs     1       no      logging/dev/md/dsk/d204        /dev/md/rdsk/d204       /var    ufs     1       no      logging#/dev/md/dsk/d206       /dev/md/rdsk/d206       /globaldevices  ufs     2       yes     loggingswap    -       /tmp    tmpfs   -       yes     -/dev/md/dsk/d206        /dev/md/rdsk/d206       /global/.devices/node@2 ufs     2       noglobalto this (unencapsulate disk from SDS/SVM):/dev/dsk/c1t0d0s1        -       -       swap    -       no      -/dev/dsk/c1t0d0s0       /dev/rdsk/c1t0d0s0       /       ufs     1       no      -/dev/dsk/c1t0d0s5       /dev/rdsk/c1t0d0s5       /usr    ufs     1       no      logging/dev/dsk/c1t0d0s4       /dev/rdsk/c1t0d0s4       /var    ufs     1       no      logging#/dev/md/dsk/d206       /dev/md/rdsk/d206       /globaldevices  ufs     2       yes     loggingswap    -       /tmp    tmpfs   -       yes     -/dev/dsk/c1t0d0s6       /dev/rdsk/c1t0d0s6       /global/.devices/node@1 ufs     2       no globalIt is important that global device partition (slice 6) in the new vfstab will point to the physical partition of the disk (in our case slice 6).Be careful with the name you use for the new disk. In this case we define it as c1t0d0 because we will insert it as target 0 in node 0a.But this could be different based on the configuration you are working on.5) Remove following entry from /mnt/etc/system (part of unencapsulation procedure):rootdev:/pseudo/md@0:0,200,blk6) Correct the link shared -> ../../global/.devices/node@2/dev/md/shared in order to point to the nodeid of node 0a (in our case nodeid 1):# cd /mnt/dev/mdhow it is now.... node 0b has nodeid 2lrwxrwxrwx   1 root     root          42 Mar 10  2005 shared ->../../global/.devices/node@2/dev/md/shared# rm shared# ln -s ../../global/.devices/node@1/dev/md/shared sharedhow is going to be... with nodeid 1 for node 0alrwxrwxrwx   1 root     root          42 Mar 10  2005 shared ->../../global/.devices/node@1/dev/md/shared7) Change nodeid (in our case from 2 to 1):# cd /mnt/etc/cluster# vi nodeid8) Change the file /mnt/etc/path_to_inst in order to reflect the correct nodeid for node 0a:# cd /mnt/etc# vi path_to_instChange entries from node@2 to node@1 with the vi command ":%s/node@2/node@1/g"9) Write the bootblock to the disk... just in case:# /usr/sbin/installboot /usr/platform/sun4u/lib/fs/ufs/bootblk /dev/rdsk/c1t2d0s0Now the disk is ready to be inserted in node 0a in order to bootup the node.10) Bootup node 0a with command "boot -sx"... this is becasue we need to make some changes in ccr files in order to recreate did environment.11) Modify cluster ccr:# cd /etc/cluster/ccr# rm did_instances# rm did_instances.bak# vi directory - remove the did_instances line.# /usr/cluster/lib/sc/ccradm -i /etc/cluster/ccr/directory # grep ccr_gennum /etc/cluster/ccr/directory ccr_gennum -1 # /usr/cluster/lib/sc/ccradm -i /etc/cluster/ccr/infrastructure # grep ccr_gennum /etc/cluster/ccr/infrastructure ccr_gennum -112) Bring the node 0a down again to the ok prompt and then issue the command "boot -r"Now the node will join the cluster and from scstat and metaset command you can verify functionality. Next step is to encapsulate the boot disk in SDS/SVM and create the mirrors.In our case node 0b has metadevice name starting from d200. For this reason on node 0a we need to create metadevice starting from d100. This is just an example, you can have different names.The important thing to remember is that metadevice boot disks have different names on each node.13) Remove metadevice pointing to the boot and mirror disks (inherit from node 0b):# metaclear -r -f d200# metaclear -r -f d201# metaclear -r -f d204# metaclear -r -f d205# metaclear -r -f d206verify from metastat that no metadevices are set for boot and mirror disks.14) Encapsulate the boot disk:# metainit -f d110 1 1 c1t0d0s0# metainit d100 -m d110# metaroot d10015) Reboot node 0a.16) Create all the metadevice for slices remaining on boot disk# metainit -f d111 1 1 c1t0d0s1# metainit d101 -m d111# metainit -f d114 1 1 c1t0d0s4# metainit d104 -m d114# metainit -f d115 1 1 c1t0d0s5# metainit d105 -m d115# metainit -f d116 1 1 c1t0d0s6# metainit d106 -m d11617) Edit the vfstab in order to specifiy metadevices created:old:/dev/dsk/c1t0d0s1        -       -       swap    -       no      -/dev/md/dsk/d100        /dev/md/rdsk/d100       /       ufs     1       no      -/dev/dsk/c1t0d0s5       /dev/rdsk/c1t0d0s5       /usr    ufs     1       no      logging/dev/dsk/c1t0d0s4       /dev/rdsk/c1t0d0s4       /var    ufs     1       no      logging#/dev/md/dsk/d206       /dev/md/rdsk/d206       /globaldevices  ufs     2       yes     loggingswap    -       /tmp    tmpfs   -       yes     -/dev/dsk/c1t0d0s6       /dev/rdsk/c1t0d0s6       /global/.devices/node@1 ufs      2       no  globalnew:/dev/md/dsk/d101        -       -       swap    -       no      -/dev/md/dsk/d100        /dev/md/rdsk/d100       /       ufs     1       no      -/dev/md/dsk/d105        /dev/md/rdsk/d105       /usr    ufs     1       no      logging/dev/md/dsk/d104        /dev/md/rdsk/d104       /var    ufs     1       no      logging#/dev/md/dsk/106       /dev/md/rdsk/d106       /globaldevices  ufs     2       yes     loggingswap    -       /tmp    tmpfs   -       yes     -/dev/md/dsk/d106        /dev/md/rdsk/d106       /global/.devices/node@1 ufs     2       noglobal18) Reboot node 0a in order to check new SDS/SVM boot configuration.19) Label the mirror disk c1t1d0 with the VTOC of boot disk c1t0d0:# prtvtoc /dev/dsk/c1t0d0s2 > /var/tmp/VTOC_c1t0d0 # fmthard -s /var/tmp/VTOC_c1t0d0 /dev/rdsk/c1t1d0s220) Put DB replica on slice 7 of disk c1t1d0:# metadb -a -c 3 /dev/dsk/c1t1d0s721) Create metadevice for mirror disk c1t1d0 and attach the new mirror side:# metainit d120 1 1 c1t1d0s0# metattach d100 d120# metainit d121 1 1 c1t1d0s1# metattach d101 d121# metainit d124 1 1 c1t1d0s4# metattach d104 d124# metainit d125 1 1 c1t1d0s5# metattach d105 d125# metainit d126 1 1 c1t1d0s6# metattach d106 d126

    Read the article

  • Firefox 4 on 10.10

    - by Oxwivi
    I installed Firefox 4 from the daily builds PPA, and it doesn't seem to be the latest RC, and tells me that I'd better update to it. How come a daily build is behind snapshot releases like beta or RC? I used the profile for my Firefox 4 on Windows, and the Global Menu (or whatever it's called) has gone to the right side. I had a few app tabs saved in the profile. What gives? How do I get the Global Menu to be orange or whatever color it's supposed to be? How do I pin it to Unity? Update Global Menu back on left side after restoring toolbar to defaults. However it's noteworthy that I could not drag it to the other side while the customization window was open unlike the other elements.

    Read the article

  • Newton Game Dynamics: Making an object not affect another object

    - by Boreal
    I'm going to be using Newton in my networked action game with Mogre. There will be two "types" of physics object: global and local. Global objects will be kept in sync for everybody; these include the players, projectiles, and other gameplay-related objects. Local objects are purely for effect, like ragdolls, debris, and particles. Is there a way to make the global objects affect the local objects without actually getting affected themselves? I'd like debris to bounce off of a tank, but I don't want the tank to respond in any way.

    Read the article

  • Please explain some of the features of URL Rewrite module for a newbie

    - by kunjaan
    I am learning to use the IIS Rewrite module and some of the "features" listed in the page is confusing me. It would be great if somebody could explain them to me and give a first hand account of when you would use the feature. Thanks a lot! Rewriting within the content of specific HTML tags Access to server variables and HTTP headers Rewriting of server variables and HTTP request headers What are the "server variables" and when would you redefine or define them? Rewriting of HTTP response headers HtmlEncode function Why would you use an HTMLEncode in the server? Reverse proxy rule template Support for IIS kernel-mode and user-mode output caching Failed Request Tracing support

    Read the article

  • wordpress woocommerce php variable usage %1$s

    - by tech
    I am using wordpress with woocommerce and I am trying to manipulate a copy of myaccount.php The default code uses some variables of some sort that I am not familiar with nor have I been able to find documentation on. The variables in question are %1$s, %2$s and %s <p class="myaccount_user"> <?php printf( __( 'Hello <strong>%1$s</strong> (not %1$s? <a href="%2$s">Sign out</a>).', 'woocommerce' ) . ' ', $current_user->display_name, wp_logout_url( get_permalink( wc_get_page_id( 'myaccount' ) ) ) ); ?> <?php printf( __( 'From this page you can view your recent orders, manage your shipping and billing addresses and <a href="%s">edit your password and account details</a>.', 'woocommerce' ), wc_customer_edit_account_url() ); ?> </p> How can I identify the variables, what they represent and how to use them? Thank you.

    Read the article

  • 11/15 Webinar: How Top High Tech Companies Grow Channel Revenue and ROMI

    - by Charles Knapp
    See the results of recent Aberdeen research on best practices in sales and marketing effectiveness. Discover how top performing high tech companies manage and use enterprise customer data, measure marketing spend effectiveness, and support internal and channel sales throughout their customer lifecycle -- messaging to leads, selling to prospects, and serving customers. Our speakers will be: Peter Ostrow, Research Director - Sales Effectiveness, Aberdeen Group David Lasher, Global Business Services Partner, IBM Jonathan Oomrigar, Vice President, Global High Technology Business Unit, Oracle Reserve your place now! This global webinar is on Tuesday, November 15, 10-11 am PST / 1-2 pm EST / 6-7 GMT / 7-8 CET

    Read the article

  • How can I add the version of a file to the file name with Tortoise-SVN?

    - by Eric Belair
    I would like to start giving unique names to "cache-able" files - i.e. *.css and *.js - in order to prevent caching, without requiring changes to the web-server settings (as is currently done in IIS). For instance, let's I have a JavaScript file called global.js. Going forward I would like it to have the name global.123.js when revision 123 is checked in. This would also require the following: The previous version of the file - perhaps it was global.115.js - is removed when the file is deployed. All references to the file are updated with the new file name How do I go about doing this? What concerns do I need to consider?

    Read the article

  • SH404SEF URLs in Joomla 1.5

    - by Tao Bellamine
    I have two modules to play with urls, the global configuration module and the sh404sef module. The global config is set to "Sef urls: YES" and "mod rewrite enabled: YES" and the sh404sef is set "url optimization: NO". My problem is, even with "Sef urls" set in the global config, my urls still don't seem to be that "user friendly" so I turn on the "Url optimization" using the sh404sef module, and I get better descriptive urls. However, the problem I inherit from doing this is that my dynamically populated chronoforms get messed up (only the chrono forms, other forms are fine); These forms are now showing up at the homepage instead of their own reserved page. Here's an example: Old form "GOOD" url: http://www.mycraftwork.com/index.php?option=com_content&view=article&id=94 New optimized "BAD" URL: http://www.mycraftwork.com/handthrown-pottery/alladin-teapot/index.php?option=com_content&view=article&id=94 Any help would be GREATLY appreciated! I can even turn the sh404sef on and off if some people are interested in seeing the issue LIVE. Thanks!! Tao Bellamine

    Read the article

  • Setting APPMENU_DISPLAY_BOTH for gnome applications does not work on Ubuntu 12.04 LTS

    - by Jack'
    To start the application with the menu enabled in the application and the panel, the following command has to be used: APPMENU_DISPLAY_BOTH=1 appname I recently discovered that this only works for non-gnome applications on Ubuntu 12.04 LTS, i.e. if you replace appname with applications such as gnome-terminal, gedit, evince, empathy, evolution, rhythmbox, nautilus, etc. only global menus will be displayed. However, if you start, for example, gimp or inkscape by using APPMENU_DISPLAY_BOTH, both global and local menus will be shown. The questions is: why is APPMENU_DISPLAY_BOTH not taken into account when starting such gnome applications? P.S. I know how to disable global menus in order to get the local ones (UBUNTU_MENUPROXY trick, removing appmenu-gtk/qt packages, removing the indicator-appmenu, etc.) Thanks for the help!

    Read the article

  • What is a good practice for 2D scene graph partitioning for culling?

    - by DevilWithin
    I need to know an efficient way to cull the scene graph objects, to render exclusively the ones in the view, and as fast as possible. I am thinking of doing it the following way, having in each object a local boundingbox which holds the object bounds, and a global boundingbox which holds the bounds of the object and all children. When a camera is moved, the render list is updated by traversing the global boundingboxes. When only the object is being moved, it tries to enlarge or shrink the ancestors global boundingboxes, and in the end updating or not the renderlist. What do you think of this approach? Do you think it will provide a fast and efficient culling? Also, because the render list is a contiguous list, it could accelerate the rendering, right? Any further tips for a 2D scene graphs are highly appreciated!

    Read the article

< Previous Page | 109 110 111 112 113 114 115 116 117 118 119 120  | Next Page >