Search Results

Search found 11383 results on 456 pages for 'mfc feature pack'.

Page 117/456 | < Previous Page | 113 114 115 116 117 118 119 120 121 122 123 124  | Next Page >

  • How to upload a file from app in VC++ 6 to a web server?

    - by Arvind Singh
    I have an application in VC++ 6 (not MFC) , feature requires it to upload a file to a web server on regular basis. Web server is under our control, anonymous upload scripts/page are already setup that would accept a file manually. How to program in VC++ 6 to upload? which classes to use? I understand it is much possible with smtp and ftp but how through http?

    Read the article

  • Which graphical enviroment?

    - by Knowing me knowing you
    Which graphical environment (MFC, ATL, QT etc.) should I concentrate on, in order to be more employable? I don't want to spend months learning something only to discover that "no one" really use this or this really sucks, and "all" pros are using only such and such.

    Read the article

  • COM library for Explorer-like system views

    - by chrisd
    To provide a Windows Explorer-like view of the user's system, we have been using the shell controls from LogicNP (formerly Sky Software), but these have deficiencies, e.g., no support for Win7 libraries. The vendor has not responded to our inquiries about updates, so we're looking to replace the package. Requirements: ActiveX (no managed code or MFC) Tree and list views of the system Per-item checkboxes 32- and 64-bit versions Any recommendations for a replacement product? TIA.

    Read the article

  • Does a simple delphi form app needs any libraries or dependencies to deploy?

    - by peterg
    I need to code a simple form application and I want to make it easy to deploy (without installing libraries or dependencies), I don't want to use visual studio cpp or csharp because clr apps compile with .net frameworks and I have no much experience with mfc and dialogs. So I was wondering which libraries does a simple delphi vcl forms app (those using TForm) use, because I've never had to install anything to run simple delphi apps.

    Read the article

  • Which is the good C++ GUI Framework

    - by Suriyan Suresh
    I know there are plenty of C++ GUI libraries out there. Here is an incomplete but significant list: MFC Qt wxWidgets Ultimate++ WTL Win32 Win32Gui WinForms Here is what i want Well documented Modern (and well designed) interface Easy to use Widely used GUI editor (RAD tool) Free

    Read the article

  • SQL Native Client 10 Performance miserable (due to server-side cursors)

    - by namezero
    we have an application that uses ODBC via CDatabase/CRecordset in MFC (VS2010). We have two backends implemented. MSSQL and MySQL. Now, when we use MSSQL (with the Native Client 10.0), retrieving records with SELECT is dramatically slow via slow links (VPN, for example). The MySQL ODBC driver does not exhibit this nasty behavior. For example: CRecordset r(&m_db); r.Open(CRecordset::snapshot, L"SELECT a.something, b.sthelse FROM TableA AS a LEFT JOIN TableB AS b ON a.ID=b.Ref"); r.MoveFirst(); while(!r.IsEOF()) { // Retrieve CString strData; crs.GetFieldValue(L"a.something", strData); crs.MoveNext(); } Now, with the MySQL driver, everything runs as it should. The query is returned, and everything is lightning fast. However, with the MSSQL Native Client, things slow down, because on every MoveNext(), the driver communicates with the server. I think it is due to server-side cursors, but I didn't find a way to disable them. I have tried using: ::SQLSetConnectAttr(m_db.m_hdbc, SQL_ATTR_ODBC_CURSORS, SQL_CUR_USE_ODBC, SQL_IS_INTEGER); But this didn't help either. There are still long-running exec's to sp_cursorfetch() et al in SQL Profiler. I have also tried a small reference project with SQLAPI and bulk fetch, but that hangs in FetchNext() for a long time, too (even if there is only one record in the resultset). This however only happens on queries with LEFT JOINS, table-valued functions, etc. Note that the query doesn't take that long - executing the same SQL via SQL Studio over the same connection returns in a reasonable time. Question1: Is is possible to somehow get the native client to "cache" all results locally use local cursors in a similar fashion as the MySQL driver seems to do it? Maybe this is the wrong approach altogether, but I'm not sure how else to do this. All we want is to retrieve all data at once from a SELECT, then never talk the server again until the next query. We don't care about recordset updates, deletes, etc or any of that nonsense. We only want to retrieve data. We take that recordset, get all the data, and delete it. Question2: Is there a more efficient way to just retrieve data in MFC with ODBC?

    Read the article

  • What are the rules about using an underscore in a C++ identifier?

    - by Roger Lipscombe
    It's common in C++ to name member variables with some kind of prefix to denote the fact that they're member variables, rather than local variables or parameters. If you've come from an MFC background, you'll probably use "m_foo". I've also seen "myFoo" occasionally. C# (or possibly just .NET) seems to recommend using just an underscore, as in "_foo". Is this allowed by the C++ standard?

    Read the article

  • Calendar control GUI C++ library

    - by Dmitriy
    Who knows a good component for a "calendar control" (NOT date/time picker)? "Calendar control" means something like Mozilla Sunbird: Requirements to the control: - C++; - Day/Week/Month view; - Support of several calendars; - Without MFC dependences; Nice to have: - Open source; - Cross plathform; - Free; - Minimum external dependences (boost etc are fine);

    Read the article

  • How to implement Chord function using GDIplus?

    - by leo4ever
    Here are the GDI functions Chord() provided by MFC: BOOL Chord( int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4 ); BOOL Chord( LPCRECT lpRect, POINT ptStart, POINT ptEnd ); It seems to me that no such method is privided by GDI+ (the Graphics class), so how do I implement my own Chord function (with the exact same prototype) ? By the way, I just don't understand why does MS just don't provide them. Thanks.

    Read the article

  • Creating a Transparent Bitmap with GDI?

    - by user146780
    I want to implement a layering system in my application and was thinking of creating a bunch of transparent bitmaps, adding content to them then blitting them on top of each other, how can this be done without setting each pixel to (0,0,0,0). I'm using Pure win32, not MFC, thanks.

    Read the article

  • Transparent BITMAP WinAPI

    - by user146780
    I want to implement a layering system in my application and was thinking of creating a bunch of trabsparent bitmaps, adding content to them then blitting them on top of each other, how can this be done without setting each pixel to (0,0,0,0). I'm using Pure win32, not MFC, thanks.

    Read the article

  • Controls on main window using Visual C++ designer?

    - by PatrickBateman
    Is is possible to draw controls using Visual C++ designer on the main window, in the same way you can design dialogs? I'd preferably like to be able to design the main window controls this way without using MFC, rather than creating them on WM_CREATE. EDIT: I don't want a dialog-based app, just to be able to design the main window graphically similar to what can be done using Windows Forms Designer in .NET?

    Read the article

  • Upload File to Windows Azure Blob in Chunks through ASP.NET MVC, JavaScript and HTML5

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2013/07/01/upload-file-to-windows-azure-blob-in-chunks-through-asp.net.aspxMany people are using Windows Azure Blob Storage to store their data in the cloud. Blob storage provides 99.9% availability with easy-to-use API through .NET SDK and HTTP REST. For example, we can store JavaScript files, images, documents in blob storage when we are building an ASP.NET web application on a Web Role in Windows Azure. Or we can store our VHD files in blob and mount it as a hard drive in our cloud service. If you are familiar with Windows Azure, you should know that there are two kinds of blob: page blob and block blob. The page blob is optimized for random read and write, which is very useful when you need to store VHD files. The block blob is optimized for sequential/chunk read and write, which has more common usage. Since we can upload block blob in blocks through BlockBlob.PutBlock, and them commit them as a whole blob with invoking the BlockBlob.PutBlockList, it is very powerful to upload large files, as we can upload blocks in parallel, and provide pause-resume feature. There are many documents, articles and blog posts described on how to upload a block blob. Most of them are focus on the server side, which means when you had received a big file, stream or binaries, how to upload them into blob storage in blocks through .NET SDK.  But the problem is, how can we upload these large files from client side, for example, a browser. This questioned to me when I was working with a Chinese customer to help them build a network disk production on top of azure. The end users upload their files from the web portal, and then the files will be stored in blob storage from the Web Role. My goal is to find the best way to transform the file from client (end user’s machine) to the server (Web Role) through browser. In this post I will demonstrate and describe what I had done, to upload large file in chunks with high speed, and save them as blocks into Windows Azure Blob Storage.   Traditional Upload, Works with Limitation The simplest way to implement this requirement is to create a web page with a form that contains a file input element and a submit button. 1: @using (Html.BeginForm("About", "Index", FormMethod.Post, new { enctype = "multipart/form-data" })) 2: { 3: <input type="file" name="file" /> 4: <input type="submit" value="upload" /> 5: } And then in the backend controller, we retrieve the whole content of this file and upload it in to the blob storage through .NET SDK. We can split the file in blocks and upload them in parallel and commit. The code had been well blogged in the community. 1: [HttpPost] 2: public ActionResult About(HttpPostedFileBase file) 3: { 4: var container = _client.GetContainerReference("test"); 5: container.CreateIfNotExists(); 6: var blob = container.GetBlockBlobReference(file.FileName); 7: var blockDataList = new Dictionary<string, byte[]>(); 8: using (var stream = file.InputStream) 9: { 10: var blockSizeInKB = 1024; 11: var offset = 0; 12: var index = 0; 13: while (offset < stream.Length) 14: { 15: var readLength = Math.Min(1024 * blockSizeInKB, (int)stream.Length - offset); 16: var blockData = new byte[readLength]; 17: offset += stream.Read(blockData, 0, readLength); 18: blockDataList.Add(Convert.ToBase64String(BitConverter.GetBytes(index)), blockData); 19:  20: index++; 21: } 22: } 23:  24: Parallel.ForEach(blockDataList, (bi) => 25: { 26: blob.PutBlock(bi.Key, new MemoryStream(bi.Value), null); 27: }); 28: blob.PutBlockList(blockDataList.Select(b => b.Key).ToArray()); 29:  30: return RedirectToAction("About"); 31: } This works perfect if we selected an image, a music or a small video to upload. But if I selected a large file, let’s say a 6GB HD-movie, after upload for about few minutes the page will be shown as below and the upload will be terminated. In ASP.NET there is a limitation of request length and the maximized request length is defined in the web.config file. It’s a number which less than about 4GB. So if we want to upload a really big file, we cannot simply implement in this way. Also, in Windows Azure, a cloud service network load balancer will terminate the connection if exceed the timeout period. From my test the timeout looks like 2 - 3 minutes. Hence, when we need to upload a large file we cannot just use the basic HTML elements. Besides the limitation mentioned above, the simple HTML file upload cannot provide rich upload experience such as chunk upload, pause and pause-resume. So we need to find a better way to upload large file from the client to the server.   Upload in Chunks through HTML5 and JavaScript In order to break those limitation mentioned above we will try to upload the large file in chunks. This takes some benefit to us such as - No request size limitation: Since we upload in chunks, we can define the request size for each chunks regardless how big the entire file is. - No timeout problem: The size of chunks are controlled by us, which means we should be able to make sure request for each chunk upload will not exceed the timeout period of both ASP.NET and Windows Azure load balancer. It was a big challenge to upload big file in chunks until we have HTML5. There are some new features and improvements introduced in HTML5 and we will use them to implement our solution.   In HTML5, the File interface had been improved with a new method called “slice”. It can be used to read part of the file by specifying the start byte index and the end byte index. For example if the entire file was 1024 bytes, file.slice(512, 768) will read the part of this file from the 512nd byte to 768th byte, and return a new object of interface called "Blob”, which you can treat as an array of bytes. In fact,  a Blob object represents a file-like object of immutable, raw data. The File interface is based on Blob, inheriting blob functionality and expanding it to support files on the user's system. For more information about the Blob please refer here. File and Blob is very useful to implement the chunk upload. We will use File interface to represent the file the user selected from the browser and then use File.slice to read the file in chunks in the size we wanted. For example, if we wanted to upload a 10MB file with 512KB chunks, then we can read it in 512KB blobs by using File.slice in a loop.   Assuming we have a web page as below. User can select a file, an input box to specify the block size in KB and a button to start upload. 1: <div> 2: <input type="file" id="upload_files" name="files[]" /><br /> 3: Block Size: <input type="number" id="block_size" value="512" name="block_size" />KB<br /> 4: <input type="button" id="upload_button_blob" name="upload" value="upload (blob)" /> 5: </div> Then we can have the JavaScript function to upload the file in chunks when user clicked the button. 1: <script type="text/javascript"> 1: 2: $(function () { 3: $("#upload_button_blob").click(function () { 4: }); 5: });</script> Firstly we need to ensure the client browser supports the interfaces we are going to use. Just try to invoke the File, Blob and FormData from the “window” object. If any of them is “undefined” the condition result will be “false” which means your browser doesn’t support these premium feature and it’s time for you to get your browser updated. FormData is another new feature we are going to use in the future. It could generate a temporary form for us. We will use this interface to create a form with chunk and associated metadata when invoked the service through ajax. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: if (window.File && window.Blob && window.FormData) { 4: alert("Your brwoser is awesome, let's rock!"); 5: } 6: else { 7: alert("Oh man plz update to a modern browser before try is cool stuff out."); 8: return; 9: } 10: }); Each browser supports these interfaces by their own implementation and currently the Blob, File and File.slice are supported by Chrome 21, FireFox 13, IE 10, Opera 12 and Safari 5.1 or higher. After that we worked on the files the user selected one by one since in HTML5, user can select multiple files in one file input box. 1: var files = $("#upload_files")[0].files; 2: for (var i = 0; i < files.length; i++) { 3: var file = files[i]; 4: var fileSize = file.size; 5: var fileName = file.name; 6: } Next, we calculated the start index and end index for each chunks based on the size the user specified from the browser. We put them into an array with the file name and the index, which will be used when we upload chunks into Windows Azure Blob Storage as blocks since we need to specify the target blob name and the block index. At the same time we will store the list of all indexes into another variant which will be used to commit blocks into blob in Azure Storage once all chunks had been uploaded successfully. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10:  11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: var blockSizeInKB = $("#block_size").val(); 14: var blockSize = blockSizeInKB * 1024; 15: var blocks = []; 16: var offset = 0; 17: var index = 0; 18: var list = ""; 19: while (offset < fileSize) { 20: var start = offset; 21: var end = Math.min(offset + blockSize, fileSize); 22:  23: blocks.push({ 24: name: fileName, 25: index: index, 26: start: start, 27: end: end 28: }); 29: list += index + ","; 30:  31: offset = end; 32: index++; 33: } 34: } 35: }); Now we have all chunks’ information ready. The next step should be upload them one by one to the server side, and at the server side when received a chunk it will upload as a block into Blob Storage, and finally commit them with the index list through BlockBlobClient.PutBlockList. But since all these invokes are ajax calling, which means not synchronized call. So we need to introduce a new JavaScript library to help us coordinate the asynchronize operation, which named “async.js”. You can download this JavaScript library here, and you can find the document here. I will not explain this library too much in this post. We will put all procedures we want to execute as a function array, and pass into the proper function defined in async.js to let it help us to control the execution sequence, in series or in parallel. Hence we will define an array and put the function for chunk upload into this array. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4:  5: // start to upload each files in chunks 6: var files = $("#upload_files")[0].files; 7: for (var i = 0; i < files.length; i++) { 8: var file = files[i]; 9: var fileSize = file.size; 10: var fileName = file.name; 11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: ... ... 14:  15: // define the function array and push all chunk upload operation into this array 16: blocks.forEach(function (block) { 17: putBlocks.push(function (callback) { 18: }); 19: }); 20: } 21: }); 22: }); As you can see, I used File.slice method to read each chunks based on the start and end byte index we calculated previously, and constructed a temporary HTML form with the file name, chunk index and chunk data through another new feature in HTML5 named FormData. Then post this form to the backend server through jQuery.ajax. This is the key part of our solution. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: blocks.forEach(function (block) { 15: putBlocks.push(function (callback) { 16: // load blob based on the start and end index for each chunks 17: var blob = file.slice(block.start, block.end); 18: // put the file name, index and blob into a temporary from 19: var fd = new FormData(); 20: fd.append("name", block.name); 21: fd.append("index", block.index); 22: fd.append("file", blob); 23: // post the form to backend service (asp.net mvc controller action) 24: $.ajax({ 25: url: "/Home/UploadInFormData", 26: data: fd, 27: processData: false, 28: contentType: "multipart/form-data", 29: type: "POST", 30: success: function (result) { 31: if (!result.success) { 32: alert(result.error); 33: } 34: callback(null, block.index); 35: } 36: }); 37: }); 38: }); 39: } 40: }); Then we will invoke these functions one by one by using the async.js. And once all functions had been executed successfully I invoked another ajax call to the backend service to commit all these chunks (blocks) as the blob in Windows Azure Storage. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.series(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); That’s all in the client side. The outline of our logic would be - Calculate the start and end byte index for each chunks based on the block size. - Defined the functions of reading the chunk form file and upload the content to the backend service through ajax. - Execute the functions defined in previous step with “async.js”. - Commit the chunks by invoking the backend service in Windows Azure Storage finally.   Save Chunks as Blocks into Blob Storage In above we finished the client size JavaScript code. It uploaded the file in chunks to the backend service which we are going to implement in this step. We will use ASP.NET MVC as our backend service, and it will receive the chunks, upload into Windows Azure Bob Storage in blocks, then finally commit as one blob. As in the client side we uploaded chunks by invoking the ajax call to the URL "/Home/UploadInFormData", I created a new action under the Index controller and it only accepts HTTP POST request. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: } 8: catch (Exception e) 9: { 10: error = e.ToString(); 11: } 12:  13: return new JsonResult() 14: { 15: Data = new 16: { 17: success = string.IsNullOrWhiteSpace(error), 18: error = error 19: } 20: }; 21: } Then I retrieved the file name, index and the chunk content from the Request.Form object, which was passed from our client side. And then, used the Windows Azure SDK to create a blob container (in this case we will use the container named “test”.) and create a blob reference with the blob name (same as the file name). Then uploaded the chunk as a block of this blob with the index, since in Blob Storage each block must have an index (ID) associated with so that finally we can put all blocks as one blob by specifying their block ID list. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var index = int.Parse(Request.Form["index"]); 9: var file = Request.Files[0]; 10: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 11:  12: var container = _client.GetContainerReference("test"); 13: container.CreateIfNotExists(); 14: var blob = container.GetBlockBlobReference(name); 15: blob.PutBlock(id, file.InputStream, null); 16: } 17: catch (Exception e) 18: { 19: error = e.ToString(); 20: } 21:  22: return new JsonResult() 23: { 24: Data = new 25: { 26: success = string.IsNullOrWhiteSpace(error), 27: error = error 28: } 29: }; 30: } Next, I created another action to commit the blocks into blob once all chunks had been uploaded. Similarly, I retrieved the blob name from the Request.Form. I also retrieved the chunks ID list, which is the block ID list from the Request.Form in a string format, split them as a list, then invoked the BlockBlob.PutBlockList method. After that our blob will be shown in the container and ready to be download. 1: [HttpPost] 2: public JsonResult Commit() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var list = Request.Form["list"]; 9: var ids = list 10: .Split(',') 11: .Where(id => !string.IsNullOrWhiteSpace(id)) 12: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 13: .ToArray(); 14:  15: var container = _client.GetContainerReference("test"); 16: container.CreateIfNotExists(); 17: var blob = container.GetBlockBlobReference(name); 18: blob.PutBlockList(ids); 19: } 20: catch (Exception e) 21: { 22: error = e.ToString(); 23: } 24:  25: return new JsonResult() 26: { 27: Data = new 28: { 29: success = string.IsNullOrWhiteSpace(error), 30: error = error 31: } 32: }; 33: } Now we finished all code we need. The whole process of uploading would be like this below. Below is the full client side JavaScript code. 1: <script type="text/javascript" src="~/Scripts/async.js"></script> 2: <script type="text/javascript"> 3: $(function () { 4: $("#upload_button_blob").click(function () { 5: // assert the browser support html5 6: if (window.File && window.Blob && window.FormData) { 7: alert("Your brwoser is awesome, let's rock!"); 8: } 9: else { 10: alert("Oh man plz update to a modern browser before try is cool stuff out."); 11: return; 12: } 13:  14: // start to upload each files in chunks 15: var files = $("#upload_files")[0].files; 16: for (var i = 0; i < files.length; i++) { 17: var file = files[i]; 18: var fileSize = file.size; 19: var fileName = file.name; 20:  21: // calculate the start and end byte index for each blocks(chunks) 22: // with the index, file name and index list for future using 23: var blockSizeInKB = $("#block_size").val(); 24: var blockSize = blockSizeInKB * 1024; 25: var blocks = []; 26: var offset = 0; 27: var index = 0; 28: var list = ""; 29: while (offset < fileSize) { 30: var start = offset; 31: var end = Math.min(offset + blockSize, fileSize); 32:  33: blocks.push({ 34: name: fileName, 35: index: index, 36: start: start, 37: end: end 38: }); 39: list += index + ","; 40:  41: offset = end; 42: index++; 43: } 44:  45: // define the function array and push all chunk upload operation into this array 46: var putBlocks = []; 47: blocks.forEach(function (block) { 48: putBlocks.push(function (callback) { 49: // load blob based on the start and end index for each chunks 50: var blob = file.slice(block.start, block.end); 51: // put the file name, index and blob into a temporary from 52: var fd = new FormData(); 53: fd.append("name", block.name); 54: fd.append("index", block.index); 55: fd.append("file", blob); 56: // post the form to backend service (asp.net mvc controller action) 57: $.ajax({ 58: url: "/Home/UploadInFormData", 59: data: fd, 60: processData: false, 61: contentType: "multipart/form-data", 62: type: "POST", 63: success: function (result) { 64: if (!result.success) { 65: alert(result.error); 66: } 67: callback(null, block.index); 68: } 69: }); 70: }); 71: }); 72:  73: // invoke the functions one by one 74: // then invoke the commit ajax call to put blocks into blob in azure storage 75: async.series(putBlocks, function (error, result) { 76: var data = { 77: name: fileName, 78: list: list 79: }; 80: $.post("/Home/Commit", data, function (result) { 81: if (!result.success) { 82: alert(result.error); 83: } 84: else { 85: alert("done!"); 86: } 87: }); 88: }); 89: } 90: }); 91: }); 92: </script> And below is the full ASP.NET MVC controller code. 1: public class HomeController : Controller 2: { 3: private CloudStorageAccount _account; 4: private CloudBlobClient _client; 5:  6: public HomeController() 7: : base() 8: { 9: _account = CloudStorageAccount.Parse(CloudConfigurationManager.GetSetting("DataConnectionString")); 10: _client = _account.CreateCloudBlobClient(); 11: } 12:  13: public ActionResult Index() 14: { 15: ViewBag.Message = "Modify this template to jump-start your ASP.NET MVC application."; 16:  17: return View(); 18: } 19:  20: [HttpPost] 21: public JsonResult UploadInFormData() 22: { 23: var error = string.Empty; 24: try 25: { 26: var name = Request.Form["name"]; 27: var index = int.Parse(Request.Form["index"]); 28: var file = Request.Files[0]; 29: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 30:  31: var container = _client.GetContainerReference("test"); 32: container.CreateIfNotExists(); 33: var blob = container.GetBlockBlobReference(name); 34: blob.PutBlock(id, file.InputStream, null); 35: } 36: catch (Exception e) 37: { 38: error = e.ToString(); 39: } 40:  41: return new JsonResult() 42: { 43: Data = new 44: { 45: success = string.IsNullOrWhiteSpace(error), 46: error = error 47: } 48: }; 49: } 50:  51: [HttpPost] 52: public JsonResult Commit() 53: { 54: var error = string.Empty; 55: try 56: { 57: var name = Request.Form["name"]; 58: var list = Request.Form["list"]; 59: var ids = list 60: .Split(',') 61: .Where(id => !string.IsNullOrWhiteSpace(id)) 62: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 63: .ToArray(); 64:  65: var container = _client.GetContainerReference("test"); 66: container.CreateIfNotExists(); 67: var blob = container.GetBlockBlobReference(name); 68: blob.PutBlockList(ids); 69: } 70: catch (Exception e) 71: { 72: error = e.ToString(); 73: } 74:  75: return new JsonResult() 76: { 77: Data = new 78: { 79: success = string.IsNullOrWhiteSpace(error), 80: error = error 81: } 82: }; 83: } 84: } And if we selected a file from the browser we will see our application will upload chunks in the size we specified to the server through ajax call in background, and then commit all chunks in one blob. Then we can find the blob in our Windows Azure Blob Storage.   Optimized by Parallel Upload In previous example we just uploaded our file in chunks. This solved the problem that ASP.NET MVC request content size limitation as well as the Windows Azure load balancer timeout. But it might introduce the performance problem since we uploaded chunks in sequence. In order to improve the upload performance we could modify our client side code a bit to make the upload operation invoked in parallel. The good news is that, “async.js” library provides the parallel execution function. If you remembered the code we invoke the service to upload chunks, it utilized “async.series” which means all functions will be executed in sequence. Now we will change this code to “async.parallel”. This will invoke all functions in parallel. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallel(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); In this way all chunks will be uploaded to the server side at the same time to maximize the bandwidth usage. This should work if the file was not very large and the chunk size was not very small. But for large file this might introduce another problem that too many ajax calls are sent to the server at the same time. So the best solution should be, upload the chunks in parallel with maximum concurrency limitation. The code below specified the concurrency limitation to 4, which means at the most only 4 ajax calls could be invoked at the same time. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallelLimit(putBlocks, 4, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: });   Summary In this post we discussed how to upload files in chunks to the backend service and then upload them into Windows Azure Blob Storage in blocks. We focused on the frontend side and leverage three new feature introduced in HTML 5 which are - File.slice: Read part of the file by specifying the start and end byte index. - Blob: File-like interface which contains the part of the file content. - FormData: Temporary form element that we can pass the chunk alone with some metadata to the backend service. Then we discussed the performance consideration of chunk uploading. Sequence upload cannot provide maximized upload speed, but the unlimited parallel upload might crash the browser and server if too many chunks. So we finally came up with the solution to upload chunks in parallel with the concurrency limitation. We also demonstrated how to utilize “async.js” JavaScript library to help us control the asynchronize call and the parallel limitation.   Regarding the chunk size and the parallel limitation value there is no “best” value. You need to test vary composition and find out the best one for your particular scenario. It depends on the local bandwidth, client machine cores and the server side (Windows Azure Cloud Service Virtual Machine) cores, memory and bandwidth. Below is one of my performance test result. The client machine was Windows 8 IE 10 with 4 cores. I was using Microsoft Cooperation Network. The web site was hosted on Windows Azure China North data center (in Beijing) with one small web role (1.7GB 1 core CPU, 1.75GB memory with 100Mbps bandwidth). The test cases were - Chunk size: 512KB, 1MB, 2MB, 4MB. - Upload Mode: Sequence, parallel (unlimited), parallel with limit (4 threads, 8 threads). - Chunk Format: base64 string, binaries. - Target file: 100MB. - Each case was tested 3 times. Below is the test result chart. Some thoughts, but not guidance or best practice: - Parallel gets better performance than series. - No significant performance improvement between parallel 4 threads and 8 threads. - Transform with binaries provides better performance than base64. - In all cases, chunk size in 1MB - 2MB gets better performance.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • ASP.NET AJAX, jQuery and AJAX Control Toolkit&ndash;the roadmap

    - by Harish Ranganathan
    The opinions mentioned herein are solely mine and do not reflect those of my employer Wanted to post this for a long time but couldn’t.  I have been an ASP.NET Developer for quite sometime and have worked with version 1.1, 2.0, 3.5 as well as the latest 4.0. With ASP.NET 2.0 and Visual Studio 2005, came the era of AJAX and rich UI style web applications.  So, ASP.NET AJAX (codenamed “ATLAS”) was released almost an year later.  This was called as ASP.NET 2.0 AJAX Extensions.  This release was supported further with Visual Studio 2005 Service Pack 1. The initial release of ASP.NET AJAX had 3 components ASP.NET AJAX Library – Client library that is used internally by the server controls as well as scripts that can be used to write hand coded ajax style pages ASP.NET AJAX Extensions – Server controls i.e. ScriptManager,Proxy, UpdatePanel, UpdateProgress and Timer server controls.  Works pretty much like other server controls in terms of development and render client side behavior automatically AJAX Control Toolkit – Set of server controls that extend a behavior or a capability.  Ex.- AutoCompleteExtender The AJAX Control Toolkit was a separate download from CodePlex while the first two get installed when you install ASP.NET AJAX Extensions. With Visual Studio 2008, ASP.NET AJAX made its way into the runtime.  So one doesn’t need to separately install the AJAX Extensions.  However, the AJAX Control Toolkit still remained as a community project that can be downloaded from CodePlex.  By then, the toolkit had close to 30 controls. So, the approach was clear viz., client side programming using ASP.NET AJAX Library and server side model using built-in controls (UpdatePanel) and/or AJAX Control Toolkit. However, with Visual Studio 2008 Service Pack 1, we also added support for the ever increasing popular jQuery library.  That is, you can use jQuery along with ASP.NET and would also get intellisense for jQuery in Visual Studio 2008. Some of you who have played with Visual Studio 2010 Beta and .NET Framework 4 Beta, would also have explored the new AJAX Library which had a lot of templates, live bindings etc.,  But, overall, the road map ahead makes it much simplified. For client side programming using JavaScript for implementing AJAX in ASP.NET, the recommendation is to use jQuery which will be shipped along with Visual Studio and provides intellisense as well. For server side programming one you can use the server controls like UpdatePanel etc., and also the AJAX Control Toolkit which has close to 40 controls now.  The AJAX Control Toolkit still remains as a separate download at CodePlex.  You can download the different versions for different versions of ASP.NET at http://ajaxcontroltoolkit.codeplex.com/ The Microsoft AJAX Library will still be available through the CDN (Content Delivery Network) channels.  You can view the CDN resources at http://www.asp.net/ajaxlibrary/CDN.ashx Similarly even jQuery and the toolkit would be available as CDN resources in case you chose not to download and have them as a part of your application. I think this makes AJAX development pretty simple.  Earlier, having Microsoft AJAX Library as well as jQuery for client side scripting was kind of confusing on which one to use.  With this roadmap, it makes it simple and clear. You can read more on this at http://ajax.asp.net I hope this post provided some clarity on the AJAX roadmap as I could decipher from various product teams. Cheers!!!

    Read the article

  • The Challenge with HTML5 – In Pictures

    - by dwahlin
    I love working with Web technologies and am looking forward to the new functionality that HTML5 will ultimately bring to the table (some of which can be used today). Having been through the div versus layer battle back in the IE4 and Netscape 4 days I think we’re headed down that road again as a result of browsers implementing features differently. I’ve been spending a lot of time researching and playing around with HTML5 samples and features (mainly because we’re already seeing demand for training on HTML5) and there’s a lot of great stuff there that will truly revolutionize web applications as we know them. However, browsers just aren’t there yet and many people outside of the development world don’t really feel a need to upgrade their browser if it’s working reasonably well (Mom and Dad come to mind) so it’s going to be awhile. There’s a nice test site at http://www.HTML5Test.com that runs through different HTML5 features and scores how well they’re supported. They don’t test for everything and are very clear about that on the site: “The HTML5 test score is only an indication of how well your browser supports the upcoming HTML5 standard and related specifications. It does not try to test all of the new features offered by HTML5, nor does it try to test the functionality of each feature it does detect. Despite these shortcomings we hope that by quantifying the level of support users and web developers will get an idea of how hard the browser manufacturers work on improving their browsers and the web as a development platform. The score is calculated by testing for the many new features of HTML5. Each feature is worth one or more points. Apart from the main HTML5 specification and other specifications created the W3C HTML Working Group, this test also awards points for supporting related drafts and specifications. Some of these specifications were initially part of HTML5, but are now further developed by other W3C working groups. WebGL is also part of this test despite not being developed by the W3C, because it extends the HTML5 canvas element with a 3d context. The test also awards bonus points for supporting audio and video codecs and supporting SVG or MathML embedding in a plain HTML document. These test do not count towards the total score because HTML5 does not specify any required audio or video codec. Also SVG and MathML are not required by HTML5, the specification only specifies rules for how such content should be embedded inside a plain HTML file. Please be aware that the specifications that are being tested are still in development and could change before receiving an official status. In the future new tests will be added for the pieces of the specification that are currently still missing. The maximum number of points that can be scored is 300 at this moment, but this is a moving goalpost.” It looks like their tests haven’t been updated since June, but the numbers are pretty scary as a developer because it means I’m going to have to do a lot of browser sniffing before assuming a particular feature is available to use. Not that much different from what we do today as far as browser sniffing you say? I’d have to disagree since HTML5 takes it to a whole new level. In today’s world we have script libraries such as jQuery (my personal favorite), Prototype, script.aculo.us, YUI Library, MooTools, etc. that handle the heavy lifting for us. Until those libraries handle all of the key HTML5 features available it’s going to be a challenge. Certain features such as Canvas are supported fairly well across most of the major browsers while other features such as audio and video are hit or miss depending upon what codec you want to use. Run the tests yourself to see what passes and what fails for different browsers. You can also view the HTML5 Test Suite Conformance Results at http://test.w3.org/html/tests/reporting/report.htm (a work in progress). The table below lists the scores that the HTML5Test site returned for different browsers I have installed on my desktop PC and laptop. A specific list of tests run and features supported are given when you go to the site. Note that I went ahead and tested the IE9 beta and it didn’t do nearly as good as I expected it would, but it’s not officially out yet so I expect that number will change a lot. Am I opposed to HTML5 as a result of these tests? Of course not - I’m actually really excited about what it offers.  However, I’m trying to be realistic and feel it'll definitely add a new level of headache to the Web application development process having been through something like this many years ago. On the flipside, developers that are able to target a specific browser (typically Intranet apps) or master the cross-browser issues are going to release some pretty sweet applications. Check out http://html5gallery.com/ for a look at some of the more cutting-edge sites out there that use HTML5. Also check out the http://www.beautyoftheweb.com site that Microsoft put together to showcase IE9. Chrome 8 Safari 5 for Windows     Opera 10 Firefox 3.6     Internet Explorer 9 Beta (Note that it’s still beta) Internet Explorer 8

    Read the article

  • Professional WordPress Business Themes

    - by Matt
    Every now and then JustSkins.com receives quote requests for WordPress design for business websites. Most companies now keep up to date with a blog on their corporate website, that showcases their day to day activities & progresses.  Getting such professional wordpress driven website designed from the scratch costs you a lot. If you have decided to make WordPress the CMS for your business website, there are some Professional WordPress themes you can take a look at. We have created this list to help you save some time to do all the trying and the testing. Optimize by WooThemes Last year one of the most popular Business theme by WooThemes was the Coffee Break theme, Optimize is further adaptation of the same. It is simple, sleek design with great functionality. The customizable front page lets you showcase your work or product etc. Demo | Price: $70, Developer Price: $150 | DOWNLOAD WooThemes is also offering their whole Business theme pack for a very very reasonable fee, If you like multiple designs from them you can get this big deal for only $125 Onyx , Impacto by Simple Themes Simple Themes has been making very crisp & beautiful WordPress Themes & are also very reasonably priced. If their themes solve your purpose $39 membership for 3 months is a good deal.  If you are looking to create quick website, landing page or micro site their templates are best. Demo | Price: $39 for 3 Months Membership Rejuvenate by Templatic One of the most beautiful Premium WordPress Theme, Available in 4 elegant color schemes. This theme can be used for your Beauty, Spa and Studio Business. Demo | Price: $65  | DOWNLOAD Templatic has created great professional business templates, such as Gourmet, Real Estate, Job Board, Automobile & lots More. You can also get a Best Value Offer in $299 for all of Templatic Themes. TheProfessional by ElegantThemes Elegant Themes is known to provide very beautiful & straightforward designs. The professional wordpress theme is a simple, crisp & concise Theme you can use to create a business website. The 3 short blurbs on the homepage are simple, which can be used to point them to your major offerings and the prominent slider indicates a clear call to action. There are 52 themes to choose from & Elegant Themes is giving a great offer at such a small yearly fee. Demo | Price: $39 Yearly Membership  | DOWNLOAD Elegant Themes has a cluster of 52 magnificent themes, and all you have to do is pay $39 to win access to all of them. Join today! Some of the Professional designs that I like for a business website are SimplePress and Corporation. Extatic by Chimera Themes The theme includes plenty of great features including custom feature tour pages, portfolio sections, static feature areas, pricing table page, 20+ shortcodes, multiple page/post options, unlimited custom sidebars which can be assigned to posts/pages, advanced theme style editor and options page and much more. Its a must buy Demo | Price: $37 | DOWNLOAD Corporate by Clover Themes Simple Theme for a small business. Corporate is an clean, powerful and feature-rich corporate theme with dynamic and energy design. Demo | Price: $69.95 | DOWNLOAD Bizco by Themify Bizco is a very professional template for wordpress targeted at corporate and product based businesses. This theme is simple yet highly functional and is suitable for showcasing features of your service or product. With the custom page template you can change the display of your pages and posts easily with our visual custom panel. Demo | Price: $70  |DOWNLOAD Devision by Themetrust Devision is a small business wordpress theme that can be used to make a business website within a few minutes. It makes it very easy to showcase and highlight your services or product on the homepage. Demo | Price: Euro 39 | DOWNLOAD BizPress by WPZoom A professional business WordPress theme from WPZoom suitable for companies, organizations, product showcases or other business websites. The theme comes with 4 colour options, featured products / services slider on the homepage, drop down menus, theme options page etc. Demo | Price: $ 69 | DOWNLOAD Clean Classy Corporate by ThemeFuse A very impressive WordPress business theme, that can be used in multiple ways. It is suitable for many kinds, like web products, services, hosting etc etc. Clean Classy Corporate WordPress Theme has a clean crisp look and is professional in appeal. Demo | Price: $49  | DOWNLOAD Insdustry by ThemeJam A powerful Business WordPress Template along with lots of options, colors, and customizable features. This is one for almost any kind of blogger, corporate, or organization. Lots of features, gives it the kind of scalability you might need to create any kind of website. Demo | Price: $ 59 | DOWNLOAD AppPress by ChimeraThemes This professional business WordPress theme includes 5 different colour schemes, advanced theme options page, multiple homepage sliders, custom widgets and page templates. The theme also includes a range of other unique features such as custom title, live style editor to modify colours, font styles, sizes etc, and 20+ shortcodes for creating pricing tables, content columns, boxes, buttons and others. Demo | Price: $ 37 | DOWNLOAD Why WordPress Professional Template? You can modify them, these usually come with a lot of fancy features that enable you to create the website as per your usability & choice. In some cases the  Premium WordPress business themes can be accessed through a subscription service. Premium Vs Free WordPress Themes There are very good Free WordPress themes out there that you can use to modify and code further or create what you want, but this possible when you are technically able. On the contrary Premium WordPress business themes offers great features & can save you a lot of time and money. It varies from business to business, some like to keep their website simple while most want to keep cool nifty features and abilities to scale it differently for various sections, products or categories. All this & more is possible with a Professional Business theme that is suitable/close to your needs.

    Read the article

< Previous Page | 113 114 115 116 117 118 119 120 121 122 123 124  | Next Page >