Search Results

Search found 7580 results on 304 pages for 'coordinate systems'.

Page 12/304 | < Previous Page | 8 9 10 11 12 13 14 15 16 17 18 19  | Next Page >

  • What sort of things can cause a whole system to appear to hang for 100s-1000s of milliseconds?

    - by Ogapo
    I am working on a Windows game and while rendering, some computers will experience intermittent pauses ("hitches" for lack of a better term). When profiled they appear in seemingly random places in the code. Eventually I noticed that it wasn't just my process that was affected, but (seemingly) every process on the system. All of the threads in my application hitch at once. The CPU utilization drops during these hitches and it appears as if most processes make no progress. This leads me to believe this may be an Operating System or Driver issue, but it only occurs while playing the game (and only on some systems). What sort of operations might the operating system be doing that would require the kernel to pause all user threads and block. Some kind of I/O? At first I thought of paging but my impression is that would only affect a single process, no? Some systems in use: Windows, DirectX (3d), nVidia cards (unknown if replicates on ATI), using overlapped io for streaming

    Read the article

  • Operative systems on SD cards

    - by HisDudeness
    I was getting some wild ideas the last days, like putting some operative systems into SD cards rather than on my hard drive. I'll go further into details now and explain what lead me to consider this probably abominable decision. I am on a laptop (that means I have a native SD-card reader) which is currently running a cross-distro setup, with a bunch of Linux systems (placed in dedicated ext4 logical partitions into a huge extended one) regulated by an unique GRUB. Since today, my laptop haven't even seen any Windows system with binoculars. I was thinking about placing all the os part of my setup into a Secure Digital to save all my 500 Gb Hard Drive for documents, music, videos and so on, and being able to just remove the SD and boot my system into another computer too, as well as having the possibility of booting other systems into mine by just plugging in another SD, without having to keep it constantly placed in my PC. Also, in the remote case in the near future I just wanted to boot Windows 8 in it, I read it causes major boot incompatibility issues with other systems by needing a digital signature in order for them to start. By having it in a removable drive, I could just get rid of it when I'm needing him and switch its card with Linux one, and so not having any obstacles to their boot. Now, my questions are: I know unlikely traditional rotating disk drives, integrated circuits ones have a limited lifespan in terms of cluster rewriting. Is it an obstacle to that kind of usage? I mean, some Ultrabooks are using SSD now, is it the same issue, or there are some differences between Solid State Drives and Secure Digitals in that sense? Maybe having them to store system files which are in fixed positions (making the even-usage of cluster technology useless) constantly being re-read and updated and similar things just gets them soon unserviceable, do it? Second question: are all motherboards and BIOSes able to boot from SDs just like they are from USB pen drives (I mean, provided card reader is USB-connected, isn't it)? Or can't bootloaders like GRUB be installed on SDs working? If they can't, is it a solution installing GRUB to MBR and making boot option pointing to SD? Will it work? Are there any other problems to installing OSs on a Secure Digital?

    Read the article

  • How to use Git over multiple similar systems

    - by Spidfire
    I have a system I need to duplicate over several systems and make minor changes like change less/css variables and configuration files. Is there a best practice for these kind of problems? I currently do: git clone repo cp ../default/config.js config.js ... for several files or should I create different branches of the same repo or should I create an repo for the changes? It is currently doable but it will get annoying if I get more than 5 similar systems.

    Read the article

  • The SPARC SuperCluster

    - by Karoly Vegh
    Oracle has been providing a lead in the Engineered Systems business for quite a while now, in accordance with the motto "Hardware and Software Engineered to Work Together." Indeed it is hard to find a better definition of these systems.  Allow me to summarize the idea. It is:  Build a compute platform optimized to run your technologies Develop application aware, intelligently caching storage components Take an impressively fast network technology interconnecting it with the compute nodes Tune the application to scale with the nodes to yet unseen performance Reduce the amount of data moving via compression Provide this all in a pre-integrated single product with a single-pane management interface All these ideas have been around in IT for quite some time now. The real Oracle advantage is adding the last one to put these all together. Oracle has built quite a portfolio of Engineered Systems, to run its technologies - and run those like they never ran before. In this post I'll focus on one of them that serves as a consolidation demigod, a multi-purpose engineered system.  As you probably have guessed, I am talking about the SPARC SuperCluster. It has many great features inherited from its predecessors, and it adds several new ones. Allow me to pick out and elaborate about some of the most interesting ones from a technological point of view.  I. It is the SPARC SuperCluster T4-4. That is, as compute nodes, it includes SPARC T4-4 servers that we learned to appreciate and respect for their features: The SPARC T4 CPUs: Each CPU has 8 cores, each core runs 8 threads. The SPARC T4-4 servers have 4 sockets. That is, a single compute node can in parallel, simultaneously  execute 256 threads. Now, a full-rack SPARC SuperCluster has 4 of these servers on board. Remember the keyword demigod.  While retaining the forerunner SPARC T3's exceptional throughput, the SPARC T4 CPUs raise the bar with single performance too - a humble 5x better one than their ancestors.  actually, the SPARC T4 CPU cores run in both single-threaded and multi-threaded mode, and switch between these two on-the-fly, fulfilling not only single-threaded OR multi-threaded applications' needs, but even mixed requirements (like in database workloads!). Data security, anyone? Every SPARC T4 CPU core has a built-in encryption engine, that is, encryption algorithms cast into silicon.  A PCI controller right on the chip for customers who need I/O performance.  Built-in, no-cost Virtualization:  Oracle VM for SPARC (the former LDoms or Logical Domains) is not a server-emulation virtualization technology but rather a serverpartitioning one, the hypervisor runs in the server firmware, and all the VMs' HW resources (I/O, CPU, memory) are accessed natively, without performance overhead.  This enables customers to run a number of Solaris 10 and Solaris 11 VMs separated, independent of each other within a physical server II. For Database performance, it includes Exadata Storage Cells - one of the main reasons why the Exadata Database Machine performs at diabolic speed. What makes them important? They provide DB backend storage for your Oracle Databases to run on the SPARC SuperCluster, that is what they are built and tuned for DB performance.  These storage cells are SQL-aware.  That is, if a SPARC T4 database compute node executes a query, it doesn't simply request tons of raw datablocks from the storage, filters the received data, and throws away most of it where the statement doesn't apply, but provides the SQL query to the storage node too. The storage cell software speaks SQL, that is, it is able to prefilter and through that transfer only the relevant data. With this, the traffic between database nodes and storage cells is reduced immensely. Less I/O is a good thing - as they say, all the CPUs of the world do one thing just as fast as any other - and that is waiting for I/O.  They don't only pre-filter, but also provide data preprocessing features - e.g. if a DB-node requests an aggregate of data, they can calculate it, and handover only the results, not the whole set. Again, less data to transfer.  They support the magical HCC, (Hybrid Columnar Compression). That is, data can be stored in a precompressed form on the storage. Less data to transfer.  Of course one can't simply rely on disks for performance, there is Flash Storage included there for caching.  III. The low latency, high-speed backbone network: InfiniBand, that interconnects all the members with: Real High Speed: 40 Gbit/s. Full Duplex, of course. Oh, and a really low latency.  RDMA. Remote Direct Memory Access. This technology allows the DB nodes to do exactly that. Remotely, directly placing SQL commands into the Memory of the storage cells. Dodging all the network-stack bottlenecks, avoiding overhead, placing requests directly into the process queue.  You can also run IP over InfiniBand if you please - that's the way the compute nodes can communicate with each other.  IV. Including a general-purpose storage too: the ZFSSA, which is a unified storage, providing NAS and SAN access too, with the following features:  NFS over RDMA over InfiniBand. Nothing is faster network-filesystem-wise.  All the ZFS features onboard, hybrid storage pools, compression, deduplication, snapshot, replication, NFS and CIFS shares Storageheads in a HA-Cluster configuration providing availability of the data  DTrace Live Analytics in a web-based Administration UI Being a general purpose application data storage for your non-database applications running on the SPARC SuperCluster over whichever protocol they prefer, easily replicating, snapshotting, cloning data for them.  There's a lot of great technology included in Oracle's SPARC SuperCluster, we have talked its interior through. As for external scalability: you can start with a half- of full- rack SPARC SuperCluster, and scale out to several racks - that is, stacking not separate full-rack SPARC SuperClusters, but extending always one large instance of the size of several full-racks. Yes, over InfiniBand network. Add racks as you grow.  What technologies shall run on it? SPARC SuperCluster is a general purpose scaleout consolidation/cloud environment. You can run Oracle Databases with RAC scaling, or Oracle Weblogic (end enjoy the SPARC T4's advantages to run Java). Remember, Oracle technologies have been integrated with the Oracle Engineered Systems - this is the Oracle on Oracle advantage. But you can run other software environments such as SAP if you please too. Run any application that runs on Oracle Solaris 10 or Solaris 11. Separate them in Virtual Machines, or even Oracle Solaris Zones, monitor and manage those from a central UI. Here the key takeaways once again: The SPARC SuperCluster: Is a pre-integrated Engineered System Contains SPARC T4-4 servers with built-in virtualization, cryptography, dynamic threading Contains the Exadata storage cells that intelligently offload the burden of the DB-nodes  Contains a highly available ZFS Storage Appliance, that provides SAN/NAS storage in a unified way Combines all these elements over a high-speed, low-latency backbone network implemented with InfiniBand Can grow from a single half-rack to several full-rack size Supports the consolidation of hundreds of applications To summarize: All these technologies are great by themselves, but the real value is like in every other Oracle Engineered System: Integration. All these technologies are tuned to perform together. Together they are way more than the sum of all - and a careful and actually very time consuming integration process is necessary to orchestrate all these for performance. The SPARC SuperCluster's goal is to enable infrastructure operations and offer a pre-integrated solution that can be architected and delivered in hours instead of months of evaluations and tests. The tedious and most importantly time and resource consuming part of the work - testing and evaluating - has been done.  Now go, provide services.   -- charlie  

    Read the article

  • Oracle’s New Memory-Optimized x86 Servers: Getting the Most Out of Oracle Database In-Memory

    - by Josh Rosen, x86 Product Manager-Oracle
    With the launch of Oracle Database In-Memory, it is now possible to perform real-time analytics operations on your business data as it exists at that moment – in the DRAM of the server – and immediately return completely current and consistent data. The Oracle Database In-Memory option dramatically accelerates the performance of analytics queries by storing data in a highly optimized columnar in-memory format.  This is a truly exciting advance in database technology.As Larry Ellison mentioned in his recent webcast about Oracle Database In-Memory, queries run 100 times faster simply by throwing a switch.  But in order to get the most from the Oracle Database In-Memory option, the underlying server must also be memory-optimized. This week Oracle announced new 4-socket and 8-socket x86 servers, the Sun Server X4-4 and Sun Server X4-8, both of which have been designed specifically for Oracle Database In-Memory.  These new servers use the fastest Intel® Xeon® E7 v2 processors and each subsystem has been designed to be the best for Oracle Database, from the memory, I/O and flash technologies right down to the system firmware.Amongst these subsystems, one of the most important aspects we have optimized with the Sun Server X4-4 and Sun Server X4-8 are their memory subsystems.  The new In-Memory option makes it possible to select which parts of the database should be memory optimized.  You can choose to put a single column or table in memory or, if you can, put the whole database in memory.  The more, the better.  With 3 TB and 6 TB total memory capacity on the Sun Server X4-4 and Sun Server X4-8, respectively, you can memory-optimize more, if not your entire database.   Sun Server X4-8 CMOD with 24 DIMM slots per socket (up to 192 DIMM slots per server) But memory capacity is not the only important factor in selecting the best server platform for Oracle Database In-Memory.  As you put more of your database in memory, a critical performance metric known as memory bandwidth comes into play.  The total memory bandwidth for the server will dictate the rate in which data can be stored and retrieved from memory.  In order to achieve real-time analysis of your data using Oracle Database In-Memory, even under heavy load, the server must be able to handle extreme memory workloads.  With that in mind, the Sun Server X4-8 was designed with the maximum possible memory bandwidth, providing over a terabyte per second of total memory bandwidth.  Likewise, the Sun Server X4-4 also provides extreme memory bandwidth in an even more compact form factor with over half a terabyte per second, providing customers with scalability and choice depending on the size of the database.Beyond the memory subsystem, Oracle’s Sun Server X4-4 and Sun Server X4-8 systems provide other key technologies that enable Oracle Database to run at its best.  The Sun Server X4-4 allows for up 4.8 TB of internal, write-optimized PCIe flash while the Sun Server X4-8 allows for up to 6.4 TB of PCIe flash.  This enables dramatic acceleration of data inserts and updates to Oracle Database.  And with the new elastic computing capability of Oracle’s new x86 servers, server performance can be adapted to your specific Oracle Database workload to ensure that every last bit of processing power is utilized.Because Oracle designs and tests its x86 servers specifically for Oracle workloads, we provide the highest possible performance and reliability when running Oracle Database.  To learn more about Sun Server X4-4 and Sun Server X4-8, you can find more details including data sheets and white papers here. Josh Rosen is a Principal Product Manager for Oracle’s x86 servers, focusing on Oracle’s operating systems and software.  He previously spent more than a decade as a developer and architect of system management software. Josh has worked on system management for many of Oracle's hardware products ranging from the earliest blade systems to the latest Oracle x86 servers. 

    Read the article

  • Converting to and from local and world 3D coordinate spaces?

    - by James Bedford
    Hey guys, I've been following a guide I found here (http://knol.google.com/k/matrices-for-3d-applications-view-transformation) on constructing a matrix that will allow me to 3D coordinates to an object's local coordinate space, and back again. I've tried to implement these two matrices using my object's look, side, up and location vectors and it seems to be working for the first three coordinates. I'm a little confused as to what I should expect for the w coordinate. Here are couple of examples from the print outs I've made of the matricies that are constructed. I'm passing a test vector of [9, 8, 14, 1] each time to see if I can convert both ways: Basic example: localize matrix: Matrix: 0.000000 -0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 5.237297 -45.530716 11.021271 1.000000 globalize matrix: Matrix: 0.000000 0.000000 1.000000 0.000000 -0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 -11.021271 -45.530716 -5.237297 1.000000 test: Vector4f(9.000000, 8.000000, 14.000000, 1.000000) localTest: Vector4f(14.000000, 8.000000, 9.000000, -161.812256) worldTest: Vector4f(9.000000, 8.000000, 14.000000, -727.491455) More complicated example: localize matrix: Matrix: 0.052504 -0.000689 -0.998258 0.000000 0.052431 0.998260 0.002068 0.000000 0.997241 -0.052486 0.052486 0.000000 58.806095 2.979346 -39.396252 1.000000 globalize matrix: Matrix: 0.052504 0.052431 0.997241 0.000000 -0.000689 0.998260 -0.052486 0.000000 -0.998258 0.002068 0.052486 0.000000 -42.413120 5.975957 -56.419727 1.000000 test: Vector4f(9.000000, 8.000000, 14.000000, 1.000000) localTest: Vector4f(-13.508600, 8.486917, 9.290090, 2.542114) worldTest: Vector4f(9.000190, 7.993863, 13.990230, 102.057129) As you can see in the more complicated example, the coordinates after converting both ways loose some precision, but this isn't a problem. I'm just wondering how I should deal with the last (w) coordinate? Should I just set it to 1 after performing the matrix multiplication, or does it look like I've done something wrong? Thanks in advance for your help!

    Read the article

  • problem with two key ranges in couchdb

    - by Duasto
    I'm having problem getting the right results in my coordinate system. To explain my system, I have this simple database that have x_axis, y_axis and name columns. I don't need to get all the data, I just need to display some part of it. For example, I have a coordinate system that have 10:10(meaning from x_axis -10 to 10 and from y_axis -10 to 10) and I want to display only 49 coordinates. In sql query I can do it something like this: "select * from coordinate where x_axis = -3 and x_axis <= 3 and y_axis = -3 y_axis <= 3" I tried this function but no success: "by_range": { "map": "function(doc) { emit([doc.x_axis, doc.y_axis], doc) }" } by_range?startkey=[-3,-3]&endkey=[3,3] I got a wrong results of: -3x-3 -3x-2 -3x-1 -3x0 -3x1 -3x2 -3x3 <-- should not display this part -- -3x4 -3x5 -3x6 -3x7 -3x8 -3x9 -3x10 <-- end of should not display this part -- ..... up to 3x3 to give you a better understanding of my project here is the screenshot of that I want to be made: Oops they don't allowed new poster to post an image img96(dot)imageshack(dot)us/img96/5382/coordinates(dot)jpg <<< just change the "(dot)" to "."

    Read the article

  • Windows 7 boot manager not localized on UEFI systems

    - by Massimo
    I originally posted this on SuperUser because I discovered this behaviour on my home computer, but this seems to be a general issue on UEFI systems, thus I'm posting here too; I also hope someone here can shed some light on what's going on. Italian version of Windows 7 x64 SP1, same installation media used for both situations. When running on BIOS systems, the boot manager is fully localized, both for the loading screen and for the F8 boot menu. When running on UEFI systems, the boot manager always runs in English, even if it's correctly configured to use the it-IT locale, as BCDEDIT clearly shows: Windows Boot Manager -------------------- identificatore {bootmgr} device partition=\Device\HarddiskVolume1 path \EFI\Microsoft\Boot\bootmgfw.efi description Windows Boot Manager locale it-IT inherit {globalsettings} default {current} resumeobject {9ef36aa6-4188-11e3-909d-d32f0c3871c8} displayorder {current} toolsdisplayorder {memdiag} timeout 30 Caricatore di avvio di Windows ------------------- identificatore {current} device partition=C: path \Windows\system32\winload.efi description Windows 7 locale it-IT inherit {bootloadersettings} recoverysequence {9ef36aa8-4188-11e3-909d-d32f0c3871c8} recoveryenabled Yes osdevice partition=C: systemroot \Windows resumeobject {9ef36aa6-4188-11e3-909d-d32f0c3871c8} nx OptIn I also noticed something strange here; the motherboard setup shows "Windows Boot Manager" as the main boot option, while the actual boot disk is listed as the second one. Looks like the Windows Boot Manager is actually being loaded from somewhere else than the first partition of the first disk... what's going on here? Update I've also checked the EFI boot manager using bcdedit /enum FIRMWARE. That one looks correctly localized, too: Boot Manager per firmware --------------------- identificatore {fwbootmgr} displayorder {bootmgr} {9ef36aa4-4188-11e3-909d-d32f0c3871c8} {a30e8550-47e4-11e3-9ad1-806e6f6e6963} timeout 1 Windows Boot Manager -------------------- identificatore {bootmgr} device partition=\Device\HarddiskVolume1 path \EFI\Microsoft\Boot\bootmgfw.efi description Windows Boot Manager locale it-IT inherit {globalsettings} default {current} resumeobject {9ef36aa6-4188-11e3-909d-d32f0c3871c8} displayorder {current} toolsdisplayorder {memdiag} timeout 30 Applicazione firmware (101fffff) ------------------------------- identificatore {9ef36aa4-4188-11e3-909d-d32f0c3871c8} description CD/DVD Drive Applicazione firmware (101fffff) ------------------------------- identificatore {a30e8550-47e4-11e3-9ad1-806e6f6e6963} description Hard Drive

    Read the article

  • Don’t Miss The Top Exastack ISV Headlines – Week Of June 5

    - by Roxana Babiciu
    Smartsoft's OCEAN Payment Processing Solution achieves Oracle Exadata Optimized status. "Performance is the most important issue for our success in the market and running OCEAN on the Oracle Exadata Database Machine provides customers with extreme performance.” – Learn more Banking solution FORBIS Ltd’s FORPOST achieves Oracle Exadata, Exalogic and SuperCluster Ready Status. “We are glad to offer our current and future customers the newest features provided by Oracle Engineered Systems to achieve maximum reliability and speed operation.” – Learn more

    Read the article

  • The Jack LaLanne School of Sysadmins

    - by rickramsey
    Two of my childhood heroes were Tarzan and Jack LaLanne. Tarzan was an obvious choice: what boy wouldn't want to spend his days bungee jumping through the jungle with his own pack of gorillas? Jack Lalanne had a disturbing habit of wearing stretch pants, but he was so damn fit for an old guy that you couldn't help but be impressed. Especially back then, when nobody knew what a dumb bell was, much less Cross-Fit. Here's what he did to celebrate his 70th birthday. Sooner or later we all face a choice in our careers: surrender to the life of a has-been like Bruce Sprinsteen's baseball player or become an unstoppable sysadmin like Jack Lalanne. If you'd rather keep on fighting like Jack, give these resources a look. Brian Bream's blog provides specific suggestions for keeping your skills up to date. The video interviews describe the types of technologies that are challenging what you used to know. Blog: The Old School Sysadmin - A Dying Breed? by Brian Bream "The sysadmin role has been far too dependent on performing repetitive tasks and working in a reactionary mode ... the sysadmin must grow a much larger skill set to be successful. Don’t grow vertically in one technology, grow horizontally amongst many technologies." Just one of the suggestions Brian Bream provides in this excellent blog post. Video: Freeing the Sysadmin From Repetitive Tasks Interview with Marshall Choy Marshall Choy, Director of Optimized Solutions at Oracle was once a sysadmin. And a Solaris engineer. He explains what optimized solutions are, how they are developed and tested, how they handle patching, and how these vertically integrated systems impact the job and duties of a sysadmin. Video: The Oracle Database Appliance Interview with Bob Thome Bob Thome, Senior Director of Product Management, explains what makes the Database Appliance simple, reliable, and affordable, and how it could change the economies and processes of the data center. Video: Why Pinellas County Chose Oracle Exalytics Interview with Gautham Gautham (pronounced like Batman's Gotham) recently led an effort to refresh the Pinellas County hardware systems. He'll explain what they were looking for, why they chose Oracle Exalytics, how they became convinced it was the right decision, and how it changed the way they managed their data center. Video: DTrace for System Administrators Interview with Brendan Gregg This video interview will give you an idea of some of the value-add tasks you can perform when you are freed from the reactive mode that Brian Bream describes in his blog. Brendan Gregg describes the best ways for sysadmins to tune deployed applications to get more performance out of them in their particular computing environment photograph of Ford Mustang GT 500 taken at Gateway Museum copyright by Rick Ramsey -Rick Follow me on: Blog | Facebook | Twitter | Personal Twitter | YouTube | The Great Peruvian Novel

    Read the article

  • Oracle’s Sun Server X4-8 with Built-in Elastic Computing

    - by kgee
    We are excited to announce the release of Oracle's new 8-socket server, Sun Server X4-8. It’s the most flexible 8-socket x86 server Oracle has ever designed, and also the most powerful. Not only does it use the fastest Intel® Xeon® E7 v2 processors, but also its memory, I/O and storage subsystems are all designed for maximum performance and throughput. Like its predecessor, the Sun Server X4-8 uses a “glueless” design that allows for maximum performance for Oracle Database, while also reducing power consumption and improving reliability. The specs are pretty impressive. Sun Server X4-8 supports 120 cores (or 240 threads), 6 TB memory, 9.6 TB HDD capacity or 3.2 TB SSD capacity, contains 16 PCIe Gen 3 I/O expansion slots, and allows for up to 6.4 TB Sun Flash Accelerator F80 PCIe Cards. The Sun Server X4-8 is also the most dense x86 server with its 5U chassis, allowing 60% higher rack-level core and DIMM slot density than the competition.  There has been a lot of innovation in Oracle’s x86 product line, but the latest and most significant is a capability called elastic computing. This new capability is built into each Sun Server X4-8.   Elastic computing starts with the Intel processor. While Intel provides a wide range of processors each with a fixed combination of core count, operational frequency, and power consumption, customers have been forced to make tradeoffs when they select a particular processor. They have had to make educated guesses on which particular processor (core count/frequency/cache size) will be best suited for the workload they intend to execute on the server.Oracle and Intel worked jointly to define a new processor, the Intel Xeon E7-8895 v2 for the Sun Server X4-8, that has unique characteristics and effectively combines the capabilities of three different Xeon processors into a single processor. Oracle system design engineers worked closely with Oracle’s operating system development teams to achieve the ability to vary the core count and operating frequency of the Xeon E7-8895 v2 processor with time without the need for a system level reboot.  Along with the new processor, enhancements have been made to the system BIOS, Oracle Solaris, and Oracle Linux, which allow the processors in the system to dynamically clock up to faster speeds as cores are disabled and to reach higher maximum turbo frequencies for the remaining active cores. One customer, a stock market trading company, will take advantage of the elastic computing capability of Sun Server X4-8 by repurposing servers between daytime stock trading activity and nighttime stock portfolio processing, daily, to achieve maximum performance of each workload.To learn more about Sun Server X4-8, you can find more details including the data sheet and white papers here.Josh Rosen is a Principal Product Manager for Oracle’s x86 servers, focusing on Oracle’s operating systems and software. He previously spent more than a decade as a developer and architect of system management software. Josh has worked on system management for many of Oracle's hardware products ranging from the earliest blade systems to the latest Oracle x86 servers.

    Read the article

  • Think It's Hard to Integrate the Front and Back Office? Think Again...

    - by ruth.donohue
    There's no doubt about it, fragmented customer information across application silos exist because integration isn't easy. It can be expensive. And it can be further complicated by proprietary architectures and vendors. But by leveraging Oracle Application Integration Architecure, Pillar Data Systems was able to integrate Oracle CRM On Demand with Oracle E-Business Suite in six weeks, reducing the time required to complete the integration by 50% and the maintenance by 20% to 25% to free IT resources to focus on strategic initiatives. Learn more...

    Read the article

  • Sun Blade 6000 Interactive 3D Demo

    - by ferhat
    Three dimensional  fly-by demos of Sun systems are available from your everyday Java-enabled browsers. Oracle's flexible, eco-efficient Sun Blade 6000 chassis integrates Oracle's x86 and SPARC server blade modules with high-capacity networking and storage blades to support a wide range of application environments.  Click on the static picture below to enter the interactive 3D demo mode: Visit Oracle Technology Network pages and product pages for more information on Oracle's Sun Blades Servers.   

    Read the article

  • Twitter Feed

    - by ferhat
    new TWTR.Widget({ version: 2, type: 'search', search: 'ORCL_InfraRed', interval: 10000, title: 'Inside news and all the buzz about Sun x86 Clustered Systems.', subject: 'Oracle InfraRed', width: 'auto', height: 300, theme: { shell: { background: '#ff0000', color: '#ffffff' }, tweets: { background: '#ffffff', color: '#444444', links: '#1985b5' } }, features: { scrollbar: false, loop: true, live: true, hashtags: true, timestamp: true, avatars: true, toptweets: true, behavior: 'default' } }).render().start();

    Read the article

  • Networking setup for three systems

    - by srihari
    Hi, I want to setup a client server environment. I have three systems one with Solaris and the other two with windows. I want to install all the database and other software on the Server and enable the client systems a limited access to the system resources. Can anyone help me how to setup this and also the hardware requirements to setup such an environment. Your replies will be mostly appreciable and helpful to others who has similar thoughts or requirements. As we have more programmatical knowledge and less networking knowledge ,please explain in detail Please provide any vedio tutorials links or documents which will be helpfull in this regard.

    Read the article

  • Networking setup for three systems

    - by srihari
    Hi, I want to setup a client server environment. I have three systems one with Solaris and the other two with windows. I want to install all the database and other software on the Server and enable the client systems a limited access to the system resources. Can anyone help me how to setup this and also the hardware requirements to setup such an environment. Your replies will be mostly appreciable and helpful to others who has similar thoughts or requirements. As we have more programmatical knowledge and less networking knowledge ,please explain in detail Please provide any vedio tutorials links or documents which will be helpfull in this regard. Thanks in Advance, Srihari.

    Read the article

  • ZFS replication between 2 ZFS file systems

    - by XO01
    I initially replicated tank/storage1 -- usb1/storage1-slave (depicted below), and then (deliberately) destroyed the snapshot I replicated from. By doing this, did I lose the ability to incrementally (zfs send -i) replicate between these 2 file systems? What's the best way to approach SYNC'ing these file systems after destroying this snapshot? # zfs list NAME USED AVAIL REFER MOUNTPOINT tank 128G 100G 23K /tank tank/storage1 128G 100G 128G /tank/storage1 usb1 122G 563G 24K /usb1 usb1/storage1-slave 122G 563G 122G /usb1/storage1-slave usb1/storage2 21K 563G 21K /usb1/storage2 What if I initially RSYNC'd tank/storage1 -- usb1/storage1-slave, and decided to incrementally replicate 'via zfs send -i'.

    Read the article

  • VMware Server guest systems are extremely slow with IO load on host (Ubuntu 8.04)

    - by Dennis G.
    We are experiencing performance issues with a VMware Server 2.x installation on an Ubuntu 8.04 host. When the host system is generating IO load (for example, copying large files as part of a backup operation), the guests (also Ubuntu 8.04) become extremely unresponsive and slow (simple Apache HTTP requests taking 5 seconds instead of the usual 200ms). We tried optimizing various aspects of the VMs, but the issue remains. Is there a known bug with VMware performance under linux if host IO load is high? Is there a way to fix this? Is this only an issue with Ubuntu systems, or have you seen it on other systems before? Thanks!

    Read the article

  • Sycronizing/deploying scripts across several systems

    - by otto
    I have a few time consuming tasks that I like to spread across several computers. These tasks require running an identical ruby or python script (or series of scripts that call each other) on each machine. The machines will a separate config file telling the script what portion of the task to complete. I want to figure out the best way to syncronize the scripts on these machines prior to running them. Up until now, I have been making changes to a copy of the script on a network share and then copying a fresh copy to each machine when I want to run it. But this is cumbersome and leaves a chance for error ( e.g missing a file on the copy or not clicking "copy and replace"). Lets assume the systems are standard windows machines that are not dedicated to this task and I don't need to run these scripts all the time (so I don't want a solution that runs 24/7 and always keeps them up to date, I'd prefer something that pushes/pulls on command). My thoughts on various options: Simple adaptation of my current workflow: Keep the originals on the network drive, but write a batch file that copies over the latest version of the scripts so everything is a one-click operation. Requires action on each system, but that's not the end of the world (since each one usually needs their configuration file changed slightly too). Put everything in a Mercurial/Git reposotory and pull a fresh copy onto each node. Going straight to the repo from each machine would guarantee a current version (and would have the fringe benefit of allowing edits to the script to be made from any machine). Cons would be that it requires VCS to be installed on each machine and there might be some pains dealing with authentication since I wouldn't use a public repo. Open up write access on a shared folder and write a script to use rsync (or similar) to push the changes out to all of the machines at once. This gets a current version on every machine (though you would have to change the script if you want to omit a machine or add a new one). Possible issue would be that each computer has to allow write access. Dropbox is a reasonable suggestion (and could work well) but I dont want to use an external service and I'd prefer not to have to have dropbox running 24/7 on systems that would normally not need it. Is there something simple that I am missing? Some tool designed expressly for doing this kind of thing? Otherwise I am leaning toward just tying all of the systems into Mercurial since, while it requires extra software, it is a little more robust than writing a batch file (e.g. if I split part of a script into a separate module, Mercurial will know what to do whereas I would have to add a line to the batch file).

    Read the article

  • Where can I find more information on "Kinds of Information Systems" [on hold]

    - by arielnmz
    Disclaimer: This is not a Power User question, but rather more of the Computer Enthusiasts kind. Also, I don't know the right site to post this kind of question. I'm writing a paper in which I am asked to mention and describe "5 types of information systems" to which my teacher explained: Like Web, Mobile, etc…, for example… He also said that we're not able to mention and describe those mentioned above. So the question is: What is the right topic to research or look into for more information about these different types of "information systems"?

    Read the article

  • Is there a Telecommunications Reference Architecture?

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Abstract   Reference architecture provides needed architectural information that can be provided in advance to an enterprise to enable consistent architectural best practices. Enterprise Reference Architecture helps business owners to actualize their strategies, vision, objectives, and principles. It evaluates the IT systems, based on Reference Architecture goals, principles, and standards. It helps to reduce IT costs by increasing functionality, availability, scalability, etc. Telecom Reference Architecture provides customers with the flexibility to view bundled service bills online with the provision of multiple services. It provides real-time, flexible billing and charging systems, to handle complex promotions, discounts, and settlements with multiple parties. This paper attempts to describe the Reference Architecture for the Telecom Enterprises. It lays the foundation for a Telecom Reference Architecture by articulating the requirements, drivers, and pitfalls for telecom service providers. It describes generic reference architecture for telecom enterprises and moves on to explain how to achieve Enterprise Reference Architecture by using SOA.   Introduction   A Reference Architecture provides a methodology, set of practices, template, and standards based on a set of successful solutions implemented earlier. These solutions have been generalized and structured for the depiction of both a logical and a physical architecture, based on the harvesting of a set of patterns that describe observations in a number of successful implementations. It helps as a reference for the various architectures that an enterprise can implement to solve various problems. It can be used as the starting point or the point of comparisons for various departments/business entities of a company, or for the various companies for an enterprise. It provides multiple views for multiple stakeholders.   Major artifacts of the Enterprise Reference Architecture are methodologies, standards, metadata, documents, design patterns, etc.   Purpose of Reference Architecture   In most cases, architects spend a lot of time researching, investigating, defining, and re-arguing architectural decisions. It is like reinventing the wheel as their peers in other organizations or even the same organization have already spent a lot of time and effort defining their own architectural practices. This prevents an organization from learning from its own experiences and applying that knowledge for increased effectiveness.   Reference architecture provides missing architectural information that can be provided in advance to project team members to enable consistent architectural best practices.   Enterprise Reference Architecture helps an enterprise to achieve the following at the abstract level:   ·       Reference architecture is more of a communication channel to an enterprise ·       Helps the business owners to accommodate to their strategies, vision, objectives, and principles. ·       Evaluates the IT systems based on Reference Architecture Principles ·       Reduces IT spending through increasing functionality, availability, scalability, etc ·       A Real-time Integration Model helps to reduce the latency of the data updates Is used to define a single source of Information ·       Provides a clear view on how to manage information and security ·       Defines the policy around the data ownership, product boundaries, etc. ·       Helps with cost optimization across project and solution portfolios by eliminating unused or duplicate investments and assets ·       Has a shorter implementation time and cost   Once the reference architecture is in place, the set of architectural principles, standards, reference models, and best practices ensure that the aligned investments have the greatest possible likelihood of success in both the near term and the long term (TCO).     Common pitfalls for Telecom Service Providers   Telecom Reference Architecture serves as the first step towards maturity for a telecom service provider. During the course of our assignments/experiences with telecom players, we have come across the following observations – Some of these indicate a lack of maturity of the telecom service provider:   ·       In markets that are growing and not so mature, it has been observed that telcos have a significant amount of in-house or home-grown applications. In some of these markets, the growth has been so rapid that IT has been unable to cope with business demands. Telcos have shown a tendency to come up with workarounds in their IT applications so as to meet business needs. ·       Even for core functions like provisioning or mediation, some telcos have tried to manage with home-grown applications. ·       Most of the applications do not have the required scalability or maintainability to sustain growth in volumes or functionality. ·       Applications face interoperability issues with other applications in the operator's landscape. Integrating a new application or network element requires considerable effort on the part of the other applications. ·       Application boundaries are not clear, and functionality that is not in the initial scope of that application gets pushed onto it. This results in the development of the multiple, small applications without proper boundaries. ·       Usage of Legacy OSS/BSS systems, poor Integration across Multiple COTS Products and Internal Systems. Most of the Integrations are developed on ad-hoc basis and Point-to-Point Integration. ·       Redundancy of the business functions in different applications • Fragmented data across the different applications and no integrated view of the strategic data • Lot of performance Issues due to the usage of the complex integration across OSS and BSS systems   However, this is where the maturity of the telecom industry as a whole can be of help. The collaborative efforts of telcos to overcome some of these problems have resulted in bodies like the TM Forum. They have come up with frameworks for business processes, data, applications, and technology for telecom service providers. These could be a good starting point for telcos to clean up their enterprise landscape.   Industry Trends in Telecom Reference Architecture   Telecom reference architectures are evolving rapidly because telcos are facing business and IT challenges.   “The reality is that there probably is no killer application, no silver bullet that the telcos can latch onto to carry them into a 21st Century.... Instead, there are probably hundreds – perhaps thousands – of niche applications.... And the only way to find which of these works for you is to try out lots of them, ramp up the ones that work, and discontinue the ones that fail.” – Martin Creaner President & CTO TM Forum.   The following trends have been observed in telecom reference architecture:   ·       Transformation of business structures to align with customer requirements ·       Adoption of more Internet-like technical architectures. The Web 2.0 concept is increasingly being used. ·       Virtualization of the traditional operations support system (OSS) ·       Adoption of SOA to support development of IP-based services ·       Adoption of frameworks like Service Delivery Platforms (SDPs) and IP Multimedia Subsystem ·       (IMS) to enable seamless deployment of various services over fixed and mobile networks ·       Replacement of in-house, customized, and stove-piped OSS/BSS with standards-based COTS products ·       Compliance with industry standards and frameworks like eTOM, SID, and TAM to enable seamless integration with other standards-based products   Drivers of Reference Architecture   The drivers of the Reference Architecture are Reference Architecture Goals, Principles, and Enterprise Vision and Telecom Transformation. The details are depicted below diagram. @font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }div.Section1 { page: Section1; } Figure 1. Drivers for Reference Architecture @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Today’s telecom reference architectures should seamlessly integrate traditional legacy-based applications and transition to next-generation network technologies (e.g., IP multimedia subsystems). This has resulted in new requirements for flexible, real-time billing and OSS/BSS systems and implications on the service provider’s organizational requirements and structure.   Telecom reference architectures are today expected to:   ·       Integrate voice, messaging, email and other VAS over fixed and mobile networks, back end systems ·       Be able to provision multiple services and service bundles • Deliver converged voice, video and data services ·       Leverage the existing Network Infrastructure ·       Provide real-time, flexible billing and charging systems to handle complex promotions, discounts, and settlements with multiple parties. ·       Support charging of advanced data services such as VoIP, On-Demand, Services (e.g.  Video), IMS/SIP Services, Mobile Money, Content Services and IPTV. ·       Help in faster deployment of new services • Serve as an effective platform for collaboration between network IT and business organizations ·       Harness the potential of converging technology, networks, devices and content to develop multimedia services and solutions of ever-increasing sophistication on a single Internet Protocol (IP) ·       Ensure better service delivery and zero revenue leakage through real-time balance and credit management ·       Lower operating costs to drive profitability   Enterprise Reference Architecture   The Enterprise Reference Architecture (RA) fills the gap between the concepts and vocabulary defined by the reference model and the implementation. Reference architecture provides detailed architectural information in a common format such that solutions can be repeatedly designed and deployed in a consistent, high-quality, supportable fashion. This paper attempts to describe the Reference Architecture for the Telecom Application Usage and how to achieve the Enterprise Level Reference Architecture using SOA.   • Telecom Reference Architecture • Enterprise SOA based Reference Architecture   Telecom Reference Architecture   Tele Management Forum’s New Generation Operations Systems and Software (NGOSS) is an architectural framework for organizing, integrating, and implementing telecom systems. NGOSS is a component-based framework consisting of the following elements:   ·       The enhanced Telecom Operations Map (eTOM) is a business process framework. ·       The Shared Information Data (SID) model provides a comprehensive information framework that may be specialized for the needs of a particular organization. ·       The Telecom Application Map (TAM) is an application framework to depict the functional footprint of applications, relative to the horizontal processes within eTOM. ·       The Technology Neutral Architecture (TNA) is an integrated framework. TNA is an architecture that is sustainable through technology changes.   NGOSS Architecture Standards are:   ·       Centralized data ·       Loosely coupled distributed systems ·       Application components/re-use  ·       A technology-neutral system framework with technology specific implementations ·       Interoperability to service provider data/processes ·       Allows more re-use of business components across multiple business scenarios ·       Workflow automation   The traditional operator systems architecture consists of four layers,   ·       Business Support System (BSS) layer, with focus toward customers and business partners. Manages order, subscriber, pricing, rating, and billing information. ·       Operations Support System (OSS) layer, built around product, service, and resource inventories. ·       Networks layer – consists of Network elements and 3rd Party Systems. ·       Integration Layer – to maximize application communication and overall solution flexibility.   Reference architecture for telecom enterprises is depicted below. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 2. Telecom Reference Architecture   The major building blocks of any Telecom Service Provider architecture are as follows:   1. Customer Relationship Management   CRM encompasses the end-to-end lifecycle of the customer: customer initiation/acquisition, sales, ordering, and service activation, customer care and support, proactive campaigns, cross sell/up sell, and retention/loyalty.   CRM also includes the collection of customer information and its application to personalize, customize, and integrate delivery of service to a customer, as well as to identify opportunities for increasing the value of the customer to the enterprise.   The key functionalities related to Customer Relationship Management are   ·       Manage the end-to-end lifecycle of a customer request for products. ·       Create and manage customer profiles. ·       Manage all interactions with customers – inquiries, requests, and responses. ·       Provide updates to Billing and other south bound systems on customer/account related updates such as customer/ account creation, deletion, modification, request bills, final bill, duplicate bills, credit limits through Middleware. ·       Work with Order Management System, Product, and Service Management components within CRM. ·       Manage customer preferences – Involve all the touch points and channels to the customer, including contact center, retail stores, dealers, self service, and field service, as well as via any media (phone, face to face, web, mobile device, chat, email, SMS, mail, the customer's bill, etc.). ·       Support single interface for customer contact details, preferences, account details, offers, customer premise equipment, bill details, bill cycle details, and customer interactions.   CRM applications interact with customers through customer touch points like portals, point-of-sale terminals, interactive voice response systems, etc. The requests by customers are sent via fulfillment/provisioning to billing system for ordering processing.   2. Billing and Revenue Management   Billing and Revenue Management handles the collection of appropriate usage records and production of timely and accurate bills – for providing pre-bill usage information and billing to customers; for processing their payments; and for performing payment collections. In addition, it handles customer inquiries about bills, provides billing inquiry status, and is responsible for resolving billing problems to the customer's satisfaction in a timely manner. This process grouping also supports prepayment for services.   The key functionalities provided by these applications are   ·       To ensure that enterprise revenue is billed and invoices delivered appropriately to customers. ·       To manage customers’ billing accounts, process their payments, perform payment collections, and monitor the status of the account balance. ·       To ensure the timely and effective fulfillment of all customer bill inquiries and complaints. ·       Collect the usage records from mediation and ensure appropriate rating and discounting of all usage and pricing. ·       Support revenue sharing; split charging where usage is guided to an account different from the service consumer. ·       Support prepaid and post-paid rating. ·       Send notification on approach / exceeding the usage thresholds as enforced by the subscribed offer, and / or as setup by the customer. ·       Support prepaid, post paid, and hybrid (where some services are prepaid and the rest of the services post paid) customers and conversion from post paid to prepaid, and vice versa. ·       Support different billing function requirements like charge prorating, promotion, discount, adjustment, waiver, write-off, account receivable, GL Interface, late payment fee, credit control, dunning, account or service suspension, re-activation, expiry, termination, contract violation penalty, etc. ·       Initiate direct debit to collect payment against an invoice outstanding. ·       Send notification to Middleware on different events; for example, payment receipt, pre-suspension, threshold exceed, etc.   Billing systems typically get usage data from mediation systems for rating and billing. They get provisioning requests from order management systems and inquiries from CRM systems. Convergent and real-time billing systems can directly get usage details from network elements.   3. Mediation   Mediation systems transform/translate the Raw or Native Usage Data Records into a general format that is acceptable to billing for their rating purposes.   The following lists the high-level roles and responsibilities executed by the Mediation system in the end-to-end solution.   ·       Collect Usage Data Records from different data sources – like network elements, routers, servers – via different protocol and interfaces. ·       Process Usage Data Records – Mediation will process Usage Data Records as per the source format. ·       Validate Usage Data Records from each source. ·       Segregates Usage Data Records coming from each source to multiple, based on the segregation requirement of end Application. ·       Aggregates Usage Data Records based on the aggregation rule if any from different sources. ·       Consolidates multiple Usage Data Records from each source. ·       Delivers formatted Usage Data Records to different end application like Billing, Interconnect, Fraud Management, etc. ·       Generates audit trail for incoming Usage Data Records and keeps track of all the Usage Data Records at various stages of mediation process. ·       Checks duplicate Usage Data Records across files for a given time window.   4. Fulfillment   This area is responsible for providing customers with their requested products in a timely and correct manner. It translates the customer's business or personal need into a solution that can be delivered using the specific products in the enterprise's portfolio. This process informs the customers of the status of their purchase order, and ensures completion on time, as well as ensuring a delighted customer. These processes are responsible for accepting and issuing orders. They deal with pre-order feasibility determination, credit authorization, order issuance, order status and tracking, customer update on customer order activities, and customer notification on order completion. Order management and provisioning applications fall into this category.   The key functionalities provided by these applications are   ·       Issuing new customer orders, modifying open customer orders, or canceling open customer orders; ·       Verifying whether specific non-standard offerings sought by customers are feasible and supportable; ·       Checking the credit worthiness of customers as part of the customer order process; ·       Testing the completed offering to ensure it is working correctly; ·       Updating of the Customer Inventory Database to reflect that the specific product offering has been allocated, modified, or cancelled; ·       Assigning and tracking customer provisioning activities; ·       Managing customer provisioning jeopardy conditions; and ·       Reporting progress on customer orders and other processes to customer.   These applications typically get orders from CRM systems. They interact with network elements and billing systems for fulfillment of orders.   5. Enterprise Management   This process area includes those processes that manage enterprise-wide activities and needs, or have application within the enterprise as a whole. They encompass all business management processes that   ·       Are necessary to support the whole of the enterprise, including processes for financial management, legal management, regulatory management, process, cost, and quality management, etc.;   ·       Are responsible for setting corporate policies, strategies, and directions, and for providing guidelines and targets for the whole of the business, including strategy development and planning for areas, such as Enterprise Architecture, that are integral to the direction and development of the business;   ·       Occur throughout the enterprise, including processes for project management, performance assessments, cost assessments, etc.     (i) Enterprise Risk Management:   Enterprise Risk Management focuses on assuring that risks and threats to the enterprise value and/or reputation are identified, and appropriate controls are in place to minimize or eliminate the identified risks. The identified risks may be physical or logical/virtual. Successful risk management ensures that the enterprise can support its mission critical operations, processes, applications, and communications in the face of serious incidents such as security threats/violations and fraud attempts. Two key areas covered in Risk Management by telecom operators are:   ·       Revenue Assurance: Revenue assurance system will be responsible for identifying revenue loss scenarios across components/systems, and will help in rectifying the problems. The following lists the high-level roles and responsibilities executed by the Revenue Assurance system in the end-to-end solution. o   Identify all usage information dropped when networks are being upgraded. o   Interconnect bill verification. o   Identify where services are routinely provisioned but never billed. o   Identify poor sales policies that are intensifying collections problems. o   Find leakage where usage is sent to error bucket and never billed for. o   Find leakage where field service, CRM, and network build-out are not optimized.   ·       Fraud Management: Involves collecting data from different systems to identify abnormalities in traffic patterns, usage patterns, and subscription patterns to report suspicious activity that might suggest fraudulent usage of resources, resulting in revenue losses to the operator.   The key roles and responsibilities of the system component are as follows:   o   Fraud management system will capture and monitor high usage (over a certain threshold) in terms of duration, value, and number of calls for each subscriber. The threshold for each subscriber is decided by the system and fixed automatically. o   Fraud management will be able to detect the unauthorized access to services for certain subscribers. These subscribers may have been provided unauthorized services by employees. The component will raise the alert to the operator the very first time of such illegal calls or calls which are not billed. o   The solution will be to have an alarm management system that will deliver alarms to the operator/provider whenever it detects a fraud, thus minimizing fraud by catching it the first time it occurs. o   The Fraud Management system will be capable of interfacing with switches, mediation systems, and billing systems   (ii) Knowledge Management   This process focuses on knowledge management, technology research within the enterprise, and the evaluation of potential technology acquisitions.   Key responsibilities of knowledge base management are to   ·       Maintain knowledge base – Creation and updating of knowledge base on ongoing basis. ·       Search knowledge base – Search of knowledge base on keywords or category browse ·       Maintain metadata – Management of metadata on knowledge base to ensure effective management and search. ·       Run report generator. ·       Provide content – Add content to the knowledge base, e.g., user guides, operational manual, etc.   (iii) Document Management   It focuses on maintaining a repository of all electronic documents or images of paper documents relevant to the enterprise using a system.   (iv) Data Management   It manages data as a valuable resource for any enterprise. For telecom enterprises, the typical areas covered are Master Data Management, Data Warehousing, and Business Intelligence. It is also responsible for data governance, security, quality, and database management.   Key responsibilities of Data Management are   ·       Using ETL, extract the data from CRM, Billing, web content, ERP, campaign management, financial, network operations, asset management info, customer contact data, customer measures, benchmarks, process data, e.g., process inputs, outputs, and measures, into Enterprise Data Warehouse. ·       Management of data traceability with source, data related business rules/decisions, data quality, data cleansing data reconciliation, competitors data – storage for all the enterprise data (customer profiles, products, offers, revenues, etc.) ·       Get online update through night time replication or physical backup process at regular frequency. ·       Provide the data access to business intelligence and other systems for their analysis, report generation, and use.   (v) Business Intelligence   It uses the Enterprise Data to provide the various analysis and reports that contain prospects and analytics for customer retention, acquisition of new customers due to the offers, and SLAs. It will generate right and optimized plans – bolt-ons for the customers.   The following lists the high-level roles and responsibilities executed by the Business Intelligence system at the Enterprise Level:   ·       It will do Pattern analysis and reports problem. ·       It will do Data Analysis – Statistical analysis, data profiling, affinity analysis of data, customer segment wise usage patterns on offers, products, service and revenue generation against services and customer segments. ·       It will do Performance (business, system, and forecast) analysis, churn propensity, response time, and SLAs analysis. ·       It will support for online and offline analysis, and report drill down capability. ·       It will collect, store, and report various SLA data. ·       It will provide the necessary intelligence for marketing and working on campaigns, etc., with cost benefit analysis and predictions.   It will advise on customer promotions with additional services based on loyalty and credit history of customer   ·       It will Interface with Enterprise Data Management system for data to run reports and analysis tasks. It will interface with the campaign schedules, based on historical success evidence.   (vi) Stakeholder and External Relations Management   It manages the enterprise's relationship with stakeholders and outside entities. Stakeholders include shareholders, employee organizations, etc. Outside entities include regulators, local community, and unions. Some of the processes within this grouping are Shareholder Relations, External Affairs, Labor Relations, and Public Relations.   (vii) Enterprise Resource Planning   It is used to manage internal and external resources, including tangible assets, financial resources, materials, and human resources. Its purpose is to facilitate the flow of information between all business functions inside the boundaries of the enterprise and manage the connections to outside stakeholders. ERP systems consolidate all business operations into a uniform and enterprise wide system environment.   The key roles and responsibilities for Enterprise System are given below:   ·        It will handle responsibilities such as core accounting, financial, and management reporting. ·       It will interface with CRM for capturing customer account and details. ·       It will interface with billing to capture the billing revenue and other financial data. ·       It will be responsible for executing the dunning process. Billing will send the required feed to ERP for execution of dunning. ·       It will interface with the CRM and Billing through batch interfaces. Enterprise management systems are like horizontals in the enterprise and typically interact with all major telecom systems. E.g., an ERP system interacts with CRM, Fulfillment, and Billing systems for different kinds of data exchanges.   6. External Interfaces/Touch Points   The typical external parties are customers, suppliers/partners, employees, shareholders, and other stakeholders. External interactions from/to a Service Provider to other parties can be achieved by a variety of mechanisms, including:   ·       Exchange of emails or faxes ·       Call Centers ·       Web Portals ·       Business-to-Business (B2B) automated transactions   These applications provide an Internet technology driven interface to external parties to undertake a variety of business functions directly for themselves. These can provide fully or partially automated service to external parties through various touch points.   Typical characteristics of these touch points are   ·       Pre-integrated self-service system, including stand-alone web framework or integration front end with a portal engine ·       Self services layer exposing atomic web services/APIs for reuse by multiple systems across the architectural environment ·       Portlets driven connectivity exposing data and services interoperability through a portal engine or web application   These touch points mostly interact with the CRM systems for requests, inquiries, and responses.   7. Middleware   The component will be primarily responsible for integrating the different systems components under a common platform. It should provide a Standards-Based Platform for building Service Oriented Architecture and Composite Applications. The following lists the high-level roles and responsibilities executed by the Middleware component in the end-to-end solution.   ·       As an integration framework, covering to and fro interfaces ·       Provide a web service framework with service registry. ·       Support SOA framework with SOA service registry. ·       Each of the interfaces from / to Middleware to other components would handle data transformation, translation, and mapping of data points. ·       Receive data from the caller / activate and/or forward the data to the recipient system in XML format. ·       Use standard XML for data exchange. ·       Provide the response back to the service/call initiator. ·       Provide a tracking until the response completion. ·       Keep a store transitional data against each call/transaction. ·       Interface through Middleware to get any information that is possible and allowed from the existing systems to enterprise systems; e.g., customer profile and customer history, etc. ·       Provide the data in a common unified format to the SOA calls across systems, and follow the Enterprise Architecture directive. ·       Provide an audit trail for all transactions being handled by the component.   8. Network Elements   The term Network Element means a facility or equipment used in the provision of a telecommunications service. Such terms also includes features, functions, and capabilities that are provided by means of such facility or equipment, including subscriber numbers, databases, signaling systems, and information sufficient for billing and collection or used in the transmission, routing, or other provision of a telecommunications service.   Typical network elements in a GSM network are Home Location Register (HLR), Intelligent Network (IN), Mobile Switching Center (MSC), SMS Center (SMSC), and network elements for other value added services like Push-to-talk (PTT), Ring Back Tone (RBT), etc.   Network elements are invoked when subscribers use their telecom devices for any kind of usage. These elements generate usage data and pass it on to downstream systems like mediation and billing system for rating and billing. They also integrate with provisioning systems for order/service fulfillment.   9. 3rd Party Applications   3rd Party systems are applications like content providers, payment gateways, point of sale terminals, and databases/applications maintained by the Government.   Depending on applicability and the type of functionality provided by 3rd party applications, the integration with different telecom systems like CRM, provisioning, and billing will be done.   10. Service Delivery Platform   A service delivery platform (SDP) provides the architecture for the rapid deployment, provisioning, execution, management, and billing of value added telecom services. SDPs are based on the concept of SOA and layered architecture. They support the delivery of voice, data services, and content in network and device-independent fashion. They allow application developers to aggregate network capabilities, services, and sources of content. SDPs typically contain layers for web services exposure, service application development, and network abstraction.   SOA Reference Architecture   SOA concept is based on the principle of developing reusable business service and building applications by composing those services, instead of building monolithic applications in silos. It’s about bridging the gap between business and IT through a set of business-aligned IT services, using a set of design principles, patterns, and techniques.   In an SOA, resources are made available to participants in a value net, enterprise, line of business (typically spanning multiple applications within an enterprise or across multiple enterprises). It consists of a set of business-aligned IT services that collectively fulfill an organization’s business processes and goals. We can choreograph these services into composite applications and invoke them through standard protocols. SOA, apart from agility and reusability, enables:   ·       The business to specify processes as orchestrations of reusable services ·       Technology agnostic business design, with technology hidden behind service interface ·       A contractual-like interaction between business and IT, based on service SLAs ·       Accountability and governance, better aligned to business services ·       Applications interconnections untangling by allowing access only through service interfaces, reducing the daunting side effects of change ·       Reduced pressure to replace legacy and extended lifetime for legacy applications, through encapsulation in services   ·       A Cloud Computing paradigm, using web services technologies, that makes possible service outsourcing on an on-demand, utility-like, pay-per-usage basis   The following section represents the Reference Architecture of logical view for the Telecom Solution. The new custom built application needs to align with this logical architecture in the long run to achieve EA benefits.   Packaged implementation applications, such as ERP billing applications, need to expose their functions as service providers (as other applications consume) and interact with other applications as service consumers.   COT applications need to expose services through wrappers such as adapters to utilize existing resources and at the same time achieve Enterprise Architecture goal and objectives.   The following are the various layers for Enterprise level deployment of SOA. This diagram captures the abstract view of Enterprise SOA layers and important components of each layer. Layered architecture means decomposition of services such that most interactions occur between adjacent layers. However, there is no strict rule that top layers should not directly communicate with bottom layers.   The diagram below represents the important logical pieces that would result from overall SOA transformation. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 3. Enterprise SOA Reference Architecture 1.          Operational System Layer: This layer consists of all packaged applications like CRM, ERP, custom built applications, COTS based applications like Billing, Revenue Management, Fulfilment, and the Enterprise databases that are essential and contribute directly or indirectly to the Enterprise OSS/BSS Transformation.   ERP holds the data of Asset Lifecycle Management, Supply Chain, and Advanced Procurement and Human Capital Management, etc.   CRM holds the data related to Order, Sales, and Marketing, Customer Care, Partner Relationship Management, Loyalty, etc.   Content Management handles Enterprise Search and Query. Billing application consists of the following components:   ·       Collections Management, Customer Billing Management, Invoices, Real-Time Rating, Discounting, and Applying of Charges ·       Enterprise databases will hold both the application and service data, whether structured or unstructured.   MDM - Master data majorly consists of Customer, Order, Product, and Service Data.     2.          Enterprise Component Layer:   This layer consists of the Application Services and Common Services that are responsible for realizing the functionality and maintaining the QoS of the exposed services. This layer uses container-based technologies such as application servers to implement the components, workload management, high availability, and load balancing.   Application Services: This Service Layer enables application, technology, and database abstraction so that the complex accessing logic is hidden from the other service layers. This is a basic service layer, which exposes application functionalities and data as reusable services. The three types of the Application access services are:   ·       Application Access Service: This Service Layer exposes application level functionalities as a reusable service between BSS to BSS and BSS to OSS integration. This layer is enabled using disparate technology such as Web Service, Integration Servers, and Adaptors, etc.   ·       Data Access Service: This Service Layer exposes application data services as a reusable reference data service. This is done via direct interaction with application data. and provides the federated query.   ·       Network Access Service: This Service Layer exposes provisioning layer as a reusable service from OSS to OSS integration. This integration service emphasizes the need for high performance, stateless process flows, and distributed design.   Common Services encompasses management of structured, semi-structured, and unstructured data such as information services, portal services, interaction services, infrastructure services, and security services, etc.   3.          Integration Layer:   This consists of service infrastructure components like service bus, service gateway for partner integration, service registry, service repository, and BPEL processor. Service bus will carry the service invocation payloads/messages between consumers and providers. The other important functions expected from it are itinerary based routing, distributed caching of routing information, transformations, and all qualities of service for messaging-like reliability, scalability, and availability, etc. Service registry will hold all contracts (wsdl) of services, and it helps developers to locate or discover service during design time or runtime.   • BPEL processor would be useful in orchestrating the services to compose a complex business scenario or process. • Workflow and business rules management are also required to support manual triggering of certain activities within business process. based on the rules setup and also the state machine information. Application, data, and service mediation layer typically forms the overall composite application development framework or SOA Framework.   4.          Business Process Layer: These are typically the intermediate services layer and represent Shared Business Process Services. At Enterprise Level, these services are from Customer Management, Order Management, Billing, Finance, and Asset Management application domains.   5.          Access Layer: This layer consists of portals for Enterprise and provides a single view of Enterprise information management and dashboard services.   6.          Channel Layer: This consists of various devices; applications that form part of extended enterprise; browsers through which users access the applications.   7.          Client Layer: This designates the different types of users accessing the enterprise applications. The type of user typically would be an important factor in determining the level of access to applications.   8.          Vertical pieces like management, monitoring, security, and development cut across all horizontal layers Management and monitoring involves all aspects of SOA-like services, SLAs, and other QoS lifecycle processes for both applications and services surrounding SOA governance.     9.          EA Governance, Reference Architecture, Roadmap, Principles, and Best Practices:   EA Governance is important in terms of providing the overall direction to SOA implementation within the enterprise. This involves board-level involvement, in addition to business and IT executives. At a high level, this involves managing the SOA projects implementation, managing SOA infrastructure, and controlling the entire effort through all fine-tuned IT processes in accordance with COBIT (Control Objectives for Information Technology).   Devising tools and techniques to promote reuse culture, and the SOA way of doing things needs competency centers to be established in addition to training the workforce to take up new roles that are suited to SOA journey.   Conclusions   Reference Architectures can serve as the basis for disparate architecture efforts throughout the organization, even if they use different tools and technologies. Reference architectures provide best practices and approaches in the independent way a vendor deals with technology and standards. Reference Architectures model the abstract architectural elements for an enterprise independent of the technologies, protocols, and products that are used to implement an SOA. Telecom enterprises today are facing significant business and technology challenges due to growing competition, a multitude of services, and convergence. Adopting architectural best practices could go a long way in meeting these challenges. The use of SOA-based architecture for communication to each of the external systems like Billing, CRM, etc., in OSS/BSS system has made the architecture very loosely coupled, with greater flexibility. Any change in the external systems would be absorbed at the Integration Layer without affecting the rest of the ecosystem. The use of a Business Process Management (BPM) tool makes the management and maintenance of the business processes easy, with better performance in terms of lead time, quality, and cost. Since the Architecture is based on standards, it will lower the cost of deploying and managing OSS/BSS applications over their lifecycles.

    Read the article

  • Hexagonal Grid Coordinates To Pixel Coordinates

    - by CaptnCraig
    I am working with a hexagonal grid. I have chosen to use this coordinate system because it is quite elegant. This question talks about generating the coordinates themselves, and is quite useful. My issue now is in converting these coordinates to and from actual pixel coordinates. I am looking for a simple way to find the center of a hexagon with coordinates x,y,z. Assume (0,0) in pixel coordinates is at (0,0,0) in hex coords, and that each hexagon has an edge of length s. It seems to me like x,y, and z should each move my coordinate a certain distance along an axis, but they are interrelated in an odd way I can't quite wrap my head around it. Bonus points if you can go the other direction and convert any (x,y) point in pixel coordinates to the hex that point belongs in.

    Read the article

  • Pros and cons of distributed revision control systems?

    - by Ludwig Weinzierl
    What are the advantages and disadvantages of distributed revision control systems? If you have any experience with distributed systems like Git, Mercurial, Plastic SCM, etc. please share your experience. Tell us what worked well and where problems arose. I'm particularly interested to hear about the use of distributed systems in traditional, commercial, non-open source projects but answers about other uses are also welcome.

    Read the article

< Previous Page | 8 9 10 11 12 13 14 15 16 17 18 19  | Next Page >