Search Results

Search found 16911 results on 677 pages for 'top hat'.

Page 117/677 | < Previous Page | 113 114 115 116 117 118 119 120 121 122 123 124  | Next Page >

  • Sign-On für APEX Anwendungen mit Kerberos

    - by Carsten Czarski
    Endbenutzer von APEX-Anwendungen arbeiten fast immer von einem Windows-PC aus - und sehr oft sind sie in einer Windows-Domäne eingeloggt. Da liegt es doch nahe, diesen Login auch für die APEX-Anwendung zu verwenden und sich nicht erneut anmelden zu müssen. Leider unterstützt APEX ein solches Verfahren nicht out-of-the-box. Nimmt man jedoch einige Open-Source Komponenten hinzu, so lässt sich die Anforderung leicht umsetzen. Niels de Bruijn von der MT AG hat ein Dokument zusammengestellt, welches die Vorgehensweise beschreibt: Single Sign-On für APEX Anwendungen mit Kerberos - schauen Sie einfach mal rein.

    Read the article

  • Canada vs Norway

    - by guybarrette
    During the winter Olympics, I had a little bet with Sondre Bjellås.  Sondre is the RD for Olso, Norway, a rising rock star in the .NET world and a very great guy.  The bet was that if Canada would win Gold against Norway in the man curling final, I would wear something funny and Norwegian like a Viking hat at Mix while Sondre would wear a Canadian jersey. Well, guess who won? You know what?  I glad that Norway didn’t win because I fear I would have had to wear the famous Norwegian curling pants! var addthis_pub="guybarrette";

    Read the article

  • How to Build Your Own Siri App In a Browser

    - by ultan o'broin
    This post from Applications User Experience team co-worker Mark Vilrokx (@mvilrokx) about building your own Siri-style voice app in a browser using Rails, Chrome, and WolframAlpha is so just good you've now got it thrice! I love these kind of How To posts. They not only show off innovation but inspire others to try it out too. Love the sharing of the code snippets too. Hat tip to Jake at the AppsLab (and now on board with the Applications UX team too) for picking up the original All Things Rails blog post. Oracle Voice & Nuance demo on the Oracle Applications User Experience Usable Apps YouTube Channel Mark recently presented on Oracle Voice at the Oracle Usability Advisory Board on Oracle Voice and Oracle Fusion Applications and opened customers and partners eyes to how this technology can work for their users in the workplace and what's coming down the line! Great job, Mark.

    Read the article

  • Ein starker Partner: Riverland Reply

    - by Alliances & Channels Redaktion
    Unsere Oracle Partner in Deutschland sind national und international erfolgreich im Geschäft und punkten bei ihren Kunden mit maßgeschneiderten Lösungen. Sie stehen für durchdachte, stimmige IT-Konzepte, hohe Service-Kompetenz und vor allem für konsequente Qualität. Dabei ist jeder Partner einzigartig: jeder hat sein eigenes Erfolgsrezept mit Oracle entwickelt, jeder verfügt über besondere Experten und eigene Business Values. Daher ist auch jeder Oracle Partner auf seine Weise spezialisiert. Hier wollen wir Ihnen in einer neuen Serie einige ausgewählte Partner vorstellen, die uns Einblicke in ihre Arbeit, ihre Strategie und in spezielle Kompetenzen sowie Referenzen im Oracle Umfeld geben. Heute spricht unser A&C Kollege Jens Schrepfer mit Herrn Alexander Doubek vom Partner Riverland Reply über dessen Erfolgsmodell. Film ab! &lt;/ifra<span id="XinhaEditingPostion"></span>

    Read the article

  • Ein starker Partner: Riverland Reply

    - by Alliances & Channels Redaktion
    Unsere Oracle Partner in Deutschland sind national und international erfolgreich im Geschäft und punkten bei ihren Kunden mit maßgeschneiderten Lösungen. Sie stehen für durchdachte, stimmige IT-Konzepte, hohe Service-Kompetenz und vor allem für konsequente Qualität. Dabei ist jeder Partner einzigartig: jeder hat sein eigenes Erfolgsrezept mit Oracle entwickelt, jeder verfügt über besondere Experten und eigene Business Values. Daher ist auch jeder Oracle Partner auf seine Weise spezialisiert. Hier wollen wir Ihnen in einer neuen Serie einige ausgewählte Partner vorstellen, die uns Einblicke in ihre Arbeit, ihre Strategie und in spezielle Kompetenzen sowie Referenzen im Oracle Umfeld geben. Heute spricht unser A&C Kollege Jens Schrepfer mit Herrn Alexander Doubek vom Partner Riverland Reply über dessen Erfolgsmodell. Film ab!

    Read the article

  • Oracle12c ist da: Neue Features für Entwicker

    - by Carsten Czarski
    Das Warten hat ein Ende. Oracle12c Release 1 steht zum Download bereit. Oracle12c bringt eine Reihe neuer Funktionen für SQL, PL/SQL und APEX Entwickler mit. Mit SQL Pattern Matching, Identify Columns, Code Based Security seien nur drei Beispiele genannt. In unserem aktuellen Community Tipp stellen wir 12 neue Features für Entwickler vor - erfahren Sie, wie Sie mit Oracle12c noch schneller und effizienter entwickeln können. Automatische Sequences und Identity Columns SQL und PL/SQL: Erweiterungen und Verbesserungen PL/SQL: Rechte, Rollen und mehr Oracle Multitenant und APEX SQL Pattern Matching Wann ist die Zeile gültig: Valid Time Temporal : Bei den Kollegen der DBA Community finden Sie entsprechend eine Übersicht mit den für Administratoren und den Datenbankbetrieb interessanten Neuerungen.

    Read the article

  • Sub domain on root domain

    - by dror
    I have a site, actually a "portal"/ "directory" for service providers. Now, for start, we opened every service provider own page on our site, but now we get a lot of applications from those providers that thy want sites from their own. We want to make every service provider his own site, but on sub domain url. ( they don’t mind… its ok for them) So, my site is www.exaple.com There site will be: provider.exaple.com Now I have two questions: can it harm my site in SEO? if one from those sub domain , punished by Google because is owner do "black hat seo" , how it will affect the rood domain? It can make the root domain to get punished?

    Read the article

  • Fedora 13 étend la virtualisation Linux, la distribution s'appuie sur de nouvelles fonctionnalités K

    Mise à jour du 10.05.2010 par Katleen Fedora 13 étend la virtualisation Linux, la distribution s'appuie sur de nouvelles fonctionnalités KVMM Fedora, la distribution Linux de Red Hat, s'est portée très tôt sur la virtualisation. Dès sa version 4, sortie en 2005, ces technologies ont été incluses et améliorées au sein du produit. Fedora 13, a sortir ce mois-ci, continuera dans cette lignée. Paul Frields, chef de projet Fedora, explique ainsi que la distribution à toujours été "l'avant-garde de la virtualisation" en utilisant KVM "bien avant les autres". Car Fedora, en abandonnant Xen pour KVM, a fait un pas en avant niveau performances et stabilité. Fe...

    Read the article

  • Auf Erfolg spezialisiert

    - by A&C Redaktion
    Spezialisierung kommt an. So lautet kurz gefasst die Bilanz, die Oracle Alliances & Channel jetzt, nach gut einem Jahr Laufzeit des OPN Spezialisierungsprogramms, gezogen hat. Das Wichtigste auf einen Blick: über 400 Unternehmen in 65 Ländern in Europa, Afrika und dem Nahen Osten sind bereits spezialisierte Oracle Partner270 davon haben das Platin-Level erreichtinsgesamt erfolgten über 560 Spezialisierungensomit sind 14.400 spezialisierte Fachkräfte im OPN Netzwerk tätig und das in 65 Ländern der EMEA-Region Als Grund dafür dass die Sepzialisierungsangebote so gut ankommen, nennt Stein Surlien, dass sich Partner "besser vom Wettbewerb abheben und für ihr spezifisches Fachwissen anerkannt" werden. Weitere Fakten, Stimmen und Einschützungen finden Sie in der aktuellen Pressemitteilung.

    Read the article

  • Tips for XNA WP7 Developers

    - by Michael B. McLaughlin
    There are several things any XNA developer should know/consider when coming to the Windows Phone 7 platform. This post assumes you are familiar with the XNA Framework and with the changes between XNA 3.1 and XNA 4.0. It’s not exhaustive; it’s simply a list of things I’ve gathered over time. I may come back and add to it over time, and I’m happy to add anything anyone else has experienced or learned as well. Display · The screen is either 800x480 or 480x800. · But you aren’t required to use only those resolutions. · The hardware scaler on the phone will scale up from 240x240. · One dimension will be capped at 800 and the other at 480; which depends on your code, but you cannot have, e.g., an 800x600 back buffer – that will be created as 800x480. · The hardware scaler will not normally change aspect ratio, though, so no unintended stretching. · Any dimension (width, height, or both) below 240 will be adjusted to 240 (without any aspect ratio adjustment such that, e.g. 200x240 will be treated as 240x240). · Dimensions below 240 will be honored in terms of calculating whether to use portrait or landscape. · If dimensions are exactly equal or if height is greater than width then game will be in portrait. · If width is greater than height, the game will be in landscape. · Landscape games will automatically flip if the user turns the phone 180°; no code required. · Default landscape is top = left. In other words a user holding a phone who starts a landscape game will see the first image presented so that the “top” of the screen is along the right edge of his/her phone, such that the natural behavior would be to turn the phone 90° so that the top of the phone will be held in the user’s left hand and the bottom would be held in the user’s right hand. · The status bar (where the clock, battery power, etc., are found) is hidden when the Game-derived class sets GraphicsDeviceManager.IsFullScreen = true. It is shown when IsFullScreen = false. The default value is false (i.e. the status bar is shown). · You should have a good reason for hiding the status bar. Users find it helpful to know what time it is, how much charge their battery has left, and whether or not their phone is in service range. This is especially true for casual games that you expect someone to play for a few minutes at a time, e.g. while waiting for some event to start, for a phone call to come in, or for a train, bus, or subway to arrive. · In portrait mode, the status bar occupies 32 pixels of space. This means that a game with a back buffer of 480x800 will be scaled down to occupy approximately 461x768 screen pixels. Setting the back buffer to 480x768 (or some resolution with the same 0.625 aspect ratio) will avoid this scaling. · In landscape mode, the status bar occupies 72 pixels of space. This means that a game with a back buffer of 800x480 will be scaled down to occupy approximately 728x437 screen pixels. Setting the back buffer to 728x480 (or some resolution with the same 1.51666667 aspect ratio) will avoid this scaling. Input · Touch input is scaled with screen size. · So if your back buffer is 600x360, a tap in the bottom right corner will come in as (599,359). You don’t need to do anything special to get this automatic scaling of touch behavior. · If you do not use full area of the screen, any touch input outside the area you use will still register as a touch input. For example, if you set a portrait resolution of 240x240, it would be scaled up to occupy a 480x480 area, centered in the screen. If you touch anywhere above this area, you will get a touch input of (X,0) where X is a number from 0 to 239 (in accordance with your 240 pixel wide back buffer). Any touch below this area will give a touch input of (X,239). · If you keep the status bar visible, touches within its area will not be passed to your game. · In general, a screen measurement is the diagonal. So a 3.5” screen is 3.5” long from the bottom right corner to the top left corner. With an aspect ratio of 0.6 (480/800 = 0.6), this means that a phone with a 3.5” screen is only approximately 1.8” wide by 3” tall. So there are approximately 267 pixels in an inch on a 3.5” screen. · Again, this time in metric! 3.5 inches is approximately 8.89 cm. So an 8.89 cm screen is 8.89 cm long from the bottom right corner to the top left corner. With an aspect ratio of 0.6, this means that a phone with an 8.89 cm screen is only approximately 4.57 cm wide by 7.62 cm tall. So there are approximately 105 pixels in a centimeter on an 8.89 cm screen. · Think about the size of your finger tip. If you do not have large hands, think about the size of the fingertip of someone with large hands. Consider that when you are sizing your touch input. Especially consider that when you are spacing two touch targets near one another. You need to judge it for yourself, but items that are next to each other and are each 100x100 should be fine when it comes to selecting items individually. Smaller targets than that are ok provided that you leave space between them. · You want your users to have a pleasant experience. Making touch controls too small or too close to one another will make them nervous about whether they will touch the right target. Take this into account when you plan out your game initially. If possible, do some quick size mockups on an actual phone using colored rectangles that you position and size where you plan to have your game controls. Adjust as necessary. · People do not have transparent hands! Nor are their hands the size of a mouse pointer icon. Consider leaving a dedicated space for input rather than forcing the user to cover up to one-third of the screen with a finger just to play the game. · Another benefit of designing your controls to use a dedicated area is that you’re less likely to have players moving their finger(s) so frantically that they accidentally hit the back button, start button, or search button (many phones have one or more of these on the screen itself – it’s easy to hit one by accident and really annoying if you hit, e.g., the search button and then quickly tap back only to find out that the game didn’t save your progress such that you just wasted all the time you spent playing). · People do not like doing somersaults in order to move something forward with accelerometer-based controls. Test your accelerometer-based controls extensively and get a lot of feedback. Very well-known games from noted publishers have created really bad accelerometer controls and been virtually unplayable as a result. Also be wary of exceptions and other possible failures that the documentation warns about. · When done properly, the accelerometer can add a nice touch to your game (see, e.g. ilomilo where the accelerometer was used to move the background; it added a nice touch without frustrating the user; I also think CarniVale does direct accelerometer controls very well). However, if done poorly, it will make your game an abomination unto the Marketplace. Days, weeks, perhaps even months of development time that you will never get back. I won’t name names; you can search the marketplace for games with terrible reviews and you’ll find them. Graphics · The maximum frame rate is 30 frames per second. This was set as a compromise between battery life and quality. · At least one model of phone is known to have a screen refresh rate that is between 59 and 60 hertz. Because of this, using a fixed time step with a target frame rate of 30 will cause a slight internal delay to build up as the framework is forced to wait slightly for the next refresh. Eventually the delay will get to the point where a draw is skipped in order to recover from the delay. (See Nick's comment below for clarification.) · To deal with that delay, you can either stay with a fixed time step and set the frame rate slightly lower or else you can go to a variable time step and make sure to adjust all of your update data (e.g. player movement distance) to take into account the elapsed time from the last update. A variable time step makes your update logic slightly more complicated but will avoid frame skips entirely. · Currently there are no custom shaders. This might change in the future (there is no hardware limitation preventing it; it simply wasn’t a feature that could be implemented in the time available before launch). · There are five built-in shaders. You can create a lot of nice effects with the built-in shaders. · There is more power on the CPU than there is on the GPU so things you might typically off-load to the GPU will instead make sense to do on the CPU side. · This is a phone. It is not a PC. It is not an Xbox 360. The emulator runs on a PC and uses the full power of your PC. It is very good for testing your code for bugs and doing early prototyping and layout. You should not use it to measure performance. Use actual phone hardware instead. · There are many phone models, each of which has slightly different performance levels for I/O, screen blitting, CPU performance, etc. Do not take your game right to the performance limit on your phone since for some other phones you might be crossing their limits and leaving players with a bad experience. Leave a cushion to account for hardware differences. · Smaller screened phones will have slightly more dots per inch (dpi). Larger screened phones will have slightly less. Either way, the dpi will be much higher than the typical 96 found on most computer screens. Make sure that whoever is doing art for your game takes this into account. · Screens are only required to have 16 bit color (65,536 colors). This is common among smart phones. Using gradients on a 16 bit display can produce an ugly artifact known as banding. Banding is when, rather than a smooth transition from one color to another, you instead see distinct lines. Be careful to avoid this when possible. Banding can be avoided through careful art creation. Its effects can be minimized and even unnoticeable when the texture in question is always moving. You should be careful not to rely on “looks good on my phone” since some phones do have 32-bit displays and thus you’ll find yourself wondering why you’re getting bad reviews that complain about the graphics. Avoid gradients; if you can’t, make sure they are 16-bit safe. Audio · Never rely on sounds as your sole signal to the player that something is happening in the game. They might have the sound off. They might be playing somewhere loud. Etc. · You have to provide controls to disable sound & music. These should be separate. · On at least one model of phone, the volume control API currently has no effect. Players can adjust sound with their hardware volume buttons, but in game selectors simply won’t work. As such, it may not be worth the effort of providing anything beyond on/off switches for sound and music. · MediaPlayer.GameHasControl will return true when a game is hooked up to a PC running Zune. When Zune is running, any attempts to do anything (beyond check GameHasControl) with MediaPlayer will cause an exception to be thrown. If this exception is thrown, catch it and disable music. Exceptions take time to propagate; you don’t want one popping up in every single run of your game’s Update method. · Remember that players can already be listening to music or using the FM radio. In this case GameHasControl will be false and you should handle this appropriately. You can, alternately, ask the player for permission to stop their current music and play your music instead, but the (current) requirement that you restore their music when done is very hard (if not impossible) to deal with. · You can still play sound effects even when the game doesn’t have control of the music, but don’t think this is a backdoor to playing music. Your game will fail certification if your “sound effect” seems to be more like music in scope and length.

    Read the article

  • Does using structure data semantic LocalBusiness schema markup work for local EMD URL's?

    - by ElHaix
    Based on what I have read about Google's recent Panda and Penguin updates, I'm getting the impression that using semantic markup may help improve SEO results. On a EMD (exact match domain) site, that may have been hit, we list location-based products. We are now going to be adding a itemtype="http://schema.org/Product" to each product, with relevant details. However, that product may be available in Los Angeles and also in appear in a Seattle results page. We could add a LocalBusiness item type on each geo page to define the geo location for that page. While the definition states: A particular physical business or branch of an organization. Examples of LocalBusiness include a restaurant, a particular branch of a restaurant chain, a branch of a bank, a medical practice, a club, a bowling alley, etc. We could add use the location property which would simply include the city/state details. I realize that this looks like it is meant for a physical location, however could this be done without seeming black-hat?

    Read the article

  • inforsacom ist Oracle EMEA Database Partner of the Year – wir gratulieren!

    - by A&C Redaktion
    Der Jubel war groß auf der Oracle Open World 2012 in San Francisco: inforsacom ist EMEA Specialized Database Partner of the Year! Bei der Verleihung betonte David Callaghan, Senior Vice President EMEA A&C, die Auszeichnung gehe an die spezialisierten Partner, „die höchste Level an Innovation und Leistungsfähigkeit in ihren Spezialgebieten erzielt haben.“ Die inforsacom Informationssysteme GmbH mit Sitz in Deutschland entwickelt und liefert seit 1997 integrierte IT-Lösungen im Data-Center. Die Auszeichnung des Platinum Partners ist die Krönung einer langjährigen erfolgreichen Zusammenarbeit mit Oracle. Kunden schätzen das Unternehmen als Experten für Infrastruktur-Lösungen und -Services im Bereich Rechenzentren. Neben dem Fokus auf Oracle Datenbank-Technologien ist inforsacom auch auf das Hardware- und Engineered Systems Portofolio spezialisiert. inforsacom hat als „trusted advisor“ immer den größtmöglichen Kundennutzen im Blick – das zahlt sich aus. Herzlichen Glückwunsch! Hier ist die Pressemeldung zur Award-Verleihung und das sind die Gewinner in den sechs weiteren Kategorien: Middleware: egabi Solutions (Ägypten) Applications: Accenture (Niederlande) Industry: Mannai Trading Corporation (Katar) Oracle Accelerate for Midsize Companies: Inoapps Ltd (United Kingdom) Oracle on Oracle: Capgemini Espania, S.L. (Spanien) Server and Storage Systems: Mannai Trading Corporation (Katar)

    Read the article

  • inforsacom ist Oracle EMEA Database Partner of the Year – wir gratulieren!

    - by A&C Redaktion
    Der Jubel war groß auf der Oracle Open World 2012 in San Francisco: inforsacom ist EMEA Specialized Database Partner of the Year! Bei der Verleihung betonte David Callaghan, Senior Vice President EMEA A&C, die Auszeichnung gehe an die spezialisierten Partner, „die höchste Level an Innovation und Leistungsfähigkeit in ihren Spezialgebieten erzielt haben.“ Die inforsacom Informationssysteme GmbH mit Sitz in Deutschland entwickelt und liefert seit 1997 integrierte IT-Lösungen im Data-Center. Die Auszeichnung des Platinum Partners ist die Krönung einer langjährigen erfolgreichen Zusammenarbeit mit Oracle. Kunden schätzen das Unternehmen als Experten für Infrastruktur-Lösungen und -Services im Bereich Rechenzentren. Neben dem Fokus auf Oracle Datenbank-Technologien ist inforsacom auch auf das Hardware- und Engineered Systems Portofolio spezialisiert. inforsacom hat als „trusted advisor“ immer den größtmöglichen Kundennutzen im Blick – das zahlt sich aus. Herzlichen Glückwunsch! Hier ist die Pressemeldung zur Award-Verleihung und das sind die Gewinner in den sechs weiteren Kategorien: Middleware: egabi Solutions (Ägypten) Applications: Accenture (Niederlande) Industry: Mannai Trading Corporation (Katar) Oracle Accelerate for Midsize Companies: Inoapps Ltd (United Kingdom) Oracle on Oracle: Capgemini Espania, S.L. (Spanien) Server and Storage Systems: Mannai Trading Corporation (Katar)

    Read the article

  • Using EPEL repos with Oracle Linux

    - by wcoekaer
    There's a Fedora project called EPEL which hosts a set of additional packages that can be installed on top of various distributions such as Red Hat Enterprise Linux, CentOS, Scientific Linux and of course also Oracle Linux. These packages are not distributed by the distribution vendor and as such also not supported by the vendors (including Oracle) however for users that want to pick up some extras that are useful, it's very easy to do this. All you need to do is download the EPEL RPM from the website, install it on Oracle Linux 5 or Oracle Linux 6 and run yum install or yum search to get the packages. example : # wget http://download.fedoraproject.org/pub/epel/6/i386/epel-release-6-5.noarch.rpm # rpm -ivh epel-release-6-5.noarch.rpm # yum repolist Loaded plugins: refresh-packagekit, rhnplugin repo id repo name status epel Extra Packages for Enterprise Linux 6 - x86_64 7,124 The folks that build these repositories are doing a great job at adding very useful packages. They are free, but also unsupported of course.

    Read the article

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

  • Die Datenbank 12c auf Solaris 11.1 in der DOAG News 5/2013

    - by Franz Haberhauer
    Ich hatte ja hier im Solarium-Blog schon einmal einen Beitrag geschrieben zum Thema Engineered to Work Together: Oracle Datenbank 12c und Solaris. Ein etwas ausführlicherer Artikel von mir zu diesem Thema ist jetzt in der aktuellen Ausgabe der DOAG News 5/2013, die die Oracle Datenbank 12c als Schwerpunktthema hat, erschienen. DOAG-Mitglieder bekommen das Magazin DOAG News regelmäßig ins Haus, für die anderen gibt's den Artikel hier. Die DOAG-Jahresmitgliedschaft kann sich übrigens schon über die vergünstigte Tagungsgebühr bei der Jahreskonferenz in Nürnberg für Mitglieder rechnen, auf die ich hier auch nochmal hinweisen möchten. Im vorigen Beitrag DOAG 2013 - DIE Konferenz rund um Solaris bin ich schon auf das starke Programm über volle drei Konferenztage hinweg eingegangen. Vielleicht sehen wir uns dann ja in zwei Wochen in Nürnberg .

    Read the article

  • Neues in WebCenter Sites 11g

    - by pweckerl
    Es ist kein Geheimnis, dass das Online Erlebnis sich durch das Social Computing grundlegend geändert hat. Immer öfter wollen Besucher einer Web Site nicht nur konsumieren sonder auch interagieren und ihre Erfahrungen über Soziale Netzwerke mit Anderen teilen. Für Online-Marketies eröffnet dies eine vielzahl an Möglichkeiten aber auch Herausforderungen. Unternehmen müssen diese sozialen Komponenten in ihre Online Auftritte integrieren um die Erwartung nach einem interaktiven Erlebnis zu erfüllen aber zugleich die Kontrolle und damit ein gewisses Maß an Sicherheit für integrität der eigenen Marke und des eigenen Rufs zu garantieren. Mit der neuen Version von Oracle WebCenter Sites steht Online-Verantwortlichen ein umfassendes Werkzeug zur Verfügung, um ihre Auftritte noch interaktiver zu gestalten und die Besucher noch enger einzubeziehen. Social Login und Social Sharing, User Generated Content, wie Bewertungen und Kommentare, und viele weitere Neuerungen machen Oracle WebCenter Sites besser denn je. Mehr zur aktuellen Version und zu WebCenter Themen allgemein finde Sie auch auf dem Oracle WebCenter Blog (https://blogs.oracle.com/webcenter/entry/what_s_new_in_webcenter1).

    Read the article

  • On-Site Factors that Affect CPC

    - by ashes999
    I have a few websites on various niche topics, all running Adsense. The most promising one currently has a CPC that hovers around $1; the rest have CPCs of $0.25-$0.50. I'm curious to know what on-site factors affect CPC. That is to say, what I can do, legally (in white-hat compliance) to increase my CPC? Some factors that affect CPC but are not within my control (and therefore, beyond the scope of my question -- they're just examples) include: What advertisers are paying for keywords on my site What pages people are landing on etc.

    Read the article

  • Hilfe?! Wie funktioniert mein Werkzeug?

    - by DBA Community
    Es gibt eine ganze Reihe an Oracle Tools für die Oracle Datenbank, die per Command Line Interfaces bedient werden können: Von RMAN über ADRCI, vom SQL*Loader über Export/Import, von SRVCTL über SQL*Plus. Und wie es sich für ordentliche Werkzeug gehört, besitzt auch (fast) jedes einzelne von ihnen eine eigene Hilfestellung. Wobei die Betonung eindeutig auf "eigene" liegt. Auch der ungeübte Benutzer wird sehr schnell merken, dass Oracle sich hier wohl nie so wirklich Gedanken darüber gemacht hat, die Hilfefunktionen zu vereinheitlichen - außer dass die Hilfe mehr oder weniger hilfreich ist. Die wohl interessanteste Ausprägung dieser Hilfefunktion ist hier sicherlich der RMAN, dessen umfangreiche Syntaxhilfe nur schwer zu erhalten ist - es sei denn man vertippt sich absichtlich. Solange man alles richtig macht (oder eben falsch, aber leider mit der richtigen Syntax) ist RMAN kein Hinweis über seine umfangreichen Syntaxchecker zu "entlocken". Wie man bei den vielen unterschiedlichen Oracle Tools die hilfreichen Informationen bekommt, damit beschäftigt sich unser Tipp. Weiter zum Tipp

    Read the article

  • Ein starker Partner: IGEPA IT-SERVICE GmbH

    - by Alliances & Channels Redaktion
    Unsere Oracle Partner in Deutschland sind national und international erfolgreich im Geschäft und punkten bei ihren Kunden mit maßgeschneiderten Lösungen. Sie stehen für durchdachte, stimmige IT-Konzepte, hohe Service-Kompetenz und vor allem für konsequente Qualität. Dabei ist jeder Partner einzigartig: jeder hat sein eigenes Erfolgsrezept mit Oracle entwickelt, jeder verfügt über besondere Experten und eigene Business Values. Daher ist auch jeder Oracle Partner auf seine Weise spezialisiert. Hier wollen wir Ihnen in einer neuen Serie einige ausgewählte Partner vorstellen, die uns Einblicke in ihre Arbeit, ihre Strategie und in spezielle Kompetenzen sowie Referenzen im Oracle Umfeld geben. Heute spricht unser A&C Kollege Stephan Weber mit Herrn Peter Mischok vom Partner IGEPA IT-SERVICES GmbH über dessen Erfolgsmodell. Film ab!

    Read the article

  • Ein starker Partner: IGEPA IT-SERVICE GmbH

    - by Alliances & Channels Redaktion
    Unsere Oracle Partner in Deutschland sind national und international erfolgreich im Geschäft und punkten bei ihren Kunden mit maßgeschneiderten Lösungen. Sie stehen für durchdachte, stimmige IT-Konzepte, hohe Service-Kompetenz und vor allem für konsequente Qualität. Dabei ist jeder Partner einzigartig: jeder hat sein eigenes Erfolgsrezept mit Oracle entwickelt, jeder verfügt über besondere Experten und eigene Business Values. Daher ist auch jeder Oracle Partner auf seine Weise spezialisiert. Hier wollen wir Ihnen in einer neuen Serie einige ausgewählte Partner vorstellen, die uns Einblicke in ihre Arbeit, ihre Strategie und in spezielle Kompetenzen sowie Referenzen im Oracle Umfeld geben. Heute spricht unser A&C Kollege Stephan Weber mit Herrn Peter Mischok vom Partner IGEPA IT-SERVICE GmbH über dessen Erfolgsmodell. Film ab!

    Read the article

  • Aus 2 mach 1: Oracle Audit Vault and Database Firewall

    - by Heinz-Wilhelm Fabry (DBA Community)
    Gestern hat Oracle bekanntgegeben, dass die beiden Produkte Oracle Audit Vault und Oracle Database Firewall zu einem Produkt werden. Der neue Produktname wird "Oracle Audit Vault and Database Firewall" sein. Software und Dokumentation werden in den nächsten Tagen zum Download verfügbar sein. Das Zusammenlegen macht durchaus Sinn, denn die ursprünglichen Produkte wiesen im Bereich der Protokollierung und des Berichtswesens deutliche Überschneidungen auf. Damit lag es nahe, die Repositories für das Speichern des Protokolls zu vereinheitlichen. Endlich wird es im Bereich Auditing durch die Einführung eines Development Kits auch möglich sein, Systeme anzubinden, für die Oracle keine vorgefertigten Konnektoren / Kollektoren liefert. Mit der Zusammenlegung verbunden ist ein völlig neues Lizenzierungsmodell, das zu deutlichen Kostensenkungen für kleinere und mittlere Installationen führt.

    Read the article

  • Repeating keywords in inbound links

    - by JJ_Jason
    Hy. I have a service similar to bit.ly. The link generation method is similar but the site is not. A user uses my site just like the mentioned bit.ly, but i offer a differnet kind of service for which i would want to rank (on Google) for. If i were to generate links such as: mysite.com/my-keywords/1Asdf34 would it be considered spammy or black hat? The same for bit.ly would be: bit.ly/url-shortening-services/3k1dS4sd For bit.ly it would defeat the purpose, but url length in my case does not have to be short.

    Read the article

  • Herzlichen Glückwunsch!

    - by cjandaus
      Ich darf ja keine Namen nennen, aber der Gewinner unserer Umfrage auf der DOAG Konferenz 2012 steht fest und hat sich mit seiner Teilnahme selbst ein erstklassiges Nikolaus-Geschenk gemacht - und zwar ein niegelnagelneues iPad!!! Zugegeben - genau so wie auf dem Bild sieht das iPad des glücklichen Gewinners nicht aus, denn dieser Custom Design Wunsch von mir hätte wahrscheinlich ebenso viel gekostet wie eine ausgewachsene Exadata, aber das wird die Freude nicht trüben. Und freuen können sich auch noch die Gewinner auf den Plätzen 2 bis 5 - nämlich über eine Laptop-Tasche, hochwertigen Stift und Notizmappe aus Leder. Ich freue mich mit den Gewinnern und nicht zuletzt über die rege Teilnahme und vor allem die Ergebnisse der Umfrage. Auch dazu kann ich nicht viel sagen, nur so viel, dass Windows als Server Betriebssystem für Oracle Datenbanken kein Schattendasein führt. In diesem Sinne bin ich gespannt auf die kommende DOAG Datenbank Konferenz im Mai 2013, auf der ich hoffentlich die Gelegenheit bekommen werde, um die Oracle 12c Datenbank auf Windows Server 2012 und Windows 8 vorzustellen. Keynote Sprecher ist übrigens Günther Stürner - das Highlight der Konferenz.

    Read the article

  • JAX Innovation Awards 2011

    - by Tori Wieldt
    The JAX Innovation Awards were presented tonight at the JAX Conference in San Jose, California, to reward those technologies, companies, organizations and individuals that make outstanding contributions to Java. The winners were:     •    Most Innovative Java Technology - JRebel    •    Most Innovative Java Company - Red Hat    •    Top Java Community Ambassador - Martin Odersky    •    Special Jury Award - Brian GoetzIn addition to being acknowledged best-in-class by peers from the Java community, winners received $2500 each. The JAXConf team took nominations from the community, had them reviewed by a panel of independent experts to create a shortlist, which was then voted on by the Java community."The java culture inspires innovation" said Sebastian Meyen, JAX Conference Chair, "and we are happy to reward that."  

    Read the article

< Previous Page | 113 114 115 116 117 118 119 120 121 122 123 124  | Next Page >