Search Results

Search found 17420 results on 697 pages for 'static urls'.

Page 114/697 | < Previous Page | 110 111 112 113 114 115 116 117 118 119 120 121  | Next Page >

  • asp.net hover menu item

    - by WtFudgE
    When I hover on a static menu item that has a dynamic menu, the hover styles are in effect but once I start navigating the dynamic menu the static menu item goes back to the non-hover styles. Does anyone know how to make them stick until I stop ''using' that menu? I tried the 'selected' static menu item styles but that doesn't work - if I use them, even when I stop navigating the menu the last selected static menu item will display the selected style - after using the menu I want the styles to revert to the normal styles....

    Read the article

  • ZPL II Extended Characters

    - by Mauro
    I'm trying to print extended code page 850 characters using ZPL II to a Zebra S4M. Whenever one of the extended characters I.E. ASCII value 127 is used I get a box of varying shades of grey instead of the actual value. I'm trying to print ± and ° (ALT+0177 and ALT+0176). I suspect its the RawPrinterHelper I am trying to use (as downloaded from MS, and another from CodeProject) however I cant see where the character codes are going wrong. Weirdly, printing direct from Notepad renders the correct characters, which leads me to believe it is a problem with the raw printer helper class. I am not tied to using the Raw Printer Helper class so if there is a better way of doing it, I am more than happy to see them. SAMPLE ZPLII Without escaped chars ^XA ^FO30,200^AD^FH,18,10^FD35 ± 2 ° ^FS ^FS ^XZ With escaped chars (tried both upper and lower case) ^XA ^FO30,200^AD^FH,18,10^FD35 _b0 2 _b1 ^FS ^FS ^XZ Raw Printer Helper [StructLayout(LayoutKind.Sequential)] public struct DOCINFO { [MarshalAs(UnmanagedType.LPWStr)] public string printerDocumentName; [MarshalAs(UnmanagedType.LPWStr)] public string pOutputFile; [MarshalAs(UnmanagedType.LPWStr)] public string printerDocumentDataType; } public class RawPrinter { [ DllImport("winspool.drv", CharSet = CharSet.Unicode, ExactSpelling = false, CallingConvention = CallingConvention.StdCall)] public static extern long OpenPrinter(string pPrinterName, ref IntPtr phPrinter, int pDefault); [ DllImport("winspool.drv", CharSet = CharSet.Unicode, ExactSpelling = false, CallingConvention = CallingConvention.StdCall)] public static extern long StartDocPrinter(IntPtr hPrinter, int Level, ref DOCINFO pDocInfo); [ DllImport("winspool.drv", CharSet = CharSet.Unicode, ExactSpelling = true, CallingConvention = CallingConvention.StdCall)] public static extern long StartPagePrinter(IntPtr hPrinter); [ DllImport("winspool.drv", CharSet = CharSet.Ansi, ExactSpelling = true, CallingConvention = CallingConvention.StdCall)] public static extern long WritePrinter(IntPtr hPrinter, string data, int buf, ref int pcWritten); [ DllImport("winspool.drv", CharSet = CharSet.Unicode, ExactSpelling = true, CallingConvention = CallingConvention.StdCall)] public static extern long EndPagePrinter(IntPtr hPrinter); [ DllImport("winspool.drv", CharSet = CharSet.Unicode, ExactSpelling = true, CallingConvention = CallingConvention.StdCall)] public static extern long EndDocPrinter(IntPtr hPrinter); [ DllImport("winspool.drv", CharSet = CharSet.Unicode, ExactSpelling = true, CallingConvention = CallingConvention.StdCall)] public static extern long ClosePrinter(IntPtr hPrinter); public static void SendToPrinter(string printerJobName, string rawStringToSendToThePrinter, string printerNameAsDescribedByPrintManager) { IntPtr handleForTheOpenPrinter = new IntPtr(); DOCINFO documentInformation = new DOCINFO(); int printerBytesWritten = 0; documentInformation.printerDocumentName = printerJobName; documentInformation.printerDocumentDataType = "RAW"; OpenPrinter(printerNameAsDescribedByPrintManager, ref handleForTheOpenPrinter, 0); StartDocPrinter(handleForTheOpenPrinter, 1, ref documentInformation); StartPagePrinter(handleForTheOpenPrinter); WritePrinter(handleForTheOpenPrinter, rawStringToSendToThePrinter, rawStringToSendToThePrinter.Length, ref printerBytesWritten); EndPagePrinter(handleForTheOpenPrinter); EndDocPrinter(handleForTheOpenPrinter); ClosePrinter(handleForTheOpenPrinter); } }

    Read the article

  • for my project I have problem in report

    - by pink rose
    public class stack { private int Array[]; private int top = -1; public int size; public stack(int size) { this.size=size; Array = new int[size]; } public void push(int j) { if (top < size) { Array[++top] = j; } } public int pop() { return Array[top--]; } public int top() { return Array[top]; } public boolean isEmpty() { return (top == -1); } } import javax.swing.JOptionPane; public class menu { private static stack s; private static int numbers[]; public static void main(String args[]) { start(); } public static void start() { int i = Integer.parseInt(JOptionPane.showInputDialog("1. size of array\n2. data entry\n3. display content\n4. exit")); switch (i) { case 1: setSize(); break; case 2: addElement(); break; case 3: showElements(); break; case 4: exit(); } } public static void setSize() { int size = Integer.parseInt(JOptionPane.showInputDialog("Please Enter The Size")); s = new stack(size); numbers = new int[10]; start(); } public static void addElement() { for(int x=0;x<s.size;x++) { int e = Integer.parseInt(JOptionPane.showInputDialog("Please Enter The Element")); numbers[e]++; s.push(e); } start(); } public static void showElements() { String result = ""; int temp; while (!s.isEmpty()) { temp = s.pop(); if (numbers[temp] == 1) { result = temp+result; } } JOptionPane.showMessageDialog(null, result); start(); } public static void exit() { System.exit(0); } } This my project I was finished but I have problem in question in my report Conclusion. It should summarize the state of your project and indicate which part of your project is working and which part is not working or with limitations. You may also provide your suggestions and comments to this project what I can answer I didn't have any idea

    Read the article

  • for my project I have problem in report

    - by pink rose
    public stack(int size) { this.size=size; Array = new int[size]; } public void push(int j) { if (top < size) { Array[++top] = j; } } public int pop() { return Array[top--]; } public int top() { return Array[top]; } public boolean isEmpty() { return (top == -1); } } import javax.swing.JOptionPane; public class menu { private static stack s; private static int numbers[]; public static void main(String args[]) { start(); } public static void start() { int i = Integer.parseInt(JOptionPane.showInputDialog("1. size of array\n2. data entry\n3. display content\n4. exit")); switch (i) { case 1: setSize(); break; case 2: addElement(); break; case 3: showElements(); break; case 4: exit(); } } public static void setSize() { int size = Integer.parseInt(JOptionPane.showInputDialog("Please Enter The Size")); s = new stack(size); numbers = new int[10]; start(); } public static void addElement() { for(int x=0;x<s.size;x++) { int e = Integer.parseInt(JOptionPane.showInputDialog("Please Enter The Element")); numbers[e]++; s.push(e); } start(); } public static void showElements() { String result = ""; int temp; while (!s.isEmpty()) { temp = s.pop(); if (numbers[temp] == 1) { result = temp+result; } } JOptionPane.showMessageDialog(null, result); start(); } public static void exit() { System.exit(0); } } This my project I was finished but I have problem in question in my report Conclusion. It should summarize the state of your project and indicate which part of your project is working and which part is not working or with limitations. You may also provide your suggestions and comments to this project what I can answer I didn't have any idea

    Read the article

  • Java Singleton Pattern

    - by Spencer
    I'm used the Singleton Design Pattern public class Singleton { private static final Singleton INSTANCE = new Singleton(); // Private constructor prevents instantiation from other classes private Singleton() {} public static Singleton getInstance() { return INSTANCE; } } My question is how do I create an object of class Singleton in another class? I've tried: Singleton singleton = new Singleton(); // error - constructor is private Singleton singleton = Singleton.getInstance(); // error - non-static method cannot be referenced from a static context What is the correct code? Thanks, Spencer

    Read the article

  • Running Command via Java ProccesBuilder Different to Running the same in the Shell

    - by Tom Duckering
    I'm tearing my hair out trying to work out why the command I'm executing via Java using a ProcessBuilder & Process is not working. I run the "same" command at the Windows command line and it works as expected. It must be that they're not the same but I can't for the life of me work out why. The command is this: ccm start -nogui -m -q -n ccm_admin -r developer -d /path/to/db/databasename -s http://hostname:8400 -pw Passw0rd789$ The output is should be a single line string that I need to grab and set as an environment variable (hence the v. basic use of the BufferedReader). My Java code, which when it runs the command gets an application error, looks like this with entry point being startCCMAndGetCCMAddress(): private static String ccmAddress = ""; private static final String DATABASE_PATH = "/path/to/db/databasename"; private static final String SYNERGY_URL = "http://hostname:8400"; private static final String USERNAME = "ccm_admin"; private static final String PASSWORD = "Passw0rd789$"; private static final String USER_ROLE = "developer"; public static List<String> getCCMStartCommand() { List<String> command = new ArrayList<String>(); command.add("cmd.exe"); command.add("/C"); command.add("ccm"); command.add("start"); command.add("-nogui"); command.add("-m"); command.add("-q"); command.add("-n "+USERNAME); command.add("-r "+USER_ROLE); command.add("-d "+DATABASE_PATH); command.add("-s "+SYNERGY_URL); command.add("-pw "+PASSWORD); return command; } private static String startCCMAndGetCCMAddress() throws IOException, CCMCommandException { int processExitValue = 0; List<String> command = getCCMStartCommand(); System.err.println("Will run: "+command); ProcessBuilder procBuilder = new ProcessBuilder(command); procBuilder.redirectErrorStream(true); Process proc = procBuilder.start(); BufferedReader outputBr = new BufferedReader(new InputStreamReader(proc.getInputStream())); try { proc.waitFor(); } catch (InterruptedException e) { processExitValue = proc.exitValue(); } String outputLine = outputBr.readLine(); outputBr.close(); if (processExitValue != 0) { throw new CCMCommandException("Command failed with output: " + outputLine); } if (outputLine == null) { throw new CCMCommandException("Command returned zero but there was no output"); } return outputLine; } The output of the System.err.println(...) is: Will run: [cmd.exe, /C, ccm, start, -nogui, -m, -q, -n ccm_admin, -r developer, -d /path/to/db/databasename, -s http://hostname:8400, -pw Passw0rd789$]

    Read the article

  • C# XMLSerializer fails with List<T>

    - by Redshirt
    Help... I'm using a singleton class to save all my settings info. It's first utilized by calling Settings.ValidateSettings(@"C:\MyApp") The problem I'm having is that 'List Contacts' is causing the xmlserializer to fail to write the settings file, or to load said settings. If I comment out the List then I have no problems saving/loading the xml file. What am I doing wrong... Thanks in advance // The actual settings to save public class MyAppSettings { public bool FirstLoad { get; set; } public string VehicleFolderName { get; set; } public string ContactFolderName { get; set; } public List<ContactInfo> Contacts { get { if (contacts == null) contacts = new List<ContactInfo>(); return contacts; } set { contacts = value; } } private List<ContactInfo> contacts; } // The class in which the settings are manipulated public static class Settings { public static string SettingPath; private static MyAppSettings instance; public static MyAppSettings Instance { get { if (instance == null) instance = new MyAppSettings(); return instance; } set { instance = value; } } public static void InitializeSettings(string path) { SettingPath = Path.GetFullPath(path + "\\MyApp.xml"); if (File.Exists(SettingPath)) { LoadSettings(); } else { Instance.FirstLoad = true; Instance.VehicleFolderName = "Cars"; Instance.ContactFolderName = "Contacts"; SaveSettingsFile(); } } // load the settings from the xml file private static void LoadSettings() { XmlSerializer ser = new XmlSerializer(typeof(MyAppSettings)); TextReader reader = new StreamReader(SettingPath); Instance = (MyAppSettings)ser.Deserialize(reader); reader.Close(); } // Save the settings to the xml file public static void SaveSettingsFile() { XmlSerializer ser = new XmlSerializer(typeof(MyAppSettings)); TextWriter writer = new StreamWriter(SettingPath); ser.Serialize(writer, Settings.Instance); writer.Close(); } public static bool ValidateSettings(string initialFolder) { try { Settings.InitializeSettings(initialFolder); } catch (Exception e) { return false; } // Do some validation logic here return true; } } // A utility class to contain each contact detail public class ContactInfo { public string ContactID; public string Name; public string PhoneNumber; public string Details; public bool Active; public int SortOrder; } }

    Read the article

  • class composition instead of object composition?

    - by fayer
    I want a class property to be reference to another class, not its object and then use this property to call the class's static methods. class Database { private static $log; public static function addLog($LogClass) { self::$log = $LogClass; } public static function log() { self::$log::write(); // seems not possible to write it like this } } any suggestions how i can accomplish this? cause i have no reason making them objects, i want to use the classes for it.

    Read the article

  • How to build an offline web app using Flask?

    - by Rafael Alencar
    I'm prototyping an idea for a website that will use the HTML5 offline application cache for certain purposes. The website will be built with Python and Flask and that's where my main problem comes from: I'm working with those two for the first time, so I'm having a hard time getting the manifest file to work as expected. The issue is that I'm getting 404's from the static files included in the manifest file. The manifest itself seems to be downloaded correctly, but the files that it points to are not. This is what is spit out in the console when loading the page: Creating Application Cache with manifest http://127.0.0.1:5000/static/manifest.appcache offline-app:1 Application Cache Checking event offline-app:1 Application Cache Downloading event offline-app:1 Application Cache Progress event (0 of 2) http://127.0.0.1:5000/style.css offline-app:1 Application Cache Error event: Resource fetch failed (404) http://127.0.0.1:5000/style.css The error is in the last line. When the appcache fails even once, it stops the process completely and the offline cache doesn't work. This is how my files are structured: sandbox offline-app offline-app.py static manifest.appcache script.js style.css templates offline-app.html This is the content of offline-app.py: from flask import Flask, render_template app = Flask(__name__) @app.route('/offline-app') def offline_app(): return render_template('offline-app.html') if __name__ == '__main__': app.run(host='0.0.0.0', debug=True) This is what I have in offline-app.html: <!DOCTYPE html> <html manifest="{{ url_for('static', filename='manifest.appcache') }}"> <head> <title>Offline App Sandbox - main page</title> </head> <body> <h1>Welcome to the main page for the Offline App Sandbox!</h1> <p>Some placeholder text</p> </body> </html> This is my manifest.appcache file: CACHE MANIFEST /style.css /script.js I've tried having the manifest file in all different ways I could think of: CACHE MANIFEST /static/style.css /static/script.js or CACHE MANIFEST /offline-app/static/style.css /offline-app/static/script.js None of these worked. The same error was returned every time. I'm certain the issue here is how the server is serving up the files listed in the manifest. Those files are probably being looked up in the wrong place, I guess. I either should place them somewhere else or I need something different in the cache manifest, but I have no idea what. I couldn't find anything online about having HTML5 offline applications with Flask. Is anyone able to help me out?

    Read the article

  • Dependency injection: Scoping by region (Guice, Spring, Whatever)

    - by Itay
    Here's a simplified version of my needs. I have a program where every B object has its own C and D object, injected through Guice. In addition an A object is injected into every C and D objects. What I want: that for each B object, its C and D objects will be injected with the same A object. Specifically, I want the output of the program (below) to be: Created C0 with [A0] Created D0 with [A0] Created B0 with [C0, D0] Created C1 with [A1] Created D1 with [A1] Created B1 with [C1, D1] Where it currently produces the following output: Created C0 with [A0] Created D0 with [A1] <-- Should be A0 Created B0 with [C0, D0] Created C1 with [A2] <-- Should be A1 Created D1 with [A3] <-- Should be A1 Created B1 with [C1, D1] I am expecting DI containers to allow this kind of customization but so far I had no luck in finding a solution. Below is my Guice-based code, but a Spring-based (or other DI containers-based) solution is welcome. import java.util.Arrays; import com.google.inject.*; public class Main { public static class Super { private static Map<Class<?>,Integer> map = new HashMap<Class<?>,Integer>(); private Integer value; public Super(Object... args) { value = map.get(getClass()); value = value == null ? 0 : ++value; map.put(getClass(), value); if(args.length > 0) System.out.println("Created " + this + " with " + Arrays.toString(args)); } @Override public final String toString() { return "" + getClass().getSimpleName().charAt(0) + value; } } public interface A { } public static class AImpl extends Super implements A { } public interface B { } public static class BImpl extends Super implements B { @Inject public BImpl(C c, D d) { super(c,d); } } public interface C { } public static class CImpl extends Super implements C { @Inject public CImpl(A a) { super(a); } } public interface D { } public static class DImpl extends Super implements D { @Inject public DImpl(A a) { super(a); } } public static class MyModule extends AbstractModule { @Override protected void configure() { bind(A.class).to(AImpl.class); bind(B.class).to(BImpl.class); bind(C.class).to(CImpl.class); bind(D.class).to(DImpl.class); } } public static void main(String[] args) { Injector inj = Guice.createInjector(new MyModule()); inj.getInstance(B.class); inj.getInstance(B.class); } }

    Read the article

  • CLR 4.0 inlining policy? (maybe bug with MethodImplOptions.NoInlining)

    - by ControlFlow
    I've testing some new CLR 4.0 behavior in method inlining (cross-assembly inlining) and found some strage results: Assembly ClassLib.dll: using System.Diagnostics; using System; using System.Reflection; using System.Security; using System.Runtime.CompilerServices; namespace ClassLib { public static class A { static readonly MethodInfo GetExecuting = typeof(Assembly).GetMethod("GetExecutingAssembly"); public static Assembly Foo(out StackTrace stack) // 13 bytes { // explicit call to GetExecutingAssembly() stack = new StackTrace(); return Assembly.GetExecutingAssembly(); } public static Assembly Bar(out StackTrace stack) // 25 bytes { // reflection call to GetExecutingAssembly() stack = new StackTrace(); return (Assembly) GetExecuting.Invoke(null, null); } public static Assembly Baz(out StackTrace stack) // 9 bytes { stack = new StackTrace(); return null; } public static Assembly Bob(out StackTrace stack) // 13 bytes { // call of non-inlinable method! return SomeSecurityCriticalMethod(out stack); } [SecurityCritical, MethodImpl(MethodImplOptions.NoInlining)] static Assembly SomeSecurityCriticalMethod(out StackTrace stack) { stack = new StackTrace(); return Assembly.GetExecutingAssembly(); } } } Assembly ConsoleApp.exe using System; using ClassLib; using System.Diagnostics; class Program { static void Main() { Console.WriteLine("runtime: {0}", Environment.Version); StackTrace stack; Console.WriteLine("Foo: {0}\n{1}", A.Foo(out stack), stack); Console.WriteLine("Bar: {0}\n{1}", A.Bar(out stack), stack); Console.WriteLine("Baz: {0}\n{1}", A.Baz(out stack), stack); Console.WriteLine("Bob: {0}\n{1}", A.Bob(out stack), stack); } } Results: runtime: 4.0.30128.1 Foo: ClassLib, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null at ClassLib.A.Foo(StackTrace& stack) at Program.Main() Bar: ClassLib, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null at ClassLib.A.Bar(StackTrace& stack) at Program.Main() Baz: at Program.Main() Bob: ClassLib, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null at Program.Main() So questions are: Why JIT does not inlined Foo and Bar calls as Baz does? They are lower than 32 bytes of IL and are good candidates for inlining. Why JIT inlined call of Bob and inner call of SomeSecurityCriticalMethod that is marked with the [MethodImpl(MethodImplOptions.NoInlining)] attribute? Why GetExecutingAssembly returns a valid assembly when is called by inlined Baz and SomeSecurityCriticalMethod methods? I've expect that it performs the stack walk to detect the executing assembly, but stack will contains only Program.Main() call and no methods of ClassLib assenbly, to ConsoleApp should be returned.

    Read the article

  • Reducer getting fewer records than expected

    - by sathishs
    We have a scenario of generating unique key for every single row in a file. we have a timestamp column but the are multiple rows available for a same timestamp in few scenarios. We decided unique values to be timestamp appended with their respective count as mentioned in the below program. Mapper will just emit the timestamp as key and the entire row as its value, and in reducer the key is generated. Problem is Map outputs about 236 rows, of which only 230 records are fed as an input for reducer which outputs the same 230 records. public class UniqueKeyGenerator extends Configured implements Tool { private static final String SEPERATOR = "\t"; private static final int TIME_INDEX = 10; private static final String COUNT_FORMAT_DIGITS = "%010d"; public static class Map extends Mapper<LongWritable, Text, Text, Text> { @Override protected void map(LongWritable key, Text row, Context context) throws IOException, InterruptedException { String input = row.toString(); String[] vals = input.split(SEPERATOR); if (vals != null && vals.length >= TIME_INDEX) { context.write(new Text(vals[TIME_INDEX - 1]), row); } } } public static class Reduce extends Reducer<Text, Text, NullWritable, Text> { @Override protected void reduce(Text eventTimeKey, Iterable<Text> timeGroupedRows, Context context) throws IOException, InterruptedException { int cnt = 1; final String eventTime = eventTimeKey.toString(); for (Text val : timeGroupedRows) { final String res = SEPERATOR.concat(getDate( Long.valueOf(eventTime)).concat( String.format(COUNT_FORMAT_DIGITS, cnt))); val.append(res.getBytes(), 0, res.length()); cnt++; context.write(NullWritable.get(), val); } } } public static String getDate(long time) { SimpleDateFormat utcSdf = new SimpleDateFormat("yyyyMMddhhmmss"); utcSdf.setTimeZone(TimeZone.getTimeZone("America/Los_Angeles")); return utcSdf.format(new Date(time)); } public int run(String[] args) throws Exception { conf(args); return 0; } public static void main(String[] args) throws Exception { conf(args); } private static void conf(String[] args) throws IOException, InterruptedException, ClassNotFoundException { Configuration conf = new Configuration(); Job job = new Job(conf, "uniquekeygen"); job.setJarByClass(UniqueKeyGenerator.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); job.setMapperClass(Map.class); job.setReducerClass(Reduce.class); job.setInputFormatClass(TextInputFormat.class); job.setOutputFormatClass(TextOutputFormat.class); // job.setNumReduceTasks(400); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); job.waitForCompletion(true); } } It is consistent for higher no of lines and the difference is as huge as 208969 records for an input of 20855982 lines. what might be the reason for reduced inputs to reducer?

    Read the article

  • C++ DLL-Linking UnResolved Externals

    - by Undawned
    I have a rather big Core project that I'm working with, I'm attempting to adapt it to use a DLL Engine I've built, I'm getting a bunch of errors like: unresolved external symbol "private: static class When including some of the headers from the Core in the DLL, the class is exported via __declspec(dllexport) but any header with static members throws out a crapload of errors regarding the static members. This is a rather big project, I can't exactly run around removing every static class member I see, is there anyway around this kind of thing?

    Read the article

  • Class constructor in java

    - by aladine
    Please advise me the difference between two ways of declaration of java constructor public class A{ private static A instance = new A(); public static A getInstance() { return instance; } public static void main(String[] args) { A a= A.getInstance(); } } AND public class B{ public B(){}; public static void main(String[] args) { B b= new B(); } } Thanks

    Read the article

  • .NET XmlSerializer fails with List<T>

    - by Redshirt
    I'm using a singleton class to save all my settings info. It's first utilized by calling Settings.ValidateSettings(@"C:\MyApp"). The problem I'm having is that 'List Contacts' is causing the xmlserializer to fail to write the settings file, or to load said settings. If I comment out the List<T> then I have no problems saving/loading the xml file. What am I doing wrong? // The actual settings to save public class MyAppSettings { public bool FirstLoad { get; set; } public string VehicleFolderName { get; set; } public string ContactFolderName { get; set; } public List<ContactInfo> Contacts { get { if (contacts == null) contacts = new List<ContactInfo>(); return contacts; } set { contacts = value; } } private List<ContactInfo> contacts; } // The class in which the settings are manipulated public static class Settings { public static string SettingPath; private static MyAppSettings instance; public static MyAppSettings Instance { get { if (instance == null) instance = new MyAppSettings(); return instance; } set { instance = value; } } public static void InitializeSettings(string path) { SettingPath = Path.GetFullPath(path + "\\MyApp.xml"); if (File.Exists(SettingPath)) { LoadSettings(); } else { Instance.FirstLoad = true; Instance.VehicleFolderName = "Cars"; Instance.ContactFolderName = "Contacts"; SaveSettingsFile(); } } // load the settings from the xml file private static void LoadSettings() { XmlSerializer ser = new XmlSerializer(typeof(MyAppSettings)); TextReader reader = new StreamReader(SettingPath); Instance = (MyAppSettings)ser.Deserialize(reader); reader.Close(); } // Save the settings to the xml file public static void SaveSettingsFile() { XmlSerializer ser = new XmlSerializer(typeof(MyAppSettings)); TextWriter writer = new StreamWriter(SettingPath); ser.Serialize(writer, Settings.Instance); writer.Close(); } public static bool ValidateSettings(string initialFolder) { try { Settings.InitializeSettings(initialFolder); } catch (Exception e) { return false; } // Do some validation logic here return true; } } // A utility class to contain each contact detail public class ContactInfo { public string ContactID; public string Name; public string PhoneNumber; public string Details; public bool Active; public int SortOrder; }

    Read the article

  • order of initialization in Java

    - by M.H
    Hi, I want to ask why java initializes the static objects before the non-static objects ? in this example b3 will be initialized after b4 and b5 : class Cupboard { Bowl b3 = new Bowl(3); static Bowl b4 = new Bowl(4); Cupboard() {} static Bowl b5 = new Bowl(5); }

    Read the article

  • Creating instance in java class

    - by aladine
    Please advise me the difference between two ways of declaration of java constructor public class A{ private static A instance = new A(); public static A getInstance() { return instance; } public static void main(String[] args) { A a= A.getInstance(); } } AND public class B{ public B(){}; public static void main(String[] args) { B b= new B(); } } Thanks

    Read the article

  • MySQL Syslog Audit Plugin

    - by jonathonc
    This post shows the construction process of the Syslog Audit plugin that was presented at MySQL Connect 2012. It is based on an environment that has the appropriate development tools enabled including gcc,g++ and cmake. It also assumes you have downloaded the MySQL source code (5.5.16 or higher) and have compiled and installed the system into the /usr/local/mysql directory ready for use.  The information provided below is designed to show the different components that make up a plugin, and specifically an audit type plugin, and how it comes together to be used within the MySQL service. The MySQL Reference Manual contains information regarding the plugin API and how it can be used, so please refer there for more detailed information. The code in this post is designed to give the simplest information necessary, so handling every return code, managing race conditions etc is not part of this example code. Let's start by looking at the most basic implementation of our plugin code as seen below: /*    Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.    Author:  Jonathon Coombes    Licence: GPL    Description: An auditing plugin that logs to syslog and                 can adjust the loglevel via the system variables. */ #include <stdio.h> #include <string.h> #include <mysql/plugin_audit.h> #include <syslog.h> There is a commented header detailing copyright/licencing and meta-data information and then the include headers. The two important include statements for our plugin are the syslog.h plugin, which gives us the structures for syslog, and the plugin_audit.h include which has details regarding the audit specific plugin api. Note that we do not need to include the general plugin header plugin.h, as this is done within the plugin_audit.h file already. To implement our plugin within the current implementation we need to add it into our source code and compile. > cd /usr/local/src/mysql-5.5.28/plugin > mkdir audit_syslog > cd audit_syslog A simple CMakeLists.txt file is created to manage the plugin compilation: MYSQL_ADD_PLUGIN(audit_syslog audit_syslog.cc MODULE_ONLY) Run the cmake  command at the top level of the source and then you can compile the plugin using the 'make' command. This results in a compiled audit_syslog.so library, but currently it is not much use to MySQL as there is no level of api defined to communicate with the MySQL service. Now we need to define the general plugin structure that enables MySQL to recognise the library as a plugin and be able to install/uninstall it and have it show up in the system. The structure is defined in the plugin.h file in the MySQL source code.  /*   Plugin library descriptor */ mysql_declare_plugin(audit_syslog) {   MYSQL_AUDIT_PLUGIN,           /* plugin type                    */   &audit_syslog_descriptor,     /* descriptor handle               */   "audit_syslog",               /* plugin name                     */   "Author Name",                /* author                          */   "Simple Syslog Audit",        /* description                     */   PLUGIN_LICENSE_GPL,           /* licence                         */   audit_syslog_init,            /* init function     */   audit_syslog_deinit,          /* deinit function */   0x0001,                       /* plugin version                  */   NULL,                         /* status variables        */   NULL,                         /* system variables                */   NULL,                         /* no reserves                     */   0,                            /* no flags                        */ } mysql_declare_plugin_end; The general plugin descriptor above is standard for all plugin types in MySQL. The plugin type is defined along with the init/deinit functions and interface methods into the system for sharing information, and various other metadata information. The descriptors have an internally recognised version number so that plugins can be matched against the api on the running server. The other details are usually related to the type-specific methods and structures to implement the plugin. Each plugin has a type-specific descriptor as well which details how the plugin is implemented for the specific purpose of that plugin type. /*   Plugin type-specific descriptor */ static struct st_mysql_audit audit_syslog_descriptor= {   MYSQL_AUDIT_INTERFACE_VERSION,                        /* interface version    */   NULL,                                                 /* release_thd function */   audit_syslog_notify,                                  /* notify function      */   { (unsigned long) MYSQL_AUDIT_GENERAL_CLASSMASK |                     MYSQL_AUDIT_CONNECTION_CLASSMASK }  /* class mask           */ }; In this particular case, the release_thd function has not been defined as it is not required. The important method for auditing is the notify function which is activated when an event occurs on the system. The notify function is designed to activate on an event and the implementation will determine how it is handled. For the audit_syslog plugin, the use of the syslog feature sends all events to the syslog for recording. The class mask allows us to determine what type of events are being seen by the notify function. There are currently two major types of event: 1. General Events: This includes general logging, errors, status and result type events. This is the main one for tracking the queries and operations on the database. 2. Connection Events: This group is based around user logins. It monitors connections and disconnections, but also if somebody changes user while connected. With most audit plugins, the principle behind the plugin is to track changes to the system over time and counters can be an important part of this process. The next step is to define and initialise the counters that are used to track the events in the service. There are 3 counters defined in total for our plugin - the # of general events, the # of connection events and the total number of events.  static volatile int total_number_of_calls; /* Count MYSQL_AUDIT_GENERAL_CLASS event instances */ static volatile int number_of_calls_general; /* Count MYSQL_AUDIT_CONNECTION_CLASS event instances */ static volatile int number_of_calls_connection; The init and deinit functions for the plugin are there to be called when the plugin is activated and when it is terminated. These offer the best option to initialise the counters for our plugin: /*  Initialize the plugin at server start or plugin installation. */ static int audit_syslog_init(void *arg __attribute__((unused))) {     openlog("mysql_audit:",LOG_PID|LOG_PERROR|LOG_CONS,LOG_USER);     total_number_of_calls= 0;     number_of_calls_general= 0;     number_of_calls_connection= 0;     return(0); } The init function does a call to openlog to initialise the syslog functionality. The parameters are the service to log under ("mysql_audit" in this case), the syslog flags and the facility for the logging. Then each of the counters are initialised to zero and a success is returned. If the init function is not defined, it will return success by default. /*  Terminate the plugin at server shutdown or plugin deinstallation. */ static int audit_syslog_deinit(void *arg __attribute__((unused))) {     closelog();     return(0); } The deinit function will simply close our syslog connection and return success. Note that the syslog functionality is part of the glibc libraries and does not require any external factors.  The function names are what we define in the general plugin structure, so these have to match otherwise there will be errors. The next step is to implement the event notifier function that was defined in the type specific descriptor (audit_syslog_descriptor) which is audit_syslog_notify. /* Event notifier function */ static void audit_syslog_notify(MYSQL_THD thd __attribute__((unused)), unsigned int event_class, const void *event) { total_number_of_calls++; if (event_class == MYSQL_AUDIT_GENERAL_CLASS) { const struct mysql_event_general *event_general= (const struct mysql_event_general *) event; number_of_calls_general++; syslog(audit_loglevel,"%lu: User: %s Command: %s Query: %s\n", event_general->general_thread_id, event_general->general_user, event_general->general_command, event_general->general_query ); } else if (event_class == MYSQL_AUDIT_CONNECTION_CLASS) { const struct mysql_event_connection *event_connection= (const struct mysql_event_connection *) event; number_of_calls_connection++; syslog(audit_loglevel,"%lu: User: %s@%s[%s] Event: %d Status: %d\n", event_connection->thread_id, event_connection->user, event_connection->host, event_connection->ip, event_connection->event_subclass, event_connection->status ); } }   In the case of an event, the notifier function is called. The first step is to increment the total number of events that have occurred in our database.The event argument is then cast into the appropriate event structure depending on the class type, of general event or connection event. The event type counters are incremented and details are sent via the syslog() function out to the system log. There are going to be different line formats and information returned since the general events have different data compared to the connection events, even though some of the details overlap, for example, user, thread id, host etc. On compiling the code now, there should be no errors and the resulting audit_syslog.so can be loaded into the server and ready to use. Log into the server and type: mysql> INSTALL PLUGIN audit_syslog SONAME 'audit_syslog.so'; This will install the plugin and will start updating the syslog immediately. Note that the audit plugin attaches to the immediate thread and cannot be uninstalled while that thread is active. This means that you cannot run the UNISTALL command until you log into a different connection (thread) on the server. Once the plugin is loaded, the system log will show output such as the following: Oct  8 15:33:21 machine mysql_audit:[8337]: 87: User: root[root] @ localhost []  Command: (null)  Query: INSTALL PLUGIN audit_syslog SONAME 'audit_syslog.so' Oct  8 15:33:21 machine mysql_audit:[8337]: 87: User: root[root] @ localhost []  Command: Query  Query: INSTALL PLUGIN audit_syslog SONAME 'audit_syslog.so' Oct  8 15:33:40 machine mysql_audit:[8337]: 87: User: root[root] @ localhost []  Command: (null)  Query: show tables Oct  8 15:33:40 machine mysql_audit:[8337]: 87: User: root[root] @ localhost []  Command: Query  Query: show tables Oct  8 15:33:43 machine mysql_audit:[8337]: 87: User: root[root] @ localhost []  Command: (null)  Query: select * from t1 Oct  8 15:33:43 machine mysql_audit:[8337]: 87: User: root[root] @ localhost []  Command: Query  Query: select * from t1 It appears that two of each event is being shown, but in actuality, these are two separate event types - the result event and the status event. This could be refined further by changing the audit_syslog_notify function to handle the different event sub-types in a different manner.  So far, it seems that the logging is working with events showing up in the syslog output. The issue now is that the counters created earlier to track the number of events by type are not accessible when the plugin is being run. Instead there needs to be a way to expose the plugin specific information to the service and vice versa. This could be done via the information_schema plugin api, but for something as simple as counters, the obvious choice is the system status variables. This is done using the standard structure and the declaration: /*  Plugin status variables for SHOW STATUS */ static struct st_mysql_show_var audit_syslog_status[]= {   { "Audit_syslog_total_calls",     (char *) &total_number_of_calls,     SHOW_INT },   { "Audit_syslog_general_events",     (char *) &number_of_calls_general,     SHOW_INT },   { "Audit_syslog_connection_events",     (char *) &number_of_calls_connection,     SHOW_INT },   { 0, 0, SHOW_INT } };   The structure is simply the name that will be displaying in the mysql service, the address of the associated variables, and the data type being used for the counter. It is finished with a blank structure to show that there are no more variables. Remember that status variables may have the same name for variables from other plugin, so it is considered appropriate to add the plugin name at the start of the status variable name to avoid confusion. Looking at the status variables in the mysql client shows something like the following: mysql> show global status like "audit%"; +--------------------------------+-------+ | Variable_name                  | Value | +--------------------------------+-------+ | Audit_syslog_connection_events | 1     | | Audit_syslog_general_events    | 2     | | Audit_syslog_total_calls       | 3     | +--------------------------------+-------+ 3 rows in set (0.00 sec) The final connectivity piece for the plugin is to allow the interactive change of the logging level between the plugin and the system. This requires the ability to send changes via the mysql service through to the plugin. This is done using the system variables interface and defining a single variable to keep track of the active logging level for the facility. /* Plugin system variables for SHOW VARIABLES */ static MYSQL_SYSVAR_STR(loglevel, audit_loglevel,                         PLUGIN_VAR_RQCMDARG,                         "User can specify the log level for auditing",                         audit_loglevel_check, audit_loglevel_update, "LOG_NOTICE"); static struct st_mysql_sys_var* audit_syslog_sysvars[] = {     MYSQL_SYSVAR(loglevel),     NULL }; So now the system variable 'loglevel' is defined for the plugin and associated to the global variable 'audit_loglevel'. The check or validation function is defined to make sure that no garbage values are attempted in the update of the variable. The update function is used to save the new value to the variable. Note that the audit_syslog_sysvars structure is defined in the general plugin descriptor to associate the link between the plugin and the system and how much they interact. Next comes the implementation of the validation function and the update function for the system variable. It is worth noting that if you have a simple numeric such as integers for the variable types, the validate function is often not required as MySQL will handle the automatic check and validation of simple types. /* longest valid value */ #define MAX_LOGLEVEL_SIZE 100 /* hold the valid values */ static const char *possible_modes[]= { "LOG_ERROR", "LOG_WARNING", "LOG_NOTICE", NULL };  static int audit_loglevel_check(     THD*                        thd,    /*!< in: thread handle */     struct st_mysql_sys_var*    var,    /*!< in: pointer to system                                         variable */     void*                       save,   /*!< out: immediate result                                         for update function */     struct st_mysql_value*      value)  /*!< in: incoming string */ {     char buff[MAX_LOGLEVEL_SIZE];     const char *str;     const char **found;     int length;     length= sizeof(buff);     if (!(str= value->val_str(value, buff, &length)))         return 1;     /*         We need to return a pointer to a locally allocated value in "save".         Here we pick to search for the supplied value in an global array of         constant strings and return a pointer to one of them.         The other possiblity is to use the thd_alloc() function to allocate         a thread local buffer instead of the global constants.     */     for (found= possible_modes; *found; found++)     {         if (!strcmp(*found, str))         {             *(const char**)save= *found;             return 0;         }     }     return 1; } The validation function is simply to take the value being passed in via the SET GLOBAL VARIABLE command and check if it is one of the pre-defined values allowed  in our possible_values array. If it is found to be valid, then the value is assigned to the save variable ready for passing through to the update function. static void audit_loglevel_update(     THD*                        thd,        /*!< in: thread handle */     struct st_mysql_sys_var*    var,        /*!< in: system variable                                             being altered */     void*                       var_ptr,    /*!< out: pointer to                                             dynamic variable */     const void*                 save)       /*!< in: pointer to                                             temporary storage */ {     /* assign the new value so that the server can read it */     *(char **) var_ptr= *(char **) save;     /* assign the new value to the internal variable */     audit_loglevel= *(char **) save; } Since all the validation has been done already, the update function is quite simple for this plugin. The first part is to update the system variable pointer so that the server can read the value. The second part is to update our own global plugin variable for tracking the value. Notice that the save variable is passed in as a void type to allow handling of various data types, so it must be cast to the appropriate data type when assigning it to the variables. Looking at how the latest changes affect the usage of the plugin and the interaction within the server shows: mysql> show global variables like "audit%"; +-----------------------+------------+ | Variable_name         | Value      | +-----------------------+------------+ | audit_syslog_loglevel | LOG_NOTICE | +-----------------------+------------+ 1 row in set (0.00 sec) mysql> set global audit_syslog_loglevel="LOG_ERROR"; Query OK, 0 rows affected (0.00 sec) mysql> show global status like "audit%"; +--------------------------------+-------+ | Variable_name                  | Value | +--------------------------------+-------+ | Audit_syslog_connection_events | 1     | | Audit_syslog_general_events    | 11    | | Audit_syslog_total_calls       | 12    | +--------------------------------+-------+ 3 rows in set (0.00 sec) mysql> show global variables like "audit%"; +-----------------------+-----------+ | Variable_name         | Value     | +-----------------------+-----------+ | audit_syslog_loglevel | LOG_ERROR | +-----------------------+-----------+ 1 row in set (0.00 sec)   So now we have a plugin that will audit the events on the system and log the details to the system log. It allows for interaction to see the number of different events within the server details and provides a mechanism to change the logging level interactively via the standard system methods of the SET command. A more complex auditing plugin may have more detailed code, but each of the above areas is what will be involved and simply expanded on to add more functionality. With the above skeleton code, it is now possible to create your own audit plugins to implement your own auditing requirements. If, however, you are not of the coding persuasion, then you could always consider the option of the MySQL Enterprise Audit plugin that is available to purchase.

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • Using the ASP.NET Cache to cache data in a Model or Business Object layer, without a dependency on System.Web in the layer - Part One.

    - by Rhames
    ASP.NET applications can make use of the System.Web.Caching.Cache object to cache data and prevent repeated expensive calls to a database or other store. However, ideally an application should make use of caching at the point where data is retrieved from the database, which typically is inside a Business Objects or Model layer. One of the key features of using a UI pattern such as Model-View-Presenter (MVP) or Model-View-Controller (MVC) is that the Model and Presenter (or Controller) layers are developed without any knowledge of the UI layer. Introducing a dependency on System.Web into the Model layer would break this independence of the Model from the View. This article gives a solution to this problem, using dependency injection to inject the caching implementation into the Model layer at runtime. This allows caching to be used within the Model layer, without any knowledge of the actual caching mechanism that will be used. Create a sample application to use the caching solution Create a test SQL Server database This solution uses a SQL Server database with the same Sales data used in my previous post on calculating running totals. The advantage of using this data is that it gives nice slow queries that will exaggerate the effect of using caching! To create the data, first create a new SQL database called CacheSample. Next run the following script to create the Sale table and populate it: USE CacheSample GO   CREATE TABLE Sale(DayCount smallint, Sales money) CREATE CLUSTERED INDEX ndx_DayCount ON Sale(DayCount) go INSERT Sale VALUES (1,120) INSERT Sale VALUES (2,60) INSERT Sale VALUES (3,125) INSERT Sale VALUES (4,40)   DECLARE @DayCount smallint, @Sales money SET @DayCount = 5 SET @Sales = 10   WHILE @DayCount < 5000  BEGIN  INSERT Sale VALUES (@DayCount,@Sales)  SET @DayCount = @DayCount + 1  SET @Sales = @Sales + 15  END Next create a stored procedure to calculate the running total, and return a specified number of rows from the Sale table, using the following script: USE [CacheSample] GO   SET ANSI_NULLS ON GO   SET QUOTED_IDENTIFIER ON GO   -- ============================================= -- Author:        Robin -- Create date: -- Description:   -- ============================================= CREATE PROCEDURE [dbo].[spGetRunningTotals]       -- Add the parameters for the stored procedure here       @HighestDayCount smallint = null AS BEGIN       -- SET NOCOUNT ON added to prevent extra result sets from       -- interfering with SELECT statements.       SET NOCOUNT ON;         IF @HighestDayCount IS NULL             SELECT @HighestDayCount = MAX(DayCount) FROM dbo.Sale                   DECLARE @SaleTbl TABLE (DayCount smallint, Sales money, RunningTotal money)         DECLARE @DayCount smallint,                   @Sales money,                   @RunningTotal money         SET @RunningTotal = 0       SET @DayCount = 0         DECLARE rt_cursor CURSOR       FOR       SELECT DayCount, Sales       FROM Sale       ORDER BY DayCount         OPEN rt_cursor         FETCH NEXT FROM rt_cursor INTO @DayCount,@Sales         WHILE @@FETCH_STATUS = 0 AND @DayCount <= @HighestDayCount        BEGIN        SET @RunningTotal = @RunningTotal + @Sales        INSERT @SaleTbl VALUES (@DayCount,@Sales,@RunningTotal)        FETCH NEXT FROM rt_cursor INTO @DayCount,@Sales        END         CLOSE rt_cursor       DEALLOCATE rt_cursor         SELECT DayCount, Sales, RunningTotal       FROM @SaleTbl   END   GO   Create the Sample ASP.NET application In Visual Studio create a new solution and add a class library project called CacheSample.BusinessObjects and an ASP.NET web application called CacheSample.UI. The CacheSample.BusinessObjects project will contain a single class to represent a Sale data item, with all the code to retrieve the sales from the database included in it for simplicity (normally I would at least have a separate Repository or other object that is responsible for retrieving data, and probably a data access layer as well, but for this sample I want to keep it simple). The C# code for the Sale class is shown below: using System; using System.Collections.Generic; using System.Data; using System.Data.SqlClient;   namespace CacheSample.BusinessObjects {     public class Sale     {         public Int16 DayCount { get; set; }         public decimal Sales { get; set; }         public decimal RunningTotal { get; set; }           public static IEnumerable<Sale> GetSales(int? highestDayCount)         {             List<Sale> sales = new List<Sale>();               SqlParameter highestDayCountParameter = new SqlParameter("@HighestDayCount", SqlDbType.SmallInt);             if (highestDayCount.HasValue)                 highestDayCountParameter.Value = highestDayCount;             else                 highestDayCountParameter.Value = DBNull.Value;               string connectionStr = System.Configuration.ConfigurationManager .ConnectionStrings["CacheSample"].ConnectionString;               using(SqlConnection sqlConn = new SqlConnection(connectionStr))             using (SqlCommand sqlCmd = sqlConn.CreateCommand())             {                 sqlCmd.CommandText = "spGetRunningTotals";                 sqlCmd.CommandType = CommandType.StoredProcedure;                 sqlCmd.Parameters.Add(highestDayCountParameter);                   sqlConn.Open();                   using (SqlDataReader dr = sqlCmd.ExecuteReader())                 {                     while (dr.Read())                     {                         Sale newSale = new Sale();                         newSale.DayCount = dr.GetInt16(0);                         newSale.Sales = dr.GetDecimal(1);                         newSale.RunningTotal = dr.GetDecimal(2);                           sales.Add(newSale);                     }                 }             }               return sales;         }     } }   The static GetSale() method makes a call to the spGetRunningTotals stored procedure and then reads each row from the returned SqlDataReader into an instance of the Sale class, it then returns a List of the Sale objects, as IEnnumerable<Sale>. A reference to System.Configuration needs to be added to the CacheSample.BusinessObjects project so that the connection string can be read from the web.config file. In the CacheSample.UI ASP.NET project, create a single web page called ShowSales.aspx, and make this the default start up page. This page will contain a single button to call the GetSales() method and a label to display the results. The html mark up and the C# code behind are shown below: ShowSales.aspx <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="ShowSales.aspx.cs" Inherits="CacheSample.UI.ShowSales" %>   <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">   <html xmlns="http://www.w3.org/1999/xhtml"> <head runat="server">     <title>Cache Sample - Show All Sales</title> </head> <body>     <form id="form1" runat="server">     <div>         <asp:Button ID="btnTest1" runat="server" onclick="btnTest1_Click"             Text="Get All Sales" />         &nbsp;&nbsp;&nbsp;         <asp:Label ID="lblResults" runat="server"></asp:Label>         </div>     </form> </body> </html>   ShowSales.aspx.cs using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.UI; using System.Web.UI.WebControls;   using CacheSample.BusinessObjects;   namespace CacheSample.UI {     public partial class ShowSales : System.Web.UI.Page     {         protected void Page_Load(object sender, EventArgs e)         {         }           protected void btnTest1_Click(object sender, EventArgs e)         {             System.Diagnostics.Stopwatch stopWatch = new System.Diagnostics.Stopwatch();             stopWatch.Start();               var sales = Sale.GetSales(null);               var lastSales = sales.Last();               stopWatch.Stop();               lblResults.Text = string.Format( "Count of Sales: {0}, Last DayCount: {1}, Total Sales: {2}. Query took {3} ms", sales.Count(), lastSales.DayCount, lastSales.RunningTotal, stopWatch.ElapsedMilliseconds);         }       } }   Finally we need to add a connection string to the CacheSample SQL Server database, called CacheSample, to the web.config file: <?xmlversion="1.0"?>   <configuration>    <connectionStrings>     <addname="CacheSample"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=CacheSample"          providerName="System.Data.SqlClient" />  </connectionStrings>    <system.web>     <compilationdebug="true"targetFramework="4.0" />  </system.web>   </configuration>   Run the application and click the button a few times to see how long each call to the database takes. On my system, each query takes about 450ms. Next I shall look at a solution to use the ASP.NET caching to cache the data returned by the query, so that subsequent requests to the GetSales() method are much faster. Adding Data Caching Support I am going to create my caching support in a separate project called CacheSample.Caching, so the next step is to add a class library to the solution. We shall be using the application configuration to define the implementation of our caching system, so we need a reference to System.Configuration adding to the project. ICacheProvider<T> Interface The first step in adding caching to our application is to define an interface, called ICacheProvider, in the CacheSample.Caching project, with methods to retrieve any data from the cache or to retrieve the data from the data source if it is not present in the cache. Dependency Injection will then be used to inject an implementation of this interface at runtime, allowing the users of the interface (i.e. the CacheSample.BusinessObjects project) to be completely unaware of how the caching is actually implemented. As data of any type maybe retrieved from the data source, it makes sense to use generics in the interface, with a generic type parameter defining the data type associated with a particular instance of the cache interface implementation. The C# code for the ICacheProvider interface is shown below: using System; using System.Collections.Generic;   namespace CacheSample.Caching {     public interface ICacheProvider     {     }       public interface ICacheProvider<T> : ICacheProvider     {         T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry);           IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry);     } }   The empty non-generic interface will be used as a type in a Dictionary generic collection later to store instances of the ICacheProvider<T> implementation for reuse, I prefer to use a base interface when doing this, as I think the alternative of using object makes for less clear code. The ICacheProvider<T> interface defines two overloaded Fetch methods, the difference between these is that one will return a single instance of the type T and the other will return an IEnumerable<T>, providing support for easy caching of collections of data items. Both methods will take a key parameter, which will uniquely identify the cached data, a delegate of type Func<T> or Func<IEnumerable<T>> which will provide the code to retrieve the data from the store if it is not present in the cache, and absolute or relative expiry policies to define when a cached item should expire. Note that at present there is no support for cache dependencies, but I shall be showing a method of adding this in part two of this article. CacheProviderFactory Class We need a mechanism of creating instances of our ICacheProvider<T> interface, using Dependency Injection to get the implementation of the interface. To do this we shall create a CacheProviderFactory static class in the CacheSample.Caching project. This factory will provide a generic static method called GetCacheProvider<T>(), which shall return instances of ICacheProvider<T>. We can then call this factory method with the relevant data type (for example the Sale class in the CacheSample.BusinessObject project) to get a instance of ICacheProvider for that type (e.g. call CacheProviderFactory.GetCacheProvider<Sale>() to get the ICacheProvider<Sale> implementation). The C# code for the CacheProviderFactory is shown below: using System; using System.Collections.Generic;   using CacheSample.Caching.Configuration;   namespace CacheSample.Caching {     public static class CacheProviderFactory     {         private static Dictionary<Type, ICacheProvider> cacheProviders = new Dictionary<Type, ICacheProvider>();         private static object syncRoot = new object();           ///<summary>         /// Factory method to create or retrieve an implementation of the  /// ICacheProvider interface for type <typeparamref name="T"/>.         ///</summary>         ///<typeparam name="T">  /// The type that this cache provider instance will work with  ///</typeparam>         ///<returns>An instance of the implementation of ICacheProvider for type  ///<typeparamref name="T"/>, as specified by the application  /// configuration</returns>         public static ICacheProvider<T> GetCacheProvider<T>()         {             ICacheProvider<T> cacheProvider = null;             // Get the Type reference for the type parameter T             Type typeOfT = typeof(T);               // Lock the access to the cacheProviders dictionary             // so multiple threads can work with it             lock (syncRoot)             {                 // First check if an instance of the ICacheProvider implementation  // already exists in the cacheProviders dictionary for the type T                 if (cacheProviders.ContainsKey(typeOfT))                     cacheProvider = (ICacheProvider<T>)cacheProviders[typeOfT];                 else                 {                     // There is not already an instance of the ICacheProvider in       // cacheProviders for the type T                     // so we need to create one                       // Get the Type reference for the application's implementation of       // ICacheProvider from the configuration                     Type cacheProviderType = Type.GetType(CacheProviderConfigurationSection.Current. CacheProviderType);                     if (cacheProviderType != null)                     {                         // Now get a Type reference for the Cache Provider with the                         // type T generic parameter                         Type typeOfCacheProviderTypeForT = cacheProviderType.MakeGenericType(new Type[] { typeOfT });                         if (typeOfCacheProviderTypeForT != null)                         {                             // Create the instance of the Cache Provider and add it to // the cacheProviders dictionary for future use                             cacheProvider = (ICacheProvider<T>)Activator. CreateInstance(typeOfCacheProviderTypeForT);                             cacheProviders.Add(typeOfT, cacheProvider);                         }                     }                 }             }               return cacheProvider;                 }     } }   As this code uses Activator.CreateInstance() to create instances of the ICacheProvider<T> implementation, which is a slow process, the factory class maintains a Dictionary of the previously created instances so that a cache provider needs to be created only once for each type. The type of the implementation of ICacheProvider<T> is read from a custom configuration section in the application configuration file, via the CacheProviderConfigurationSection class, which is described below. CacheProviderConfigurationSection Class The implementation of ICacheProvider<T> will be specified in a custom configuration section in the application’s configuration. To handle this create a folder in the CacheSample.Caching project called Configuration, and add a class called CacheProviderConfigurationSection to this folder. This class will extend the System.Configuration.ConfigurationSection class, and will contain a single string property called CacheProviderType. The C# code for this class is shown below: using System; using System.Configuration;   namespace CacheSample.Caching.Configuration {     internal class CacheProviderConfigurationSection : ConfigurationSection     {         public static CacheProviderConfigurationSection Current         {             get             {                 return (CacheProviderConfigurationSection) ConfigurationManager.GetSection("cacheProvider");             }         }           [ConfigurationProperty("type", IsRequired=true)]         public string CacheProviderType         {             get             {                 return (string)this["type"];             }         }     } }   Adding Data Caching to the Sales Class We now have enough code in place to add caching to the GetSales() method in the CacheSample.BusinessObjects.Sale class, even though we do not yet have an implementation of the ICacheProvider<T> interface. We need to add a reference to the CacheSample.Caching project to CacheSample.BusinessObjects so that we can use the ICacheProvider<T> interface within the GetSales() method. Once the reference is added, we can first create a unique string key based on the method name and the parameter value, so that the same cache key is used for repeated calls to the method with the same parameter values. Then we get an instance of the cache provider for the Sales type, using the CacheProviderFactory, and pass the existing code to retrieve the data from the database as the retrievalMethod delegate in a call to the Cache Provider Fetch() method. The C# code for the modified GetSales() method is shown below: public static IEnumerable<Sale> GetSales(int? highestDayCount) {     string cacheKey = string.Format("CacheSample.BusinessObjects.GetSalesWithCache({0})", highestDayCount);       return CacheSample.Caching.CacheProviderFactory. GetCacheProvider<Sale>().Fetch(cacheKey,         delegate()         {             List<Sale> sales = new List<Sale>();               SqlParameter highestDayCountParameter = new SqlParameter("@HighestDayCount", SqlDbType.SmallInt);             if (highestDayCount.HasValue)                 highestDayCountParameter.Value = highestDayCount;             else                 highestDayCountParameter.Value = DBNull.Value;               string connectionStr = System.Configuration.ConfigurationManager. ConnectionStrings["CacheSample"].ConnectionString;               using (SqlConnection sqlConn = new SqlConnection(connectionStr))             using (SqlCommand sqlCmd = sqlConn.CreateCommand())             {                 sqlCmd.CommandText = "spGetRunningTotals";                 sqlCmd.CommandType = CommandType.StoredProcedure;                 sqlCmd.Parameters.Add(highestDayCountParameter);                   sqlConn.Open();                   using (SqlDataReader dr = sqlCmd.ExecuteReader())                 {                     while (dr.Read())                     {                         Sale newSale = new Sale();                         newSale.DayCount = dr.GetInt16(0);                         newSale.Sales = dr.GetDecimal(1);                         newSale.RunningTotal = dr.GetDecimal(2);                           sales.Add(newSale);                     }                 }             }               return sales;         },         null,         new TimeSpan(0, 10, 0)); }     This example passes the code to retrieve the Sales data from the database to the Cache Provider as an anonymous method, however it could also be written as a lambda. The main advantage of using an anonymous function (method or lambda) is that the code inside the anonymous function can access the parameters passed to the GetSales() method. Finally the absolute expiry is set to null, and the relative expiry set to 10 minutes, to indicate that the cache entry should be removed 10 minutes after the last request for the data. As the ICacheProvider<T> has a Fetch() method that returns IEnumerable<T>, we can simply return the results of the Fetch() method to the caller of the GetSales() method. This should be all that is needed for the GetSales() method to now retrieve data from a cache after the first time the data has be retrieved from the database. Implementing a ASP.NET Cache Provider The final step is to actually implement the ICacheProvider<T> interface, and add the implementation details to the web.config file for the dependency injection. The cache provider implementation needs to have access to System.Web. Therefore it could be placed in the CacheSample.UI project, or in its own project that has a reference to System.Web. Implementing the Cache Provider in a separate project is my favoured approach. Create a new project inside the solution called CacheSample.CacheProvider, and add references to System.Web and CacheSample.Caching to this project. Add a class to the project called AspNetCacheProvider. Make the class a generic class by adding the generic parameter <T> and indicate that the class implements ICacheProvider<T>. The C# code for the AspNetCacheProvider class is shown below: using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.Caching;   using CacheSample.Caching;   namespace CacheSample.CacheProvider {     public class AspNetCacheProvider<T> : ICacheProvider<T>     {         #region ICacheProvider<T> Members           public T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             return FetchAndCache<T>(key, retrieveData, absoluteExpiry, relativeExpiry);         }           public IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             return FetchAndCache<IEnumerable<T>>(key, retrieveData, absoluteExpiry, relativeExpiry);         }           #endregion           #region Helper Methods           private U FetchAndCache<U>(string key, Func<U> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             U value;             if (!TryGetValue<U>(key, out value))             {                 value = retrieveData();                 if (!absoluteExpiry.HasValue)                     absoluteExpiry = Cache.NoAbsoluteExpiration;                   if (!relativeExpiry.HasValue)                     relativeExpiry = Cache.NoSlidingExpiration;                   HttpContext.Current.Cache.Insert(key, value, null, absoluteExpiry.Value, relativeExpiry.Value);             }             return value;         }           private bool TryGetValue<U>(string key, out U value)         {             object cachedValue = HttpContext.Current.Cache.Get(key);             if (cachedValue == null)             {                 value = default(U);                 return false;             }             else             {                 try                 {                     value = (U)cachedValue;                     return true;                 }                 catch                 {                     value = default(U);                     return false;                 }             }         }           #endregion       } }   The two interface Fetch() methods call a private method called FetchAndCache(). This method first checks for a element in the HttpContext.Current.Cache with the specified cache key, and if so tries to cast this to the specified type (either T or IEnumerable<T>). If the cached element is found, the FetchAndCache() method simply returns it. If it is not found in the cache, the method calls the retrievalMethod delegate to get the data from the data source, and then adds this to the HttpContext.Current.Cache. The final step is to add the AspNetCacheProvider class to the relevant custom configuration section in the CacheSample.UI.Web.Config file. To do this there needs to be a <configSections> element added as the first element in <configuration>. This will match a custom section called <cacheProvider> with the CacheProviderConfigurationSection. Then we add a <cacheProvider> element, with a type property set to the fully qualified assembly name of the AspNetCacheProvider class, as shown below: <?xmlversion="1.0"?>   <configuration>  <configSections>     <sectionname="cacheProvider" type="CacheSample.Base.Configuration.CacheProviderConfigurationSection, CacheSample.Base" />  </configSections>    <connectionStrings>     <addname="CacheSample"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=CacheSample"          providerName="System.Data.SqlClient" />  </connectionStrings>    <cacheProvidertype="CacheSample.CacheProvider.AspNetCacheProvider`1, CacheSample.CacheProvider, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null">  </cacheProvider>    <system.web>     <compilationdebug="true"targetFramework="4.0" />  </system.web>   </configuration>   One point to note is that the fully qualified assembly name of the AspNetCacheProvider class includes the notation `1 after the class name, which indicates that it is a generic class with a single generic type parameter. The CacheSample.UI project needs to have references added to CacheSample.Caching and CacheSample.CacheProvider so that the actual application is aware of the relevant cache provider implementation. Conclusion After implementing this solution, you should have a working cache provider mechanism, that will allow the middle and data access layers to implement caching support when retrieving data, without any knowledge of the actually caching implementation. If the UI is not ASP.NET based, if for example it is Winforms or WPF, the implementation of ICacheProvider<T> would be written around whatever technology is available. It could even be a standalone caching system that takes full responsibility for adding and removing items from a global store. The next part of this article will show how this caching mechanism may be extended to provide support for cache dependencies, such as the System.Web.Caching.SqlCacheDependency. Another possible extension would be to cache the cache provider implementations instead of storing them in a static Dictionary in the CacheProviderFactory. This would prevent a build up of seldom used cache providers in the application memory, as they could be removed from the cache if not used often enough, although in reality there are probably unlikely to be vast numbers of cache provider implementation instances, as most applications do not have a massive number of business object or model types.

    Read the article

  • C#/.NET Little Wonders: The Generic Func Delegates

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Back in one of my three original “Little Wonders” Trilogy of posts, I had listed generic delegates as one of the Little Wonders of .NET.  Later, someone posted a comment saying said that they would love more detail on the generic delegates and their uses, since my original entry just scratched the surface of them. Last week, I began our look at some of the handy generic delegates built into .NET with a description of delegates in general, and the Action family of delegates.  For this week, I’ll launch into a look at the Func family of generic delegates and how they can be used to support generic, reusable algorithms and classes. Quick Delegate Recap Delegates are similar to function pointers in C++ in that they allow you to store a reference to a method.  They can store references to either static or instance methods, and can actually be used to chain several methods together in one delegate. Delegates are very type-safe and can be satisfied with any standard method, anonymous method, or a lambda expression.  They can also be null as well (refers to no method), so care should be taken to make sure that the delegate is not null before you invoke it. Delegates are defined using the keyword delegate, where the delegate’s type name is placed where you would typically place the method name: 1: // This delegate matches any method that takes string, returns nothing 2: public delegate void Log(string message); This delegate defines a delegate type named Log that can be used to store references to any method(s) that satisfies its signature (whether instance, static, lambda expression, etc.). Delegate instances then can be assigned zero (null) or more methods using the operator = which replaces the existing delegate chain, or by using the operator += which adds a method to the end of a delegate chain: 1: // creates a delegate instance named currentLogger defaulted to Console.WriteLine (static method) 2: Log currentLogger = Console.Out.WriteLine; 3:  4: // invokes the delegate, which writes to the console out 5: currentLogger("Hi Standard Out!"); 6:  7: // append a delegate to Console.Error.WriteLine to go to std error 8: currentLogger += Console.Error.WriteLine; 9:  10: // invokes the delegate chain and writes message to std out and std err 11: currentLogger("Hi Standard Out and Error!"); While delegates give us a lot of power, it can be cumbersome to re-create fairly standard delegate definitions repeatedly, for this purpose the generic delegates were introduced in various stages in .NET.  These support various method types with particular signatures. Note: a caveat with generic delegates is that while they can support multiple parameters, they do not match methods that contains ref or out parameters. If you want to a delegate to represent methods that takes ref or out parameters, you will need to create a custom delegate. We’ve got the Func… delegates Just like it’s cousin, the Action delegate family, the Func delegate family gives us a lot of power to use generic delegates to make classes and algorithms more generic.  Using them keeps us from having to define a new delegate type when need to make a class or algorithm generic. Remember that the point of the Action delegate family was to be able to perform an “action” on an item, with no return results.  Thus Action delegates can be used to represent most methods that take 0 to 16 arguments but return void.  You can assign a method The Func delegate family was introduced in .NET 3.5 with the advent of LINQ, and gives us the power to define a function that can be called on 0 to 16 arguments and returns a result.  Thus, the main difference between Action and Func, from a delegate perspective, is that Actions return nothing, but Funcs return a result. The Func family of delegates have signatures as follows: Func<TResult> – matches a method that takes no arguments, and returns value of type TResult. Func<T, TResult> – matches a method that takes an argument of type T, and returns value of type TResult. Func<T1, T2, TResult> – matches a method that takes arguments of type T1 and T2, and returns value of type TResult. Func<T1, T2, …, TResult> – and so on up to 16 arguments, and returns value of type TResult. These are handy because they quickly allow you to be able to specify that a method or class you design will perform a function to produce a result as long as the method you specify meets the signature. For example, let’s say you were designing a generic aggregator, and you wanted to allow the user to define how the values will be aggregated into the result (i.e. Sum, Min, Max, etc…).  To do this, we would ask the user of our class to pass in a method that would take the current total, the next value, and produce a new total.  A class like this could look like: 1: public sealed class Aggregator<TValue, TResult> 2: { 3: // holds method that takes previous result, combines with next value, creates new result 4: private Func<TResult, TValue, TResult> _aggregationMethod; 5:  6: // gets or sets the current result of aggregation 7: public TResult Result { get; private set; } 8:  9: // construct the aggregator given the method to use to aggregate values 10: public Aggregator(Func<TResult, TValue, TResult> aggregationMethod = null) 11: { 12: if (aggregationMethod == null) throw new ArgumentNullException("aggregationMethod"); 13:  14: _aggregationMethod = aggregationMethod; 15: } 16:  17: // method to add next value 18: public void Aggregate(TValue nextValue) 19: { 20: // performs the aggregation method function on the current result and next and sets to current result 21: Result = _aggregationMethod(Result, nextValue); 22: } 23: } Of course, LINQ already has an Aggregate extension method, but that works on a sequence of IEnumerable<T>, whereas this is designed to work more with aggregating single results over time (such as keeping track of a max response time for a service). We could then use this generic aggregator to find the sum of a series of values over time, or the max of a series of values over time (among other things): 1: // creates an aggregator that adds the next to the total to sum the values 2: var sumAggregator = new Aggregator<int, int>((total, next) => total + next); 3:  4: // creates an aggregator (using static method) that returns the max of previous result and next 5: var maxAggregator = new Aggregator<int, int>(Math.Max); So, if we were timing the response time of a web method every time it was called, we could pass that response time to both of these aggregators to get an idea of the total time spent in that web method, and the max time spent in any one call to the web method: 1: // total will be 13 and max 13 2: int responseTime = 13; 3: sumAggregator.Aggregate(responseTime); 4: maxAggregator.Aggregate(responseTime); 5:  6: // total will be 20 and max still 13 7: responseTime = 7; 8: sumAggregator.Aggregate(responseTime); 9: maxAggregator.Aggregate(responseTime); 10:  11: // total will be 40 and max now 20 12: responseTime = 20; 13: sumAggregator.Aggregate(responseTime); 14: maxAggregator.Aggregate(responseTime); The Func delegate family is useful for making generic algorithms and classes, and in particular allows the caller of the method or user of the class to specify a function to be performed in order to generate a result. What is the result of a Func delegate chain? If you remember, we said earlier that you can assign multiple methods to a delegate by using the += operator to chain them.  So how does this affect delegates such as Func that return a value, when applied to something like the code below? 1: Func<int, int, int> combo = null; 2:  3: // What if we wanted to aggregate the sum and max together? 4: combo += (total, next) => total + next; 5: combo += Math.Max; 6:  7: // what is the result? 8: var comboAggregator = new Aggregator<int, int>(combo); Well, in .NET if you chain multiple methods in a delegate, they will all get invoked, but the result of the delegate is the result of the last method invoked in the chain.  Thus, this aggregator would always result in the Math.Max() result.  The other chained method (the sum) gets executed first, but it’s result is thrown away: 1: // result is 13 2: int responseTime = 13; 3: comboAggregator.Aggregate(responseTime); 4:  5: // result is still 13 6: responseTime = 7; 7: comboAggregator.Aggregate(responseTime); 8:  9: // result is now 20 10: responseTime = 20; 11: comboAggregator.Aggregate(responseTime); So remember, you can chain multiple Func (or other delegates that return values) together, but if you do so you will only get the last executed result. Func delegates and co-variance/contra-variance in .NET 4.0 Just like the Action delegate, as of .NET 4.0, the Func delegate family is contra-variant on its arguments.  In addition, it is co-variant on its return type.  To support this, in .NET 4.0 the signatures of the Func delegates changed to: Func<out TResult> – matches a method that takes no arguments, and returns value of type TResult (or a more derived type). Func<in T, out TResult> – matches a method that takes an argument of type T (or a less derived type), and returns value of type TResult(or a more derived type). Func<in T1, in T2, out TResult> – matches a method that takes arguments of type T1 and T2 (or less derived types), and returns value of type TResult (or a more derived type). Func<in T1, in T2, …, out TResult> – and so on up to 16 arguments, and returns value of type TResult (or a more derived type). Notice the addition of the in and out keywords before each of the generic type placeholders.  As we saw last week, the in keyword is used to specify that a generic type can be contra-variant -- it can match the given type or a type that is less derived.  However, the out keyword, is used to specify that a generic type can be co-variant -- it can match the given type or a type that is more derived. On contra-variance, if you are saying you need an function that will accept a string, you can just as easily give it an function that accepts an object.  In other words, if you say “give me an function that will process dogs”, I could pass you a method that will process any animal, because all dogs are animals.  On the co-variance side, if you are saying you need a function that returns an object, you can just as easily pass it a function that returns a string because any string returned from the given method can be accepted by a delegate expecting an object result, since string is more derived.  Once again, in other words, if you say “give me a method that creates an animal”, I can pass you a method that will create a dog, because all dogs are animals. It really all makes sense, you can pass a more specific thing to a less specific parameter, and you can return a more specific thing as a less specific result.  In other words, pay attention to the direction the item travels (parameters go in, results come out).  Keeping that in mind, you can always pass more specific things in and return more specific things out. For example, in the code below, we have a method that takes a Func<object> to generate an object, but we can pass it a Func<string> because the return type of object can obviously accept a return value of string as well: 1: // since Func<object> is co-variant, this will access Func<string>, etc... 2: public static string Sequence(int count, Func<object> generator) 3: { 4: var builder = new StringBuilder(); 5:  6: for (int i=0; i<count; i++) 7: { 8: object value = generator(); 9: builder.Append(value); 10: } 11:  12: return builder.ToString(); 13: } Even though the method above takes a Func<object>, we can pass a Func<string> because the TResult type placeholder is co-variant and accepts types that are more derived as well: 1: // delegate that's typed to return string. 2: Func<string> stringGenerator = () => DateTime.Now.ToString(); 3:  4: // This will work in .NET 4.0, but not in previous versions 5: Sequence(100, stringGenerator); Previous versions of .NET implemented some forms of co-variance and contra-variance before, but .NET 4.0 goes one step further and allows you to pass or assign an Func<A, BResult> to a Func<Y, ZResult> as long as A is less derived (or same) as Y, and BResult is more derived (or same) as ZResult. Sidebar: The Func and the Predicate A method that takes one argument and returns a bool is generally thought of as a predicate.  Predicates are used to examine an item and determine whether that item satisfies a particular condition.  Predicates are typically unary, but you may also have binary and other predicates as well. Predicates are often used to filter results, such as in the LINQ Where() extension method: 1: var numbers = new[] { 1, 2, 4, 13, 8, 10, 27 }; 2:  3: // call Where() using a predicate which determines if the number is even 4: var evens = numbers.Where(num => num % 2 == 0); As of .NET 3.5, predicates are typically represented as Func<T, bool> where T is the type of the item to examine.  Previous to .NET 3.5, there was a Predicate<T> type that tended to be used (which we’ll discuss next week) and is still supported, but most developers recommend using Func<T, bool> now, as it prevents confusion with overloads that accept unary predicates and binary predicates, etc.: 1: // this seems more confusing as an overload set, because of Predicate vs Func 2: public static SomeMethod(Predicate<int> unaryPredicate) { } 3: public static SomeMethod(Func<int, int, bool> binaryPredicate) { } 4:  5: // this seems more consistent as an overload set, since just uses Func 6: public static SomeMethod(Func<int, bool> unaryPredicate) { } 7: public static SomeMethod(Func<int, int, bool> binaryPredicate) { } Also, even though Predicate<T> and Func<T, bool> match the same signatures, they are separate types!  Thus you cannot assign a Predicate<T> instance to a Func<T, bool> instance and vice versa: 1: // the same method, lambda expression, etc can be assigned to both 2: Predicate<int> isEven = i => (i % 2) == 0; 3: Func<int, bool> alsoIsEven = i => (i % 2) == 0; 4:  5: // but the delegate instances cannot be directly assigned, strongly typed! 6: // ERROR: cannot convert type... 7: isEven = alsoIsEven; 8:  9: // however, you can assign by wrapping in a new instance: 10: isEven = new Predicate<int>(alsoIsEven); 11: alsoIsEven = new Func<int, bool>(isEven); So, the general advice that seems to come from most developers is that Predicate<T> is still supported, but we should use Func<T, bool> for consistency in .NET 3.5 and above. Sidebar: Func as a Generator for Unit Testing One area of difficulty in unit testing can be unit testing code that is based on time of day.  We’d still want to unit test our code to make sure the logic is accurate, but we don’t want the results of our unit tests to be dependent on the time they are run. One way (of many) around this is to create an internal generator that will produce the “current” time of day.  This would default to returning result from DateTime.Now (or some other method), but we could inject specific times for our unit testing.  Generators are typically methods that return (generate) a value for use in a class/method. For example, say we are creating a CacheItem<T> class that represents an item in the cache, and we want to make sure the item shows as expired if the age is more than 30 seconds.  Such a class could look like: 1: // responsible for maintaining an item of type T in the cache 2: public sealed class CacheItem<T> 3: { 4: // helper method that returns the current time 5: private static Func<DateTime> _timeGenerator = () => DateTime.Now; 6:  7: // allows internal access to the time generator 8: internal static Func<DateTime> TimeGenerator 9: { 10: get { return _timeGenerator; } 11: set { _timeGenerator = value; } 12: } 13:  14: // time the item was cached 15: public DateTime CachedTime { get; private set; } 16:  17: // the item cached 18: public T Value { get; private set; } 19:  20: // item is expired if older than 30 seconds 21: public bool IsExpired 22: { 23: get { return _timeGenerator() - CachedTime > TimeSpan.FromSeconds(30.0); } 24: } 25:  26: // creates the new cached item, setting cached time to "current" time 27: public CacheItem(T value) 28: { 29: Value = value; 30: CachedTime = _timeGenerator(); 31: } 32: } Then, we can use this construct to unit test our CacheItem<T> without any time dependencies: 1: var baseTime = DateTime.Now; 2:  3: // start with current time stored above (so doesn't drift) 4: CacheItem<int>.TimeGenerator = () => baseTime; 5:  6: var target = new CacheItem<int>(13); 7:  8: // now add 15 seconds, should still be non-expired 9: CacheItem<int>.TimeGenerator = () => baseTime.AddSeconds(15); 10:  11: Assert.IsFalse(target.IsExpired); 12:  13: // now add 31 seconds, should now be expired 14: CacheItem<int>.TimeGenerator = () => baseTime.AddSeconds(31); 15:  16: Assert.IsTrue(target.IsExpired); Now we can unit test for 1 second before, 1 second after, 1 millisecond before, 1 day after, etc.  Func delegates can be a handy tool for this type of value generation to support more testable code.  Summary Generic delegates give us a lot of power to make truly generic algorithms and classes.  The Func family of delegates is a great way to be able to specify functions to calculate a result based on 0-16 arguments.  Stay tuned in the weeks that follow for other generic delegates in the .NET Framework!   Tweet Technorati Tags: .NET, C#, CSharp, Little Wonders, Generics, Func, Delegates

    Read the article

  • Web Application Integration Steps in OAM 11gR2 (High Level)

    - by Venkata Srikanth
    Install OAM, Webtier (OHS) and WebGate as per the standard installation steps. Create a WebGate instance (i.e deploy WebGate) A WebGate instance must be created that will copy required bits of agent from WEBGATE_HOME to WebGate instance location that shares the same INSTANCE_HOME with OHS ./deployWebGateInstance.sh –w /Oracle/Middleware/Oracle_WT1/instances/instance1/config/ohs1 –oh /Oracle/Middleware/Oracle_OAMWebGate1 Note: Here –w flag indicates OHS instance folder and –oh indicates the WebGate Oracle home Configure WebGate In the webgate configuration the EditHttpdConf utility will copy OUI instantiated apache_webgate.template from WEBGATE_HOME to webgate instance location (renamed to webgate.conf), and update httpd.conf with one additional line to include webgate.conf. export LD_LIBRARY_PATH=$ LD_LIBRARY_PATH:/Oracle/Middleware/Oracle_WT1/lib Navigate to /Oracle/Middleware/Oracle_OAMWebGate1/webgate/ohs/tools/setup/InstallTools ./EditHttpdConf –w /Oracle/Middleware/Oracle_WT1/instances/instace1/config/OHS/ohs1 –oh /Oracle/Middleware/Oracle_OAMWebGate1 –o webgate.conf Register WebGate Use RREG tool to register the OAM 11G WebGate Navigate to /Oracle/Middleware/Oracle_IDM1/oam/server/rreg/input Edit OAM11Grequest.xml. Change the specific xml content to include the weblogic admin URL, agentBaseURL, host identifier etc.. Navigate to /Oracle/Middleware/Oracle_IDM1/oam/server/rreg/bin Set permissions to oamreg.sh à chmod 777 oamreg.sh Edit oamreg.sh and set OAM_REG_HOME=/Oracle/Middleware/Oracle_IDM1/oam/server/rreg ./oamreg.sh inband input/OAM11Grequest.xml Enter the WebLogic admin credentials when prompted. After performing the above steps, there will be two artifcats created under Oracle/Middleware/Oracle_IDM1/oam/server/rreg/output, namely ObAccessClient.xml (Stroing webgate config parameters) and cwallet.sso (storing the agent key). These files must be copied to WebGate instance config folder (/Oracle/Middleware/Oracle_WT1/instances/instance1/config/ohs1/webgate/config) Restart OHS Deploy the web application (myApp) in WebLogic application server Proxy Configuration in OHS The mod_wl_ohs module enables requests to be proxied from Oracle HTTP Server 11g to Oracle WebLogic Server. Navigate to /Oracle/Middleware/Oracle_WT1/instances/instance1/config/OHS/ohs1 Edit mod_wl_ohs.conf file to include the following: <IfModule weblogic_module> WebLogicHost <WEBLOGIC_HOST> WebLogicPort <WEBLOGIC_PORT> # Debug ON # WLLogFile /tmp/weblogic.log MatchExpression *.jsp </IfModule> <Location /myApp> SetHandler weblogic-handler # PathTrim /weblogic # ErrorPage http:/WEBLOGIC_HOME:WEBLOGIC_PORT/ </Location> Note: Here WEBLOGIC_HOST and WEBLOGIC_PORT are the WebLogic admin server host and port respectively Restart OHS. Now if we access the web application URL with OHS host and port (Ex: http://OHS_HOST:<OHS_PORT>/myApp) so that the requests will be proxied to WebLogic server. Create a new application domain Login to OAM Admin Console Navigate to Shared Componentsà Authentication Schemesà Create Authentication Scheme (Ex: LDAP Auth Scheme. Here the scheme is assoicated with LDAP Authentication Module) Navigate to Policy Configuration à Application Domain à Create Application Domain Enter the Application Domain Name and Click Apply. Navigate to Resources tab and add the resource urls (Web Application URLs that needs to be protected) Navigate to Authentication Policy tab à Create a new authentication ploicy by providing the Resource URLs (The sample Web Application URLs) and Authentication Scheme. Navigate to Authorization Policy tab à Create a new authorization policy à Enter authorization policy name and navigate to Resource Tab à Attach the Reource URL, Host Identifiers here. Navigate to Conditions tab à Add the conditions like whom to allow and whom to deny access. Navigate to Rules tab à Crate the Allow Rule and Deny Rule with the available conditions from the previous step so that the Authorization Policy may authorize the logins. Navigate to Resources tab and attach the Authentication and Authorization plocies created in the above steps. Test the Web Application Integration.

    Read the article

  • What are good design practices when working with Entity Framework

    - by AD
    This will apply mostly for an asp.net application where the data is not accessed via soa. Meaning that you get access to the objects loaded from the framework, not Transfer Objects, although some recommendation still apply. This is a community post, so please add to it as you see fit. Applies to: Entity Framework 1.0 shipped with Visual Studio 2008 sp1. Why pick EF in the first place? Considering it is a young technology with plenty of problems (see below), it may be a hard sell to get on the EF bandwagon for your project. However, it is the technology Microsoft is pushing (at the expense of Linq2Sql, which is a subset of EF). In addition, you may not be satisfied with NHibernate or other solutions out there. Whatever the reasons, there are people out there (including me) working with EF and life is not bad.make you think. EF and inheritance The first big subject is inheritance. EF does support mapping for inherited classes that are persisted in 2 ways: table per class and table the hierarchy. The modeling is easy and there are no programming issues with that part. (The following applies to table per class model as I don't have experience with table per hierarchy, which is, anyway, limited.) The real problem comes when you are trying to run queries that include one or many objects that are part of an inheritance tree: the generated sql is incredibly awful, takes a long time to get parsed by the EF and takes a long time to execute as well. This is a real show stopper. Enough that EF should probably not be used with inheritance or as little as possible. Here is an example of how bad it was. My EF model had ~30 classes, ~10 of which were part of an inheritance tree. On running a query to get one item from the Base class, something as simple as Base.Get(id), the generated SQL was over 50,000 characters. Then when you are trying to return some Associations, it degenerates even more, going as far as throwing SQL exceptions about not being able to query more than 256 tables at once. Ok, this is bad, EF concept is to allow you to create your object structure without (or with as little as possible) consideration on the actual database implementation of your table. It completely fails at this. So, recommendations? Avoid inheritance if you can, the performance will be so much better. Use it sparingly where you have to. In my opinion, this makes EF a glorified sql-generation tool for querying, but there are still advantages to using it. And ways to implement mechanism that are similar to inheritance. Bypassing inheritance with Interfaces First thing to know with trying to get some kind of inheritance going with EF is that you cannot assign a non-EF-modeled class a base class. Don't even try it, it will get overwritten by the modeler. So what to do? You can use interfaces to enforce that classes implement some functionality. For example here is a IEntity interface that allow you to define Associations between EF entities where you don't know at design time what the type of the entity would be. public enum EntityTypes{ Unknown = -1, Dog = 0, Cat } public interface IEntity { int EntityID { get; } string Name { get; } Type EntityType { get; } } public partial class Dog : IEntity { // implement EntityID and Name which could actually be fields // from your EF model Type EntityType{ get{ return EntityTypes.Dog; } } } Using this IEntity, you can then work with undefined associations in other classes // lets take a class that you defined in your model. // that class has a mapping to the columns: PetID, PetType public partial class Person { public IEntity GetPet() { return IEntityController.Get(PetID,PetType); } } which makes use of some extension functions: public class IEntityController { static public IEntity Get(int id, EntityTypes type) { switch (type) { case EntityTypes.Dog: return Dog.Get(id); case EntityTypes.Cat: return Cat.Get(id); default: throw new Exception("Invalid EntityType"); } } } Not as neat as having plain inheritance, particularly considering you have to store the PetType in an extra database field, but considering the performance gains, I would not look back. It also cannot model one-to-many, many-to-many relationship, but with creative uses of 'Union' it could be made to work. Finally, it creates the side effet of loading data in a property/function of the object, which you need to be careful about. Using a clear naming convention like GetXYZ() helps in that regards. Compiled Queries Entity Framework performance is not as good as direct database access with ADO (obviously) or Linq2SQL. There are ways to improve it however, one of which is compiling your queries. The performance of a compiled query is similar to Linq2Sql. What is a compiled query? It is simply a query for which you tell the framework to keep the parsed tree in memory so it doesn't need to be regenerated the next time you run it. So the next run, you will save the time it takes to parse the tree. Do not discount that as it is a very costly operation that gets even worse with more complex queries. There are 2 ways to compile a query: creating an ObjectQuery with EntitySQL and using CompiledQuery.Compile() function. (Note that by using an EntityDataSource in your page, you will in fact be using ObjectQuery with EntitySQL, so that gets compiled and cached). An aside here in case you don't know what EntitySQL is. It is a string-based way of writing queries against the EF. Here is an example: "select value dog from Entities.DogSet as dog where dog.ID = @ID". The syntax is pretty similar to SQL syntax. You can also do pretty complex object manipulation, which is well explained [here][1]. Ok, so here is how to do it using ObjectQuery< string query = "select value dog " + "from Entities.DogSet as dog " + "where dog.ID = @ID"; ObjectQuery<Dog> oQuery = new ObjectQuery<Dog>(query, EntityContext.Instance)); oQuery.Parameters.Add(new ObjectParameter("ID", id)); oQuery.EnablePlanCaching = true; return oQuery.FirstOrDefault(); The first time you run this query, the framework will generate the expression tree and keep it in memory. So the next time it gets executed, you will save on that costly step. In that example EnablePlanCaching = true, which is unnecessary since that is the default option. The other way to compile a query for later use is the CompiledQuery.Compile method. This uses a delegate: static readonly Func<Entities, int, Dog> query_GetDog = CompiledQuery.Compile<Entities, int, Dog>((ctx, id) => ctx.DogSet.FirstOrDefault(it => it.ID == id)); or using linq static readonly Func<Entities, int, Dog> query_GetDog = CompiledQuery.Compile<Entities, int, Dog>((ctx, id) => (from dog in ctx.DogSet where dog.ID == id select dog).FirstOrDefault()); to call the query: query_GetDog.Invoke( YourContext, id ); The advantage of CompiledQuery is that the syntax of your query is checked at compile time, where as EntitySQL is not. However, there are other consideration... Includes Lets say you want to have the data for the dog owner to be returned by the query to avoid making 2 calls to the database. Easy to do, right? EntitySQL string query = "select value dog " + "from Entities.DogSet as dog " + "where dog.ID = @ID"; ObjectQuery<Dog> oQuery = new ObjectQuery<Dog>(query, EntityContext.Instance)).Include("Owner"); oQuery.Parameters.Add(new ObjectParameter("ID", id)); oQuery.EnablePlanCaching = true; return oQuery.FirstOrDefault(); CompiledQuery static readonly Func<Entities, int, Dog> query_GetDog = CompiledQuery.Compile<Entities, int, Dog>((ctx, id) => (from dog in ctx.DogSet.Include("Owner") where dog.ID == id select dog).FirstOrDefault()); Now, what if you want to have the Include parametrized? What I mean is that you want to have a single Get() function that is called from different pages that care about different relationships for the dog. One cares about the Owner, another about his FavoriteFood, another about his FavotireToy and so on. Basicly, you want to tell the query which associations to load. It is easy to do with EntitySQL public Dog Get(int id, string include) { string query = "select value dog " + "from Entities.DogSet as dog " + "where dog.ID = @ID"; ObjectQuery<Dog> oQuery = new ObjectQuery<Dog>(query, EntityContext.Instance)) .IncludeMany(include); oQuery.Parameters.Add(new ObjectParameter("ID", id)); oQuery.EnablePlanCaching = true; return oQuery.FirstOrDefault(); } The include simply uses the passed string. Easy enough. Note that it is possible to improve on the Include(string) function (that accepts only a single path) with an IncludeMany(string) that will let you pass a string of comma-separated associations to load. Look further in the extension section for this function. If we try to do it with CompiledQuery however, we run into numerous problems: The obvious static readonly Func<Entities, int, string, Dog> query_GetDog = CompiledQuery.Compile<Entities, int, string, Dog>((ctx, id, include) => (from dog in ctx.DogSet.Include(include) where dog.ID == id select dog).FirstOrDefault()); will choke when called with: query_GetDog.Invoke( YourContext, id, "Owner,FavoriteFood" ); Because, as mentionned above, Include() only wants to see a single path in the string and here we are giving it 2: "Owner" and "FavoriteFood" (which is not to be confused with "Owner.FavoriteFood"!). Then, let's use IncludeMany(), which is an extension function static readonly Func<Entities, int, string, Dog> query_GetDog = CompiledQuery.Compile<Entities, int, string, Dog>((ctx, id, include) => (from dog in ctx.DogSet.IncludeMany(include) where dog.ID == id select dog).FirstOrDefault()); Wrong again, this time it is because the EF cannot parse IncludeMany because it is not part of the functions that is recognizes: it is an extension. Ok, so you want to pass an arbitrary number of paths to your function and Includes() only takes a single one. What to do? You could decide that you will never ever need more than, say 20 Includes, and pass each separated strings in a struct to CompiledQuery. But now the query looks like this: from dog in ctx.DogSet.Include(include1).Include(include2).Include(include3) .Include(include4).Include(include5).Include(include6) .[...].Include(include19).Include(include20) where dog.ID == id select dog which is awful as well. Ok, then, but wait a minute. Can't we return an ObjectQuery< with CompiledQuery? Then set the includes on that? Well, that what I would have thought so as well: static readonly Func<Entities, int, ObjectQuery<Dog>> query_GetDog = CompiledQuery.Compile<Entities, int, string, ObjectQuery<Dog>>((ctx, id) => (ObjectQuery<Dog>)(from dog in ctx.DogSet where dog.ID == id select dog)); public Dog GetDog( int id, string include ) { ObjectQuery<Dog> oQuery = query_GetDog(id); oQuery = oQuery.IncludeMany(include); return oQuery.FirstOrDefault; } That should have worked, except that when you call IncludeMany (or Include, Where, OrderBy...) you invalidate the cached compiled query because it is an entirely new one now! So, the expression tree needs to be reparsed and you get that performance hit again. So what is the solution? You simply cannot use CompiledQueries with parametrized Includes. Use EntitySQL instead. This doesn't mean that there aren't uses for CompiledQueries. It is great for localized queries that will always be called in the same context. Ideally CompiledQuery should always be used because the syntax is checked at compile time, but due to limitation, that's not possible. An example of use would be: you may want to have a page that queries which two dogs have the same favorite food, which is a bit narrow for a BusinessLayer function, so you put it in your page and know exactly what type of includes are required. Passing more than 3 parameters to a CompiledQuery Func is limited to 5 parameters, of which the last one is the return type and the first one is your Entities object from the model. So that leaves you with 3 parameters. A pitance, but it can be improved on very easily. public struct MyParams { public string param1; public int param2; public DateTime param3; } static readonly Func<Entities, MyParams, IEnumerable<Dog>> query_GetDog = CompiledQuery.Compile<Entities, MyParams, IEnumerable<Dog>>((ctx, myParams) => from dog in ctx.DogSet where dog.Age == myParams.param2 && dog.Name == myParams.param1 and dog.BirthDate > myParams.param3 select dog); public List<Dog> GetSomeDogs( int age, string Name, DateTime birthDate ) { MyParams myParams = new MyParams(); myParams.param1 = name; myParams.param2 = age; myParams.param3 = birthDate; return query_GetDog(YourContext,myParams).ToList(); } Return Types (this does not apply to EntitySQL queries as they aren't compiled at the same time during execution as the CompiledQuery method) Working with Linq, you usually don't force the execution of the query until the very last moment, in case some other functions downstream wants to change the query in some way: static readonly Func<Entities, int, string, IEnumerable<Dog>> query_GetDog = CompiledQuery.Compile<Entities, int, string, IEnumerable<Dog>>((ctx, age, name) => from dog in ctx.DogSet where dog.Age == age && dog.Name == name select dog); public IEnumerable<Dog> GetSomeDogs( int age, string name ) { return query_GetDog(YourContext,age,name); } public void DataBindStuff() { IEnumerable<Dog> dogs = GetSomeDogs(4,"Bud"); // but I want the dogs ordered by BirthDate gridView.DataSource = dogs.OrderBy( it => it.BirthDate ); } What is going to happen here? By still playing with the original ObjectQuery (that is the actual return type of the Linq statement, which implements IEnumerable), it will invalidate the compiled query and be force to re-parse. So, the rule of thumb is to return a List< of objects instead. static readonly Func<Entities, int, string, IEnumerable<Dog>> query_GetDog = CompiledQuery.Compile<Entities, int, string, IEnumerable<Dog>>((ctx, age, name) => from dog in ctx.DogSet where dog.Age == age && dog.Name == name select dog); public List<Dog> GetSomeDogs( int age, string name ) { return query_GetDog(YourContext,age,name).ToList(); //<== change here } public void DataBindStuff() { List<Dog> dogs = GetSomeDogs(4,"Bud"); // but I want the dogs ordered by BirthDate gridView.DataSource = dogs.OrderBy( it => it.BirthDate ); } When you call ToList(), the query gets executed as per the compiled query and then, later, the OrderBy is executed against the objects in memory. It may be a little bit slower, but I'm not even sure. One sure thing is that you have no worries about mis-handling the ObjectQuery and invalidating the compiled query plan. Once again, that is not a blanket statement. ToList() is a defensive programming trick, but if you have a valid reason not to use ToList(), go ahead. There are many cases in which you would want to refine the query before executing it. Performance What is the performance impact of compiling a query? It can actually be fairly large. A rule of thumb is that compiling and caching the query for reuse takes at least double the time of simply executing it without caching. For complex queries (read inherirante), I have seen upwards to 10 seconds. So, the first time a pre-compiled query gets called, you get a performance hit. After that first hit, performance is noticeably better than the same non-pre-compiled query. Practically the same as Linq2Sql When you load a page with pre-compiled queries the first time you will get a hit. It will load in maybe 5-15 seconds (obviously more than one pre-compiled queries will end up being called), while subsequent loads will take less than 300ms. Dramatic difference, and it is up to you to decide if it is ok for your first user to take a hit or you want a script to call your pages to force a compilation of the queries. Can this query be cached? { Dog dog = from dog in YourContext.DogSet where dog.ID == id select dog; } No, ad-hoc Linq queries are not cached and you will incur the cost of generating the tree every single time you call it. Parametrized Queries Most search capabilities involve heavily parametrized queries. There are even libraries available that will let you build a parametrized query out of lamba expressions. The problem is that you cannot use pre-compiled queries with those. One way around that is to map out all the possible criteria in the query and flag which one you want to use: public struct MyParams { public string name; public bool checkName; public int age; public bool checkAge; } static readonly Func<Entities, MyParams, IEnumerable<Dog>> query_GetDog = CompiledQuery.Compile<Entities, MyParams, IEnumerable<Dog>>((ctx, myParams) => from dog in ctx.DogSet where (myParams.checkAge == true && dog.Age == myParams.age) && (myParams.checkName == true && dog.Name == myParams.name ) select dog); protected List<Dog> GetSomeDogs() { MyParams myParams = new MyParams(); myParams.name = "Bud"; myParams.checkName = true; myParams.age = 0; myParams.checkAge = false; return query_GetDog(YourContext,myParams).ToList(); } The advantage here is that you get all the benifits of a pre-compiled quert. The disadvantages are that you most likely will end up with a where clause that is pretty difficult to maintain, that you will incur a bigger penalty for pre-compiling the query and that each query you run is not as efficient as it could be (particularly with joins thrown in). Another way is to build an EntitySQL query piece by piece, like we all did with SQL. protected List<Dod> GetSomeDogs( string name, int age) { string query = "select value dog from Entities.DogSet where 1 = 1 "; if( !String.IsNullOrEmpty(name) ) query = query + " and dog.Name == @Name "; if( age > 0 ) query = query + " and dog.Age == @Age "; ObjectQuery<Dog> oQuery = new ObjectQuery<Dog>( query, YourContext ); if( !String.IsNullOrEmpty(name) ) oQuery.Parameters.Add( new ObjectParameter( "Name", name ) ); if( age > 0 ) oQuery.Parameters.Add( new ObjectParameter( "Age", age ) ); return oQuery.ToList(); } Here the problems are: - there is no syntax checking during compilation - each different combination of parameters generate a different query which will need to be pre-compiled when it is first run. In this case, there are only 4 different possible queries (no params, age-only, name-only and both params), but you can see that there can be way more with a normal world search. - Noone likes to concatenate strings! Another option is to query a large subset of the data and then narrow it down in memory. This is particularly useful if you are working with a definite subset of the data, like all the dogs in a city. You know there are a lot but you also know there aren't that many... so your CityDog search page can load all the dogs for the city in memory, which is a single pre-compiled query and then refine the results protected List<Dod> GetSomeDogs( string name, int age, string city) { string query = "select value dog from Entities.DogSet where dog.Owner.Address.City == @City "; ObjectQuery<Dog> oQuery = new ObjectQuery<Dog>( query, YourContext ); oQuery.Parameters.Add( new ObjectParameter( "City", city ) ); List<Dog> dogs = oQuery.ToList(); if( !String.IsNullOrEmpty(name) ) dogs = dogs.Where( it => it.Name == name ); if( age > 0 ) dogs = dogs.Where( it => it.Age == age ); return dogs; } It is particularly useful when you start displaying all the data then allow for filtering. Problems: - Could lead to serious data transfer if you are not careful about your subset. - You can only filter on the data that you returned. It means that if you don't return the Dog.Owner association, you will not be able to filter on the Dog.Owner.Name So what is the best solution? There isn't any. You need to pick the solution that works best for you and your problem: - Use lambda-based query building when you don't care about pre-compiling your queries. - Use fully-defined pre-compiled Linq query when your object structure is not too complex. - Use EntitySQL/string concatenation when the structure could be complex and when the possible number of different resulting queries are small (which means fewer pre-compilation hits). - Use in-memory filtering when you are working with a smallish subset of the data or when you had to fetch all of the data on the data at first anyway (if the performance is fine with all the data, then filtering in memory will not cause any time to be spent in the db). Singleton access The best way to deal with your context and entities accross all your pages is to use the singleton pattern: public sealed class YourContext { private const string instanceKey = "On3GoModelKey"; YourContext(){} public static YourEntities Instance { get { HttpContext context = HttpContext.Current; if( context == null ) return Nested.instance; if (context.Items[instanceKey] == null) { On3GoEntities entity = new On3GoEntities(); context.Items[instanceKey] = entity; } return (YourEntities)context.Items[instanceKey]; } } class Nested { // Explicit static constructor to tell C# compiler // not to mark type as beforefieldinit static Nested() { } internal static readonly YourEntities instance = new YourEntities(); } } NoTracking, is it worth it? When executing a query, you can tell the framework to track the objects it will return or not. What does it mean? With tracking enabled (the default option), the framework will track what is going on with the object (has it been modified? Created? Deleted?) and will also link objects together, when further queries are made from the database, which is what is of interest here. For example, lets assume that Dog with ID == 2 has an owner which ID == 10. Dog dog = (from dog in YourContext.DogSet where dog.ID == 2 select dog).FirstOrDefault(); //dog.OwnerReference.IsLoaded == false; Person owner = (from o in YourContext.PersonSet where o.ID == 10 select dog).FirstOrDefault(); //dog.OwnerReference.IsLoaded == true; If we were to do the same with no tracking, the result would be different. ObjectQuery<Dog> oDogQuery = (ObjectQuery<Dog>) (from dog in YourContext.DogSet where dog.ID == 2 select dog); oDogQuery.MergeOption = MergeOption.NoTracking; Dog dog = oDogQuery.FirstOrDefault(); //dog.OwnerReference.IsLoaded == false; ObjectQuery<Person> oPersonQuery = (ObjectQuery<Person>) (from o in YourContext.PersonSet where o.ID == 10 select o); oPersonQuery.MergeOption = MergeOption.NoTracking; Owner owner = oPersonQuery.FirstOrDefault(); //dog.OwnerReference.IsLoaded == false; Tracking is very useful and in a perfect world without performance issue, it would always be on. But in this world, there is a price for it, in terms of performance. So, should you use NoTracking to speed things up? It depends on what you are planning to use the data for. Is there any chance that the data your query with NoTracking can be used to make update/insert/delete in the database? If so, don't use NoTracking because associations are not tracked and will causes exceptions to be thrown. In a page where there are absolutly no updates to the database, you can use NoTracking. Mixing tracking and NoTracking is possible, but it requires you to be extra careful with updates/inserts/deletes. The problem is that if you mix then you risk having the framework trying to Attach() a NoTracking object to the context where another copy of the same object exist with tracking on. Basicly, what I am saying is that Dog dog1 = (from dog in YourContext.DogSet where dog.ID == 2).FirstOrDefault(); ObjectQuery<Dog> oDogQuery = (ObjectQuery<Dog>) (from dog in YourContext.DogSet where dog.ID == 2 select dog); oDogQuery.MergeOption = MergeOption.NoTracking; Dog dog2 = oDogQuery.FirstOrDefault(); dog1 and dog2 are 2 different objects, one tracked and one not. Using the detached object in an update/insert will force an Attach() that will say "Wait a minute, I do already have an object here with the same database key. Fail". And when you Attach() one object, all of its hierarchy gets attached as well, causing problems everywhere. Be extra careful. How much faster is it with NoTracking It depends on the queries. Some are much more succeptible to tracking than other. I don't have a fast an easy rule for it, but it helps. So I should use NoTracking everywhere then? Not exactly. There are some advantages to tracking object. The first one is that the object is cached, so subsequent call for that object will not hit the database. That cache is only valid for the lifetime of the YourEntities object, which, if you use the singleton code above, is the same as the page lifetime. One page request == one YourEntity object. So for multiple calls for the same object, it will load only once per page request. (Other caching mechanism could extend that). What happens when you are using NoTracking and try to load the same object multiple times? The database will be queried each time, so there is an impact there. How often do/should you call for the same object during a single page request? As little as possible of course, but it does happens. Also remember the piece above about having the associations connected automatically for your? You don't have that with NoTracking, so if you load your data in multiple batches, you will not have a link to between them: ObjectQuery<Dog> oDogQuery = (ObjectQuery<Dog>)(from dog in YourContext.DogSet select dog); oDogQuery.MergeOption = MergeOption.NoTracking; List<Dog> dogs = oDogQuery.ToList(); ObjectQuery<Person> oPersonQuery = (ObjectQuery<Person>)(from o in YourContext.PersonSet select o); oPersonQuery.MergeOption = MergeOption.NoTracking; List<Person> owners = oPersonQuery.ToList(); In this case, no dog will have its .Owner property set. Some things to keep in mind when you are trying to optimize the performance. No lazy loading, what am I to do? This can be seen as a blessing in disguise. Of course it is annoying to load everything manually. However, it decreases the number of calls to the db and forces you to think about when you should load data. The more you can load in one database call the better. That was always true, but it is enforced now with this 'feature' of EF. Of course, you can call if( !ObjectReference.IsLoaded ) ObjectReference.Load(); if you want to, but a better practice is to force the framework to load the objects you know you will need in one shot. This is where the discussion about parametrized Includes begins to make sense. Lets say you have you Dog object public class Dog { public Dog Get(int id) { return YourContext.DogSet.FirstOrDefault(it => it.ID == id ); } } This is the type of function you work with all the time. It gets called from all over the place and once you have that Dog object, you will do very different things to it in different functions. First, it should be pre-compiled, because you will call that very often. Second, each different pages will want to have access to a different subset of the Dog data. Some will want the Owner, some the FavoriteToy, etc. Of course, you could call Load() for each reference you need anytime you need one. But that will generate a call to the database each time. Bad idea. So instead, each page will ask for the data it wants to see when it first request for the Dog object: static public Dog Get(int id) { return GetDog(entity,"");} static public Dog Get(int id, string includePath) { string query = "select value o " + " from YourEntities.DogSet as o " +

    Read the article

  • JAVA image transfer problem

    - by user579098
    Hi, I have a school assignment, to send a jpg image,split it into groups of 100 bytes, corrupt it, use a CRC check to locate the errors and re-transmit until it eventually is built back into its original form. It's practically ready, however when I check out the new images, they appear with errors.. I would really appreciate if someone could look at my code below and maybe locate this logical mistake as I can't understand what the problem is because everything looks ok :S For the file with all the data needed including photos and error patterns one could download it from this link:http://rapidshare.com/#!download|932tl2|443122762|Data.zip|739 Thanks in advance, Stefan p.s dont forget to change the paths in the code for the image and error files package networks; import java.io.*; // for file reader import java.util.zip.CRC32; // CRC32 IEEE (Ethernet) public class Main { /** * Reads a whole file into an array of bytes. * @param file The file in question. * @return Array of bytes containing file data. * @throws IOException Message contains why it failed. */ public static byte[] readFileArray(File file) throws IOException { InputStream is = new FileInputStream(file); byte[] data=new byte[(int)file.length()]; is.read(data); is.close(); return data; } /** * Writes (or overwrites if exists) a file with data from an array of bytes. * @param file The file in question. * @param data Array of bytes containing the new file data. * @throws IOException Message contains why it failed. */ public static void writeFileArray(File file, byte[] data) throws IOException { OutputStream os = new FileOutputStream(file,false); os.write(data); os.close(); } /** * Converts a long value to an array of bytes. * @param data The target variable. * @return Byte array conversion of data. * @see http://www.daniweb.com/code/snippet216874.html */ public static byte[] toByta(long data) { return new byte[] { (byte)((data >> 56) & 0xff), (byte)((data >> 48) & 0xff), (byte)((data >> 40) & 0xff), (byte)((data >> 32) & 0xff), (byte)((data >> 24) & 0xff), (byte)((data >> 16) & 0xff), (byte)((data >> 8) & 0xff), (byte)((data >> 0) & 0xff), }; } /** * Converts a an array of bytes to long value. * @param data The target variable. * @return Long value conversion of data. * @see http://www.daniweb.com/code/snippet216874.html */ public static long toLong(byte[] data) { if (data == null || data.length != 8) return 0x0; return (long)( // (Below) convert to longs before shift because digits // are lost with ints beyond the 32-bit limit (long)(0xff & data[0]) << 56 | (long)(0xff & data[1]) << 48 | (long)(0xff & data[2]) << 40 | (long)(0xff & data[3]) << 32 | (long)(0xff & data[4]) << 24 | (long)(0xff & data[5]) << 16 | (long)(0xff & data[6]) << 8 | (long)(0xff & data[7]) << 0 ); } public static byte[] nextNoise(){ byte[] result=new byte[100]; // copy a frame's worth of data (or remaining data if it is less than frame length) int read=Math.min(err_data.length-err_pstn, 100); System.arraycopy(err_data, err_pstn, result, 0, read); // if read data is less than frame length, reset position and add remaining data if(read<100){ err_pstn=100-read; System.arraycopy(err_data, 0, result, read, err_pstn); }else // otherwise, increase position err_pstn+=100; // return noise segment return result; } /** * Given some original data, it is purposefully corrupted according to a * second data array (which is read from a file). In pseudocode: * corrupt = original xor corruptor * @param data The original data. * @return The new (corrupted) data. */ public static byte[] corruptData(byte[] data){ // get the next noise sequence byte[] noise = nextNoise(); // finally, xor data with noise and return result for(int i=0; i<100; i++)data[i]^=noise[i]; return data; } /** * Given an array of data, a packet is created. In pseudocode: * frame = corrupt(data) + crc(data) * @param data The original frame data. * @return The resulting frame data. */ public static byte[] buildFrame(byte[] data){ // pack = [data]+crc32([data]) byte[] hash = new byte[8]; // calculate crc32 of data and copy it to byte array CRC32 crc = new CRC32(); crc.update(data); hash=toByta(crc.getValue()); // create a byte array holding the final packet byte[] pack = new byte[data.length+hash.length]; // create the corrupted data byte[] crpt = new byte[data.length]; crpt = corruptData(data); // copy corrupted data into pack System.arraycopy(crpt, 0, pack, 0, crpt.length); // copy hash into pack System.arraycopy(hash, 0, pack, data.length, hash.length); // return pack return pack; } /** * Verifies frame contents. * @param frame The frame data (data+crc32). * @return True if frame is valid, false otherwise. */ public static boolean verifyFrame(byte[] frame){ // allocate hash and data variables byte[] hash=new byte[8]; byte[] data=new byte[frame.length-hash.length]; // read frame into hash and data variables System.arraycopy(frame, frame.length-hash.length, hash, 0, hash.length); System.arraycopy(frame, 0, data, 0, frame.length-hash.length); // get crc32 of data CRC32 crc = new CRC32(); crc.update(data); // compare crc32 of data with crc32 of frame return crc.getValue()==toLong(hash); } /** * Transfers a file through a channel in frames and reconstructs it into a new file. * @param jpg_file File name of target file to transfer. * @param err_file The channel noise file used to simulate corruption. * @param out_file The name of the newly-created file. * @throws IOException */ public static void transferFile(String jpg_file, String err_file, String out_file) throws IOException { // read file data into global variables jpg_data = readFileArray(new File(jpg_file)); err_data = readFileArray(new File(err_file)); err_pstn = 0; // variable that will hold the final (transfered) data byte[] out_data = new byte[jpg_data.length]; // holds the current frame data byte[] frame_orig = new byte[100]; byte[] frame_sent = new byte[100]; // send file in chunks (frames) of 100 bytes for(int i=0; i<Math.ceil(jpg_data.length/100); i++){ // copy jpg data into frame and init first-time switch System.arraycopy(jpg_data, i*100, frame_orig, 0, 100); boolean not_first=false; System.out.print("Packet #"+i+": "); // repeat getting same frame until frame crc matches with frame content do { if(not_first)System.out.print("F"); frame_sent=buildFrame(frame_orig); not_first=true; }while(!verifyFrame(frame_sent)); // usually, you'd constrain this by time to prevent infinite loops (in // case the channel is so wacked up it doesn't get a single packet right) // copy frame to image file System.out.println("S"); System.arraycopy(frame_sent, 0, out_data, i*100, 100); } System.out.println("\nDone."); writeFileArray(new File(out_file),out_data); } // global variables for file data and pointer public static byte[] jpg_data; public static byte[] err_data; public static int err_pstn=0; public static void main(String[] args) throws IOException { // list of jpg files String[] jpg_file={ "C:\\Users\\Stefan\\Desktop\\Data\\Images\\photo1.jpg", "C:\\Users\\Stefan\\Desktop\\Data\\Images\\photo2.jpg", "C:\\Users\\Stefan\\Desktop\\Data\\Images\\photo3.jpg", "C:\\Users\\Stefan\\Desktop\\Data\\Images\\photo4.jpg" }; // list of error patterns String[] err_file={ "C:\\Users\\Stefan\\Desktop\\Data\\Error Pattern\\Error Pattern 1.DAT", "C:\\Users\\Stefan\\Desktop\\Data\\Error Pattern\\Error Pattern 2.DAT", "C:\\Users\\Stefan\\Desktop\\Data\\Error Pattern\\Error Pattern 3.DAT", "C:\\Users\\Stefan\\Desktop\\Data\\Error Pattern\\Error Pattern 4.DAT" }; // loop through all jpg/channel combinations and run tests for(int x=0; x<jpg_file.length; x++){ for(int y=0; y<err_file.length; y++){ System.out.println("Transfering photo"+(x+1)+".jpg using Pattern "+(y+1)+"..."); transferFile(jpg_file[x],err_file[y],jpg_file[x].replace("photo","CH#"+y+"_photo")); } } } }

    Read the article

< Previous Page | 110 111 112 113 114 115 116 117 118 119 120 121  | Next Page >