Search Results

Search found 19115 results on 765 pages for 'region specific'.

Page 113/765 | < Previous Page | 109 110 111 112 113 114 115 116 117 118 119 120  | Next Page >

  • Is there an automated way to take site inventory?

    - by leeand00
    Is there a way to take site inventory using a crawler program that checks either the sources of images for specific servers that serve ads, or, that the crawler looks at a page for specific (html5?) tags like <aside> or some other tag to count the inventory of ad spaces available on a site? The crawler might additionally look at the size of the ads to categorize them into different classifications of ads. Also, what would a crawler like this be called?

    Read the article

  • Defensive Programming Techniques.

    - by Pemdas
    I was attempting to identify an element of software engineering that I think is overlooked, not emphasized or not taught in typical undergraduate course work for CS or SE. What I came up is the concept of defensive programing. I would like to hear the communities options on defensive program and/or specific techniques that you use on a regular basis. Also, I would to know if there are any language specific techniques.

    Read the article

  • Trade offs of linking versus skinning geometry

    - by Jeff
    What are the trade offs between inherent in linking geometry to a node versus using skinned geometry? Specifically: What capabilities do you gain / lose from using each method? What are the performance impacts of doing one over the other? What are the specific situations where you would want to do one over the other? In addition, do the answers to these questions tend to be engine specific? If so, how much?

    Read the article

  • Building dynamic OLAP data marts on-the-fly

    - by DrJohn
    At the forthcoming SQLBits conference, I will be presenting a session on how to dynamically build an OLAP data mart on-the-fly. This blog entry is intended to clarify exactly what I mean by an OLAP data mart, why you may need to build them on-the-fly and finally outline the steps needed to build them dynamically. In subsequent blog entries, I will present exactly how to implement some of the techniques involved. What is an OLAP data mart? In data warehousing parlance, a data mart is a subset of the overall corporate data provided to business users to meet specific business needs. Of course, the term does not specify the technology involved, so I coined the term "OLAP data mart" to identify a subset of data which is delivered in the form of an OLAP cube which may be accompanied by the relational database upon which it was built. To clarify, the relational database is specifically create and loaded with the subset of data and then the OLAP cube is built and processed to make the data available to the end-users via standard OLAP client tools. Why build OLAP data marts? Market research companies sell data to their clients to make money. To gain competitive advantage, market research providers like to "add value" to their data by providing systems that enhance analytics, thereby allowing clients to make best use of the data. As such, OLAP cubes have become a standard way of delivering added value to clients. They can be built on-the-fly to hold specific data sets and meet particular needs and then hosted on a secure intranet site for remote access, or shipped to clients' own infrastructure for hosting. Even better, they support a wide range of different tools for analytical purposes, including the ever popular Microsoft Excel. Extension Attributes: The Challenge One of the key challenges in building multiple OLAP data marts based on the same 'template' is handling extension attributes. These are attributes that meet the client's specific reporting needs, but do not form part of the standard template. Now clearly, these extension attributes have to come into the system via additional files and ultimately be added to relational tables so they can end up in the OLAP cube. However, processing these files and filling dynamically altered tables with SSIS is a challenge as SSIS packages tend to break as soon as the database schema changes. There are two approaches to this: (1) dynamically build an SSIS package in memory to match the new database schema using C#, or (2) have the extension attributes provided as name/value pairs so the file's schema does not change and can easily be loaded using SSIS. The problem with the first approach is the complexity of writing an awful lot of complex C# code. The problem of the second approach is that name/value pairs are useless to an OLAP cube; so they have to be pivoted back into a proper relational table somewhere in the data load process WITHOUT breaking SSIS. How this can be done will be part of future blog entry. What is involved in building an OLAP data mart? There are a great many steps involved in building OLAP data marts on-the-fly. The key point is that all the steps must be automated to allow for the production of multiple OLAP data marts per day (i.e. many thousands, each with its own specific data set and attributes). Now most of these steps have a great deal in common with standard data warehouse practices. The key difference is that the databases are all built to order. The only permanent database is the metadata database (shown in orange) which holds all the metadata needed to build everything else (i.e. client orders, configuration information, connection strings, client specific requirements and attributes etc.). The staging database (shown in red) has a short life: it is built, populated and then ripped down as soon as the OLAP Data Mart has been populated. In the diagram below, the OLAP data mart comprises the two blue components: the Data Mart which is a relational database and the OLAP Cube which is an OLAP database implemented using Microsoft Analysis Services (SSAS). The client may receive just the OLAP cube or both components together depending on their reporting requirements.  So, in broad terms the steps required to fulfil a client order are as follows: Step 1: Prepare metadata Create a set of database names unique to the client's order Modify all package connection strings to be used by SSIS to point to new databases and file locations. Step 2: Create relational databases Create the staging and data mart relational databases using dynamic SQL and set the database recovery mode to SIMPLE as we do not need the overhead of logging anything Execute SQL scripts to build all database objects (tables, views, functions and stored procedures) in the two databases Step 3: Load staging database Use SSIS to load all data files into the staging database in a parallel operation Load extension files containing name/value pairs. These will provide client-specific attributes in the OLAP cube. Step 4: Load data mart relational database Load the data from staging into the data mart relational database, again in parallel where possible Allocate surrogate keys and use SSIS to perform surrogate key lookup during the load of fact tables Step 5: Load extension tables & attributes Pivot the extension attributes from their native name/value pairs into proper relational tables Add the extension attributes to the views used by OLAP cube Step 6: Deploy & Process OLAP cube Deploy the OLAP database directly to the server using a C# script task in SSIS Modify the connection string used by the OLAP cube to point to the data mart relational database Modify the cube structure to add the extension attributes to both the data source view and the relevant dimensions Remove any standard attributes that not required Process the OLAP cube Step 7: Backup and drop databases Drop staging database as it is no longer required Backup data mart relational and OLAP database and ship these to the client's infrastructure Drop data mart relational and OLAP database from the build server Mark order complete Start processing the next order, ad infinitum. So my future blog posts and my forthcoming session at the SQLBits conference will all focus on some of the more interesting aspects of building OLAP data marts on-the-fly such as handling the load of extension attributes and how to dynamically alter the structure of an OLAP cube using C#.

    Read the article

  • Ball bouncing at a certain angle and efficiency computations

    - by X Y
    I would like to make a pong game with a small twist (for now). Every time the ball bounces off one of the paddles i want it to be under a certain angle (between a min and a max). I simply can't wrap my head around how to actually do it (i have some thoughts and such but i simply cannot implement them properly - i feel i'm overcomplicating things). Here's an image with a small explanation . One other problem would be that the conditions for bouncing have to be different for every edge. For example, in the picture, on the two small horizontal edges i do not want a perfectly vertical bounce when in the middle of the edge but rather a constant angle (pi/4 maybe) in either direction depending on the collision point (before the middle of the edge, or after). All of my collisions are done with the Separating Axes Theorem (and seem to work fine). I'm looking for something efficient because i want to add a lot of things later on (maybe polygons with many edges and such). So i need to keep to a minimum the amount of checking done every frame. The collision algorithm begins testing whenever the bounding boxes of the paddle and the ball intersect. Is there something better to test for possible collisions every frame? (more efficient in the long run,with many more objects etc, not necessarily easy to code). I'm going to post the code for my game: Paddle Class public class Paddle : Microsoft.Xna.Framework.DrawableGameComponent { #region Private Members private SpriteBatch spriteBatch; private ContentManager contentManager; private bool keybEnabled; private bool isLeftPaddle; private Texture2D paddleSprite; private Vector2 paddlePosition; private float paddleSpeedY; private Vector2 paddleScale = new Vector2(1f, 1f); private const float DEFAULT_Y_SPEED = 150; private Vector2[] Normals2Edges; private Vector2[] Vertices = new Vector2[4]; private List<Vector2> lst = new List<Vector2>(); private Vector2 Edge; #endregion #region Properties public float Speed { get {return paddleSpeedY; } set { paddleSpeedY = value; } } public Vector2[] Normal2EdgesVector { get { NormalsToEdges(this.isLeftPaddle); return Normals2Edges; } } public Vector2[] VertexVector { get { return Vertices; } } public Vector2 Scale { get { return paddleScale; } set { paddleScale = value; NormalsToEdges(this.isLeftPaddle); } } public float X { get { return paddlePosition.X; } set { paddlePosition.X = value; } } public float Y { get { return paddlePosition.Y; } set { paddlePosition.Y = value; } } public float Width { get { return (Scale.X == 1f ? (float)paddleSprite.Width : paddleSprite.Width * Scale.X); } } public float Height { get { return ( Scale.Y==1f ? (float)paddleSprite.Height : paddleSprite.Height*Scale.Y ); } } public Texture2D GetSprite { get { return paddleSprite; } } public Rectangle Boundary { get { return new Rectangle((int)paddlePosition.X, (int)paddlePosition.Y, (int)this.Width, (int)this.Height); } } public bool KeyboardEnabled { get { return keybEnabled; } } #endregion private void NormalsToEdges(bool isLeftPaddle) { Normals2Edges = null; Edge = Vector2.Zero; lst.Clear(); for (int i = 0; i < Vertices.Length; i++) { Edge = Vertices[i + 1 == Vertices.Length ? 0 : i + 1] - Vertices[i]; if (Edge != Vector2.Zero) { Edge.Normalize(); //outer normal to edge !! (origin in top-left) lst.Add(new Vector2(Edge.Y, -Edge.X)); } } Normals2Edges = lst.ToArray(); } public float[] ProjectPaddle(Vector2 axis) { if (Vertices.Length == 0 || axis == Vector2.Zero) return (new float[2] { 0, 0 }); float min, max; min = Vector2.Dot(axis, Vertices[0]); max = min; for (int i = 1; i < Vertices.Length; i++) { float p = Vector2.Dot(axis, Vertices[i]); if (p < min) min = p; else if (p > max) max = p; } return (new float[2] { min, max }); } public Paddle(Game game, bool isLeftPaddle, bool enableKeyboard = true) : base(game) { contentManager = new ContentManager(game.Services); keybEnabled = enableKeyboard; this.isLeftPaddle = isLeftPaddle; } public void setPosition(Vector2 newPos) { X = newPos.X; Y = newPos.Y; } public override void Initialize() { base.Initialize(); this.Speed = DEFAULT_Y_SPEED; X = 0; Y = 0; NormalsToEdges(this.isLeftPaddle); } protected override void LoadContent() { spriteBatch = new SpriteBatch(GraphicsDevice); paddleSprite = contentManager.Load<Texture2D>(@"Content\pongBar"); } public override void Update(GameTime gameTime) { //vertices array Vertices[0] = this.paddlePosition; Vertices[1] = this.paddlePosition + new Vector2(this.Width, 0); Vertices[2] = this.paddlePosition + new Vector2(this.Width, this.Height); Vertices[3] = this.paddlePosition + new Vector2(0, this.Height); // Move paddle, but don't allow movement off the screen if (KeyboardEnabled) { float moveDistance = Speed * (float)gameTime.ElapsedGameTime.TotalSeconds; KeyboardState newKeyState = Keyboard.GetState(); if (newKeyState.IsKeyDown(Keys.Down) && Y + paddleSprite.Height + moveDistance <= Game.GraphicsDevice.Viewport.Height) { Y += moveDistance; } else if (newKeyState.IsKeyDown(Keys.Up) && Y - moveDistance >= 0) { Y -= moveDistance; } } else { if (this.Y + this.Height > this.GraphicsDevice.Viewport.Height) { this.Y = this.Game.GraphicsDevice.Viewport.Height - this.Height - 1; } } base.Update(gameTime); } public override void Draw(GameTime gameTime) { spriteBatch.Begin(SpriteSortMode.Texture,null); spriteBatch.Draw(paddleSprite, paddlePosition, null, Color.White, 0f, Vector2.Zero, Scale, SpriteEffects.None, 0); spriteBatch.End(); base.Draw(gameTime); } } Ball Class public class Ball : Microsoft.Xna.Framework.DrawableGameComponent { #region Private Members private SpriteBatch spriteBatch; private ContentManager contentManager; private const float DEFAULT_SPEED = 50; private float speedIncrement = 0; private Vector2 ballScale = new Vector2(1f, 1f); private const float INCREASE_SPEED = 50; private Texture2D ballSprite; //initial texture private Vector2 ballPosition; //position private Vector2 centerOfBall; //center coords private Vector2 ballSpeed = new Vector2(DEFAULT_SPEED, DEFAULT_SPEED); //speed #endregion #region Properties public float DEFAULTSPEED { get { return DEFAULT_SPEED; } } public Vector2 ballCenter { get { return centerOfBall; } } public Vector2 Scale { get { return ballScale; } set { ballScale = value; } } public float SpeedX { get { return ballSpeed.X; } set { ballSpeed.X = value; } } public float SpeedY { get { return ballSpeed.Y; } set { ballSpeed.Y = value; } } public float X { get { return ballPosition.X; } set { ballPosition.X = value; } } public float Y { get { return ballPosition.Y; } set { ballPosition.Y = value; } } public Texture2D GetSprite { get { return ballSprite; } } public float Width { get { return (Scale.X == 1f ? (float)ballSprite.Width : ballSprite.Width * Scale.X); } } public float Height { get { return (Scale.Y == 1f ? (float)ballSprite.Height : ballSprite.Height * Scale.Y); } } public float SpeedIncreaseIncrement { get { return speedIncrement; } set { speedIncrement = value; } } public Rectangle Boundary { get { return new Rectangle((int)ballPosition.X, (int)ballPosition.Y, (int)this.Width, (int)this.Height); } } #endregion public Ball(Game game) : base(game) { contentManager = new ContentManager(game.Services); } public void Reset() { ballSpeed.X = DEFAULT_SPEED; ballSpeed.Y = DEFAULT_SPEED; ballPosition.X = Game.GraphicsDevice.Viewport.Width / 2 - ballSprite.Width / 2; ballPosition.Y = Game.GraphicsDevice.Viewport.Height / 2 - ballSprite.Height / 2; } public void SpeedUp() { if (ballSpeed.Y < 0) ballSpeed.Y -= (INCREASE_SPEED + speedIncrement); else ballSpeed.Y += (INCREASE_SPEED + speedIncrement); if (ballSpeed.X < 0) ballSpeed.X -= (INCREASE_SPEED + speedIncrement); else ballSpeed.X += (INCREASE_SPEED + speedIncrement); } public float[] ProjectBall(Vector2 axis) { if (axis == Vector2.Zero) return (new float[2] { 0, 0 }); float min, max; min = Vector2.Dot(axis, this.ballCenter) - this.Width/2; //center - radius max = min + this.Width; //center + radius return (new float[2] { min, max }); } public void ChangeHorzDirection() { ballSpeed.X *= -1; } public void ChangeVertDirection() { ballSpeed.Y *= -1; } public override void Initialize() { base.Initialize(); ballPosition.X = Game.GraphicsDevice.Viewport.Width / 2 - ballSprite.Width / 2; ballPosition.Y = Game.GraphicsDevice.Viewport.Height / 2 - ballSprite.Height / 2; } protected override void LoadContent() { spriteBatch = new SpriteBatch(GraphicsDevice); ballSprite = contentManager.Load<Texture2D>(@"Content\ball"); } public override void Update(GameTime gameTime) { if (this.Y < 1 || this.Y > GraphicsDevice.Viewport.Height - this.Height - 1) this.ChangeVertDirection(); centerOfBall = new Vector2(ballPosition.X + this.Width / 2, ballPosition.Y + this.Height / 2); base.Update(gameTime); } public override void Draw(GameTime gameTime) { spriteBatch.Begin(); spriteBatch.Draw(ballSprite, ballPosition, null, Color.White, 0f, Vector2.Zero, Scale, SpriteEffects.None, 0); spriteBatch.End(); base.Draw(gameTime); } } Main game class public class gameStart : Microsoft.Xna.Framework.Game { GraphicsDeviceManager graphics; SpriteBatch spriteBatch; public gameStart() { graphics = new GraphicsDeviceManager(this); Content.RootDirectory = "Content"; this.Window.Title = "Pong game"; } protected override void Initialize() { ball = new Ball(this); paddleLeft = new Paddle(this,true,false); paddleRight = new Paddle(this,false,true); Components.Add(ball); Components.Add(paddleLeft); Components.Add(paddleRight); this.Window.AllowUserResizing = false; this.IsMouseVisible = true; this.IsFixedTimeStep = false; this.isColliding = false; base.Initialize(); } #region MyPrivateStuff private Ball ball; private Paddle paddleLeft, paddleRight; private int[] bit = { -1, 1 }; private Random rnd = new Random(); private int updates = 0; enum nrPaddle { None, Left, Right }; private nrPaddle PongBar = nrPaddle.None; private ArrayList Axes = new ArrayList(); private Vector2 MTV; //minimum translation vector private bool isColliding; private float overlap; //smallest distance after projections private Vector2 overlapAxis; //axis of overlap #endregion protected override void LoadContent() { spriteBatch = new SpriteBatch(GraphicsDevice); paddleLeft.setPosition(new Vector2(0, this.GraphicsDevice.Viewport.Height / 2 - paddleLeft.Height / 2)); paddleRight.setPosition(new Vector2(this.GraphicsDevice.Viewport.Width - paddleRight.Width, this.GraphicsDevice.Viewport.Height / 2 - paddleRight.Height / 2)); paddleLeft.Scale = new Vector2(1f, 2f); //scale left paddle } private bool ShapesIntersect(Paddle paddle, Ball ball) { overlap = 1000000f; //large value overlapAxis = Vector2.Zero; MTV = Vector2.Zero; foreach (Vector2 ax in Axes) { float[] pad = paddle.ProjectPaddle(ax); //pad0 = min, pad1 = max float[] circle = ball.ProjectBall(ax); //circle0 = min, circle1 = max if (pad[1] <= circle[0] || circle[1] <= pad[0]) { return false; } if (pad[1] - circle[0] < circle[1] - pad[0]) { if (Math.Abs(overlap) > Math.Abs(-pad[1] + circle[0])) { overlap = -pad[1] + circle[0]; overlapAxis = ax; } } else { if (Math.Abs(overlap) > Math.Abs(circle[1] - pad[0])) { overlap = circle[1] - pad[0]; overlapAxis = ax; } } } if (overlapAxis != Vector2.Zero) { MTV = overlapAxis * overlap; } return true; } protected override void Update(GameTime gameTime) { updates += 1; float ftime = 5 * (float)gameTime.ElapsedGameTime.TotalSeconds; if (updates == 1) { isColliding = false; int Xrnd = bit[Convert.ToInt32(rnd.Next(0, 2))]; int Yrnd = bit[Convert.ToInt32(rnd.Next(0, 2))]; ball.SpeedX = Xrnd * ball.SpeedX; ball.SpeedY = Yrnd * ball.SpeedY; ball.X += ftime * ball.SpeedX; ball.Y += ftime * ball.SpeedY; } else { updates = 100; ball.X += ftime * ball.SpeedX; ball.Y += ftime * ball.SpeedY; } //autorun :) paddleLeft.Y = ball.Y; //collision detection PongBar = nrPaddle.None; if (ball.Boundary.Intersects(paddleLeft.Boundary)) { PongBar = nrPaddle.Left; if (!isColliding) { Axes.Clear(); Axes.AddRange(paddleLeft.Normal2EdgesVector); //axis from nearest vertex to ball's center Axes.Add(FORMULAS.NormAxisFromCircle2ClosestVertex(paddleLeft.VertexVector, ball.ballCenter)); } } else if (ball.Boundary.Intersects(paddleRight.Boundary)) { PongBar = nrPaddle.Right; if (!isColliding) { Axes.Clear(); Axes.AddRange(paddleRight.Normal2EdgesVector); //axis from nearest vertex to ball's center Axes.Add(FORMULAS.NormAxisFromCircle2ClosestVertex(paddleRight.VertexVector, ball.ballCenter)); } } if (PongBar != nrPaddle.None && !isColliding) switch (PongBar) { case nrPaddle.Left: if (ShapesIntersect(paddleLeft, ball)) { isColliding = true; if (MTV != Vector2.Zero) ball.X += MTV.X; ball.Y += MTV.Y; ball.ChangeHorzDirection(); } break; case nrPaddle.Right: if (ShapesIntersect(paddleRight, ball)) { isColliding = true; if (MTV != Vector2.Zero) ball.X += MTV.X; ball.Y += MTV.Y; ball.ChangeHorzDirection(); } break; default: break; } if (!ShapesIntersect(paddleRight, ball) && !ShapesIntersect(paddleLeft, ball)) isColliding = false; ball.X += ftime * ball.SpeedX; ball.Y += ftime * ball.SpeedY; //check ball movement if (ball.X > paddleRight.X + paddleRight.Width + 2) { //IncreaseScore(Left); ball.Reset(); updates = 0; return; } else if (ball.X < paddleLeft.X - 2) { //IncreaseScore(Right); ball.Reset(); updates = 0; return; } base.Update(gameTime); } protected override void Draw(GameTime gameTime) { GraphicsDevice.Clear(Color.Aquamarine); spriteBatch.Begin(SpriteSortMode.BackToFront, BlendState.AlphaBlend); spriteBatch.End(); base.Draw(gameTime); } } And one method i've used: public static Vector2 NormAxisFromCircle2ClosestVertex(Vector2[] vertices, Vector2 circle) { Vector2 temp = Vector2.Zero; if (vertices.Length > 0) { float dist = (circle.X - vertices[0].X) * (circle.X - vertices[0].X) + (circle.Y - vertices[0].Y) * (circle.Y - vertices[0].Y); for (int i = 1; i < vertices.Length;i++) { if (dist > (circle.X - vertices[i].X) * (circle.X - vertices[i].X) + (circle.Y - vertices[i].Y) * (circle.Y - vertices[i].Y)) { temp = vertices[i]; //memorize the closest vertex dist = (circle.X - vertices[i].X) * (circle.X - vertices[i].X) + (circle.Y - vertices[i].Y) * (circle.Y - vertices[i].Y); } } temp = circle - temp; temp.Normalize(); } return temp; } Thanks in advance for any tips on the 4 issues. EDIT1: Something isn't working properly. The collision axis doesn't come out right and the interpolation also seems to have no effect. I've changed the code a bit: private bool ShapesIntersect(Paddle paddle, Ball ball) { overlap = 1000000f; //large value overlapAxis = Vector2.Zero; MTV = Vector2.Zero; foreach (Vector2 ax in Axes) { float[] pad = paddle.ProjectPaddle(ax); //pad0 = min, pad1 = max float[] circle = ball.ProjectBall(ax); //circle0 = min, circle1 = max if (pad[1] < circle[0] || circle[1] < pad[0]) { return false; } if (Math.Abs(pad[1] - circle[0]) < Math.Abs(circle[1] - pad[0])) { if (Math.Abs(overlap) > Math.Abs(-pad[1] + circle[0])) { overlap = -pad[1] + circle[0]; overlapAxis = ax * (-1); } //to get the proper axis } else { if (Math.Abs(overlap) > Math.Abs(circle[1] - pad[0])) { overlap = circle[1] - pad[0]; overlapAxis = ax; } } } if (overlapAxis != Vector2.Zero) { MTV = overlapAxis * Math.Abs(overlap); } return true; } And part of the Update method: if (ShapesIntersect(paddleRight, ball)) { isColliding = true; if (MTV != Vector2.Zero) { ball.X += MTV.X; ball.Y += MTV.Y; } //test if (overlapAxis.X == 0) //collision with horizontal edge { } else if (overlapAxis.Y == 0) //collision with vertical edge { float factor = Math.Abs(ball.ballCenter.Y - paddleRight.Y) / paddleRight.Height; if (factor > 1) factor = 1f; if (overlapAxis.X < 0) //left edge? ball.Speed = ball.DEFAULTSPEED * Vector2.Normalize(Vector2.Reflect(ball.Speed, (Vector2.Lerp(new Vector2(-1, -3), new Vector2(-1, 3), factor)))); else //right edge? ball.Speed = ball.DEFAULTSPEED * Vector2.Normalize(Vector2.Reflect(ball.Speed, (Vector2.Lerp(new Vector2(1, -3), new Vector2(1, 3), factor)))); } else //vertex collision??? { ball.Speed = -ball.Speed; } } What seems to happen is that "overlapAxis" doesn't always return the right one. So instead of (-1,0) i get the (1,0) (this happened even before i multiplied with -1 there). Sometimes there isn't even a collision registered even though the ball passes through the paddle... The interpolation also seems to have no effect as the angles barely change (or the overlapAxis is almost never (-1,0) or (1,0) but something like (0.9783473, 0.02743843)... ). What am i missing here? :(

    Read the article

  • Nagging As A Strategy For Better Linking: -z guidance

    - by user9154181
    The link-editor (ld) in Solaris 11 has a new feature that we call guidance that is intended to help you build better objects. The basic idea behind guidance is that if (and only if) you request it, the link-editor will issue messages suggesting better options and other changes you might make to your ld command to get better results. You can choose to take the advice, or you can disable specific types of guidance while acting on others. In some ways, this works like an experienced friend leaning over your shoulder and giving you advice — you're free to take it or leave it as you see fit, but you get nudged to do a better job than you might have otherwise. We use guidance to build the core Solaris OS, and it has proven to be useful, both in improving our objects, and in making sure that regressions don't creep back in later. In this article, I'm going to describe the evolution in thinking and design that led to the implementation of the -z guidance option, as well as give a brief description of how it works. The guidance feature issues non-fatal warnings. However, experience shows that once developers get used to ignoring warnings, it is inevitable that real problems will be lost in the noise and ignored or missed. This is why we have a zero tolerance policy against build noise in the core Solaris OS. In order to get maximum benefit from -z guidance while maintaining this policy, I added the -z fatal-warnings option at the same time. Much of the material presented here is adapted from the arc case: PSARC 2010/312 Link-editor guidance The History Of Unfortunate Link-Editor Defaults The Solaris link-editor is one of the oldest Unix commands. It stands to reason that this would be true — in order to write an operating system, you need the ability to compile and link code. The original link-editor (ld) had defaults that made sense at the time. As new features were needed, command line option switches were added to let the user use them, while maintaining backward compatibility for those who didn't. Backward compatibility is always a concern in system design, but is particularly important in the case of the tool chain (compilers, linker, and related tools), since it is a basic building block for the entire system. Over the years, applications have grown in size and complexity. Important concepts like dynamic linking that didn't exist in the original Unix system were invented. Object file formats changed. In the case of System V Release 4 Unix derivatives like Solaris, the ELF (Extensible Linking Format) was adopted. Since then, the ELF system has evolved to provide tools needed to manage today's larger and more complex environments. Features such as lazy loading, and direct bindings have been added. In an ideal world, many of these options would be defaults, with rarely used options that allow the user to turn them off. However, the reality is exactly the reverse: For backward compatibility, these features are all options that must be explicitly turned on by the user. This has led to a situation in which most applications do not take advantage of the many improvements that have been made in linking over the last 20 years. If their code seems to link and run without issue, what motivation does a developer have to read a complex manpage, absorb the information provided, choose the features that matter for their application, and apply them? Experience shows that only the most motivated and diligent programmers will make that effort. We know that most programs would be improved if we could just get you to use the various whizzy features that we provide, but the defaults conspire against us. We have long wanted to do something to make it easier for our users to use the linkers more effectively. There have been many conversations over the years regarding this issue, and how to address it. They always break down along the following lines: Change ld Defaults Since the world would be a better place the newer ld features were the defaults, why not change things to make it so? This idea is simple, elegant, and impossible. Doing so would break a large number of existing applications, including those of ISVs, big customers, and a plethora of existing open source packages. In each case, the owner of that code may choose to follow our lead and fix their code, or they may view it as an invitation to reconsider their commitment to our platform. Backward compatibility, and our installed base of working software, is one of our greatest assets, and not something to be lightly put at risk. Breaking backward compatibility at this level of the system is likely to do more harm than good. But, it sure is tempting. New Link-Editor One might create a new linker command, not called 'ld', leaving the old command as it is. The new one could use the same code as ld, but would offer only modern options, with the proper defaults for features such as direct binding. The resulting link-editor would be a pleasure to use. However, the approach is doomed to niche status. There is a vast pile of exiting code in the world built around the existing ld command, that reaches back to the 1970's. ld use is embedded in large and unknown numbers of makefiles, and is used by name by compilers that execute it. A Unix link-editor that is not named ld will not find a majority audience no matter how good it might be. Finally, a new linker command will eventually cease to be new, and will accumulate its own burden of backward compatibility issues. An Option To Make ld Do The Right Things Automatically This line of reasoning is best summarized by a CR filed in 2005, entitled 6239804 make it easier for ld(1) to do what's best The idea is to have a '-z best' option that unchains ld from its backward compatibility commitment, and allows it to turn on the "best" set of features, as determined by the authors of ld. The specific set of features enabled by -z best would be subject to change over time, as requirements change. This idea is more realistic than the other two, but was never implemented because it has some important issues that we could never answer to our satisfaction: The -z best proposal assumes that the user can turn it on, and trust it to select good options without the user needing to be aware of the options being applied. This is a fallacy. Features such as direct bindings require the user to do some analysis to ensure that the resulting program will still operate properly. A user who is willing to do the work to verify that what -z best does will be OK for their application is capable of turning on those features directly, and therefore gains little added benefit from -z best. The intent is that when a user opts into -z best, that they understand that z best is subject to sometimes incompatible evolution. Experience teaches us that this won't work. People will use this feature, the meaning of -z best will change, code that used to build will fail, and then there will be complaints and demands to retract the change. When (not if) this occurs, we will of course defend our actions, and point at the disclaimer. We'll win some of those debates, and lose others. Ultimately, we'll end up with -z best2 (-z better), or other compromises, and our goal of simplifying the world will have failed. The -z best idea rolls up a set of features that may or may not be related to each other into a unit that must be taken wholesale, or not at all. It could be that only a subset of what it does is compatible with a given application, in which case the user is expected to abandon -z best and instead set the options that apply to their application directly. In doing so, they lose one of the benefits of -z best, that if you use it, future versions of ld may choose a different set of options, and automatically improve the object through the act of rebuilding it. I drew two conclusions from the above history: For a link-editor, backward compatibility is vital. If a given command line linked your application 10 years ago, you have every reason to expect that it will link today, assuming that the libraries you're linking against are still available and compatible with their previous interfaces. For an application of any size or complexity, there is no substitute for the work involved in examining the code and determining which linker options apply and which do not. These options are largely orthogonal to each other, and it can be reasonable not to use any or all of them, depending on the situation, even in modern applications. It is a mistake to tie them together. The idea for -z guidance came from consideration of these points. By decoupling the advice from the act of taking the advice, we can retain the good aspects of -z best while avoiding its pitfalls: -z guidance gives advice, but the decision to take that advice remains with the user who must evaluate its merit and make a decision to take it or not. As such, we are free to change the specific guidance given in future releases of ld, without breaking existing applications. The only fallout from this will be some new warnings in the build output, which can be ignored or dealt with at the user's convenience. It does not couple the various features given into a single "take it or leave it" option, meaning that there will never be a need to offer "-zguidance2", or other such variants as things change over time. Guidance has the potential to be our final word on this subject. The user is given the flexibility to disable specific categories of guidance without losing the benefit of others, including those that might be added to future versions of the system. Although -z fatal-warnings stands on its own as a useful feature, it is of particular interest in combination with -z guidance. Used together, the guidance turns from advice to hard requirement: The user must either make the suggested change, or explicitly reject the advice by specifying a guidance exception token, in order to get a build. This is valuable in environments with high coding standards. ld Command Line Options The guidance effort resulted in new link-editor options for guidance and for turning warnings into fatal errors. Before I reproduce that text here, I'd like to highlight the strategic decisions embedded in the guidance feature: In order to get guidance, you have to opt in. We hope you will opt in, and believe you'll get better objects if you do, but our default mode of operation will continue as it always has, with full backward compatibility, and without judgement. Guidance suggestions always offers specific advice, and not vague generalizations. You can disable some guidance without turning off the entire feature. When you get guidance warnings, you can choose to take the advice, or you can specify a keyword to disable guidance for just that category. This allows you to get guidance for things that are useful to you, without being bothered about things that you've already considered and dismissed. As the world changes, we will add new guidance to steer you in the right direction. All such new guidance will come with a keyword that let's you turn it off. In order to facilitate building your code on different versions of Solaris, we quietly ignore any guidance keywords we don't recognize, assuming that they are intended for newer versions of the link-editor. If you want to see what guidance tokens ld does and does not recognize on your system, you can use the ld debugging feature as follows: % ld -Dargs -z guidance=foo,nodefs debug: debug: Solaris Linkers: 5.11-1.2275 debug: debug: arg[1] option=-D: option-argument: args debug: arg[2] option=-z: option-argument: guidance=foo,nodefs debug: warning: unrecognized -z guidance item: foo The -z fatal-warning option is straightforward, and generally useful in environments with strict coding standards. Note that the GNU ld already had this feature, and we accept their option names as synonyms: -z fatal-warnings | nofatal-warnings --fatal-warnings | --no-fatal-warnings The -z fatal-warnings and the --fatal-warnings option cause the link-editor to treat warnings as fatal errors. The -z nofatal-warnings and the --no-fatal-warnings option cause the link-editor to treat warnings as non-fatal. This is the default behavior. The -z guidance option is defined as follows: -z guidance[=item1,item2,...] Provide guidance messages to suggest ld options that can improve the quality of the resulting object, or which are otherwise considered to be beneficial. The specific guidance offered is subject to change over time as the system evolves. Obsolete guidance offered by older versions of ld may be dropped in new versions. Similarly, new guidance may be added to new versions of ld. Guidance therefore always represents current best practices. It is possible to enable guidance, while preventing specific guidance messages, by providing a list of item tokens, representing the class of guidance to be suppressed. In this way, unwanted advice can be suppressed without losing the benefit of other guidance. Unrecognized item tokens are quietly ignored by ld, allowing a given ld command line to be executed on a variety of older or newer versions of Solaris. The guidance offered by the current version of ld, and the item tokens used to disable these messages, are as follows. Specify Required Dependencies Dynamic executables and shared objects should explicitly define all of the dependencies they require. Guidance recommends the use of the -z defs option, should any symbol references remain unsatisfied when building dynamic objects. This guidance can be disabled with -z guidance=nodefs. Do Not Specify Non-Required Dependencies Dynamic executables and shared objects should not define any dependencies that do not satisfy the symbol references made by the dynamic object. Guidance recommends that unused dependencies be removed. This guidance can be disabled with -z guidance=nounused. Lazy Loading Dependencies should be identified for lazy loading. Guidance recommends the use of the -z lazyload option should any dependency be processed before either a -z lazyload or -z nolazyload option is encountered. This guidance can be disabled with -z guidance=nolazyload. Direct Bindings Dependencies should be referenced with direct bindings. Guidance recommends the use of the -B direct, or -z direct options should any dependency be processed before either of these options, or the -z nodirect option is encountered. This guidance can be disabled with -z guidance=nodirect. Pure Text Segment Dynamic objects should not contain relocations to non-writable, allocable sections. Guidance recommends compiling objects with Position Independent Code (PIC) should any relocations against the text segment remain, and neither the -z textwarn or -z textoff options are encountered. This guidance can be disabled with -z guidance=notext. Mapfile Syntax All mapfiles should use the version 2 mapfile syntax. Guidance recommends the use of the version 2 syntax should any mapfiles be encountered that use the version 1 syntax. This guidance can be disabled with -z guidance=nomapfile. Library Search Path Inappropriate dependencies that are encountered by ld are quietly ignored. For example, a 32-bit dependency that is encountered when generating a 64-bit object is ignored. These dependencies can result from incorrect search path settings, such as supplying an incorrect -L option. Although benign, this dependency processing is wasteful, and might hide a build problem that should be solved. Guidance recommends the removal of any inappropriate dependencies. This guidance can be disabled with -z guidance=nolibpath. In addition, -z guidance=noall can be used to entirely disable the guidance feature. See Chapter 7, Link-Editor Quick Reference, in the Linker and Libraries Guide for more information on guidance and advice for building better objects. Example The following example demonstrates how the guidance feature is intended to work. We will build a shared object that has a variety of shortcomings: Does not specify all it's dependencies Specifies dependencies it does not use Does not use direct bindings Uses a version 1 mapfile Contains relocations to the readonly allocable text (not PIC) This scenario is sadly very common — many shared objects have one or more of these issues. % cat hello.c #include <stdio.h> #include <unistd.h> void hello(void) { printf("hello user %d\n", getpid()); } % cat mapfile.v1 # This version 1 mapfile will trigger a guidance message % cc hello.c -o hello.so -G -M mapfile.v1 -lelf As you can see, the operation completes without error, resulting in a usable object. However, turning on guidance reveals a number of things that could be better: % cc hello.c -o hello.so -G -M mapfile.v1 -lelf -zguidance ld: guidance: version 2 mapfile syntax recommended: mapfile.v1 ld: guidance: -z lazyload option recommended before first dependency ld: guidance: -B direct or -z direct option recommended before first dependency Undefined first referenced symbol in file getpid hello.o (symbol belongs to implicit dependency /lib/libc.so.1) printf hello.o (symbol belongs to implicit dependency /lib/libc.so.1) ld: warning: symbol referencing errors ld: guidance: -z defs option recommended for shared objects ld: guidance: removal of unused dependency recommended: libelf.so.1 warning: Text relocation remains referenced against symbol offset in file .rodata1 (section) 0xa hello.o getpid 0x4 hello.o printf 0xf hello.o ld: guidance: position independent (PIC) code recommended for shared objects ld: guidance: see ld(1) -z guidance for more information Given the explicit advice in the above guidance messages, it is relatively easy to modify the example to do the right things: % cat mapfile.v2 # This version 2 mapfile will not trigger a guidance message $mapfile_version 2 % cc hello.c -o hello.so -Kpic -G -Bdirect -M mapfile.v2 -lc -zguidance There are situations in which the guidance does not fit the object being built. For instance, you want to build an object without direct bindings: % cc -Kpic hello.c -o hello.so -G -M mapfile.v2 -lc -zguidance ld: guidance: -B direct or -z direct option recommended before first dependency ld: guidance: see ld(1) -z guidance for more information It is easy to disable that specific guidance warning without losing the overall benefit from allowing the remainder of the guidance feature to operate: % cc -Kpic hello.c -o hello.so -G -M mapfile.v2 -lc -zguidance=nodirect Conclusions The linking guidelines enforced by the ld guidance feature correspond rather directly to our standards for building the core Solaris OS. I'm sure that comes as no surprise. It only makes sense that we would want to build our own product as well as we know how. Solaris is usually the first significant test for any new linker feature. We now enable guidance by default for all builds, and the effect has been very positive. Guidance helps us find suboptimal objects more quickly. Programmers get concrete advice for what to change instead of vague generalities. Even in the cases where we override the guidance, the makefile rules to do so serve as documentation of the fact. Deciding to use guidance is likely to cause some up front work for most code, as it forces you to consider using new features such as direct bindings. Such investigation is worthwhile, but does not come for free. However, the guidance suggestions offer a structured and straightforward way to tackle modernizing your objects, and once that work is done, for keeping them that way. The investment is often worth it, and will replay you in terms of better performance and fewer problems. I hope that you find guidance to be as useful as we have.

    Read the article

  • Can anyone recommend online .Net training courses?

    - by james
    I am looking for peoples experiences with paid for online .Net training courses. In your experience, are these an able replacement for in-person training? Are they better than the many free ones provided on MSDN and the like? Are there any specific paid for ones you'd recommend? I usually prefer general book/web research myself, I have one specific provider in mind that looks really good, but I'll omit this for fear of advertising :)

    Read the article

  • Using Oracle BPM to Extend Oracle Applications

    - by Michelle Kimihira
    Author: Srikant Subramaniam, Senior Principal Product Manager, Oracle Fusion Middleware Customers often modify applications to meet their specific business needs - varying regulatory requirements, unique business processes, product mix transition, etc. Traditional implementation practices for such modifications are typically invasive in nature and introduce risk into projects, affect time-to-market and ease of use, and ultimately increase the costs of running and maintaining the applications. Another downside of these traditional implementation practices is that they literally cast the application in stone, making it difficult for end-users to tailor their individual work environments to meet specific needs, without getting IT involved. For many businesses, however, IT lacks the capacity to support such rapid business changes. As a result, adopting innovative solutions to change the economics of customization becomes an imperative rather than a choice. Let's look at a banking process in Siebel Financial Services and Oracle Policy Automation (OPA) using Oracle Business Process Management. This approach makes modifications simple, quick to implement and easy to maintain/upgrade. The process model is based on the Loan Origination Process Accelerator, i.e., a set of ready to deploy business solutions developed by Oracle using Business Process Management (BPM) 11g, containing customizable and extensible pre-built processes to fit specific customer requirements. This use case is a branch-based loan origination process. Origination includes a number of steps ranging from accepting a loan application, applicant identity and background verification (Know Your Customer), credit assessment, risk evaluation and the eventual disbursal of funds (or rejection of the application). We use BPM to model all of these individual tasks and integrate (via web services) with: Siebel Financial Services and (simulated) backend applications: FLEXCUBE for loan management, Background Verification and Credit Rating. The process flow starts in Siebel when a customer applies for loan, switches to OPA for eligibility verification and product recommendations, before handing it off to BPM for approvals. OPA Connector for Siebel simplifies integration with Siebel’s web services framework by saving directly into Siebel the results from the self-service interview. This combination of user input and product recommendation invokes the BPM process for loan origination. At the end of the approval process, we update Siebel and the financial app to complete the loop. We use BPM Process Spaces to display role-specific data via dashboards, including the ability to track the status of a given process (flow trace). Loan Underwriters have visibility into the product mix (loan categories), status of loan applications (count of approved/rejected/pending), volume and values of loans approved per processing center, processing times, requested vs. approved amount and other relevant business metrics. Summary Oracle recommends the use of Fusion Middleware as an extensions platform for applications. This approach makes modifications simple, quick to implement and easy to maintain/upgrade applications (by moving customizations away from applications to the process layer). It is also easier to manage processes that span multiple applications by using Oracle BPM. Additional Information Product Information on Oracle.com: Oracle Fusion Middleware Follow us on Twitter and Facebook Subscribe to our regular Fusion Middleware Newsletter

    Read the article

  • Is it important for reflection-based serialization maintain consistent field ordering?

    - by Matchlighter
    I just finished writing a packet builder that dynamically loads data into a data stream for eventual network transmission. Each builder operates by finding fields in a given class (and its superclasses) that are marked with a @data annotation. When I finishing my implementation, I remembered that getFields() does not return results in any specific order. Should reflection-based methods for serializing arbitrary data (like my packets) attempt to preserve a specific field ordering (such as alphabetical), and if so, how?

    Read the article

  • Javascript Implementation Patterns for Server-side MVC Websites

    - by tmo256
    I'm looking for information on common patterns for initializing and executing Javascript page by page in a "traditional" server-side MVC website architecture. A few months ago, my development team began, but abandoned, a major re-architecture of our company's primary web app, including a full front-end redesign. In the process, there was some debate about the architecture of the Javascript in the current version of the site, and whether it fit into a clear, modern design pattern. Now I've returned to the process of overhauling the front end of this and several other MVC websites (Ruby on Rails and MVC.net) to implement a responsive framework (Bootstrap), and in the process will again need to review then revamp and update a lot of Javascript. These web applications are NOT single-page Javascript applications (in fact, we are ripping out a lot of Ajax) or designed to require a Javascript MVC pattern; these apps are basically brochure, catalog and administrative sites that follow a server-side MVC pattern. The vast majority of the Javascript required is behavioral, pre-built plugins (JQuery and Bootstrap, et al) that execute on specific DOM nodes. I'm going to give a very brief (as brief as I can be) run-down of the current architecture only in order to illustrate the scope and type of paradigm I'm talking about. Hopefully, it will help you understand the nature of the patterns I'm looking for, but I'm not looking for commentary on the specifics of this code. What I've done in the past is relatively straight-forward and easy to maintain, but, as mentioned above, some of the other developers don't like the current architecture. Currently, on document ready, I execute whatever global Javascript needs to occur on every page, and then call a page-specific init function to initialize node-specific functionality, retrieving the init method from a JS object. On each page load, something like this will happen: $(document).ready(function(){ $('header').menuAction(); App.pages.executePage('home','show'); //dynamic from framework request object }); And the main App javascript is like App = { usefulGlobalVar: 0, pages: { executePage: function(action, controller) { // if exists, App.pages[action][controller].init() }, home: { show: { init: function() { $('#tabs').tabs(); //et. al }, normalizeName: function() { // dom-specific utility function that // doesn't require a full-blown component/class/module } }, edit: ... }, user_profile: ... } } Any common features and functionality requiring modularization or compotentizing is done as needed with prototyping. For common implementation of plugins, I often extend JQuery, so I can easily initialize a plugin with the same options throughout the site. For example, $('[data-tabs]').myTabs() with this code in a utility javascript file: (function($) { $.fn.myTabs = function() { this.tabs( { //...common options }); }; }) Pointers to articles, books or other discussions would be most welcome. Again, I am looking for a site-wide implementation pattern, NOT a JS MVC framework or general how-tos on creating JS classes or components. Thanks for your help!

    Read the article

  • Part 1 Basic Webtrends REST Examples

    - by GeekAgilistMercenary
    In this entry I just want to cover some examples of how to connect to Webtrends DX Web Services.  The DX Web Services use REST as the architecture, providing simple URI based end points to connect to.  With the Webtrends SDK you can connect to these services with your account information.  Here are the basic steps to retrieve a profile list, the reports from one of those profiles, and then the report you want from that report list. First step is to create a Webtrends User. WebTrends.Sdk.Account.User webtrendsUser = new Account.User(); webtrendsUser.UserName = username; webtrendsUser.Password = password; webtrendsUser.AccountName = account; After you create the Webtrends User, simple request a profile list by getting list of ProfileDefinition Objects. List<WebTrends.Sdk.Profile.ProfileDefinition> profiles = WebTrends.Sdk.Factory.NavigationFactory.BuildListing(webtrendsUser); Next you will want to grab a report based on the profile you are in and your credentials. List<WebTrends.Sdk.Report.ReportDefinition> reports = WebTrends.Sdk.Factory.NavigationFactory.BuildListing(profiles[i], webtrendsUser); In the code above, i would equate to the specific profile you want from the retrieved list of profiles in the profiles list.  The common scenario is that one has pulled the profiles into a drop down, combo, or list box that the user can select.  Then when the user selects the specific profile that profile object can then be used to pull the List of ReportDefinitions. Once we have the report definitions, all sorts of criteria can be added together to query for a specific report.  This is also were things can get a little tricky.  For instance, take a look at the code below. WebTrends.Sdk.Factory.ReportFactory.CreateDimensionalReport( report.ID.ToString(), profiles[i].ID.ToString(), "2010m01", webtrendsUser); The CreateDimensionalReport takes 4 parameters for this particular overload.  The report ID, profile ID, the Webtrends Date Format, and the Webtrends User Object.  There are a number of other overloads available within this factory's method that allow for passing the specific REST URI, and other criteria to retrieve the report of your choice.  In the near future we will be adding some more to this method also, which will provide more flexibility without needing to use the full REST URI. I will have more on this, so all you Coders out there using Webtrends DX Services, I hope this is helpful!  Enjoy. Original Entry

    Read the article

  • Find Column in All Databases

    - by Derek Dieter
    Occasionally, there comes a requirement to search all databases on a particular server for either columns with a specific name, or columns relating to a specific subject. In the most recent case, I had to find all similar columns in all databases because the company plans to change the datatype of these columns. [...]

    Read the article

  • Recent programming language for AI?

    - by Eduard Florinescu
    For a few decades the programming language of choice for AI was either Prolog or LISP, and a few more others that are not so well known. Most of them were designed before the 70's. Changes happens a lot on many other domains specific languages, but in the AI domain it hadn't surfaced so much as in the web specific languages or scripting etc. Are there recent programming languages that were intended to change the game in the AI and learn from the insufficiencies of former languages?

    Read the article

  • What is a recent programming language of choice for the AI?

    - by Eduard Florinescu
    For a few decades the programming language of choice for AI was either Prolog or LISP, and a few more others that are not so well known. Most of them were designed before the 70's. Changes happens a lot on many other domains specific languages, but in the AI domain it hadn't surfaced so much as in the web specific languages or scripting etc. Are there recent programming languages that were intended to change the game in the AI and learn from the insufficiencies of former languages?

    Read the article

  • Using Server Variables in ASP.NET 3.5

    If you are an ASP.NET developer you may notice from your day-to-day job in developing websites that there is some functionality that you need in order to complete specific website tasks. For example you may need to know the IP address of a specific visitor or the browser they re using or even where they re coming from. These questions can be answered by knowing how to use Server Variables in ASP.NET 3.5.... Cloud Servers in Demand - GoGrid Start Small and Grow with Your Business. $0.10/hour

    Read the article

  • Unit-testing code that relies on untestable 3rd party code

    - by DudeOnRock
    Sometimes, especially when working with third party code, I write unit-test specific code in my production code. This happens when third party code uses singletons, relies on constants, accesses the file-system/a resource I don't want to access in a test situation, or overuses inheritance. The form my unit-test specific code takes is usually the following: if (accessing or importing a certain resource fails) I assume this is a test case and load a mock object Is this poor form, and if it is, what is normally done when writing tests for code that uses untestable third party code?

    Read the article

  • Compared to Firefox 4 and Google Chrome 10, what can't IE9 do?

    - by ClosureCowboy
    If a website works in Firefox 4 and in Google Chrome 10, what could potentially cause that website not to work (broken layout or broken JavaScript) in IE9? What limitations and differences does IE9 have, aside from vendor-specific stylesheet rules? Yes, that is a painfully vague question — that's because I am not asking this question from the perspective of someone with a specific problem! I'm asking this question from the perspective of someone with a working website who does not have access to IE9.

    Read the article

  • How can you tell whether to use Composite Pattern or a Tree Structure, or a third implementation?

    - by Aske B.
    I have two client types, an "Observer"-type and a "Subject"-type. They're both associated with a hierarchy of groups. The Observer will receive (calendar) data from the groups it is associated with throughout the different hierarchies. This data is calculated by combining data from 'parent' groups of the group trying to collect data (each group can have only one parent). The Subject will be able to create the data (that the Observers will receive) in the groups they're associated with. When data is created in a group, all 'children' of the group will have the data as well, and they will be able to make their own version of a specific area of the data, but still linked to the original data created (in my specific implementation, the original data will contain time-period(s) and headline, while the subgroups specify the rest of the data for the receivers directly linked to their respective groups). However, when the Subject creates data, it has to check if all affected Observers have any data that conflicts with this, which means a huge recursive function, as far as I can understand. So I think this can be summed up to the fact that I need to be able to have a hierarchy that you can go up and down in, and some places be able to treat them as a whole (recursion, basically). Also, I'm not just aiming at a solution that works. I'm hoping to find a solution that is relatively easy to understand (architecture-wise at least) and also flexible enough to be able to easily receive additional functionality in the future. Is there a design pattern, or a good practice to go by, to solve this problem or similar hierarchy problems? EDIT: Here's the design I have: The "Phoenix"-class is named that way because I didn't think of an appropriate name yet. But besides this I need to be able to hide specific activities for specific observers, even though they are attached to them through the groups. A little Off-topic: Personally, I feel that I should be able to chop this problem down to smaller problems, but it escapes me how. I think it's because it involves multiple recursive functionalities that aren't associated with each other and different client types that needs to get information in different ways. I can't really wrap my head around it. If anyone can guide me in a direction of how to become better at encapsulating hierarchy problems, I'd be very glad to receive that as well.

    Read the article

  • technique for checking modifications in configuration file while starting up a program

    - by rajesh
    I'm writing a software for periodically checking a specific range of networked devices' reach-ability. I'm specifying the address range and the time frequency for checking their reachability, in an xml file. Which technique can I use to check that xml file during the start up of the program for any modifications done in either the range or the frequency and do the necessary update in specific database?

    Read the article

  • Amazon EC2: possible to use elastic load balancing across web servers in multiple regions based on location of client?

    - by Tony
    Related to an another question I asked. This question seems similar but I'm wondering if there are any updates. To support a single site that has users all over the world, I will create EC2 web servers in the US, Asia and Europe regions. The web server instances in the US and Asia regions will be backed by RDS replicas. Is it possible to load balance across these three regions? So when a customer from Spain goes to example.com, she should be routed to the EC2 instances in Europe region, a customer in Miami should be sent to the instance in Eastern US region, etc. Is this possible to do this with just AWS features? Are there docs on how to set this up?

    Read the article

  • Digital audio input on Macbook?

    - by Ken
    I have: a Macbook (not Pro), don't know the exact model but it's a Core 2 Duo 2.0GHz and probably what Wikipedia calls the "Late 2006" or "Mid 2007" model a DVD player, region-free, that has "Coax and TosLink optical digital audio outputs" I want to make an MP3 of the audio track of some DVDs (for learning a new language), and I can't use the Macbook's built-in DVD drive because it's a different region (ugh!). I'm sure I can connect the DVD player to the Macbook with an analog audio cable. However, if it's possible I'd prefer to keep the signal digital. I'm not even positive if my old Macbook has digital audio in, and if so what I need to connect to it. (I've done plenty of home audio geeking, but always in analog!) Will a "Toslink cable" plus a "Toslink Female to Mini-Plug Male Adapter" (found on Amazon) let me connect my things together? It looks like the pieces will fit but I'd like to hear someone confidently knowledgeable on the matter before I buy something. Thanks!

    Read the article

  • Reducing latency for different geographic regions on Amazon Cloud

    - by Shoaibi
    I have got an application which has three components Application code : Amazon EC2 US-EAST-1 instance Application images, and other static data : Amazon S3 with CloudFront Application Database : Amazon RDS In short i need something like Cloud Front for EC2. In long, people using this application from a different region say middle east will have faster static content downloading due to Cloud Front but there would be a lot of latency in communicating to EC2 instance. I want to use a budget friendly way of enhancing this. Launching Amazon Instances in every region that offer is sure a choice, but isn't really cheap, so would try to avoid it unless its last resort. Also say if my clients also need to communicate to the RDS database directly, is there some kind of solution which gives that kind of functionality mentioned above, but for RDS?

    Read the article

< Previous Page | 109 110 111 112 113 114 115 116 117 118 119 120  | Next Page >