Search Results

Search found 7757 results on 311 pages for 'dynamic assemblies'.

Page 118/311 | < Previous Page | 114 115 116 117 118 119 120 121 122 123 124 125  | Next Page >

  • Upgrade existing WinForms applications to use the latest RadControls

    Upgrading projects to new versions can be a pain, especially when you have to update several assemblies from a single version, as is the case with RadControls for WinForms. Q1 2010 simplifies this process a lot, by giving a couple of ways (one new and one updated) to upgrade existing applications to the latest and greatest version of RadControls for WinForms: By using the new Visual Studio Extensions (VSX), available in VS2005, VS2008 and VS2010 RC; By using the updated Project Upgrade Utility. Here are the steps: Upgrading a classic Windows Forms application to the latest RadControls for WinForms by using the Visual Studio Extensions Install RadControls for WinForms Q1 2010 Open the classic Windows Forms application (VB or C#) Open the Telerik Menu and select RadControls for WinForms --> Convert to Telerik WinForms Application     Select the Telerik controls you plan to use in the application, as well as a theme, and click OK. The VSX package will add the needed assemblies to your project automatically for you.     Replace the standard controls on your form with the respective Telerik controls.     Run the application to see the result. Upgrading an older RadControls application to the latest RadControls for WinForms by using the Visual Studio Extensions Install RadControls for WinForms Q1 2010. Open your current RadControls application (VB or C#), which uses pre-Q1 2010 assembly versions. Open the Telerik Menu and select RadControls for WinForms --> Upgrade Wizard   Choose to either use the online downloader of the latest version, or to use the currently installed version. The VSX package will check what assemblies you use in your project and will upgrade them automatically.     Run the application to see the result. Upgrading an older RadControls application to the latest RadControls for WinForms by using the Project Upgrade Utility The Q1 2010 Project Upgrade Utility now features upgrading not only a single project, but all projects in a directory/solution (recursively). The tool is quite intuitive - simply choose your solution folder (or a folder with several projects)m and click Update. Feel free to leave a comment. Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • [Silverlight] Suggestion – Move INotifyCollectionChanged from System.Windows.dll to System.dll

    - by Benjamin Roux
    I just submitted a suggestion on Microsoft Connect to move the INotifyCollectionChanged from System.Windows.dll to System.dll. You can review it here: https://connect.microsoft.com/VisualStudio/feedback/details/560184/move-inotifycollectionchanged-from-system-windows-dll-to-system-dll Here’s the reason why I suggest that. Actually I wanted to take advantages of the new feature of Silverlight/Visual Studio 2010 for sharing assemblies (see http://blogs.msdn.com/clrteam/archive/2009/12/01/sharing-silverlight-assemblies-with-net-apps.aspx). Everything went fine until I try to share a custom collection (with custom business logic) implementing INotifyCollectionChanged. This modification has been made in the .NET Framework 4 (see https://connect.microsoft.com/VisualStudio/feedback/details/488607/move-inotifycollectionchanged-to-system-dll) so maybe it could be done in Silverlight too. If you think this is justifiable you can vote for it.

    Read the article

  • Getting started with Blocks and namespaces - Enterprise Library 5.0 Tutorial Part 2

    This is my second post in this series. In first blog post I explained how to install Enterprise Library 5.0 and provided links to various resources. Enterprise Library is divided into various blocks. Simply we can say, a block is a ready made solution for a particular common problem across various applications. So instead focusing on implementation of common problem across various applications, we can reuse these fully tested and extendable blocks to increase the productivity and also extendibility as these blocks are made with good design principles and patterns. Major blocks of Enterprise Library 5.0 are as follows.   Core infrastructure Functional Application Blocks Caching Data Exception Handling Logging Security Cryptography Validation Wiring Application Blocks Unity Policy Injection/Interception   Each block resides in its own assembly, and also some extra assemblies for common infrastructure. Assemblies are as follows. Microsoft.Practices.EnterpriseLibrary.Caching.Cryptography.dll Microsoft.Practices.EnterpriseLibrary.Caching.Database.dll Microsoft.Practices.EnterpriseLibrary.Caching.dll Microsoft.Practices.EnterpriseLibrary.Common.dll Microsoft.Practices.EnterpriseLibrary.Configuration.Design.HostAdapter.dll Microsoft.Practices.EnterpriseLibrary.Configuration.Design.HostAdapterV5.dll Microsoft.Practices.EnterpriseLibrary.Configuration.DesignTime.dll Microsoft.Practices.EnterpriseLibrary.Configuration.EnvironmentalOverrides.dll Microsoft.Practices.EnterpriseLibrary.Data.dll Microsoft.Practices.EnterpriseLibrary.Data.SqlCe.dll Microsoft.Practices.EnterpriseLibrary.ExceptionHandling.dll Microsoft.Practices.EnterpriseLibrary.ExceptionHandling.Logging.dll Microsoft.Practices.EnterpriseLibrary.ExceptionHandling.WCF.dll Microsoft.Practices.EnterpriseLibrary.Logging.Database.dll Microsoft.Practices.EnterpriseLibrary.Logging.dll Microsoft.Practices.EnterpriseLibrary.PolicyInjection.dll Microsoft.Practices.EnterpriseLibrary.Security.Cache.CachingStore.dll Microsoft.Practices.EnterpriseLibrary.Security.Cryptography.dll Microsoft.Practices.EnterpriseLibrary.Security.dll Microsoft.Practices.EnterpriseLibrary.Validation.dll Microsoft.Practices.EnterpriseLibrary.Validation.Integration.AspNet.dll Microsoft.Practices.EnterpriseLibrary.Validation.Integration.WCF.dll Microsoft.Practices.EnterpriseLibrary.Validation.Integration.WinForms.dll Microsoft.Practices.ServiceLocation.dll Microsoft.Practices.Unity.Configuration.dll Microsoft.Practices.Unity.dll Microsoft.Practices.Unity.Interception.dll Enterprise Library Configuration Tool In addition to these assemblies you would get configuration tool “EntLibConfig-32.exe”. If you are targeting your application to .NET 4.0 framework then you would need to use “EntLibConfig.NET4.exe”. Optionally you can install Visual Studio 2008 and Visual Studio 2010 add-ins whilst installing of Enterprise Library. So that you can invoke the enterprise Library configuration from Visual Studio by right clicking on “app.config” or “web.config” file as shown below. I would suggest you to download the documentation from Codeplex which was released on May 2010. It consists 3MB of information. you can also find issue tracker to know various issues/bugs currently people talking about enterprise library. There is also discussion link takes you to community site where you can post your questions. In my next blog post, I would cover more on each block. span.fullpost {display:none;}

    Read the article

  • Using Telerik Reporting in a WPF application

    Now that Telerik Reporting provides WPF support, let's see how to use it (a video is also available on Getting Started with the WPF viewer): Creating the application Install RadControls for WPF 2010 Q1 SP1 (download | release notes). Install the corresponding Telerik Reporting version. Create a new WPF application project in Visual Studio Add references to the following Telerik RadControls for WPF assemblies: Telerik.Windows.Controls Telerik.Windows.Controls.Input Telerik.Windows.Controls.Navigation Telerik.Windows.Data NOTE: It is possible that the RadControls for WPF assemblies have a greater version than the one against which the WPF Report Viewer control was built. In this case you have to add appropriate assembly binding redirects (see Binding Redirects bellow). Drag and drop the ReportViewer control from the toolbox in the WPF window. If the ReportViewer is not available in the toolbox, you can add it using the instructions from the How to add the WPF ...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Code Metrics: Number of IL Instructions

    - by DigiMortal
    In my previous posting about code metrics I introduced how to measure LoC (Lines of Code) in .NET applications. Now let’s take a step further and let’s take a look how to measure compiled code. This way we can somehow have a picture about what compiler produces. In this posting I will introduce you code metric called number of IL instructions. NB! Number of IL instructions is not something you can use to measure productivity of your team. If you want to get better idea about the context of this metric and LoC then please read my first posting about LoC. What are IL instructions? When code written in some .NET Framework language is compiled then compiler produces assemblies that contain byte code. These assemblies are executed later by Common Language Runtime (CLR) that is code execution engine of .NET Framework. The byte code is called Intermediate Language (IL) – this is more common language than C# and VB.NET by example. You can use ILDasm tool to convert assemblies to IL assembler so you can read them. As IL instructions are building blocks of all .NET Framework binary code these instructions are smaller and highly general – we don’t want very rich low level language because it executes slower than more general language. For every method or property call in some .NET Framework language corresponds set of IL instructions. There is no 1:1 relationship between line in high level language and line in IL assembler. There are more IL instructions than lines in C# code by example. How much instructions there are? I have no common answer because it really depends on your code. Here you can see some metrics from my current community project that is developed on SharePoint Server 2007. As average I have about 7 IL instructions per line of code. This is not metric you should use, it is just illustrative example so you can see the differences between numbers of lines and IL instructions. Why should I measure the number of IL instructions? Just take a look at chart above. Compiler does something that you cannot see – it compiles your code to IL. This is not intuitive process because you usually cannot say what is exactly the end result. You know it at greater plain but you don’t know it exactly. Therefore we can expect some surprises and that’s why we should measure the number of IL instructions. By example, you may find better solution for some method in your source code. It looks nice, it works nice and everything seems to be okay. But on server under load your fix may be way slower than previous code. Although you minimized the number of lines of code it ended up with increasing the number of IL instructions. How to measure the number of IL instructions? My choice is NDepend because Visual Studio is not able to measure this metric. Steps to make are easy. Open your NDepend project or create new and add all your application assemblies to project (you can also add Visual Studio solution to project). Run project analysis and wait until it is done. You can see over-all stats form global summary window. This is the same window I used to read the LoC and the number of IL instructions metrics for my chart. Meanwhile I made some changes to my code (enabled advanced caching for events and event registrations module) and then I ran code analysis again to get results for this section of this posting. NDepend is also able to tell you exactly what parts of code have problematically much IL instructions. The code quality section of CQL Query Explorer shows you how much problems there are with members in analyzed code. If you click on the line Methods too big (NbILInstructions) you can see all the problematic members of classes in CQL Explorer shown in image on right. In my case if have 10 methods that are too big and two of them have horrible number of IL instructions – just take a look at first two methods in this TOP10. Also note the query box. NDepend has easy and SQL-like query language to query code analysis results. You can modify these queries if you like and also you can define your own ones if default set is not enough for you. What is good result? As you can see from query window then the number of IL instructions per member should have maximally 200 IL instructions. Of course, like always, the less instructions you have, the better performing code you have. I don’t mean here little differences but big ones. By example, take a look at my first method in warnings list. The number of IL instructions it has is huge. And believe me – this method looks awful. Conclusion The number of IL instructions is useful metric when optimizing your code. For analyzing code at general level to find out too long methods you can use the number of LoC metric because it is more intuitive for you and you can therefore handle the situation more easily. Also you can use NDepend as code metrics tool because it has a lot of metrics to offer.

    Read the article

  • S#arp Architecture 1.5.2 released

    - by AlecWhittington
    It has been a few weeks since S#arp Architecture 1.5 RTM has been released. While it was a major success a few issues were found that needed to be addressed. These mostly involved the Visual Studio templates. What's new in S#arp Architecture 1.5.2? Merged the SharpArch.* assemblies into a single assembly (SharpArch.dll) Updated both VS 2008 and 2010 templates to reflect the use of the merged assembly Updated SharpArch.build with custom script that allows the merging of the assemblies. Copys new merged...(read more)

    Read the article

  • .NET Security Part 3

    - by Simon Cooper
    You write a security-related application that allows addins to be used. These addins (as dlls) can be downloaded from anywhere, and, if allowed to run full-trust, could open a security hole in your application. So you want to restrict what the addin dlls can do, using a sandboxed appdomain, as explained in my previous posts. But there needs to be an interaction between the code running in the sandbox and the code that created the sandbox, so the sandboxed code can control or react to things that happen in the controlling application. Sandboxed code needs to be able to call code outside the sandbox. Now, there are various methods of allowing cross-appdomain calls, the two main ones being .NET Remoting with MarshalByRefObject, and WCF named pipes. I’m not going to cover the details of setting up such mechanisms here, or which you should choose for your specific situation; there are plenty of blogs and tutorials covering such issues elsewhere. What I’m going to concentrate on here is the more general problem of running fully-trusted code within a sandbox, which is required in most methods of app-domain communication and control. Defining assemblies as fully-trusted In my last post, I mentioned that when you create a sandboxed appdomain, you can pass in a list of assembly strongnames that run as full-trust within the appdomain: // get the Assembly object for the assembly Assembly assemblyWithApi = ... // get the StrongName from the assembly's collection of evidence StrongName apiStrongName = assemblyWithApi.Evidence.GetHostEvidence<StrongName>(); // create the sandbox AppDomain sandbox = AppDomain.CreateDomain( "Sandbox", null, appDomainSetup, restrictedPerms, apiStrongName); Any assembly that is loaded into the sandbox with a strong name the same as one in the list of full-trust strong names is unconditionally given full-trust permissions within the sandbox, irregardless of permissions and sandbox setup. This is very powerful! You should only use this for assemblies that you trust as much as the code creating the sandbox. So now you have a class that you want the sandboxed code to call: // within assemblyWithApi public class MyApi { public static void MethodToDoThings() { ... } } // within the sandboxed dll public class UntrustedSandboxedClass { public void DodgyMethod() { ... MyApi.MethodToDoThings(); ... } } However, if you try to do this, you get quite an ugly exception: MethodAccessException: Attempt by security transparent method ‘UntrustedSandboxedClass.DodgyMethod()’ to access security critical method ‘MyApi.MethodToDoThings()’ failed. Security transparency, which I covered in my first post in the series, has entered the picture. Partially-trusted code runs at the Transparent security level, fully-trusted code runs at the Critical security level, and Transparent code cannot under any circumstances call Critical code. Security transparency and AllowPartiallyTrustedCallersAttribute So the solution is easy, right? Make MethodToDoThings SafeCritical, then the transparent code running in the sandbox can call the api: [SecuritySafeCritical] public static void MethodToDoThings() { ... } However, this doesn’t solve the problem. When you try again, exactly the same exception is thrown; MethodToDoThings is still running as Critical code. What’s going on? By default, a fully-trusted assembly always runs Critical code, irregardless of any security attributes on its types and methods. This is because it may not have been designed in a secure way when called from transparent code – as we’ll see in the next post, it is easy to open a security hole despite all the security protections .NET 4 offers. When exposing an assembly to be called from partially-trusted code, the entire assembly needs a security audit to decide what should be transparent, safe critical, or critical, and close any potential security holes. This is where AllowPartiallyTrustedCallersAttribute (APTCA) comes in. Without this attribute, fully-trusted assemblies run Critical code, and partially-trusted assemblies run Transparent code. When this attribute is applied to an assembly, it confirms that the assembly has had a full security audit, and it is safe to be called from untrusted code. All code in that assembly runs as Transparent, but SecurityCriticalAttribute and SecuritySafeCriticalAttribute can be applied to individual types and methods to make those run at the Critical or SafeCritical levels, with all the restrictions that entails. So, to allow the sandboxed assembly to call the full-trust API assembly, simply add APCTA to the API assembly: [assembly: AllowPartiallyTrustedCallers] and everything works as you expect. The sandboxed dll can call your API dll, and from there communicate with the rest of the application. Conclusion That’s the basics of running a full-trust assembly in a sandboxed appdomain, and allowing a sandboxed assembly to access it. The key is AllowPartiallyTrustedCallersAttribute, which is what lets partially-trusted code call a fully-trusted assembly. However, an assembly with APTCA applied to it means that you have run a full security audit of every type and member in the assembly. If you don’t, then you could inadvertently open a security hole. I’ll be looking at ways this can happen in my next post.

    Read the article

  • Unable to cast transparent proxy to type &lt;type&gt;

    - by Rick Strahl
    This is not the first time I've run into this wonderful error while creating new AppDomains in .NET and then trying to load types and access them across App Domains. In almost all cases the problem I've run into with this error the problem comes from the two AppDomains involved loading different copies of the same type. Unless the types match exactly and come exactly from the same assembly the typecast will fail. The most common scenario is that the types are loaded from different assemblies - as unlikely as that sounds. An Example of Failure To give some context, I'm working on some old code in Html Help Builder that creates a new AppDomain in order to parse assembly information for documentation purposes. I create a new AppDomain in order to load up an assembly process it and then immediately unload it along with the AppDomain. The AppDomain allows for unloading that otherwise wouldn't be possible as well as isolating my code from the assembly that's being loaded. The process to accomplish this is fairly established and I use it for lots of applications that use add-in like functionality - basically anywhere where code needs to be isolated and have the ability to be unloaded. My pattern for this is: Create a new AppDomain Load a Factory Class into the AppDomain Use the Factory Class to load additional types from the remote domain Here's the relevant code from my TypeParserFactory that creates a domain and then loads a specific type - TypeParser - that is accessed cross-AppDomain in the parent domain:public class TypeParserFactory : System.MarshalByRefObject,IDisposable { …/// <summary> /// TypeParser Factory method that loads the TypeParser /// object into a new AppDomain so it can be unloaded. /// Creates AppDomain and creates type. /// </summary> /// <returns></returns> public TypeParser CreateTypeParser() { if (!CreateAppDomain(null)) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! TypeParser parser = null; try { Assembly assembly = Assembly.GetExecutingAssembly(); string assemblyPath = Assembly.GetExecutingAssembly().Location; parser = (TypeParser) this.LocalAppDomain.CreateInstanceFrom(assemblyPath, typeof(TypeParser).FullName).Unwrap(); } catch (Exception ex) { this.ErrorMessage = ex.GetBaseException().Message; return null; } return parser; } private bool CreateAppDomain(string lcAppDomain) { if (lcAppDomain == null) lcAppDomain = "wwReflection" + Guid.NewGuid().ToString().GetHashCode().ToString("x"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; //setup.PrivateBinPath = Path.Combine(AppDomain.CurrentDomain.BaseDirectory, "bin"); this.LocalAppDomain = AppDomain.CreateDomain(lcAppDomain,null,setup); // Need a custom resolver so we can load assembly from non current path AppDomain.CurrentDomain.AssemblyResolve += new ResolveEventHandler(CurrentDomain_AssemblyResolve); return true; } …} Note that the classes must be either [Serializable] (by value) or inherit from MarshalByRefObject in order to be accessible remotely. Here I need to call methods on the remote object so all classes are MarshalByRefObject. The specific problem code is the loading up a new type which points at an assembly that visible both in the current domain and the remote domain and then instantiates a type from it. This is the code in question:Assembly assembly = Assembly.GetExecutingAssembly(); string assemblyPath = Assembly.GetExecutingAssembly().Location; parser = (TypeParser) this.LocalAppDomain.CreateInstanceFrom(assemblyPath, typeof(TypeParser).FullName).Unwrap(); The last line of code is what blows up with the Unable to cast transparent proxy to type <type> error. Without the cast the code actually returns a TransparentProxy instance, but the cast is what blows up. In other words I AM in fact getting a TypeParser instance back but it can't be cast to the TypeParser type that is loaded in the current AppDomain. Finding the Problem To see what's going on I tried using the .NET 4.0 dynamic type on the result and lo and behold it worked with dynamic - the value returned is actually a TypeParser instance: Assembly assembly = Assembly.GetExecutingAssembly(); string assemblyPath = Assembly.GetExecutingAssembly().Location; object objparser = this.LocalAppDomain.CreateInstanceFrom(assemblyPath, typeof(TypeParser).FullName).Unwrap(); // dynamic works dynamic dynParser = objparser; string info = dynParser.GetVersionInfo(); // method call works // casting fails parser = (TypeParser)objparser; So clearly a TypeParser type is coming back, but nevertheless it's not the right one. Hmmm… mysterious.Another couple of tries reveal the problem however:// works dynamic dynParser = objparser; string info = dynParser.GetVersionInfo(); // method call works // c:\wwapps\wwhelp\wwReflection20.dll (Current Execution Folder) string info3 = typeof(TypeParser).Assembly.CodeBase; // c:\program files\vfp9\wwReflection20.dll (my COM client EXE's folder) string info4 = dynParser.GetType().Assembly.CodeBase; // fails parser = (TypeParser)objparser; As you can see the second value is coming from a totally different assembly. Note that this is even though I EXPLICITLY SPECIFIED an assembly path to load the assembly from! Instead .NET decided to load the assembly from the original ApplicationBase folder. Ouch! How I actually tracked this down was a little more tedious: I added a method like this to both the factory and the instance types and then compared notes:public string GetVersionInfo() { return ".NET Version: " + Environment.Version.ToString() + "\r\n" + "wwReflection Assembly: " + typeof(TypeParserFactory).Assembly.CodeBase.Replace("file:///", "").Replace("/", "\\") + "\r\n" + "Assembly Cur Dir: " + Directory.GetCurrentDirectory() + "\r\n" + "ApplicationBase: " + AppDomain.CurrentDomain.SetupInformation.ApplicationBase + "\r\n" + "App Domain: " + AppDomain.CurrentDomain.FriendlyName + "\r\n"; } For the factory I got: .NET Version: 4.0.30319.239wwReflection Assembly: c:\wwapps\wwhelp\bin\wwreflection20.dllAssembly Cur Dir: c:\wwapps\wwhelpApplicationBase: C:\Programs\vfp9\App Domain: wwReflection534cfa1f For the instance type I got: .NET Version: 4.0.30319.239wwReflection Assembly: C:\\Programs\\vfp9\wwreflection20.dllAssembly Cur Dir: c:\\wwapps\\wwhelpApplicationBase: C:\\Programs\\vfp9\App Domain: wwDotNetBridge_56006605 which clearly shows the problem. You can see that both are loading from different appDomains but the each is loading the assembly from a different location. Probably a better solution yet (for ANY kind of assembly loading problem) is to use the .NET Fusion Log Viewer to trace assembly loads.The Fusion viewer will show a load trace for each assembly loaded and where it's looking to find it. Here's what the viewer looks like: The last trace above that I found for the second wwReflection20 load (the one that is wonky) looks like this:*** Assembly Binder Log Entry (1/13/2012 @ 3:06:49 AM) *** The operation was successful. Bind result: hr = 0x0. The operation completed successfully. Assembly manager loaded from: C:\Windows\Microsoft.NET\Framework\V4.0.30319\clr.dll Running under executable c:\programs\vfp9\vfp9.exe --- A detailed error log follows. === Pre-bind state information === LOG: User = Ras\ricks LOG: DisplayName = wwReflection20, Version=4.61.0.0, Culture=neutral, PublicKeyToken=null (Fully-specified) LOG: Appbase = file:///C:/Programs/vfp9/ LOG: Initial PrivatePath = NULL LOG: Dynamic Base = NULL LOG: Cache Base = NULL LOG: AppName = vfp9.exe Calling assembly : (Unknown). === LOG: This bind starts in default load context. LOG: Using application configuration file: C:\Programs\vfp9\vfp9.exe.Config LOG: Using host configuration file: LOG: Using machine configuration file from C:\Windows\Microsoft.NET\Framework\V4.0.30319\config\machine.config. LOG: Policy not being applied to reference at this time (private, custom, partial, or location-based assembly bind). LOG: Attempting download of new URL file:///C:/Programs/vfp9/wwReflection20.DLL. LOG: Assembly download was successful. Attempting setup of file: C:\Programs\vfp9\wwReflection20.dll LOG: Entering run-from-source setup phase. LOG: Assembly Name is: wwReflection20, Version=4.61.0.0, Culture=neutral, PublicKeyToken=null LOG: Binding succeeds. Returns assembly from C:\Programs\vfp9\wwReflection20.dll. LOG: Assembly is loaded in default load context. WRN: The same assembly was loaded into multiple contexts of an application domain: WRN: Context: Default | Domain ID: 2 | Assembly Name: wwReflection20, Version=4.61.0.0, Culture=neutral, PublicKeyToken=null WRN: Context: LoadFrom | Domain ID: 2 | Assembly Name: wwReflection20, Version=4.61.0.0, Culture=neutral, PublicKeyToken=null WRN: This might lead to runtime failures. WRN: It is recommended to inspect your application on whether this is intentional or not. WRN: See whitepaper http://go.microsoft.com/fwlink/?LinkId=109270 for more information and common solutions to this issue. Notice that the fusion log clearly shows that the .NET loader makes no attempt to even load the assembly from the path I explicitly specified. Remember your Assembly Locations As mentioned earlier all failures I've seen like this ultimately resulted from different versions of the same type being available in the two AppDomains. At first sight that seems ridiculous - how could the types be different and why would you have multiple assemblies - but there are actually a number of scenarios where it's quite possible to have multiple copies of the same assembly floating around in multiple places. If you're hosting different environments (like hosting the Razor Engine, or ASP.NET Runtime for example) it's common to create a private BIN folder and it's important to make sure that there's no overlap of assemblies. In my case of Html Help Builder the problem started because I'm using COM interop to access the .NET assembly and the above code. COM Interop has very specific requirements on where assemblies can be found and because I was mucking around with the loader code today, I ended up moving assemblies around to a new location for explicit loading. The explicit load works in the main AppDomain, but failed in the remote domain as I showed. The solution here was simple enough: Delete the extraneous assembly which was left around by accident. Not a common problem, but one that when it bites is pretty nasty to figure out because it seems so unlikely that types wouldn't match. I know I've run into this a few times and writing this down hopefully will make me remember in the future rather than poking around again for an hour trying to debug the issue as I did today. Hopefully it'll save some of you some time as well in the future.© Rick Strahl, West Wind Technologies, 2005-2012Posted in .NET  COM   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • NDepend 4 – First Steps

    - by Ricardo Peres
    Introduction Thanks to Patrick Smacchia I had the chance to test NDepend 4. I can only say: awesome! This will be the first of a series of posts on NDepend, where I will talk about my discoveries. Keep in mind that I am just starting to use it, so more experienced users may find these too basic, I just hope I don’t say anything foolish! I must say that I am in no way affiliated with NDepend and I never actually met Patrick. Installation No installation program – a curious decision, I’m not against it -, just unzip the files to a folder and run the executable. It will optionally register itself with Visual Studio 2008, 2010 and 11 as well as RedGate’s Reflector; also, it automatically looks for updates. NDepend can either be used as a stand-alone program (with or without a GUI) or from within Visual Studio or Reflector. Getting Started One thing that really pleases me is the Getting Started section of the stand-alone, with links to pages on NDepend’s web site, featuring detailed explanations, which usually include screenshots and small videos (<5 minutes). There’s also an How do I with hierarchical navigation that guides us to through the major features so that we can easily find what we want. Usage There are two basic ways to use NDepend: Analyze .NET solutions, projects or assemblies; Compare two versions of the same assembly. I have so far not used NDepend to compare assemblies, so I will first talk about the first option. After selecting a solution and some of its projects, it generates a single HTML page with an highly detailed report of the analysis it produced. This includes some metrics such as number of lines of code, IL instructions, comments, types, methods and properties, the calculation of the cyclomatic complexity, coupling and lots of others indicators, typically grouped by type, namespace and assembly. The HTML also includes some nice diagrams depicting assembly dependencies, type and method relative proportions (according to the number of IL instructions, I guess) and assembly analysis relating to abstractness and stability. Useful, I would say. Then there’s the rules; NDepend tests the target assemblies against a set of more than 120 rules, grouped in categories Code Quality, Object Oriented Design, Design, Architecture and Layering, Dead Code, Visibility, Naming Conventions, Source Files Organization and .NET Framework Usage. The full list can be configured on the application, and an explanation of each rule can be found on the web site. Rules can be validated, violated and violated in a critical manner, and the HTML will contain the violated rules, their queries – more on this later - and results. The HTML uses some nice JavaScript effects, which allow paging and sorting of tables, so its nice to use. Similar to the rules, there are some queries that display results for a number (about 200) questions grouped as Object Oriented Design, API Breaking Changes (for assembly version comparison), Code Diff Summary (also for version comparison) and Dead Code. The difference between queries and rules is that queries are not classified as passes, violated or critically violated, just present results. The queries and rules are expressed through CQLinq, which is a very powerful LINQ derivative specific to code analysis. All of the included rules and queries can be enabled or disabled and new ones can be added, with intellisense to help. Besides the HTML report file, the NDepend application can be used to explore all analysis results, compare different versions of analysis reports and to run custom queries. Comparison to Other Analysis Tools Unlike StyleCop, NDepend only works with assemblies, not source code, so you can’t expect it to be able to enforce brackets placement, for example. It is more similar to FxCop, but you don’t have the option to analyze at the IL level, that is, other that the number of IL instructions and the complexity. What’s Next In the next days I’ll continue my exploration with a real-life test case. References The NDepend web site is http://www.ndepend.com/. Patrick keeps an updated blog on http://codebetter.com/patricksmacchia/ and he regularly monitors StackOverflow for questions tagged NDepend, which you can find on http://stackoverflow.com/questions/tagged/ndepend. The default list of CQLinq rules, queries and statistics can be found at http://www.ndepend.com/DefaultRules/webframe.html. The syntax itself is described at http://www.ndepend.com/Doc_CQLinq_Syntax.aspx and its features at http://www.ndepend.com/Doc_CQLinq_Features.aspx.

    Read the article

  • What Is Nuclear Meltdown?

    - by Gopinath
    Japan was first hit by a massive earth quake, then a ruthless tsunami washed away thousands of homes and now they fear the worst – meltdown of nuclear power stations in the quake hit year. Nuclear meltdowns are horrifying – remember the Chernobyl incident in Russia? The Chernobyl reactor meltdown released 400 times more radio active material than the atomic bombing of Hiroshima. The effects of nuclear meltdowns are beyond imagination of a common man, thousands of people loose their lives and many more lakhs of people suffer with radiation related diseases for many years. Nuclear Meltdowns are dangerous, but how do they happen? What causes a nuclear meltdown? In simple terms – Nuclear meltdown is an accident that happens due to severe overheating of a nuclear reactor and results in release of nuclear radiation into the environment.  How A Nuclear Meltdown Happens? According to Wikipedia A meltdown occurs when a severe failure of a nuclear power plant system prevents proper cooling of the reactor core, to the extent that the nuclear fuel assemblies overheat and melt. A meltdown is considered very serious because of the potential that radioactive materials could be released into the environment. The fuel assemblies in a reactor core can melt if heat is not removed. A nuclear reactor does not have to remain critical for a core damage incident to occur, because decay heat continues to heat the reactor fuel assemblies after the reactor has shut down, though this heat decreases with time. A core damage accident is caused by the loss of sufficient cooling for the nuclear fuel within the reactor core. The reason may be one of several factors, including a loss of pressure control accident, a loss of coolant accident (LOCA), an uncontrolled power excursion or, in some types, a fire within the reactor core. Failures in control systems may cause a series of events resulting in loss of cooling. Contemporary safety principles of defense in depth, ensure that multiple layers of safety systems are always present to make such accidents unlikely. Video – What Causes Nuclear Meltdown AlJazeera news has a good analysis on feared nuclear meltdown of Japan’s nuclear plants and also an animation on what causes Nuclear Meltdown. cc image credit: flickr/jtjdt This article titled,What Is Nuclear Meltdown?, was originally published at Tech Dreams. Grab our rss feed or fan us on Facebook to get updates from us.

    Read the article

  • Debugging .NET code called from X++ code in AX 2012

    - by ssmantha
    A very intriguing issue came to me to debug .Net code called from X++ code in AX 2012. This was indeed a challenge to be nailed down. Luckily the tools and some concepts helped me to achieve this task. Here it goes... We need to do a seamless debugging from AX debugger to Visual Studio back and forth. To enable this we need to first see if the dll to be debug is present in GAC then we might need to uninstall it from it due to the order of preference .NET loads the assemblies. The assemblies are first loaded from GAC and then the runtime checks for Public and Private Assemblies. Since the assembly in GAC is always compiled with runtime optimizations it is difficult to debug. We need to unhook this assembly from GAC and then move further relying on >NET assembly loading patterns. Step 1: Remove the target assembly to debug from GAC. Before that stop all the AOS servers and close all the instances of programs which rely on AOT e.g. all clients and even visual studio now. Step 2: Build your sample code which is present in AOT in debug mode and get the dll file along with PDB files. Step 3: Place these files in the Server\..\Bin and Client\bin directories of AX installation. Step 4: Configure Visual Studio: Step 4.1: Configure Debugging Options. In Visual Studio Go to Debug -> Options and Settings -> Debug node -> General sub node and disable “Enable Just My Code (managed)” Step 4.2: Specify the symbol loading directory options. Specify the locations for Client bin and server bin directories of the installation, remember to specify the correct instance of Server bin directory corresponding to your AOS. Step 4.3: Configure the project for debugging Step 5: Ready to go place your breakpoints in X++ and in .Net wherever necessary before this process... Run the Visual studio project and it will invoke the AX client with your breakpoint hitting X++ code.. and when you do a step-in using F11 the Visual studio debugger will be active and from here onwards you would be able to debug the complete flow. Debugging in seamless manner across debuggers is really very good feature and mostly underutilized, but by doing so we can have improved troubleshooting and saves a hell lot of time.. Stay tuned for more in Advanced Debugging..

    Read the article

  • SP1 of RadControls for WinForms Q1 2010 released, featuring VS2010 and Client Profile support

    As always, Telerik's plans were closely aligned with Microsoft's release schedule, and we were dedicated to provide VS2010 support even before Visual Studio 2010 was officially launched. Now that the first VS2010 launch event is over, here comes the first of many Telerik Service Packs to support VS2010. This RadControls for WinForms release is the first to provide support for the Client Profile, introduced with .NET3.5, and now default when starting new windows forms projects with VS2010. The Client Profile is a smaller version of the.NET Framework that includes only the assemblies needed for deploying client-based applications, which in turn reduces the size of the application. Basically, the Design time classes are excluded from the Client Profile (CP), because they are only needed for designing and not for running an application. In Q1 2010 SP1 we have moved the designer classes from the run-time assemblies to a new dedicated assembly (Telerik.WinControls.UI.Design.dll), ...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • UppercuT and Mercurial (hg)

    - by Robz / Fervent Coder
    I mentioned this awhile back on twitter, but UppercuT (UC) has support for Mercurial for versioning your assemblies. In the settings file, all you need to do it tell UC to use hg. When you build your assemblies, they will use the changeset number in the version, and in the informational version, you get the hash, just like you do when using Git. Pretty sweet. By the way, UC also supports .NET 4.0 as of last week. With this knowledge you shall build.

    Read the article

  • UppercuT and Mercurial (hg)

    I mentioned this awhile back on twitter, but UppercuT (UC) has support for Mercurial for versioning your assemblies. In the settings file, all you need to do it tell UC to use hg. When you build your assemblies, they will use the changeset number in the version, and in the informational version, you get the hash, just like you do when using Git. Pretty sweet. By the way, UC also supports .NET 4.0 as of last week. With this knowledge you shall build. ...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • New cast exception with VS2010/.Net 4

    - by Trevor
    [ Updated 25 May 2010 ] I've recently upgraded from VS2008 to VS2010, and at the same time upgraded to .Net 4. I've recompiled an existing solution of mine and I'm encountering a Cast exception I did not have before. The structure of the code is simple (although the actual implementation somewhat more complicated). Basically I have: public class SomeClass : ISomeClass { // Stuff } public static class ClassFactory { public static IInterface GetClassInstance<IInterface>(Type classType) { return (IInterface)Activator.CreateInstance(classType); // This throws a cast exception } } // Call the factory with: ISomeClass anInstance = ClassFactory.GetClassInstance<ISomeClass>(typeof(SomeClass)); Ignore the 'sensibleness' of the above - its provides just a representation of the issue rather than the specifics of what I'm doing (e.g. constructor parameters have been removed). The marked line throws the exception: Unable to cast object of type 'Namespace.SomeClass' to type 'Namespace.ISomeClass'. I suspect it may have something to do with the additional DotNet security (and in particular, explicit loading of assemblies, as this is something my app does). The reason I suspect this is that I have had to add to the config file the setting: <runtime> <loadFromRemoteSources enabled="true" /> </runtime> .. but I'm unsure if this is related. Update I see (from comments) that my basic code does not reproduce the issue by itself. Not surprising I suppose. It's going to be tricky to identify which part of a largish 3-tier CQS system is relevant to this problem. One issue might be that there are multiple assemblies involved. My static class is actually a factory provider, and the 'SomeClass' is a class factory (relevant in that the factories are 'registered' within the app via explicit assembly/type loading - see below) . Upfront I use reflection to 'register' all factories (i.e. classes that implement a particular interface) and that I do this when the app starts by identifying the relevant assemblies, loading them and adding them to a cache using (in essence): Loop over (file in files) { Assembly assembly = Assembly.LoadFile(file); baseAssemblyList.Add(assembly); } Then I cache the available types in these assemblies with: foreach (Assembly assembly in _loadedAssemblyList) { Type[] assemblyTypes = assembly.GetTypes(); _loadedTypesCache.AddRange(assemblyTypes); } And then I use this cache to do a variety of reflection operations, including 'registering' of factories, which involves looping through all loaded (cached) types and finding those that implement the (base) Factory interface. I've experienced what may be a similar problem in the past (.Net 3.5, so not exactly the same) with an architecture that involved dynamically creating classes on the server and streaming the compiled binary of those classes to the client app. The problem came when trying to deserialize an instance of the dynamic class on the client from a remote call: the exception said the class type was not know, even though the source and destination types were exactly the same name (including namespace). Basically the cross boundry versions of the class were not recognised as being the same. I solved that by intercepting the deserialization process and explicitly defining the deseriazation class type in the context of the local assemblies. This experience is what makes me think the types are considered mismatched because (somehow) the interface of the actual SomeClass object, and the interface of passed into the Generic method are not considered the same type. So (possibly) my question for those more knowledgable about C#/DotNet is: How does the class loading work that somehow my app thinks there are two versions/types of the interface type and how can I fit that? [ whew ... anyone who got here is quite patient .. thanks ]

    Read the article

  • Which events specifically cause Windows 2008 to mark a SAN volume offline?

    - by Jeremy
    I am searching for specific criteria/events that will cause Windows 2008 to mark a SAN volume as offline in disk management, even though it is connected to that SAN volume via FC or iSCSI. Microsoft states that "A dynamic disk may become Offline if it is corrupted or intermittently unavailable. A dynamic disk may also become Offline if you attempt to import a foreign (dynamic) disk and the import fails. An error icon appears on the Offline disk. Only dynamic disks display the Missing or Offline status." I am specifically wondering if, on the SAN, changing the path to the disk (such as the disk being presented to the host via a different iSCSI target IQN or a different LUN #) would cause a volume to be offlined in disk management. Thanks! Edit: I have already found two reasons why a disk might be set offline, disk signature collisions and the SAN disk policy. Bounty would be awarded to someone who can find further documented reasons related to changes in the volume's path. Disk signature collisions: http://blogs.technet.com/b/markrussinovich/archive/2011/11/08/3463572.aspx SAN disk policy: http://jeffwouters.nl/index.php/2011/06/disk-offline-with-error-the-disk-is-offline-because-of-a-policy-set-by-an-administrator/

    Read the article

  • Is Cherokee (probably) the best static content server for beginner sysadmins?

    - by Bad Learner
    I have read the pros and cons of most of the popular web servers and have come to a conclusion that Apache would (probably) be the best web server for serving dynamic content - - no wonder YouTube, Flickr and Facbook, among many others, use it. I do not know if that C10K problem applies to Apache even when serving dynamic content only, but I think any web server used to serve dynamic content needs some good tweaking for optimized performance, and the fact that nothing beats Apache when it comes to documentation, resources and support on the web, I think should will go with Apache for dynamic content. That apart, the confusion begins when it comes to choosing web servers for static content (including streaming videos). I see that Nginx, Cherokee and Lighttpd are among the best (I am not considering non-open source or non-linux stuff here). So, which too choose? I know one cannot go wrong with any of the three (Nginx, Cherokee, Lighttpd). Lighttpd's development has evidently gotten slower than it was a good time ago. The documentation is pretty good for all the three, and hopefully, so are the resources (knowledge of these among the users of Stackoverflow/Serverfault sites, the web etc). Precisely, and noting point [2] and [3], if I am not wrong, I should either go with Nginx or Cherokee. I would love to see someone clarify these... is Cherokee just as fast (mb/s), performant (connections/s), and reliable (think downtime/restarting server) as Nginx for serving static content and load balancing, for small, medium to large (and really large) websites and applications? (Think, the size of YouTube, Apache or Facebook.) if the answer for the Q above is a big "hell, yes!" then, I should probably prefer Cherokee, right? Because, since I am a beginner, it would a lot easier to setup Cherokee as it has a graphical admin user interface + really good documentation. Yes? I could be wrong, I could be right. I put down what I know so that you can offer most relevant advise. Pardon if anything I've said is offensive.

    Read the article

  • Should I use nginx exclusively, or have it as a proxy to Tomcat (performance related)?

    - by Kevin
    I've planned to create a website that'll be pretty heavy on dynamic content, and want to know what would be the wisest choice for part of my webstack. Right now I'm trying to decide whether I should develop upon nginx, using PHP to deliver the dynamic content, or use nginx as a proxy to Tomcat and use servlets to deliver the dynamic content. I have a good amount of experience with Java, JSP, and servlets, so that's a plus right off the bat. Also, since it is a compiled language, it will execute faster than PHP (it is implied here that Java is around 37x faster than PHP) , and will create the web pages faster. I have no experience with PHP, however i'm under the impression that it is easy to pick up. It's slower than Java, but since the client will only be communicating with nginx, I'm thinking that serving the dynamically created web pages to the client will be faster this way. Considering these things, i'd like to know: Are my assumptions correct? Where does the bottleneck occur: creating pages or serving them back to the client? Will proxying Tomcat with nginx give me any of nginx performance benefits if I'm going to be using Tomcat to generate the dynamic content (keeping in mind my site is going to be heavy in this aspect)? I don't mind learning PHP if, in the end, its going to give me the best performance. I just want to know what would be the best choice from that standpoint.

    Read the article

  • Using an alternate JSON Serializer in ASP.NET Web API

    - by Rick Strahl
    The new ASP.NET Web API that Microsoft released alongside MVC 4.0 Beta last week is a great framework for building REST and AJAX APIs. I've been working with it for quite a while now and I really like the way it works and the complete set of features it provides 'in the box'. It's about time that Microsoft gets a decent API for building generic HTTP endpoints into the framework. DataContractJsonSerializer sucks As nice as Web API's overall design is one thing still sucks: The built-in JSON Serialization uses the DataContractJsonSerializer which is just too limiting for many scenarios. The biggest issues I have with it are: No support for untyped values (object, dynamic, Anonymous Types) MS AJAX style Date Formatting Ugly serialization formats for types like Dictionaries To me the most serious issue is dealing with serialization of untyped objects. I have number of applications with AJAX front ends that dynamically reformat data from business objects to fit a specific message format that certain UI components require. The most common scenario I have there are IEnumerable query results from a database with fields from the result set rearranged to fit the sometimes unconventional formats required for the UI components (like jqGrid for example). Creating custom types to fit these messages seems like overkill and projections using Linq makes this much easier to code up. Alas DataContractJsonSerializer doesn't support it. Neither does DataContractSerializer for XML output for that matter. What this means is that you can't do stuff like this in Web API out of the box:public object GetAnonymousType() { return new { name = "Rick", company = "West Wind", entered= DateTime.Now }; } Basically anything that doesn't have an explicit type DataContractJsonSerializer will not let you return. FWIW, the same is true for XmlSerializer which also doesn't work with non-typed values for serialization. The example above is obviously contrived with a hardcoded object graph, but it's not uncommon to get dynamic values returned from queries that have anonymous types for their result projections. Apparently there's a good possibility that Microsoft will ship Json.NET as part of Web API RTM release.  Scott Hanselman confirmed this as a footnote in his JSON Dates post a few days ago. I've heard several other people from Microsoft confirm that Json.NET will be included and be the default JSON serializer, but no details yet in what capacity it will show up. Let's hope it ends up as the default in the box. Meanwhile this post will show you how you can use it today with the beta and get JSON that matches what you should see in the RTM version. What about JsonValue? To be fair Web API DOES include a new JsonValue/JsonObject/JsonArray type that allow you to address some of these scenarios. JsonValue is a new type in the System.Json assembly that can be used to build up an object graph based on a dictionary. It's actually a really cool implementation of a dynamic type that allows you to create an object graph and spit it out to JSON without having to create .NET type first. JsonValue can also receive a JSON string and parse it without having to actually load it into a .NET type (which is something that's been missing in the core framework). This is really useful if you get a JSON result from an arbitrary service and you don't want to explicitly create a mapping type for the data returned. For serialization you can create an object structure on the fly and pass it back as part of an Web API action method like this:public JsonValue GetJsonValue() { dynamic json = new JsonObject(); json.name = "Rick"; json.company = "West Wind"; json.entered = DateTime.Now; dynamic address = new JsonObject(); address.street = "32 Kaiea"; address.zip = "96779"; json.address = address; dynamic phones = new JsonArray(); json.phoneNumbers = phones; dynamic phone = new JsonObject(); phone.type = "Home"; phone.number = "808 123-1233"; phones.Add(phone); phone = new JsonObject(); phone.type = "Home"; phone.number = "808 123-1233"; phones.Add(phone); //var jsonString = json.ToString(); return json; } which produces the following output (formatted here for easier reading):{ name: "rick", company: "West Wind", entered: "2012-03-08T15:33:19.673-10:00", address: { street: "32 Kaiea", zip: "96779" }, phoneNumbers: [ { type: "Home", number: "808 123-1233" }, { type: "Mobile", number: "808 123-1234" }] } If you need to build a simple JSON type on the fly these types work great. But if you have an existing type - or worse a query result/list that's already formatted JsonValue et al. become a pain to work with. As far as I can see there's no way to just throw an object instance at JsonValue and have it convert into JsonValue dictionary. It's a manual process. Using alternate Serializers in Web API So, currently the default serializer in WebAPI is DataContractJsonSeriaizer and I don't like it. You may not either, but luckily you can swap the serializer fairly easily. If you'd rather use the JavaScriptSerializer built into System.Web.Extensions or Json.NET today, it's not too difficult to create a custom MediaTypeFormatter that uses these serializers and can replace or partially replace the native serializer. Here's a MediaTypeFormatter implementation using the ASP.NET JavaScriptSerializer:using System; using System.Net.Http.Formatting; using System.Threading.Tasks; using System.Web.Script.Serialization; using System.Json; using System.IO; namespace Westwind.Web.WebApi { public class JavaScriptSerializerFormatter : MediaTypeFormatter { public JavaScriptSerializerFormatter() { SupportedMediaTypes.Add(new System.Net.Http.Headers.MediaTypeHeaderValue("application/json")); } protected override bool CanWriteType(Type type) { // don't serialize JsonValue structure use default for that if (type == typeof(JsonValue) || type == typeof(JsonObject) || type== typeof(JsonArray) ) return false; return true; } protected override bool CanReadType(Type type) { if (type == typeof(IKeyValueModel)) return false; return true; } protected override System.Threading.Tasks.Taskobject OnReadFromStreamAsync(Type type, System.IO.Stream stream, System.Net.Http.Headers.HttpContentHeaders contentHeaders, FormatterContext formatterContext) { var task = Taskobject.Factory.StartNew(() = { var ser = new JavaScriptSerializer(); string json; using (var sr = new StreamReader(stream)) { json = sr.ReadToEnd(); sr.Close(); } object val = ser.Deserialize(json,type); return val; }); return task; } protected override System.Threading.Tasks.Task OnWriteToStreamAsync(Type type, object value, System.IO.Stream stream, System.Net.Http.Headers.HttpContentHeaders contentHeaders, FormatterContext formatterContext, System.Net.TransportContext transportContext) { var task = Task.Factory.StartNew( () = { var ser = new JavaScriptSerializer(); var json = ser.Serialize(value); byte[] buf = System.Text.Encoding.Default.GetBytes(json); stream.Write(buf,0,buf.Length); stream.Flush(); }); return task; } } } Formatter implementation is pretty simple: You override 4 methods to tell which types you can handle and then handle the input or output streams to create/parse the JSON data. Note that when creating output you want to take care to still allow JsonValue/JsonObject/JsonArray types to be handled by the default serializer so those objects serialize properly - if you let either JavaScriptSerializer or JSON.NET handle them they'd try to render the dictionaries which is very undesirable. If you'd rather use Json.NET here's the JSON.NET version of the formatter:// this code requires a reference to JSON.NET in your project #if true using System; using System.Net.Http.Formatting; using System.Threading.Tasks; using System.Web.Script.Serialization; using System.Json; using Newtonsoft.Json; using System.IO; using Newtonsoft.Json.Converters; namespace Westwind.Web.WebApi { public class JsonNetFormatter : MediaTypeFormatter { public JsonNetFormatter() { SupportedMediaTypes.Add(new System.Net.Http.Headers.MediaTypeHeaderValue("application/json")); } protected override bool CanWriteType(Type type) { // don't serialize JsonValue structure use default for that if (type == typeof(JsonValue) || type == typeof(JsonObject) || type == typeof(JsonArray)) return false; return true; } protected override bool CanReadType(Type type) { if (type == typeof(IKeyValueModel)) return false; return true; } protected override System.Threading.Tasks.Taskobject OnReadFromStreamAsync(Type type, System.IO.Stream stream, System.Net.Http.Headers.HttpContentHeaders contentHeaders, FormatterContext formatterContext) { var task = Taskobject.Factory.StartNew(() = { var settings = new JsonSerializerSettings() { NullValueHandling = NullValueHandling.Ignore, }; var sr = new StreamReader(stream); var jreader = new JsonTextReader(sr); var ser = new JsonSerializer(); ser.Converters.Add(new IsoDateTimeConverter()); object val = ser.Deserialize(jreader, type); return val; }); return task; } protected override System.Threading.Tasks.Task OnWriteToStreamAsync(Type type, object value, System.IO.Stream stream, System.Net.Http.Headers.HttpContentHeaders contentHeaders, FormatterContext formatterContext, System.Net.TransportContext transportContext) { var task = Task.Factory.StartNew( () = { var settings = new JsonSerializerSettings() { NullValueHandling = NullValueHandling.Ignore, }; string json = JsonConvert.SerializeObject(value, Formatting.Indented, new JsonConverter[1] { new IsoDateTimeConverter() } ); byte[] buf = System.Text.Encoding.Default.GetBytes(json); stream.Write(buf,0,buf.Length); stream.Flush(); }); return task; } } } #endif   One advantage of the Json.NET serializer is that you can specify a few options on how things are formatted and handled. You get null value handling and you can plug in the IsoDateTimeConverter which is nice to product proper ISO dates that I would expect any Json serializer to output these days. Hooking up the Formatters Once you've created the custom formatters you need to enable them for your Web API application. To do this use the GlobalConfiguration.Configuration object and add the formatter to the Formatters collection. Here's what this looks like hooked up from Application_Start in a Web project:protected void Application_Start(object sender, EventArgs e) { // Action based routing (used for RPC calls) RouteTable.Routes.MapHttpRoute( name: "StockApi", routeTemplate: "stocks/{action}/{symbol}", defaults: new { symbol = RouteParameter.Optional, controller = "StockApi" } ); // WebApi Configuration to hook up formatters and message handlers // optional RegisterApis(GlobalConfiguration.Configuration); } public static void RegisterApis(HttpConfiguration config) { // Add JavaScriptSerializer formatter instead - add at top to make default //config.Formatters.Insert(0, new JavaScriptSerializerFormatter()); // Add Json.net formatter - add at the top so it fires first! // This leaves the old one in place so JsonValue/JsonObject/JsonArray still are handled config.Formatters.Insert(0, new JsonNetFormatter()); } One thing to remember here is the GlobalConfiguration object which is Web API's static configuration instance. I think this thing is seriously misnamed given that GlobalConfiguration could stand for anything and so is hard to discover if you don't know what you're looking for. How about WebApiConfiguration or something more descriptive? Anyway, once you know what it is you can use the Formatters collection to insert your custom formatter. Note that I insert my formatter at the top of the list so it takes precedence over the default formatter. I also am not removing the old formatter because I still want JsonValue/JsonObject/JsonArray to be handled by the default serialization mechanism. Since they process in sequence and I exclude processing for these types JsonValue et al. still get properly serialized/deserialized. Summary Currently DataContractJsonSerializer in Web API is a pain, but at least we have the ability with relatively limited effort to replace the MediaTypeFormatter and plug in our own JSON serializer. This is useful for many scenarios - if you have existing client applications that used MVC JsonResult or ASP.NET AJAX results from ASMX AJAX services you can plug in the JavaScript serializer and get exactly the same serializer you used in the past so your results will be the same and don't potentially break clients. JSON serializers do vary a bit in how they serialize some of the more complex types (like Dictionaries and dates for example) and so if you're migrating it might be helpful to ensure your client code doesn't break when you switch to ASP.NET Web API. Going forward it looks like Microsoft is planning on plugging in Json.Net into Web API and make that the default. I think that's an awesome choice since Json.net has been around forever, is fast and easy to use and provides a ton of functionality as part of this great library. I just wish Microsoft would have figured this out sooner instead of now at the last minute integrating with it especially given that Json.Net has a similar set of lower level JSON objects JsonValue/JsonObject etc. which now will end up being duplicated by the native System.Json stuff. It's not like we don't already have enough confusion regarding which JSON serializer to use (JavaScriptSerializer, DataContractJsonSerializer, JsonValue/JsonObject/JsonArray and now Json.net). For years I've been using my own JSON serializer because the built in choices are both limited. However, with an official encorsement of Json.Net I'm happily moving on to use that in my applications. Let's see and hope Microsoft gets this right before ASP.NET Web API goes gold.© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api  AJAX  ASP.NET   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Use Drive Mirroring for Instant Backup in Windows 7

    - by Trevor Bekolay
    Even with the best backup solution, a hard drive crash means you’ll lose a few hours of work. By enabling drive mirroring in Windows 7, you’ll always have an up-to-date copy of your data. Windows 7’s mirroring – which is only available in Professional, Enterprise, and Ultimate editions – is a software implementation of RAID 1, which means that two or more disks are holding the exact same data. The files are constantly kept in sync, so that if one of the disks fails, you won’t lose any data. Note that mirroring is not technically a backup solution, because if you accidentally delete a file, it’s gone from both hard disks (though you may be able to recover the file). As an additional caveat, having mirrored disks requires changing them to “dynamic disks,” which can only be read within modern versions of Windows (you may have problems working with a dynamic disk in other operating systems or in older versions of Windows). See this Wikipedia page for more information. You will need at least one empty disk to set up disk mirroring. We’ll show you how to mirror an existing disk (of equal or lesser size) without losing any data on the mirrored drive, and how to set up two empty disks as mirrored copies from the get-go. Mirroring an Existing Drive Click on the start button and type partitions in the search box. Click on the Create and format hard disk partitions entry that shows up. Alternatively, if you’ve disabled the search box, press Win+R to open the Run window and type in: diskmgmt.msc The Disk Management window will appear. We’ve got a small disk, labeled OldData, that we want to mirror in a second disk of the same size. Note: The disk that you will use to mirror the existing disk must be unallocated. If it is not, then right-click on it and select Delete Volume… to mark it as unallocated. This will destroy any data on that drive. Right-click on the existing disk that you want to mirror. Select Add Mirror…. Select the disk that you want to use to mirror the existing disk’s data and press Add Mirror. You will be warned that this process will change the existing disk from basic to dynamic. Note that this process will not delete any data on the disk! The new disk will be marked as a mirror, and it will starting copying data from the existing drive to the new one. Eventually the drives will be synced up (it can take a while), and any data added to the E: drive will exist on both physical hard drives. Setting Up Two New Drives as Mirrored If you have two new equal-sized drives, you can format them to be mirrored copies of each other from the get-go. Open the Disk Management window as described above. Make sure that the drives are unallocated. If they’re not, and you don’t need the data on either of them, right-click and select Delete volume…. Right-click on one of the unallocated drives and select New Mirrored Volume…. A wizard will pop up. Click Next. Click on the drives you want to hold the mirrored data and click Add. Note that you can add any number of drives. Click Next. Assign it a drive letter that makes sense, and then click Next. You’re limited to using the NTFS file system for mirrored drives, so enter a volume label, enable compression if you want, and then click Next. Click Finish to start formatting the drives. You will be warned that the new drives will be converted to dynamic disks. And that’s it! You now have two mirrored drives. Any files added to E: will reside on both physical disks, in case something happens to one of them. Conclusion While the switch from basic to dynamic disks can be a problem for people who dual-boot into another operating system, setting up drive mirroring is an easy way to make sure that your data can be recovered in case of a hard drive crash. Of course, even with drive mirroring, we advocate regular backups to external drives or online backup services. Similar Articles Productive Geek Tips Rebit Backup Software [Review]Disabling Instant Search in Outlook 2007Restore Files from Backups on Windows Home ServerSecond Copy 7 [Review]Backup Windows Home Server Folders to an External Hard Drive TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips CloudBerry Online Backup 1.5 for Windows Home Server Snagit 10 VMware Workstation 7 Acronis Online Backup Windows Firewall with Advanced Security – How To Guides Sculptris 1.0, 3D Drawing app AceStock, a Tiny Desktop Quote Monitor Gmail Button Addon (Firefox) Hyperwords addon (Firefox) Backup Outlook 2010

    Read the article

  • Organization &amp; Architecture UNISA Studies &ndash; Chap 5

    - by MarkPearl
    Learning Outcomes Describe the operation of a memory cell Explain the difference between DRAM and SRAM Discuss the different types of ROM Explain the concepts of a hard failure and a soft error respectively Describe SDRAM organization Semiconductor Main Memory The two traditional forms of RAM used in computers are DRAM and SRAM DRAM (Dynamic RAM) Divided into two technologies… Dynamic Static Dynamic RAM is made with cells that store data as charge on capacitors. The presence or absence of charge in a capacitor is interpreted as a binary 1 or 0. Because capacitors have natural tendency to discharge, dynamic RAM requires periodic charge refreshing to maintain data storage. The term dynamic refers to the tendency of the stored charge to leak away, even with power continuously applied. Although the DRAM cell is used to store a single bit (0 or 1), it is essentially an analogue device. The capacitor can store any charge value within a range, a threshold value determines whether the charge is interpreted as a 1 or 0. SRAM (Static RAM) SRAM is a digital device that uses the same logic elements used in the processor. In SRAM, binary values are stored using traditional flip flop logic configurations. SRAM will hold its data as along as power is supplied to it. Unlike DRAM, no refresh is required to retain data. SRAM vs. DRAM DRAM is simpler and smaller than SRAM. Thus it is more dense and less expensive than SRAM. The cost of the refreshing circuitry for DRAM needs to be considered, but if the machine requires a large amount of memory, DRAM turns out to be cheaper than SRAM. SRAMS are somewhat faster than DRAM, thus SRAM is generally used for cache memory and DRAM is used for main memory. Types of ROM Read Only Memory (ROM) contains a permanent pattern of data that cannot be changed. ROM is non volatile meaning no power source is required to maintain the bit values in memory. While it is possible to read a ROM, it is not possible to write new data into it. An important application of ROM is microprogramming, other applications include library subroutines for frequently wanted functions, System programs, Function tables. A ROM is created like any other integrated circuit chip, with the data actually wired into the chip as part of the fabrication process. To reduce costs of fabrication, we have PROMS. PROMS are… Written only once Non-volatile Written after fabrication Another variation of ROM is the read-mostly memory, which is useful for applications in which read operations are far more frequent than write operations, but for which non volatile storage is required. There are three common forms of read-mostly memory, namely… EPROM EEPROM Flash memory Error Correction Semiconductor memory is subject to errors, which can be classed into two categories… Hard failure – Permanent physical defect so that the memory cell or cells cannot reliably store data Soft failure – Random error that alters the contents of one or more memory cells without damaging the memory (common cause includes power supply issues, etc.) Most modern main memory systems include logic for both detecting and correcting errors. Error detection works as follows… When data is to be read into memory, a calculation is performed on the data to produce a code Both the code and the data are stored When the previously stored word is read out, the code is used to detect and possibly correct errors The error checking provides one of 3 possible results… No errors are detected – the fetched data bits are sent out An error is detected, and it is possible to correct the error. The data bits plus error correction bits are fed into a corrector, which produces a corrected set of bits to be sent out An error is detected, but it is not possible to correct it. This condition is reported Hamming Code See wiki for detailed explanation. We will probably need to know how to do a hemming code – refer to the textbook (pg. 188 – 189) Advanced DRAM organization One of the most critical system bottlenecks when using high-performance processors is the interface to main memory. This interface is the most important pathway in the entire computer system. The basic building block of main memory remains the DRAM chip. In recent years a number of enhancements to the basic DRAM architecture have been explored, and some of these are now on the market including… SDRAM (Synchronous DRAM) DDR-DRAM RDRAM SDRAM (Synchronous DRAM) SDRAM exchanges data with the processor synchronized to an external clock signal and running at the full speed of the processor/memory bus without imposing wait states. SDRAM employs a burst mode to eliminate the address setup time and row and column line precharge time after the first access In burst mode a series of data bits can be clocked out rapidly after the first bit has been accessed SDRAM has a multiple bank internal architecture that improves opportunities for on chip parallelism SDRAM performs best when it is transferring large blocks of data serially There is now an enhanced version of SDRAM known as double data rate SDRAM or DDR-SDRAM that overcomes the once-per-cycle limitation of SDRAM

    Read the article

  • InnoDB Compression Improvements in MySQL 5.6

    - by Inaam Rana
    MySQL 5.6 comes with significant improvements for the compression support inside InnoDB. The enhancements that we'll talk about in this piece are also a good example of community contributions. The work on these was conceived, implemented and contributed by the engineers at Facebook. Before we plunge into the details let us familiarize ourselves with some of the key concepts surrounding InnoDB compression. In InnoDB compressed pages are fixed size. Supported sizes are 1, 2, 4, 8 and 16K. The compressed page size is specified at table creation time. InnoDB uses zlib for compression. InnoDB buffer pool will attempt to cache compressed pages like normal pages. However, whenever a page is actively used by a transaction, we'll always have the uncompressed version of the page as well i.e.: we can have a page in the buffer pool in compressed only form or in a state where we have both the compressed page and uncompressed version but we'll never have a page in uncompressed only form. On-disk we'll always only have the compressed page. When both compressed and uncompressed images are present in the buffer pool they are always kept in sync i.e.: changes are applied to both atomically. Recompression happens when changes are made to the compressed data. In order to minimize recompressions InnoDB maintains a modification log within a compressed page. This is the extra space available in the page after compression and it is used to log modifications to the compressed data thus avoiding recompressions. DELETE (and ROLLBACK of DELETE) and purge can be performed without recompressing the page. This is because the delete-mark bit and the system fields DB_TRX_ID and DB_ROLL_PTR are stored in uncompressed format on the compressed page. A record can be purged by shuffling entries in the compressed page directory. This can also be useful for updates of indexed columns, because UPDATE of a key is mapped to INSERT+DELETE+purge. A compression failure happens when we attempt to recompress a page and it does not fit in the fixed size. In such case, we first try to reorganize the page and attempt to recompress and if that fails as well then we split the page into two and recompress both pages. Now lets talk about the three major improvements that we made in MySQL 5.6.Logging of Compressed Page Images:InnoDB used to log entire compressed data on the page to the redo logs when recompression happens. This was an extra safety measure to guard against the rare case where an attempt is made to do recovery using a different zlib version from the one that was used before the crash. Because recovery is a page level operation in InnoDB we have to be sure that all recompress attempts must succeed without causing a btree page split. However, writing entire compressed data images to the redo log files not only makes the operation heavy duty but can also adversely affect flushing activity. This happens because redo space is used in a circular fashion and when we generate much more than normal redo we fill up the space much more quickly and in order to reuse the redo space we have to flush the corresponding dirty pages from the buffer pool.Starting with MySQL 5.6 a new global configuration parameter innodb_log_compressed_pages. The default value is true which is same as the current behavior. If you are sure that you are not going to attempt to recover from a crash using a different version of zlib then you should set this parameter to false. This is a dynamic parameter.Compression Level:You can now set the compression level that zlib should choose to compress the data. The global parameter is innodb_compression_level - the default value is 6 (the zlib default) and allowed values are 1 to 9. Again the parameter is dynamic i.e.: you can change it on the fly.Dynamic Padding to Reduce Compression Failures:Compression failures are expensive in terms of CPU. We go through the hoops of recompress, failure, reorganize, recompress, failure and finally page split. At the same time, how often we encounter compression failure depends largely on the compressibility of the data. In MySQL 5.6, courtesy of Facebook engineers, we have an adaptive algorithm based on per-index statistics that we gather about compression operations. The idea is that if a certain index/table is experiencing too many compression failures then we should try to pack the 16K uncompressed version of the page less densely i.e.: we let some space in the 16K page go unused in an attempt that the recompression won't end up in a failure. In other words, we dynamically keep adding 'pad' to the 16K page till we get compression failures within an agreeable range. It works the other way as well, that is we'll keep removing the pad if failure rate is fairly low. To tune the padding effort two configuration variables are exposed. innodb_compression_failure_threshold_pct: default 5, range 0 - 100,dynamic, implies the percentage of compress ops to fail before we start using to padding. Value 0 has a special meaning of disabling the padding. innodb_compression_pad_pct_max: default 50, range 0 - 75, dynamic, the  maximum percentage of uncompressed data page that can be reserved as pad.

    Read the article

  • .htaccess allow from hostname?

    - by Mikey B
    Ubuntu 9.10 Apache2 Hi Guys, Long story short, I need to restrict access to a certain part of my web site based on a dynamic IP source address that changes every now and then. Historically, I've just added the following to htaccess... order deny,allow deny from all # allow my dynamic IP address allow from <dynamic ip> But the problem is that I'll have to manually make this change every time the IP changes. Ideally I'd like to specify a hostname instead... something like: order deny,allow deny from all # allow my host allow from hostname.whatever.local That doesn't seemed to have worked though. I get an error 403 - access forbidden. Does .htaccess not support hostnames?

    Read the article

  • Does COM interop respect .NET AppDomain boundaries for assembly loading?

    - by Xiaofu
    Here's the core problem: I have a .NET application that is using COM interop in a separate AppDomain. The COM stuff seems to be loading assemblies back into the default domain, rather than the AppDomain from which the COM stuff is being called. What I want to know is: is this expected behaviour, or am I doing something wrong to cause these COM related assemblies to be loaded in the wrong AppDomain? Please see a more detailed description of the situation below... The application consists of 3 assemblies: - the main EXE, the entry point of the application. - common.dll, containing just an interface IController (in the IPlugin style) - controller.dll, containing a Controller class that implements IController and MarshalByRefObject. This class does all the work and uses COM interop to interact with another application. The relevant part of the main EXE looks like this: AppDomain controller_domain = AppDomain.CreateDomain("Controller Domain"); IController c = (IController)controller_domain.CreateInstanceFromAndUnwrap("controller.dll", "MyNamespace.Controller"); result = c.Run(); AppDomain.Unload(controller_domain); The common.dll only contains these 2 things: public enum ControllerRunResult{FatalError, Finished, NonFatalError, NotRun} public interface IController { ControllerRunResult Run(); } And the controller.dll contains this class (which also calls the COM interop stuff): public class Controller: IController, MarshalByRefObject When first running the application, Assembly.GetAssemblies() looks as expected, with common.dll being loaded in both AppDomains, and controller.dll only being loaded into the controller domain. After calling c.Run() however I see that assemblies related to the COM interop stuff have been loaded into the default AppDomain, and NOT in the AppDomain from which the COM interop is taking place. Why might this be occurring? And if you're interested, here's a bit of background: Originally this was a 1 AppDomain application. The COM stuff it interfaces with is a server API which is not stable over long periods of use. When a COMException (with no useful diagnostic information as to its cause) occurs from the COM stuff, the entire application has to restarted before the COM connection will work again. Simply reconnecting to the COM app server results in immediate COM exceptions again. To cope with this I have tried to move the COM interop stuff into a seperate AppDomain so that when the mystery COMExceptions occur I can unload the AppDomain in which it occurs, create a new one and start again, all without having to manually restart the application. That was the theory anyway...

    Read the article

  • Do I need to compile my solution with VS2010 in order to benefit from .NET 4.0 new Code Access Secur

    - by leo
    Hello, I currently develop an application in C# with framework .NET 3.5 SP1. In my app, I have satellite assemblies which are not in the same folder as the exe, and that causes me some trouble with FullTrust, as explained here. In order to solve that problem, I wish to use .NET 4.0 whose Code Access Security Policy should allow my satellite assemblies to be FullyTrusted. So my question is: is just installing the framework enough, or do I need to rebuild the solution with VS2010? Thanks

    Read the article

< Previous Page | 114 115 116 117 118 119 120 121 122 123 124 125  | Next Page >