Search Results

Search found 21674 results on 867 pages for 'thread static'.

Page 119/867 | < Previous Page | 115 116 117 118 119 120 121 122 123 124 125 126  | Next Page >

  • C# problem with two threads and hardware access

    - by mack369
    I'm creating an application which communicates with the device via FT2232H USB/RS232 converter. For communication I'm using FTD2XX_NET.dll library from FTDI website. I'm using two threads: first thread continuously reads data from the device the second thread is the main thread of the Windows Form Application I've got a problem when I'm trying to write any data to the device while the receiver's thread is running. The main thread simply hangs up on ftdiDevice.Write function. I tried to synchronize both threads so that only one thread can use Read/Write function at the same time, but it didn't help. Below code responsible for the communication. Note that following functions are methods of FtdiPort class. Receiver's thread private void receiverLoop() { if (this.DataReceivedHandler == null) { throw new BackendException("dataReceived delegate is not set"); } FTDI.FT_STATUS ftStatus = FTDI.FT_STATUS.FT_OK; byte[] readBytes = new byte[this.ReadBufferSize]; while (true) { lock (FtdiPort.threadLocker) { UInt32 numBytesRead = 0; ftStatus = ftdiDevice.Read(readBytes, this.ReadBufferSize, ref numBytesRead); if (ftStatus == FTDI.FT_STATUS.FT_OK) { this.DataReceivedHandler(readBytes, numBytesRead); } else { Trace.WriteLine(String.Format("Couldn't read data from ftdi: status {0}", ftStatus)); Thread.Sleep(10); } } Thread.Sleep(this.RXThreadDelay); } } Write function called from main thread public void Write(byte[] data, int length) { if (this.IsOpened) { uint i = 0; lock (FtdiPort.threadLocker) { this.ftdiDevice.Write(data, length, ref i); } Thread.Sleep(1); if (i != (int)length) { throw new BackendException("Couldnt send all data"); } } else { throw new BackendException("Port is closed"); } } Object used to synchronize two threads static Object threadLocker = new Object(); Method that starts the receiver's thread private void startReceiver() { if (this.DataReceivedHandler == null) { return; } if (this.IsOpened == false) { throw new BackendException("Trying to start listening for raw data while disconnected"); } this.receiverThread = new Thread(this.receiverLoop); //this.receiverThread.Name = "protocolListener"; this.receiverThread.IsBackground = true; this.receiverThread.Start(); } The ftdiDevice.Write function doesn't hang up if I comment following line: ftStatus = ftdiDevice.Read(readBytes, this.ReadBufferSize, ref numBytesRead);

    Read the article

  • Why is my GUI unresponsive while a SwingWorker thread runs?

    - by Starchy
    Hello, I have a SwingWorker thread with an IOBound task which is totally locking up the interface while it runs. Swapping out the normal workload for a counter loop has the same result. The SwingWorker looks basically like this: public class BackupWorker extends SwingWorker<String, String> { private static String uname = null; private static String pass = null; private static String filename = null; static String status = null; BackupWorker (String uname, String pass, String filename) { this.uname = uname; this.pass = pass; this.filename = filename; } @Override protected String doInBackground() throws Exception { BackupObject bak = newBackupObject(uname,pass,filename); return "Done!"; } } The code that kicks it off lives in a class that extends JFrame: public void actionPerformed(ActionEvent event) { String cmd = event.getActionCommand(); if (BACKUP.equals(cmd)) { SwingUtilities.invokeLater(new Runnable() { public void run() { final StatusFrame statusFrame = new StatusFrame(); statusFrame.setVisible(true); SwingUtilities.invokeLater(new Runnable() { public void run () { statusFrame.beginBackup(uname,pass,filename); } }); } }); } } Here's the interesting part of StatusFrame: public void beginBackup(final String uname, final String pass, final String filename) { worker = new BackupWorker(uname, pass, filename); worker.execute(); try { System.out.println(worker.get()); } catch (InterruptedException e) { e.printStackTrace(); } catch (ExecutionException e) { e.printStackTrace(); } } } So far as I can see, everything "long-running" is handled by the worker, and everything that touches the GUI on the EDT. Have I tangled things up somewhere, or am I expecting too much of SwingWorker?

    Read the article

  • ClassCleanup in MSTest is static, but the build server uses nunit to run the unit tests. How can i a

    - by Kettenbach
    Hi All, MSTest has a [ClassCleanup()] attribute, which needs to be static as far as I can tell. I like to run through after my unit tests have run,and clean up my database. This all works great, however when I go to our build server and use our Nant build script, it seems like the unit tests are run with NUnit. NUnit doesn't seem to like the cleanup method to be static. It therefore ignores my tests in that class. What can I do to remedy this? I prefer to not use [TestCleanUp()] as that is run after each test. Does anyone have any suggestions? I know [TestCleanup()] aids in decoupling, but I really prefer the [ClassCleanup()] in this situation. Here is some example code. ////Use ClassCleanup to run code after all tests have run [ClassCleanup()] public static void MyFacadeTestCleanup() { UpdateCleanup(); } private static void UpdateCleanup() { DbCommand dbCommand; Database db; try { db = DatabaseFactory.CreateDatabase(TestConstants.DB_NAME); int rowsAffected; dbCommand = db.GetSqlStringCommand("DELETE FROM tblA WHERE biID=@biID"); db.AddInParameter(dbCommand, "biID", DbType.Int64, biToDelete); rowsAffected = db.ExecuteNonQuery(dbCommand); Debug.WriteLineIf(rowsAffected == TestConstants.ONE_ROW, string.Format("biId '{0}' was successfully deleted.", biToDelete)); } catch (SqlException ex) { } finally { dbCommand = null; db = null; biDelete = 0; } } Thanks for any pointers and yes i realize I'm not catching anything. I need to get passed this hurdle first. Cheers, ~ck in San Diego

    Read the article

  • Cant kill process on Windows Server 2008!! - Thread in Wait:Executive State

    - by adrian
    I hope someone can help me with our issue we are having. We have a major issue with a process that we can not kill and the only way to get rid of the process is to reboot the machine. I have tried killing it from the normal task manager but no joy. I have tried killing it using the taskkill /F command from a command prompt and no joy. The command reports as sucessful but the process remains. I have tried to start task manager with system rights by calling "psexec -s -i -d taskmgr" and attempting to kill the process but no joy I have tried killing it from Process Explorer but again the process remains. I have tried creating a scheduled task that runs under the SYSTEM name to kill the task but that also does not kill it : schtasks /create /ru system /sc once /st 13:16 /tn test1 /tr "taskkill /F /PID 1576" /it Nothing I do will kill this process. Even logging off and logging back on will not kill this process. Using Process Explorer I notice that there is on stubborn thread that is in the Wait:Executive state. I have tried to kill this thread using Process Explorer but again no joy. We are using Windows Server 2008 R2 64-Bit. The server is brand new and windows is freshly installed. Now heres the thing. We have brought two identical servers from Dell with the same specs and the same OS installed and I can not replicate this issue on the other server. Only on this server, under certain circumstances does this server process hang and can not be restarted! I have also changed the compatability mode by setting it the process to "Windows 2003" but this has not helped. I have noticed in Process Explorer that DEP is turned on but im not sure this has got any bearing on the issue ot not. Please, can someone help??

    Read the article

  • How do I create a Thread Manager for an Android App ?

    - by MrBuBBLs
    Hi, I would like to know how to start and code a thread manager for my Android App. My app is going to fill a list with a network I/O and I have to manage threads for that. I never done this before and I don't know where to start. I heard about Thread Pool and other stuff, but I'm quite confused. Could someone please help me make my way through ? Thanks

    Read the article

  • How can I serve static content with Glassfish embedded?

    - by Andy Fiedler
    I'm trying to setup Glassfish embedded with a WAR project that implements a REST API and then some static Javascript content that calls it. I got the WAR to deploy and the REST API is available with a context root of "/Users". How can I use Glassfish to serve static content with a context root of "/". So for example, if the user requests http://myserver.com/Users/some-REST-call it routes to the WAR application and http://myserver.com/somefile.js serves a static file from some directory? Here's my Main class file so far: public class Main{ public static void main(String[] args) throws Exception { String port = System.getenv("PORT"); port = port != null ? port : "8080"; GlassFishProperties gfProps = new GlassFishProperties(); gfProps.setPort("http-listener", Integer.parseInt(port)); GlassFish glassfish = GlassFishRuntime.bootstrap().newGlassFish(gfProps); glassfish.start(); Deployer deployer = glassfish.getDeployer(); deployer.deploy(new File("target/Users-Rest.war")); } } Thanks a ton for your help!

    Read the article

  • Is there a nice way of having static generic parameters is Java?

    - by Chris
    Hello, recently I'm writing some functions that I take from Haskell and translate into Java. One of the main problems I have is I cannot easily create a static property with a generic type. Let me explain by a little example... // An interface to implement functions public interface Func<P, R> { public R apply(P p); } // What I want to do... (incorrect in Java) public class ... { public static <T> Func<T, T> identity = new Func<T, T>() { public T apply(T p) { return p; } } } // What I do right now public class ... { private static Func<Object, Object> identity = new Func<Object, Object>() { public Object apply(Object p) { return p; } } @SuppressWarnings("unchecked") public static <T> Func<T, T> getIdentity() { return (Func<T, T>)identity; } } Are there any easier ways to do something like that? What kind of problems might arise if the syntax I used would be valid?

    Read the article

  • Why should I use a thread vs using a process?

    - by danmine
    I'm a newbie at this so please forgive me for my ignorance. Separating different parts of a program into different processes seems (to me) to make a more elegant program then just threading everything. In what scenario would it make sense to make things run on a thread vs separating the program into different processes? When should I use a thread? Edit: Anything on how (or if) they act differently with single core and multi core would also be helpful.

    Read the article

  • how can i pass a parameter in a thread in ansi c?

    - by moon
    int NM_Generator = 1; //Aray to store thread handles HANDLE Array_Of_Thread_Handles[1]; //variable to hold handle of North pulse HANDLE Handle_Of_NM_Generator = 0; //Create NM_Generator Thread Handle_Of_NM_Generator = CreateThread( NULL, 0, NMGenerator, &dDifference, 0, NULL); if ( Handle_Of_NM_Generator == NULL) ExitProcess(NM_Generator); i want to pass a parameter double value in it how can i do so?

    Read the article

  • how can i pass a parameter in a thread in ansi c windows lib can also be used?

    - by moon
    int NM_Generator = 1; //Aray to store thread handles HANDLE Array_Of_Thread_Handles[1]; //variable to hold handle of North pulse HANDLE Handle_Of_NM_Generator = 0; //Create NM_Generator Thread Handle_Of_NM_Generator = CreateThread( NULL, 0, NMGenerator, &dDifference, 0, NULL); if ( Handle_Of_NM_Generator == NULL) ExitProcess(NM_Generator); i want to pass a parameter double value in it how can i do so?

    Read the article

  • UnsatisfiedLinkError on xawt when running HEC-HMS.sh

    - by G.Oxsen
    I am a recent adopter of Linux and this problem has got me stumped. I use HEC-HMS and HEC-DSSVue for work on a regular basis. I have been using the widows versions in wine but they are really buggy. So I decided to try out the linux versions. the links below will take you to the download pages for these two programs. They are free programs for Hydrology and data management. Once I install them and attempt to run the shell file (HEC-HMS.sh for example) I get a ton of java errors that I do not understand. If I had to guess I would say that the java files in question can not be found. When I check to see if java is installed it is. Here is the output from the terminal from trying to run HEC-HMS.sh: Exception in thread "Thread-1" java.lang.UnsatisfiedLinkError: /home/smythe/HEC/hec-hms35/java/lib/i386/xawt/libmawt.so: libXtst.so.6: cannot open shared object file: No such file or directory at java.lang.ClassLoader$NativeLibrary.load(Native Method) at java.lang.ClassLoader.loadLibrary0(Unknown Source) at java.lang.ClassLoader.loadLibrary(Unknown Source) at java.lang.Runtime.load0(Unknown Source) at java.lang.System.load(Unknown Source) at java.lang.ClassLoader$NativeLibrary.load(Native Method) at java.lang.ClassLoader.loadLibrary0(Unknown Source) at java.lang.ClassLoader.loadLibrary(Unknown Source) at java.lang.Runtime.loadLibrary0(Unknown Source) at java.lang.System.loadLibrary(Unknown Source) at sun.security.action.LoadLibraryAction.run(Unknown Source) at java.security.AccessController.doPrivileged(Native Method) at sun.awt.NativeLibLoader.loadLibraries(Unknown Source) at sun.awt.DebugHelper.<clinit>(Unknown Source) at java.awt.Component.<clinit>(Unknown Source) at javax.swing.ImageIcon.<clinit>(Unknown Source) at hms.i.c(Unknown Source) at hms.i.b(Unknown Source) at hms.K.run(Unknown Source) at java.lang.Thread.run(Unknown Source) Exception in thread "Thread-4" java.lang.UnsatisfiedLinkError: /home/smythe/HEC/hec-hms35/java/lib/i386/xawt/libmawt.so: libXtst.so.6: cannot open shared object file: No such file or directory at java.lang.ClassLoader$NativeLibrary.load(Native Method) at java.lang.ClassLoader.loadLibrary0(Unknown Source) at java.lang.ClassLoader.loadLibrary(Unknown Source) at java.lang.Runtime.load0(Unknown Source) at java.lang.System.load(Unknown Source) at java.lang.ClassLoader$NativeLibrary.load(Native Method) at java.lang.ClassLoader.loadLibrary0(Unknown Source) at java.lang.ClassLoader.loadLibrary(Unknown Source) at java.lang.Runtime.loadLibrary0(Unknown Source) at java.lang.System.loadLibrary(Unknown Source) at sun.security.action.LoadLibraryAction.run(Unknown Source) at java.security.AccessController.doPrivileged(Native Method) at java.awt.Toolkit.loadLibraries(Unknown Source) at java.awt.Toolkit.<clinit>(Unknown Source) at sun.print.CUPSPrinter.<clinit>(Unknown Source) at sun.print.UnixPrintServiceLookup.getDefaultPrintService(Unknown Source) at sun.print.UnixPrintServiceLookup.refreshServices(Unknown Source) at sun.print.UnixPrintServiceLookup$PrinterChangeListener.run(Unknown Source) Exception in thread "main" java.lang.NoClassDefFoundError: Could not initialize class java.awt.Toolkit at java.awt.Color.<clinit>(Unknown Source) at hms.model.l.<init>(Unknown Source) at hms.model.ProjectManager.<init>(Unknown Source) at hms.Hms.<init>(Unknown Source) at hms.Hms.main(Unknown Source) Exception in thread "Thread-2" java.lang.NoClassDefFoundError: Could not initialize class sun.print.CUPSPrinter at sun.print.UnixPrintServiceLookup.getDefaultPrintService(Unknown Source) at javax.print.PrintServiceLookup.lookupDefaultPrintService(Unknown Source) at hms.util.f.run(Unknown Source) at java.lang.Thread.run(Unknown Source) I get similar outputs when I try to run HEC-DSSVue.sh. If anyone could shed some light on a solution I would really appreciate it. The problem turned out to be that the program needed 32 bit versions of the particular dependencies.

    Read the article

  • Understanding G1 GC Logs

    - by poonam
    The purpose of this post is to explain the meaning of GC logs generated with some tracing and diagnostic options for G1 GC. We will take a look at the output generated with PrintGCDetails which is a product flag and provides the most detailed level of information. Along with that, we will also look at the output of two diagnostic flags that get enabled with -XX:+UnlockDiagnosticVMOptions option - G1PrintRegionLivenessInfo that prints the occupancy and the amount of space used by live objects in each region at the end of the marking cycle and G1PrintHeapRegions that provides detailed information on the heap regions being allocated and reclaimed. We will be looking at the logs generated with JDK 1.7.0_04 using these options. Option -XX:+PrintGCDetails Here's a sample log of G1 collection generated with PrintGCDetails. 0.522: [GC pause (young), 0.15877971 secs] [Parallel Time: 157.1 ms] [GC Worker Start (ms): 522.1 522.2 522.2 522.2 Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] [Processed Buffers : 2 2 3 2 Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] [GC Worker Other (ms): 0.3 0.3 0.3 0.3 Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] [Clear CT: 0.1 ms] [Other: 1.5 ms] [Choose CSet: 0.0 ms] [Ref Proc: 0.3 ms] [Ref Enq: 0.0 ms] [Free CSet: 0.3 ms] [Eden: 12M(12M)->0B(10M) Survivors: 0B->2048K Heap: 13M(64M)->9739K(64M)] [Times: user=0.59 sys=0.02, real=0.16 secs] This is the typical log of an Evacuation Pause (G1 collection) in which live objects are copied from one set of regions (young OR young+old) to another set. It is a stop-the-world activity and all the application threads are stopped at a safepoint during this time. This pause is made up of several sub-tasks indicated by the indentation in the log entries. Here's is the top most line that gets printed for the Evacuation Pause. 0.522: [GC pause (young), 0.15877971 secs] This is the highest level information telling us that it is an Evacuation Pause that started at 0.522 secs from the start of the process, in which all the regions being evacuated are Young i.e. Eden and Survivor regions. This collection took 0.15877971 secs to finish. Evacuation Pauses can be mixed as well. In which case the set of regions selected include all of the young regions as well as some old regions. 1.730: [GC pause (mixed), 0.32714353 secs] Let's take a look at all the sub-tasks performed in this Evacuation Pause. [Parallel Time: 157.1 ms] Parallel Time is the total elapsed time spent by all the parallel GC worker threads. The following lines correspond to the parallel tasks performed by these worker threads in this total parallel time, which in this case is 157.1 ms. [GC Worker Start (ms): 522.1 522.2 522.2 522.2Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] The first line tells us the start time of each of the worker thread in milliseconds. The start times are ordered with respect to the worker thread ids – thread 0 started at 522.1ms and thread 1 started at 522.2ms from the start of the process. The second line tells the Avg, Min, Max and Diff of the start times of all of the worker threads. [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] This gives us the time spent by each worker thread scanning the roots (globals, registers, thread stacks and VM data structures). Here, thread 0 took 1.6ms to perform the root scanning task and thread 1 took 1.5 ms. The second line clearly shows the Avg, Min, Max and Diff of the times spent by all the worker threads. [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] Update RS gives us the time each thread spent in updating the Remembered Sets. Remembered Sets are the data structures that keep track of the references that point into a heap region. Mutator threads keep changing the object graph and thus the references that point into a particular region. We keep track of these changes in buffers called Update Buffers. The Update RS sub-task processes the update buffers that were not able to be processed concurrently, and updates the corresponding remembered sets of all regions. [Processed Buffers : 2 2 3 2Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] This tells us the number of Update Buffers (mentioned above) processed by each worker thread. [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] These are the times each worker thread had spent in scanning the Remembered Sets. Remembered Set of a region contains cards that correspond to the references pointing into that region. This phase scans those cards looking for the references pointing into all the regions of the collection set. [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] These are the times spent by each worker thread copying live objects from the regions in the Collection Set to the other regions. [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] Termination time is the time spent by the worker thread offering to terminate. But before terminating, it checks the work queues of other threads and if there are still object references in other work queues, it tries to steal object references, and if it succeeds in stealing a reference, it processes that and offers to terminate again. [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] This gives the number of times each thread has offered to terminate. [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] These are the times in milliseconds at which each worker thread stopped. [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] These are the total lifetimes of each worker thread. [GC Worker Other (ms): 0.3 0.3 0.3 0.3Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] These are the times that each worker thread spent in performing some other tasks that we have not accounted above for the total Parallel Time. [Clear CT: 0.1 ms] This is the time spent in clearing the Card Table. This task is performed in serial mode. [Other: 1.5 ms] Time spent in the some other tasks listed below. The following sub-tasks (which individually may be parallelized) are performed serially. [Choose CSet: 0.0 ms] Time spent in selecting the regions for the Collection Set. [Ref Proc: 0.3 ms] Total time spent in processing Reference objects. [Ref Enq: 0.0 ms] Time spent in enqueuing references to the ReferenceQueues. [Free CSet: 0.3 ms] Time spent in freeing the collection set data structure. [Eden: 12M(12M)->0B(13M) Survivors: 0B->2048K Heap: 14M(64M)->9739K(64M)] This line gives the details on the heap size changes with the Evacuation Pause. This shows that Eden had the occupancy of 12M and its capacity was also 12M before the collection. After the collection, its occupancy got reduced to 0 since everything is evacuated/promoted from Eden during a collection, and its target size grew to 13M. The new Eden capacity of 13M is not reserved at this point. This value is the target size of the Eden. Regions are added to Eden as the demand is made and when the added regions reach to the target size, we start the next collection. Similarly, Survivors had the occupancy of 0 bytes and it grew to 2048K after the collection. The total heap occupancy and capacity was 14M and 64M receptively before the collection and it became 9739K and 64M after the collection. Apart from the evacuation pauses, G1 also performs concurrent-marking to build the live data information of regions. 1.416: [GC pause (young) (initial-mark), 0.62417980 secs] ….... 2.042: [GC concurrent-root-region-scan-start] 2.067: [GC concurrent-root-region-scan-end, 0.0251507] 2.068: [GC concurrent-mark-start] 3.198: [GC concurrent-mark-reset-for-overflow] 4.053: [GC concurrent-mark-end, 1.9849672 sec] 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.090: [GC concurrent-cleanup-start] 4.091: [GC concurrent-cleanup-end, 0.0002721] The first phase of a marking cycle is Initial Marking where all the objects directly reachable from the roots are marked and this phase is piggy-backed on a fully young Evacuation Pause. 2.042: [GC concurrent-root-region-scan-start] This marks the start of a concurrent phase that scans the set of root-regions which are directly reachable from the survivors of the initial marking phase. 2.067: [GC concurrent-root-region-scan-end, 0.0251507] End of the concurrent root region scan phase and it lasted for 0.0251507 seconds. 2.068: [GC concurrent-mark-start] Start of the concurrent marking at 2.068 secs from the start of the process. 3.198: [GC concurrent-mark-reset-for-overflow] This indicates that the global marking stack had became full and there was an overflow of the stack. Concurrent marking detected this overflow and had to reset the data structures to start the marking again. 4.053: [GC concurrent-mark-end, 1.9849672 sec] End of the concurrent marking phase and it lasted for 1.9849672 seconds. 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] This corresponds to the remark phase which is a stop-the-world phase. It completes the left over marking work (SATB buffers processing) from the previous phase. In this case, this phase took 0.0030184 secs and out of which 0.0000254 secs were spent on Reference processing. 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] Cleanup phase which is again a stop-the-world phase. It goes through the marking information of all the regions, computes the live data information of each region, resets the marking data structures and sorts the regions according to their gc-efficiency. In this example, the total heap size is 138M and after the live data counting it was found that the total live data size dropped down from 117M to 106M. 4.090: [GC concurrent-cleanup-start] This concurrent cleanup phase frees up the regions that were found to be empty (didn't contain any live data) during the previous stop-the-world phase. 4.091: [GC concurrent-cleanup-end, 0.0002721] Concurrent cleanup phase took 0.0002721 secs to free up the empty regions. Option -XX:G1PrintRegionLivenessInfo Now, let's look at the output generated with the flag G1PrintRegionLivenessInfo. This is a diagnostic option and gets enabled with -XX:+UnlockDiagnosticVMOptions. G1PrintRegionLivenessInfo prints the live data information of each region during the Cleanup phase of the concurrent-marking cycle. 26.896: [GC cleanup ### PHASE Post-Marking @ 26.896### HEAP committed: 0x02e00000-0x0fe00000 reserved: 0x02e00000-0x12e00000 region-size: 1048576 Cleanup phase of the concurrent-marking cycle started at 26.896 secs from the start of the process and this live data information is being printed after the marking phase. Committed G1 heap ranges from 0x02e00000 to 0x0fe00000 and the total G1 heap reserved by JVM is from 0x02e00000 to 0x12e00000. Each region in the G1 heap is of size 1048576 bytes. ### type address-range used prev-live next-live gc-eff### (bytes) (bytes) (bytes) (bytes/ms) This is the header of the output that tells us about the type of the region, address-range of the region, used space in the region, live bytes in the region with respect to the previous marking cycle, live bytes in the region with respect to the current marking cycle and the GC efficiency of that region. ### FREE 0x02e00000-0x02f00000 0 0 0 0.0 This is a Free region. ### OLD 0x02f00000-0x03000000 1048576 1038592 1038592 0.0 Old region with address-range from 0x02f00000 to 0x03000000. Total used space in the region is 1048576 bytes, live bytes as per the previous marking cycle are 1038592 and live bytes with respect to the current marking cycle are also 1038592. The GC efficiency has been computed as 0. ### EDEN 0x03400000-0x03500000 20992 20992 20992 0.0 This is an Eden region. ### HUMS 0x0ae00000-0x0af00000 1048576 1048576 1048576 0.0### HUMC 0x0af00000-0x0b000000 1048576 1048576 1048576 0.0### HUMC 0x0b000000-0x0b100000 1048576 1048576 1048576 0.0### HUMC 0x0b100000-0x0b200000 1048576 1048576 1048576 0.0### HUMC 0x0b200000-0x0b300000 1048576 1048576 1048576 0.0### HUMC 0x0b300000-0x0b400000 1048576 1048576 1048576 0.0### HUMC 0x0b400000-0x0b500000 1001480 1001480 1001480 0.0 These are the continuous set of regions called Humongous regions for storing a large object. HUMS (Humongous starts) marks the start of the set of humongous regions and HUMC (Humongous continues) tags the subsequent regions of the humongous regions set. ### SURV 0x09300000-0x09400000 16384 16384 16384 0.0 This is a Survivor region. ### SUMMARY capacity: 208.00 MB used: 150.16 MB / 72.19 % prev-live: 149.78 MB / 72.01 % next-live: 142.82 MB / 68.66 % At the end, a summary is printed listing the capacity, the used space and the change in the liveness after the completion of concurrent marking. In this case, G1 heap capacity is 208MB, total used space is 150.16MB which is 72.19% of the total heap size, live data in the previous marking was 149.78MB which was 72.01% of the total heap size and the live data as per the current marking is 142.82MB which is 68.66% of the total heap size. Option -XX:+G1PrintHeapRegions G1PrintHeapRegions option logs the regions related events when regions are committed, allocated into or are reclaimed. COMMIT/UNCOMMIT events G1HR COMMIT [0x6e900000,0x6ea00000]G1HR COMMIT [0x6ea00000,0x6eb00000] Here, the heap is being initialized or expanded and the region (with bottom: 0x6eb00000 and end: 0x6ec00000) is being freshly committed. COMMIT events are always generated in order i.e. the next COMMIT event will always be for the uncommitted region with the lowest address. G1HR UNCOMMIT [0x72700000,0x72800000]G1HR UNCOMMIT [0x72600000,0x72700000] Opposite to COMMIT. The heap got shrunk at the end of a Full GC and the regions are being uncommitted. Like COMMIT, UNCOMMIT events are also generated in order i.e. the next UNCOMMIT event will always be for the committed region with the highest address. GC Cycle events G1HR #StartGC 7G1HR CSET 0x6e900000G1HR REUSE 0x70500000G1HR ALLOC(Old) 0x6f800000G1HR RETIRE 0x6f800000 0x6f821b20G1HR #EndGC 7 This shows start and end of an Evacuation pause. This event is followed by a GC counter tracking both evacuation pauses and Full GCs. Here, this is the 7th GC since the start of the process. G1HR #StartFullGC 17G1HR UNCOMMIT [0x6ed00000,0x6ee00000]G1HR POST-COMPACTION(Old) 0x6e800000 0x6e854f58G1HR #EndFullGC 17 Shows start and end of a Full GC. This event is also followed by the same GC counter as above. This is the 17th GC since the start of the process. ALLOC events G1HR ALLOC(Eden) 0x6e800000 The region with bottom 0x6e800000 just started being used for allocation. In this case it is an Eden region and allocated into by a mutator thread. G1HR ALLOC(StartsH) 0x6ec00000 0x6ed00000G1HR ALLOC(ContinuesH) 0x6ed00000 0x6e000000 Regions being used for the allocation of Humongous object. The object spans over two regions. G1HR ALLOC(SingleH) 0x6f900000 0x6f9eb010 Single region being used for the allocation of Humongous object. G1HR COMMIT [0x6ee00000,0x6ef00000]G1HR COMMIT [0x6ef00000,0x6f000000]G1HR COMMIT [0x6f000000,0x6f100000]G1HR COMMIT [0x6f100000,0x6f200000]G1HR ALLOC(StartsH) 0x6ee00000 0x6ef00000G1HR ALLOC(ContinuesH) 0x6ef00000 0x6f000000G1HR ALLOC(ContinuesH) 0x6f000000 0x6f100000G1HR ALLOC(ContinuesH) 0x6f100000 0x6f102010 Here, Humongous object allocation request could not be satisfied by the free committed regions that existed in the heap, so the heap needed to be expanded. Thus new regions are committed and then allocated into for the Humongous object. G1HR ALLOC(Old) 0x6f800000 Old region started being used for allocation during GC. G1HR ALLOC(Survivor) 0x6fa00000 Region being used for copying old objects into during a GC. Note that Eden and Humongous ALLOC events are generated outside the GC boundaries and Old and Survivor ALLOC events are generated inside the GC boundaries. Other Events G1HR RETIRE 0x6e800000 0x6e87bd98 Retire and stop using the region having bottom 0x6e800000 and top 0x6e87bd98 for allocation. Note that most regions are full when they are retired and we omit those events to reduce the output volume. A region is retired when another region of the same type is allocated or we reach the start or end of a GC(depending on the region). So for Eden regions: For example: 1. ALLOC(Eden) Foo2. ALLOC(Eden) Bar3. StartGC At point 2, Foo has just been retired and it was full. At point 3, Bar was retired and it was full. If they were not full when they were retired, we will have a RETIRE event: 1. ALLOC(Eden) Foo2. RETIRE Foo top3. ALLOC(Eden) Bar4. StartGC G1HR CSET 0x6e900000 Region (bottom: 0x6e900000) is selected for the Collection Set. The region might have been selected for the collection set earlier (i.e. when it was allocated). However, we generate the CSET events for all regions in the CSet at the start of a GC to make sure there's no confusion about which regions are part of the CSet. G1HR POST-COMPACTION(Old) 0x6e800000 0x6e839858 POST-COMPACTION event is generated for each non-empty region in the heap after a full compaction. A full compaction moves objects around, so we don't know what the resulting shape of the heap is (which regions were written to, which were emptied, etc.). To deal with this, we generate a POST-COMPACTION event for each non-empty region with its type (old/humongous) and the heap boundaries. At this point we should only have Old and Humongous regions, as we have collapsed the young generation, so we should not have eden and survivors. POST-COMPACTION events are generated within the Full GC boundary. G1HR CLEANUP 0x6f400000G1HR CLEANUP 0x6f300000G1HR CLEANUP 0x6f200000 These regions were found empty after remark phase of Concurrent Marking and are reclaimed shortly afterwards. G1HR #StartGC 5G1HR CSET 0x6f400000G1HR CSET 0x6e900000G1HR REUSE 0x6f800000 At the end of a GC we retire the old region we are allocating into. Given that its not full, we will carry on allocating into it during the next GC. This is what REUSE means. In the above case 0x6f800000 should have been the last region with an ALLOC(Old) event during the previous GC and should have been retired before the end of the previous GC. G1HR ALLOC-FORCE(Eden) 0x6f800000 A specialization of ALLOC which indicates that we have reached the max desired number of the particular region type (in this case: Eden), but we decided to allocate one more. Currently it's only used for Eden regions when we extend the young generation because we cannot do a GC as the GC-Locker is active. G1HR EVAC-FAILURE 0x6f800000 During a GC, we have failed to evacuate an object from the given region as the heap is full and there is no space left to copy the object. This event is generated within GC boundaries and exactly once for each region from which we failed to evacuate objects. When Heap Regions are reclaimed ? It is also worth mentioning when the heap regions in the G1 heap are reclaimed. All regions that are in the CSet (the ones that appear in CSET events) are reclaimed at the end of a GC. The exception to that are regions with EVAC-FAILURE events. All regions with CLEANUP events are reclaimed. After a Full GC some regions get reclaimed (the ones from which we moved the objects out). But that is not shown explicitly, instead the non-empty regions that are left in the heap are printed out with the POST-COMPACTION events.

    Read the article

  • cannot delete IPv6 default gateway

    - by NulledPointer
    The commands below should be pretty self-explanatory. Please note that the route for which i get failure is obtained by RA and has very less expiry ( e Flag in UDAe). @vm:~$ ip -6 route 2001:4860:4001:800::1002 via fe80::20c:29ff:fe87:f9e7 dev eth1 proto static metric 1024 2001:4860:4001:800::1003 via fe80::20c:29ff:fe87:f9e7 dev eth1 proto static metric 1024 2001:4860:4001:800::1005 via fe80::20c:29ff:fe87:f9e7 dev eth1 proto static metric 1024 2001:4860:4001:803::100e via fe80::20c:29ff:fe87:f9e7 dev eth1 proto static metric 1024 fd00:ffff:ffff:fff1::/64 dev eth1 proto kernel metric 256 expires 2592300sec fe80::/64 dev eth1 proto kernel metric 256 default via fe80::20c:29ff:fe87:f9e7 dev eth1 proto static metric 1 default via fe80::20c:29ff:fe87:f9e7 dev eth1 proto kernel metric 1024 expires 1776sec @vm:~$ @vm:~$ @vm:~$ @vm:~$ sudo route -6 delete default gw fe80::20c:29ff:fe87:f9e7 @vm:~$ ip -6 route 2001:4860:4001:800::1002 via fe80::20c:29ff:fe87:f9e7 dev eth1 proto static metric 1024 2001:4860:4001:800::1003 via fe80::20c:29ff:fe87:f9e7 dev eth1 proto static metric 1024 2001:4860:4001:800::1005 via fe80::20c:29ff:fe87:f9e7 dev eth1 proto static metric 1024 2001:4860:4001:803::100e via fe80::20c:29ff:fe87:f9e7 dev eth1 proto static metric 1024 fd00:ffff:ffff:fff1::/64 dev eth1 proto kernel metric 256 expires 2592279sec fe80::/64 dev eth1 proto kernel metric 256 default via fe80::20c:29ff:fe87:f9e7 dev eth1 proto kernel metric 1024 expires 1755sec @vm:~$ @vm:~$ @vm:~$ sudo route -6 delete ::/0 gw fe80::20c:29ff:fe87:f9e7 dev eth1 SIOCDELRT: No such process @vm:~$ @vm:~$ @vm:~$ route -n6 Kernel IPv6 routing table Destination Next Hop Flag Met Ref Use If 2001:4860:4001:800::1002/128 fe80::20c:29ff:fe87:f9e7 UG 1024 0 0 eth1 2001:4860:4001:800::1003/128 fe80::20c:29ff:fe87:f9e7 UG 1024 0 0 eth1 2001:4860:4001:800::1005/128 fe80::20c:29ff:fe87:f9e7 UG 1024 0 0 eth1 2001:4860:4001:803::100e/128 fe80::20c:29ff:fe87:f9e7 UG 1024 0 0 eth1 fd00:ffff:ffff:fff1::/64 :: UAe 256 0 0 eth1 fe80::/64 :: U 256 0 0 eth1 ::/0 fe80::20c:29ff:fe87:f9e7 UGDAe 1024 0 0 eth1 ::/0 :: !n -1 1 349 lo ::1/128 :: Un 0 1 3 lo fd00:ffff:ffff:fff1:a00:27ff:fe7f:7245/128 :: Un 0 1 0 lo fd00:ffff:ffff:fff1:fce8:ce07:b9ea:389f/128 :: Un 0 1 0 lo fe80::a00:27ff:fe7f:7245/128 :: Un 0 1 0 lo ff00::/8 :: U 256 0 0 eth1 ::/0 :: !n -1 1 349 lo @vm:~$ UPDATE: Another question is whats the use of link local address as the default route?

    Read the article

  • Is there a modified LGPL license that allows static linking?

    - by Petr Pudlák
    úLGPL requires that it if a program uses LGPL-ed library, users must be able to re-link the program with a different version of the library: ... d) Do one of the following: 0) Convey the Minimal Corresponding Source under the terms of this License, and the Corresponding Application Code in a form suitable for, and under terms that permit, the user to recombine or relink the Application with a modified version of the Linked Version to produce a modified Combined Work, in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source. 1) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (a) uses at run time a copy of the Library already present on the user's computer system, and (b) will operate properly with a modified version of the Library that is interface-compatible with the Linked Version. ... However in some cases, this can pose considerable difficulties. In particular, Haskell programs are almost always statically compiled. Moreover, the compiler does cross-module optimizations so it's very hard to satisfy this condition. (See this link at Haskell Wiki.) Therefore, I'm looking for a standard LGPL-like license that wouldn't require the possibility of re-linking. Some projects use their own modification of LGPL, for example wxWidgets. But I'd rather use some standard license that is somewhat more official, perhaps checked by some law experts, and (L)GPL compatible. Is there some like that? (Also I'd be interested to know if are there some unforeseen consequences of such a modification of LGPL.)

    Read the article

  • C#: Handling Notifications: inheritance, events, or delegates?

    - by James Michael Hare
    Often times as developers we have to design a class where we get notification when certain things happen. In older object-oriented code this would often be implemented by overriding methods -- with events, delegates, and interfaces, however, we have far more elegant options. So, when should you use each of these methods and what are their strengths and weaknesses? Now, for the purposes of this article when I say notification, I'm just talking about ways for a class to let a user know that something has occurred. This can be through any programmatic means such as inheritance, events, delegates, etc. So let's build some context. I'm sitting here thinking about a provider neutral messaging layer for the place I work, and I got to the point where I needed to design the message subscriber which will receive messages from the message bus. Basically, what we want is to be able to create a message listener and have it be called whenever a new message arrives. Now, back before the flood we would have done this via inheritance and an abstract class: 1:  2: // using inheritance - omitting argument null checks and halt logic 3: public abstract class MessageListener 4: { 5: private ISubscriber _subscriber; 6: private bool _isHalted = false; 7: private Thread _messageThread; 8:  9: // assign the subscriber and start the messaging loop 10: public MessageListener(ISubscriber subscriber) 11: { 12: _subscriber = subscriber; 13: _messageThread = new Thread(MessageLoop); 14: _messageThread.Start(); 15: } 16:  17: // user will override this to process their messages 18: protected abstract void OnMessageReceived(Message msg); 19:  20: // handle the looping in the thread 21: private void MessageLoop() 22: { 23: while(!_isHalted) 24: { 25: // as long as processing, wait 1 second for message 26: Message msg = _subscriber.Receive(TimeSpan.FromSeconds(1)); 27: if(msg != null) 28: { 29: OnMessageReceived(msg); 30: } 31: } 32: } 33: ... 34: } It seems so odd to write this kind of code now. Does it feel odd to you? Maybe it's just because I've gotten so used to delegation that I really don't like the feel of this. To me it is akin to saying that if I want to drive my car I need to derive a new instance of it just to put myself in the driver's seat. And yet, unquestionably, five years ago I would have probably written the code as you see above. To me, inheritance is a flawed approach for notifications due to several reasons: Inheritance is one of the HIGHEST forms of coupling. You can't seal the listener class because it depends on sub-classing to work. Because C# does not allow multiple-inheritance, I've spent my one inheritance implementing this class. Every time you need to listen to a bus, you have to derive a class which leads to lots of trivial sub-classes. The act of consuming a message should be a separate responsibility than the act of listening for a message (SRP). Inheritance is such a strong statement (this IS-A that) that it should only be used in building type hierarchies and not for overriding use-specific behaviors and notifications. Chances are, if a class needs to be inherited to be used, it most likely is not designed as well as it could be in today's modern programming languages. So lets look at the other tools available to us for getting notified instead. Here's a few other choices to consider. Have the listener expose a MessageReceived event. Have the listener accept a new IMessageHandler interface instance. Have the listener accept an Action<Message> delegate. Really, all of these are different forms of delegation. Now, .NET events are a bit heavier than the other types of delegates in terms of run-time execution, but they are a great way to allow others using your class to subscribe to your events: 1: // using event - ommiting argument null checks and halt logic 2: public sealed class MessageListener 3: { 4: private ISubscriber _subscriber; 5: private bool _isHalted = false; 6: private Thread _messageThread; 7:  8: // assign the subscriber and start the messaging loop 9: public MessageListener(ISubscriber subscriber) 10: { 11: _subscriber = subscriber; 12: _messageThread = new Thread(MessageLoop); 13: _messageThread.Start(); 14: } 15:  16: // user will override this to process their messages 17: public event Action<Message> MessageReceived; 18:  19: // handle the looping in the thread 20: private void MessageLoop() 21: { 22: while(!_isHalted) 23: { 24: // as long as processing, wait 1 second for message 25: Message msg = _subscriber.Receive(TimeSpan.FromSeconds(1)); 26: if(msg != null && MessageReceived != null) 27: { 28: MessageReceived(msg); 29: } 30: } 31: } 32: } Note, now we can seal the class to avoid changes and the user just needs to provide a message handling method: 1: theListener.MessageReceived += CustomReceiveMethod; However, personally I don't think events hold up as well in this case because events are largely optional. To me, what is the point of a listener if you create one with no event listeners? So in my mind, use events when handling the notification is optional. So how about the delegation via interface? I personally like this method quite a bit. Basically what it does is similar to inheritance method mentioned first, but better because it makes it easy to split the part of the class that doesn't change (the base listener behavior) from the part that does change (the user-specified action after receiving a message). So assuming we had an interface like: 1: public interface IMessageHandler 2: { 3: void OnMessageReceived(Message receivedMessage); 4: } Our listener would look like this: 1: // using delegation via interface - omitting argument null checks and halt logic 2: public sealed class MessageListener 3: { 4: private ISubscriber _subscriber; 5: private IMessageHandler _handler; 6: private bool _isHalted = false; 7: private Thread _messageThread; 8:  9: // assign the subscriber and start the messaging loop 10: public MessageListener(ISubscriber subscriber, IMessageHandler handler) 11: { 12: _subscriber = subscriber; 13: _handler = handler; 14: _messageThread = new Thread(MessageLoop); 15: _messageThread.Start(); 16: } 17:  18: // handle the looping in the thread 19: private void MessageLoop() 20: { 21: while(!_isHalted) 22: { 23: // as long as processing, wait 1 second for message 24: Message msg = _subscriber.Receive(TimeSpan.FromSeconds(1)); 25: if(msg != null) 26: { 27: _handler.OnMessageReceived(msg); 28: } 29: } 30: } 31: } And they would call it by creating a class that implements IMessageHandler and pass that instance into the constructor of the listener. I like that this alleviates the issues of inheritance and essentially forces you to provide a handler (as opposed to events) on construction. Well, this is good, but personally I think we could go one step further. While I like this better than events or inheritance, it still forces you to implement a specific method name. What if that name collides? Furthermore if you have lots of these you end up either with large classes inheriting multiple interfaces to implement one method, or lots of small classes. Also, if you had one class that wanted to manage messages from two different subscribers differently, it wouldn't be able to because the interface can't be overloaded. This brings me to using delegates directly. In general, every time I think about creating an interface for something, and if that interface contains only one method, I start thinking a delegate is a better approach. Now, that said delegates don't accomplish everything an interface can. Obviously having the interface allows you to refer to the classes that implement the interface which can be very handy. In this case, though, really all you want is a method to handle the messages. So let's look at a method delegate: 1: // using delegation via delegate - omitting argument null checks and halt logic 2: public sealed class MessageListener 3: { 4: private ISubscriber _subscriber; 5: private Action<Message> _handler; 6: private bool _isHalted = false; 7: private Thread _messageThread; 8:  9: // assign the subscriber and start the messaging loop 10: public MessageListener(ISubscriber subscriber, Action<Message> handler) 11: { 12: _subscriber = subscriber; 13: _handler = handler; 14: _messageThread = new Thread(MessageLoop); 15: _messageThread.Start(); 16: } 17:  18: // handle the looping in the thread 19: private void MessageLoop() 20: { 21: while(!_isHalted) 22: { 23: // as long as processing, wait 1 second for message 24: Message msg = _subscriber.Receive(TimeSpan.FromSeconds(1)); 25: if(msg != null) 26: { 27: _handler(msg); 28: } 29: } 30: } 31: } Here the MessageListener now takes an Action<Message>.  For those of you unfamiliar with the pre-defined delegate types in .NET, that is a method with the signature: void SomeMethodName(Message). The great thing about delegates is it gives you a lot of power. You could create an anonymous delegate, a lambda, or specify any other method as long as it satisfies the Action<Message> signature. This way, you don't need to define an arbitrary helper class or name the method a specific thing. Incidentally, we could combine both the interface and delegate approach to allow maximum flexibility. Doing this, the user could either pass in a delegate, or specify a delegate interface: 1: // using delegation - give users choice of interface or delegate 2: public sealed class MessageListener 3: { 4: private ISubscriber _subscriber; 5: private Action<Message> _handler; 6: private bool _isHalted = false; 7: private Thread _messageThread; 8:  9: // assign the subscriber and start the messaging loop 10: public MessageListener(ISubscriber subscriber, Action<Message> handler) 11: { 12: _subscriber = subscriber; 13: _handler = handler; 14: _messageThread = new Thread(MessageLoop); 15: _messageThread.Start(); 16: } 17:  18: // passes the interface method as a delegate using method group 19: public MessageListener(ISubscriber subscriber, IMessageHandler handler) 20: : this(subscriber, handler.OnMessageReceived) 21: { 22: } 23:  24: // handle the looping in the thread 25: private void MessageLoop() 26: { 27: while(!_isHalted) 28: { 29: // as long as processing, wait 1 second for message 30: Message msg = _subscriber.Receive(TimeSpan.FromSeconds(1)); 31: if(msg != null) 32: { 33: _handler(msg); 34: } 35: } 36: } 37: } } This is the method I tend to prefer because it allows the user of the class to choose which method works best for them. You may be curious about the actual performance of these different methods. 1: Enter iterations: 2: 1000000 3:  4: Inheritance took 4 ms. 5: Events took 7 ms. 6: Interface delegation took 4 ms. 7: Lambda delegate took 5 ms. Before you get too caught up in the numbers, however, keep in mind that this is performance over over 1,000,000 iterations. Since they are all < 10 ms which boils down to fractions of a micro-second per iteration so really any of them are a fine choice performance wise. As such, I think the choice of what to do really boils down to what you're trying to do. Here's my guidelines: Inheritance should be used only when defining a collection of related types with implementation specific behaviors, it should not be used as a hook for users to add their own functionality. Events should be used when subscription is optional or multi-cast is desired. Interface delegation should be used when you wish to refer to implementing classes by the interface type or if the type requires several methods to be implemented. Delegate method delegation should be used when you only need to provide one method and do not need to refer to implementers by the interface name.

    Read the article

  • Do You Need a Static or a Dynamic Website?

    Web design industry is thriving despite the global economic slowdown. The boom in small home based businesses increased the demand of web design services. Today?s small businesses and home based busi... [Author: Emily Matthew - Web Design and Development - March 31, 2010]

    Read the article

  • Question about separating game core engine from game graphics engine...

    - by Conrad Clark
    Suppose I have a SquareObject class, which implements IDrawable, an interface which contains the method void Draw(). I want to separate drawing logic itself from the game core engine. My main idea is to create a static class which is responsible to dispatch actions to the graphic engine. public static class DrawDispatcher<T> { private static Action<T> DrawAction = new Action<T>((ObjectToDraw)=>{}); public static void SetDrawAction(Action<T> action) { DrawAction = action; } public static void Dispatch(this T Obj) { DrawAction(Obj); } } public static class Extensions { public static void DispatchDraw<T>(this object Obj) { DrawDispatcher<T>.DispatchDraw((T)Obj); } } Then, on the core side: public class SquareObject: GameObject, IDrawable { #region Interface public void Draw() { this.DispatchDraw<SquareObject>(); } #endregion } And on the graphics side: public static class SquareRender{ //stuff here public static void Initialize(){ DrawDispatcher<SquareObject>.SetDrawAction((Square)=>{//my square rendering logic}); } } Do this "pattern" follow best practices? And a plus, I could easily change the render scheme of each object by changing the DispatchDraw parameter, as in: public class SuperSquareObject: GameObject, IDrawable { #region Interface public void Draw() { this.DispatchDraw<SquareObject>(); } #endregion } public class RedSquareObject: GameObject, IDrawable { #region Interface public void Draw() { this.DispatchDraw<RedSquareObject>(); } #endregion } RedSquareObject would have its own render method, but SuperSquareObject would render as a normal SquareObject I'm just asking because i do not want to reinvent the wheel, and there may be a design pattern similar (and better) to this that I may be not acknowledged of. Thanks in advance!

    Read the article

  • What is the best way to check if there is overlap between player and static, non-collidable items in bullet physic engine

    - by tigrou
    I'd like to add non collidable objects (eg: power ups, items, ...) in a game world using Bullet Physics Engine and to know if there is collision between player and them. Some info : there is a lot of items ( 1000), all are box shapes and they don't overlap. Here is things i have tried : btDbvt* bvtItems = new btDbvt(); //btDbvt is a hierachical AABB tree, used by Bullet foreach(var item ...) { btDbvtVolume volume = ... //compute item AABB; bvtItems->insert(volume, (void*)someExtraData); } Then, to find collisions between items and player : playerRigidBody->getAabb(min, max); btDbvtVolume playervolume = ... //compute player AABB bvtItems->collideTV(bvtItems->m_root, playervolume, *someCollisionHandler); This works fairly well (and its very fast), however, there is a problem : it only check items AABB against player AABB. That loss of precision is acceptable for items but not for player which is not a box. It would actually need another check to make sure player really collide with item but i don't know how to do this in Bullet. It would have been nice to have a function like this : playerRigidBody->checkCollisionWithAABB(); After doing trying that, I discovered that a btGhostObject exist and seems to have been made for that. I changed my code like this : foreach(var item...) { btCollisionObject* ghostObject = new btGhostObject(); ghostObject->setCollisionShape(boxShape); ghostObject->setCollisionFlags(ghostObject->getCollisionFlags() | btCollisionObject::CF_NO_CONTACT_RESPONSE); startTransform.setOrigin(...); //item position ghostObject->setWorldTransform(startTransform); dynamicsWorld->addCollisionObject(ghostObject, btBroadphaseProxy::SensorTrigger, btBroadphaseProxy:: CharacterFilter); } It also works ok, but there is a huge fps drop (almost ten times slower) which is not acceptable. Maybe there is something missing (forget set a flag) and Bullet is doing extra job for nothing or maybe all that ghostObjects are polluting broad phase and ghostObject is not the right thing for that. Any help would be appreciated.

    Read the article

  • Unreal 3 Editor (Unreal Tournament 3) Why does the X Y Z translations now rotate along with my static meshes?

    - by Gareth Jones
    So I was making a map for UT3, using the Unreal 3 Editor provided, and all was going well. However I was doing some work with InterpActors and Vehicle Spawners, when I must have hit a key by mistake (or other wise somehow changed something) by mistake. Now the X Y Z translations that are used to move objects around in the editor will rotate along with the object (Ive put images down below to help show what I mean) - This is very annoying because it also changes the direction the arrow keys move a rotated object, in the example below, the Down arrow key will now move the object to the right. How can I fix this? (Note both images are taken from the same viewpoint) Before Rotation: After Rotation: P.S. If someone could please provide me with the correct / better name for the X Y Z "things" it would be much appreciated, thanks!

    Read the article

< Previous Page | 115 116 117 118 119 120 121 122 123 124 125 126  | Next Page >