Search Results

Search found 2372 results on 95 pages for 'identify'.

Page 12/95 | < Previous Page | 8 9 10 11 12 13 14 15 16 17 18 19  | Next Page >

  • How a web app identify if a click came from another web app via code?

    - by Diego
    Hi, we have a web application that users can take online reports from ou ERP system data... And we have another web application that is used by our teachers and employees. We can't change the ERP web app because its a closed DLL, in this case we made some extended functionality in our custom internal web app and we are willing to put this functionality on the "menu" of the ERP web app. I need to integrate the two applications in the following way: When I click in the menu of the ERP web app, I want that our internal web app assert that the click have come from our ERP web app and not typed in the URL, this is possible?

    Read the article

  • How to split this string and identify first sentence after last '*'?

    - by DaveDev
    I have to get a quick demo for a client, so this is a bit hacky. Please don't flame me too much! :-) I'm getting a string similar to the following back from the database: The object of the following is to do: * blah 1 * blah 2 * blah 3 * blah 4. Some more extremely uninteresting text. Followed by yet another sentence full of extrememly uninteresting text. Thankfully this is the last sentence. I need to format this so that each * represents a bullet point, and the sentence after the last * goes onto a new line, ideally as follows: The object of the following is to do: blah 1 (StackOverflow wants to add bullet points here, but I just need '*') blah 2 blah 3 blah 4. Some more extremely uninteresting text. Followed by yet another sentence full of extrememly uninteresting text. Thankfully this is the last sentence. It's easy enough to split the string by the * character and replace that with <br /> *. I'm using the following for that: string description = GetDescription(); description = description.Replace("*", "<br />*"); // it's going onto a web page. but the result this gives me is: The object of the following is to do: blah 1 blah 2 blah 3 blah 4. Some more extremely uninteresting text. Followed by yet another sentence full of extrememly uninteresting text. Thankfully this is the last sentence. I'm having a bit of difficulty identifying the fist sentence after the last '*' so I can put a break there too. Can somebody show me how to do this?

    Read the article

  • How do I identify which MySQL slave has responded?

    - by Kynth
    I have a MySql Master server replicating to three Slaves. A legacy website is performing load-balanced Reads from the Slaves. Is there a method of identifying from the website which of the Slaves is serving a Read request? I'd prefer a function that I can use to return a server name or ip address as part of the SELECT, but any reasonable method will do. Thank you in advance.

    Read the article

  • Is there a way to identify that a file has been modified and moved?

    - by Eric
    I'm writing an application that catalogs files, and attributes them with extra meta data through separate "side-car" files. If changes to the files are made through my program then it is able to keep everything in sync between them and their corresponding meta data files. However, I'm trying to figure out a way to deal with someone modifying the files manually while my program is not running. When my program starts up it scans the file system and compares the files it finds to it's previous record of what files it remembers being there. It's fairly straight forward to update after a file has been deleted or added. However, if a file was moved or renamed then my program sees that as the old file being deleted, and the new file being added. Yet I don't want to loose the association between the file and its metadata. I was thinking I could store a hash from each file so I could check to see if newly found files were really previously known files that had been moved or renamed. However, if the file is both moved/renamed and modified then the hash would not match either. So is there some other unique identifier of a file that I can track which stays with it even after it is renamed, moved, or modified?

    Read the article

  • How do I identify where the POST data sent to a PHP script came from?

    - by Mike Turley
    I have a ton of data collection forms on my website, and I wrote a PHP script to handle all the data. All the forms have that one script as their action, and POST as the method. The handler emails a copy of the data to me, and I'd like for the emails I get to contain the URL of the form where they originated. Is there any way in PHP to get the url of the form which was submitted to the script? Or do I have to add an extra hidden field in every form with its URL?

    Read the article

  • How to identify/handle text file newlines in Java?

    - by rafrafUk
    Hi Everyone! I get files in different formats coming from different systems that I need to import into our database. Part of the import process it to check the line length to make sure the format is correct. We seem to be having issues with files coming from UNIX systems where one character is added. I suspect this is due to the return carriage being encoded differently on UNIX and windows platform. Is there a way to detect on which file system a file was created, other than checking the last character on the line? Or maybe a way of reading the files as text and not binary which I suspect is the issue? Thanks Guys !

    Read the article

  • How can I identify an argument as a year in Perl?

    - by dexter
    I have created a file argument.pl which takes several arguments first of which should be in form of a year For example: 2010 23 type. Here 2010 is a year my code does something like: use strict; use warning use Date::Calc qw(:all); my ($startyear, $startmonth, $startday) = Today(); my $weekofyear = (Week_of_Year ($startyear,$startmonth,$startday))[0]; my $Year = $startyear; ... ... if ($ARGV[0]) { $Year = $ARGV[0]; } Here this code fills $Year with "current year" if $ARGV[0] is null or doesn't exist. now here instead of if ($ARGV[0]) Is it possible to check that the value in $ARGV[0] is a valid year (like 2010, 1976,1999 etc.)?

    Read the article

  • Imagemagick convert with resample option

    - by coneybeare
    I am creating thumbnails from much larger images and have been using this command successfully for some time: convert FILE -resize "64x" -crop "64x64+0+16" +repage -strip OUTFILE I also do some other processing that is not relevant to the question. I realized that this does not adjust the resolution at all, so if I use a 300dpi image, it ends up displaying really small on some devices. I want to resample it to 72x72 so I have been trying with this command: convert FILE -resize "64x" -crop "64x64+0+16" +repage -strip -resample 72x72 OUTFILE And expected the 64x64 image at 300dpi to be resampled to a 64x64 image at 72dpi, but instead, I am getting a very funny size and density. Here is "identify" output for the original and post-processed file WITHOUT the resample: coneybeare $ convert "aa.jpg" -crop "64x64+0+16" +repage -strip "aa.png" coneybeare $ for image in `find . -type f`; do identify $image; identify -verbose $image | egrep "^ Resolution"; done ./aa.jpg JPEG 1130x1695 1130x1695+0+0 8-bit DirectClass 1.492MiB 0.000u 0:00.000 Resolution: 300x300 ./aa.png PNG 64x64 64x64+0+0 8-bit DirectClass 7.46KiB 0.000u 0:00.000 Resolution: 118.11x118.11 And here is the "identify output for the command WITH the resample: coneybeare $ convert "aa.jpg" -crop "64x64+0+16" +repage -strip -resample 72x72 "aa.png" coneybeare $ for image in `find . -type f`; do identify $image; identify -verbose $image | egrep "^ Resolution"; done ./aa.jpg JPEG 1130x1695 1130x1695+0+0 8-bit DirectClass 1.492MiB 0.000u 0:00.000 Resolution: 300x300 ./aa.png PNG 15x15 15x15+0+0 8-bit DirectClass 901b 0.000u 0:00.000 Resolution: 28.34x28.34 So, the question is: What am I doing wrong and how can I fix it so the end result is a 64x64 cropped thumbnail image at 72dpi?

    Read the article

  • windows 7 randomly shuts down. where do I find related log? so that i can identify the error

    - by kirill_igum
    during the normal use, windows 7 shuts down. sometimes it happened when I start google chrome and few times during system update. after it shuts down, I turn it back on and I get to the screen, where windows asks me if I'd like a safe or normal start. the shutdown happens regardless if i'm on a battery or cord is there a log that can tell me where the error is? it can help me to further identify the solution. my setup: I run windows 7 on thinkpad x201 tablet. i have upgraded hard drive that worked fine for the last 6 months. the system is dual boot with ubuntu. I have installed some software recently, may be that can be the problem but sophos anti-virus cannot find anything. updates are all up to date.

    Read the article

  • Failing Sata HDD

    - by DaveCol
    I think my HDD is fried... Could someone confirm or help me restore it? I was using Hardware RAID 1 Configuration [2 x 160GB SATA HDD] on a CentOS 4 Installation. All of a sudden I started seeing bad sectors on the second HDD which stopped being mirrored. I have removed the RAID array and have tested with SMART which showed the following error: 187 Unknown_Attribute 0x003a 001 001 051 Old_age Always FAILING_NOW 4645 I have no clue what this means, or if I can recover from it. Could someone give me some ideas on how to fix this, or what HDD to get to replace this? Complete SMART report: Smartctl version 5.33 [i686-redhat-linux-gnu] Copyright (C) 2002-4 Bruce Allen Home page is http://smartmontools.sourceforge.net/ === START OF INFORMATION SECTION === Device Model: GB0160CAABV Serial Number: 6RX58NAA Firmware Version: HPG1 User Capacity: 160,041,885,696 bytes Device is: Not in smartctl database [for details use: -P showall] ATA Version is: 7 ATA Standard is: ATA/ATAPI-7 T13 1532D revision 4a Local Time is: Tue Oct 19 13:42:42 2010 COT SMART support is: Available - device has SMART capability. SMART support is: Enabled === START OF READ SMART DATA SECTION === SMART overall-health self-assessment test result: PASSED See vendor-specific Attribute list for marginal Attributes. General SMART Values: Offline data collection status: (0x82) Offline data collection activity was completed without error. Auto Offline Data Collection: Enabled. Self-test execution status: ( 0) The previous self-test routine completed without error or no self-test has ever been run. Total time to complete Offline data collection: ( 433) seconds. Offline data collection capabilities: (0x5b) SMART execute Offline immediate. Auto Offline data collection on/off support. Suspend Offline collection upon new command. Offline surface scan supported. Self-test supported. No Conveyance Self-test supported. Selective Self-test supported. SMART capabilities: (0x0003) Saves SMART data before entering power-saving mode. Supports SMART auto save timer. Error logging capability: (0x01) Error logging supported. General Purpose Logging supported. Short self-test routine recommended polling time: ( 2) minutes. Extended self-test routine recommended polling time: ( 54) minutes. SMART Attributes Data Structure revision number: 10 Vendor Specific SMART Attributes with Thresholds: ID# ATTRIBUTE_NAME FLAG VALUE WORST THRESH TYPE UPDATED WHEN_FAILED RAW_VALUE 1 Raw_Read_Error_Rate 0x000f 100 253 006 Pre-fail Always - 0 3 Spin_Up_Time 0x0002 097 097 000 Old_age Always - 0 4 Start_Stop_Count 0x0033 100 100 020 Pre-fail Always - 152 5 Reallocated_Sector_Ct 0x0033 095 095 036 Pre-fail Always - 214 7 Seek_Error_Rate 0x000f 078 060 030 Pre-fail Always - 73109713 9 Power_On_Hours 0x0032 083 083 000 Old_age Always - 15133 10 Spin_Retry_Count 0x0013 100 100 097 Pre-fail Always - 0 12 Power_Cycle_Count 0x0033 100 100 020 Pre-fail Always - 154 184 Unknown_Attribute 0x0032 038 038 000 Old_age Always - 62 187 Unknown_Attribute 0x003a 001 001 051 Old_age Always FAILING_NOW 4645 189 Unknown_Attribute 0x0022 100 100 000 Old_age Always - 0 190 Unknown_Attribute 0x001a 061 055 000 Old_age Always - 656408615 194 Temperature_Celsius 0x0000 039 045 000 Old_age Offline - 39 (Lifetime Min/Max 0/22) 195 Hardware_ECC_Recovered 0x0032 070 059 000 Old_age Always - 12605265 197 Current_Pending_Sector 0x0000 100 100 000 Old_age Offline - 1 198 Offline_Uncorrectable 0x0000 100 100 000 Old_age Offline - 0 199 UDMA_CRC_Error_Count 0x0000 200 200 000 Old_age Offline - 62 SMART Error Log Version: 1 ATA Error Count: 4645 (device log contains only the most recent five errors) CR = Command Register [HEX] FR = Features Register [HEX] SC = Sector Count Register [HEX] SN = Sector Number Register [HEX] CL = Cylinder Low Register [HEX] CH = Cylinder High Register [HEX] DH = Device/Head Register [HEX] DC = Device Command Register [HEX] ER = Error register [HEX] ST = Status register [HEX] Powered_Up_Time is measured from power on, and printed as DDd+hh:mm:SS.sss where DD=days, hh=hours, mm=minutes, SS=sec, and sss=millisec. It "wraps" after 49.710 days. Error 4645 occurred at disk power-on lifetime: 15132 hours (630 days + 12 hours) When the command that caused the error occurred, the device was active or idle. After command completion occurred, registers were: ER ST SC SN CL CH DH -- -- -- -- -- -- -- 40 51 00 7b 86 b1 ea Error: UNC at LBA = 0x0ab1867b = 179406459 Commands leading to the command that caused the error were: CR FR SC SN CL CH DH DC Powered_Up_Time Command/Feature_Name -- -- -- -- -- -- -- -- ---------------- -------------------- c8 00 02 7b 86 b1 ea 00 00:38:52.796 READ DMA ec 03 45 00 00 00 a0 00 00:38:52.796 IDENTIFY DEVICE ef 03 45 00 00 00 a0 00 00:38:52.794 SET FEATURES [Set transfer mode] ec 00 00 7b 86 b1 a0 00 00:38:49.991 IDENTIFY DEVICE c8 00 04 79 86 b1 ea 00 00:38:49.935 READ DMA Error 4644 occurred at disk power-on lifetime: 15132 hours (630 days + 12 hours) When the command that caused the error occurred, the device was active or idle. After command completion occurred, registers were: ER ST SC SN CL CH DH -- -- -- -- -- -- -- 40 51 00 7b 86 b1 ea Error: UNC at LBA = 0x0ab1867b = 179406459 Commands leading to the command that caused the error were: CR FR SC SN CL CH DH DC Powered_Up_Time Command/Feature_Name -- -- -- -- -- -- -- -- ---------------- -------------------- c8 00 04 79 86 b1 ea 00 00:38:41.517 READ DMA ec 03 45 00 00 00 a0 00 00:38:41.515 IDENTIFY DEVICE ef 03 45 00 00 00 a0 00 00:38:41.515 SET FEATURES [Set transfer mode] ec 00 00 7b 86 b1 a0 00 00:38:49.991 IDENTIFY DEVICE c8 00 06 77 86 b1 ea 00 00:38:49.935 READ DMA Error 4643 occurred at disk power-on lifetime: 15132 hours (630 days + 12 hours) When the command that caused the error occurred, the device was active or idle. After command completion occurred, registers were: ER ST SC SN CL CH DH -- -- -- -- -- -- -- 40 51 00 7b 86 b1 ea Error: UNC at LBA = 0x0ab1867b = 179406459 Commands leading to the command that caused the error were: CR FR SC SN CL CH DH DC Powered_Up_Time Command/Feature_Name -- -- -- -- -- -- -- -- ---------------- -------------------- c8 00 06 77 86 b1 ea 00 00:38:41.517 READ DMA ec 03 45 00 00 00 a0 00 00:38:41.515 IDENTIFY DEVICE ef 03 45 00 00 00 a0 00 00:38:41.515 SET FEATURES [Set transfer mode] ec 00 00 7b 86 b1 a0 00 00:38:41.513 IDENTIFY DEVICE c8 00 06 77 86 b1 ea 00 00:38:38.706 READ DMA Error 4642 occurred at disk power-on lifetime: 15132 hours (630 days + 12 hours) When the command that caused the error occurred, the device was active or idle. After command completion occurred, registers were: ER ST SC SN CL CH DH -- -- -- -- -- -- -- 40 51 00 7b 86 b1 ea Error: UNC at LBA = 0x0ab1867b = 179406459 Commands leading to the command that caused the error were: CR FR SC SN CL CH DH DC Powered_Up_Time Command/Feature_Name -- -- -- -- -- -- -- -- ---------------- -------------------- c8 00 06 77 86 b1 ea 00 00:38:41.517 READ DMA ec 03 45 00 00 00 a0 00 00:38:41.515 IDENTIFY DEVICE ef 03 45 00 00 00 a0 00 00:38:41.515 SET FEATURES [Set transfer mode] ec 00 00 7b 86 b1 a0 00 00:38:41.513 IDENTIFY DEVICE c8 00 06 77 86 b1 ea 00 00:38:38.706 READ DMA Error 4641 occurred at disk power-on lifetime: 15132 hours (630 days + 12 hours) When the command that caused the error occurred, the device was active or idle. After command completion occurred, registers were: ER ST SC SN CL CH DH -- -- -- -- -- -- -- 40 51 00 7b 86 b1 ea Error: UNC at LBA = 0x0ab1867b = 179406459 Commands leading to the command that caused the error were: CR FR SC SN CL CH DH DC Powered_Up_Time Command/Feature_Name -- -- -- -- -- -- -- -- ---------------- -------------------- c8 00 06 77 86 b1 ea 00 00:38:41.517 READ DMA ec 03 45 00 00 00 a0 00 00:38:41.515 IDENTIFY DEVICE ef 03 45 00 00 00 a0 00 00:38:41.515 SET FEATURES [Set transfer mode] ec 00 00 7b 86 b1 a0 00 00:38:41.513 IDENTIFY DEVICE c8 00 06 77 86 b1 ea 00 00:38:38.706 READ DMA SMART Self-test log structure revision number 1 Num Test_Description Status Remaining LifeTime(hours) LBA_of_first_error # 1 Short offline Completed without error 00% 15131 - # 2 Short offline Completed without error 00% 15131 - SMART Selective self-test log data structure revision number 1 SPAN MIN_LBA MAX_LBA CURRENT_TEST_STATUS 1 0 0 Not_testing 2 0 0 Not_testing 3 0 0 Not_testing 4 0 0 Not_testing 5 0 0 Not_testing Selective self-test flags (0x0): After scanning selected spans, do NOT read-scan remainder of disk. If Selective self-test is pending on power-up, resume after 0 minute delay.

    Read the article

  • How can I include a .eps figure within a Tikz simple flow chart?

    - by Jan
    Hi, I would like to create a simple flow chart in latex with the TikZ package similar to the following example http://www.texample.net/tikz/examples/simple-flow-chart/ However I would like to include figures (a time series plot created in R, as eps or something else) within the flowchart (e.g. for example within a {block}? \documentclass{article} \usepackage[latin1]{inputenc} \usepackage{tikz} \usetikzlibrary{shapes,arrows} \begin{document} \pagestyle{empty} % Define block styles \tikzstyle{decision} = [diamond, draw, fill=blue!20, text width=4.5em, text badly centered, node distance=3cm, inner sep=0pt] \tikzstyle{block} = [rectangle, draw, fill=blue!20, text width=5em, text centered, rounded corners, minimum height=4em] \tikzstyle{line} = [draw, -latex'] \tikzstyle{cloud} = [draw, ellipse,fill=red!20, node distance=3cm, minimum height=2em] \begin{tikzpicture}[node distance = 2cm, auto] % Place nodes \node [block] (init) {initialize model}; \node [cloud, left of=init] (expert) {expert}; \node [cloud, right of=init] (system) {system}; \node [block, below of=init] (identify) {identify candidate models}; \node [block, below of=identify] (evaluate) {evaluate candidate models}; \node [block, left of=evaluate, node distance=3cm] (update) {update model}; \node [decision, below of=evaluate] (decide) {is best candidate better?}; \node [block, below of=decide, node distance=3cm] (stop) {stop}; % Draw edges \path [line] (init) -- (identify); \path [line] (identify) -- (evaluate); \path [line] (evaluate) -- (decide); \path [line] (decide) -| node [near start] {yes} (update); \path [line] (update) |- (identify); \path [line] (decide) -- node {no}(stop); \path [line,dashed] (expert) -- (init); \path [line,dashed] (system) -- (init); \path [line,dashed] (system) |- (evaluate); \end{tikzpicture} \end{document} Thanks, Jan

    Read the article

  • Overview of Microsoft SQL Server 2008 Upgrade Advisor

    - by Akshay Deep Lamba
    Problem Like most organizations, we are planning to upgrade our database server from SQL Server 2005 to SQL Server 2008. I would like to know is there an easy way to know in advance what kind of issues one may encounter when upgrading to a newer version of SQL Server? One way of doing this is to use the Microsoft SQL Server 2008 Upgrade Advisor to plan for upgrades from SQL Server 2000 or SQL Server 2005. In this tip we will take a look at how one can use the SQL Server 2008 Upgrade Advisor to identify potential issues before the upgrade. Solution SQL Server 2008 Upgrade Advisor is a free tool designed by Microsoft to identify potential issues before upgrading your environment to a newer version of SQL Server. Below are prerequisites which need to be installed before installing the Microsoft SQL Server 2008 Upgrade Advisor. Prerequisites for Microsoft SQL Server 2008 Upgrade Advisor .Net Framework 2.0 or a higher version Windows Installer 4.5 or a higher version Windows Server 2003 SP 1 or a higher version, Windows Server 2008, Windows XP SP2 or a higher version, Windows Vista Download SQL Server 2008 Upgrade Advisor You can download SQL Server 2008 Upgrade Advisor from the following link. Once you have successfully installed Upgrade Advisor follow the below steps to see how you can use this tool to identify potential issues before upgrading your environment. 1. Click Start -> Programs -> Microsoft SQL Server 2008 -> SQL Server 2008 Upgrade Advisor. 2. Click Launch Upgrade Advisor Analysis Wizard as highlighted below to open the wizard. 2. On the wizard welcome screen click Next to continue. 3. In SQL Server Components screen, enter the Server Name and click the Detect button to identify components which need to be analyzed and then click Next to continue with the wizard. 4. In Connection Parameters screen choose Instance Name, Authentication and then click Next to continue with the wizard. 5. In SQL Server Parameters wizard screen select the Databases which you want to analysis, trace files if any and SQL batch files if any.  Then click Next to continue with the wizard. 6. In Reporting Services Parameters screen you can specify the Reporting Server Instance name and then click next to continue with the wizard. 7. In Analysis Services Parameters screen you can specify an Analysis Server Instance name and then click Next to continue with the wizard. 8. In Confirm Upgrade Advisor Settings screen you will be able to see a quick summary of the options which you have selected so far. Click Run to start the analysis. 9. In Upgrade Advisor Progress screen you will be able to see the progress of the analysis. Basically, the upgrade advisor runs predefined rules which will help to identify potential issues that can affect your environment once you upgrade your server from a lower version of SQL Server to SQL Server 2008. 10. In the below snippet you can see that Upgrade Advisor has completed the analysis of SQL Server, Analysis Services and Reporting Services. To see the output click the Launch Report button at the bottom of the wizard screen. 11. In View Report screen you can see a summary of issues which can affect you once you upgrade. To learn more about each issue you can expand the issue and read the detailed description as shown in the below snippet.

    Read the article

  • Does the FAT filesystem have a signature?

    - by DxCK
    Given the following BPB: The "MSWIN4.1" string is just the "OEM ID" field, and by Microsoft documentation it should not be used to identify FAT volumes. The "FAT32 " string is the BS_FilSysType field, and by Microsoft documentation it should not be used to identify FAT volumes either. So how do i identify that the volume is formatted to FAT? Is there any reliable signature I can relay on?

    Read the article

  • Finding what makes strings unique in a list, can you improve on brute force?

    - by Ed Guiness
    Suppose I have a list of strings where each string is exactly 4 characters long and unique within the list. For each of these strings I want to identify the position of the characters within the string that make the string unique. So for a list of three strings abcd abcc bbcb For the first string I want to identify the character in 4th position d since d does not appear in the 4th position in any other string. For the second string I want to identify the character in 4th position c. For the third string it I want to identify the character in 1st position b AND the character in 4th position, also b. This could be concisely represented as abcd -> ...d abcc -> ...c bbcb -> b..b If you consider the same problem but with a list of binary numbers 0101 0011 1111 Then the result I want would be 0101 -> ..0. 0011 -> .0.. 1111 -> 1... Staying with the binary theme I can use XOR to identify which bits are unique within two binary numbers since 0101 ^ 0011 = 0110 which I can interpret as meaning that in this case the 2nd and 3rd bits (reading left to right) are unique between these two binary numbers. This technique might be a red herring unless somehow it can be extended to the larger list. A brute-force approach would be to look at each string in turn, and for each string to iterate through vertical slices of the remainder of the strings in the list. So for the list abcd abcc bbcb I would start with abcd and iterate through vertical slices of abcc bbcb where these vertical slices would be a | b | c | c b | b | c | b or in list form, "ab", "bb", "cc", "cb". This would result in four comparisons a : ab -> . (a is not unique) b : bb -> . (b is not unique) c : cc -> . (c is not unique) d : cb -> d (d is unique) or concisely abcd -> ...d Maybe it's wishful thinking, but I have a feeling that there should be an elegant and general solution that would apply to an arbitrarily large list of strings (or binary numbers). But if there is I haven't yet been able to see it. I hope to use this algorithm to to derive minimal signatures from a collection of unique images (bitmaps) in order to efficiently identify those images at a future time. If future efficiency wasn't a concern I would use a simple hash of each image. Can you improve on brute force?

    Read the article

  • Finding a handle that persists when relaunching parent

    - by cidtek
    I need to interact with 3'rd party applications by knowing the handle of certain text fields, but the hWnd always changes when that window is recreated. Is there any method that would allow me to identify a window and repeatedly be able to access that window (even after it is closed and then reopened) without having the user manually identify the window? I need the user to be able to identify a window with the usual click, drag and release method but only have to do it once and not every time the target window is recreated.

    Read the article

  • How to Manage Your Movies in Boxee

    - by DigitalGeekery
    Boxee is a free cross platform HTPC application that plays media locally and via the Internet. Today we’ll take a look at how to manage your local movie collection in Boxee. Note: We are using the most recent version of Boxee running on Windows 7. Your experience on an earlier version or a Mac or Linux build may vary slightly. If you are using an earlier version of Boxee, we recommend you update to the current version (0.9.21.11487). The latest update features significant improvements in file and media identification. Naming your Movie Files Proper file naming is important for Boxee to correctly identify your movie files. Before you get started you may want to take some time to name your files properly. Boxee supports the following naming conventions: Lawrence of Arabia.avi Lawrence.of.Arabia.avi Lawrence of Arabia (1962).avi Lawrence.of.Arabia(1962).avi For multi-part movies, you can use .part or .cd to identify first and second parts of the movie. Gettysburg.part1.avi Gettysburg.part2.avi If you are unsure of the correct title of the movie, check with IMDB.com. Supported File Types Boxee supports the following video file types and codecs: AVI, MPEG, WMV, ASF, FLV, MKV, MOV, MP4, M4A, AAC, NUT, Ogg, OGM, RealMedia RAM/RM/RV/RA/RMVB, 3gp, VIVO, PVA, NUV, NSV, NSA, FLI, FLC, and DVR-MS (beta support) CDs, DVDs, VCD/SVCD MPEG-1, MPEG-2, MPEG-4 (SP and ASP, including DivX, XviD, 3ivx, DV, H.263), MPEG-4 AVC (aka H.264), HuffYUV, Indeo, MJPEG, RealVideo, QuickTime, Sorenson, WMV, Cinepak Adding Movie Files to Boxee Boxee will automatically scan your default media folders and add any movie files to My Movies. Boxee will attempt to identify the media and check sources on the web to get data like cover art and other metadata. You can add as many sources to Boxee as you like from your local hard drive, external hard drives or from your network. You will need to make sure you have access to shared folders on the networked computer hosting the media you want to share. You can browse for other folders to scan by selecting Scan Media Folders.   You can also add media files by selecting Settings from the Home screen… Then select Media… and then selecting Add Sources. Browse for your directory and select Add source. Next, you’ll need to select the media type and the type of scanning. You can also change the share name if you’d like. When finished, select Add. You should see a quick notification at the top of the screen that the source was added.   Select Scan source to have Boxee to begin scanning your media files and attempt to properly identify them. Your movies may not show up instantly in My Movies. It will take Boxee some time to fully scan your sources, especially if you have a large collection. Eventually you should see My Movies begin to populate with cover art and metadata.   You can see the progress and find unidentified files by clicking on the yellow arrow to the left, or navigating to the left with your keyboard or remote and selecting Manage Sources.   Here you can see how many files (if any) Boxee failed to identify. To see which titles are unresolved, select Unidentified Files.   Here you’ll find your unresolved files. Select one of the unidentified files to search for the proper movie information. Next, select the Indentify Video icon. Boxee will fill in the title of the file or you edit the title yourself in the text box. Click Search. The results of your search will be displayed. Scroll through and select the title that fits your movie. Check the details of the film to make sure you have the correct title and select Done.   Fixing Incorrectly Indentified Files If you find a movie has been incorrectly identified you can correct it manually. Select the movie. Then search for the correct movie title from the list and select it. When you’re sure you found the correct movie, click Done. Filtering your Movies You can filter your movie collection by genre, or by whether it has been marked as watched or unwatched. When you’ve finished watching a movie, Boxee will mark it as watched.   You can also manually mark a title as watched.   Boxee also features a wide variety of genres by which you can filter the titles in your library. Playing your Movie When you’re ready to start watching a movie, simply select your title.   From here, you can select the “i” icon to read more information about the movie, add it to your queue, or add a shortcut. Click Local File to begin playing.   Now you’re ready to enjoy your movie. If you don’t have a large movie collection or just need more selection, you may want to check out the Netflix App for Boxee. Looking for a Boxee remote? Check out the iPhone App for Boxee. Links Download Boxee IMDB.com Similar Articles Productive Geek Tips Watch Netflix Instant Movies in BoxeeIntegrate Boxee with Media Center in Windows 7Customize the Background in BoxeeUse your iPhone or iPod Touch as a Boxee RemoteGetting Started with Boxee TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips HippoRemote Pro 2.2 Xobni Plus for Outlook All My Movies 5.9 CloudBerry Online Backup 1.5 for Windows Home Server What is HTML5? Default Programs Editor – One great tool for Setting Defaults Convert BMP, TIFF, PCX to Vector files with RasterVect Free Identify Fonts using WhatFontis.com Windows 7’s WordPad is Actually Good Greate Image Viewing and Management with Zoner Photo Studio Free

    Read the article

  • Ancillary Objects: Separate Debug ELF Files For Solaris

    - by Ali Bahrami
    We introduced a new object ELF object type in Solaris 11 Update 1 called the Ancillary Object. This posting describes them, using material originally written during their development, the PSARC arc case, and the Solaris Linker and Libraries Manual. ELF objects contain allocable sections, which are mapped into memory at runtime, and non-allocable sections, which are present in the file for use by debuggers and observability tools, but which are not mapped or used at runtime. Typically, all of these sections exist within a single object file. Ancillary objects allow them to instead go into a separate file. There are different reasons given for wanting such a feature. One can debate whether the added complexity is worth the benefit, and in most cases it is not. However, one important case stands out — customers with very large 32-bit objects who are not ready or able to make the transition to 64-bits. We have customers who build extremely large 32-bit objects. Historically, the debug sections in these objects have used the stabs format, which is limited, but relatively compact. In recent years, the industry has transitioned to the powerful but verbose DWARF standard. In some cases, the size of these debug sections is large enough to push the total object file size past the fundamental 4GB limit for 32-bit ELF object files. The best, and ultimately only, solution to overly large objects is to transition to 64-bits. However, consider environments where: Hundreds of users may be executing the code on large shared systems. (32-bits use less memory and bus bandwidth, and on sparc runs just as fast as 64-bit code otherwise). Complex finely tuned code, where the original authors may no longer be available. Critical production code, that was expensive to qualify and bring online, and which is otherwise serving its intended purpose without issue. Users in these risk adverse and/or high scale categories have good reasons to push 32-bits objects to the limit before moving on. Ancillary objects offer these users a longer runway. Design The design of ancillary objects is intended to be simple, both to help human understanding when examining elfdump output, and to lower the bar for debuggers such as dbx to support them. The primary and ancillary objects have the same set of section headers, with the same names, in the same order (i.e. each section has the same index in both files). A single added section of type SHT_SUNW_ANCILLARY is added to both objects, containing information that allows a debugger to identify and validate both files relative to each other. Given one of these files, the ancillary section allows you to identify the other. Allocable sections go in the primary object, and non-allocable ones go into the ancillary object. A small set of non-allocable objects, notably the symbol table, are copied into both objects. As noted above, most sections are only written to one of the two objects, but both objects have the same section header array. The section header in the file that does not contain the section data is tagged with the SHF_SUNW_ABSENT section header flag to indicate its placeholder status. Compiler writers and others who produce objects can set the SUNW_SHF_PRIMARY section header flag to mark non-allocable sections that should go to the primary object rather than the ancillary. If you don't request an ancillary object, the Solaris ELF format is unchanged. Users who don't use ancillary objects do not pay for the feature. This is important, because they exist to serve a small subset of our users, and must not complicate the common case. If you do request an ancillary object, the runtime behavior of the primary object will be the same as that of a normal object. There is no added runtime cost. The primary and ancillary object together represent a logical single object. This is facilitated by the use of a single set of section headers. One can easily imagine a tool that can merge a primary and ancillary object into a single file, or the reverse. (Note that although this is an interesting intellectual exercise, we don't actually supply such a tool because there's little practical benefit above and beyond using ld to create the files). Among the benefits of this approach are: There is no need for per-file symbol tables to reflect the contents of each file. The same symbol table that would be produced for a standard object can be used. The section contents are identical in either case — there is no need to alter data to accommodate multiple files. It is very easy for a debugger to adapt to these new files, and the processing involved can be encapsulated in input/output routines. Most of the existing debugger implementation applies without modification. The limit of a 4GB 32-bit output object is now raised to 4GB of code, and 4GB of debug data. There is also the future possibility (not currently supported) to support multiple ancillary objects, each of which could contain up to 4GB of additional debug data. It must be noted however that the 32-bit DWARF debug format is itself inherently 32-bit limited, as it uses 32-bit offsets between debug sections, so the ability to employ multiple ancillary object files may not turn out to be useful. Using Ancillary Objects (From the Solaris Linker and Libraries Guide) By default, objects contain both allocable and non-allocable sections. Allocable sections are the sections that contain executable code and the data needed by that code at runtime. Non-allocable sections contain supplemental information that is not required to execute an object at runtime. These sections support the operation of debuggers and other observability tools. The non-allocable sections in an object are not loaded into memory at runtime by the operating system, and so, they have no impact on memory use or other aspects of runtime performance no matter their size. For convenience, both allocable and non-allocable sections are normally maintained in the same file. However, there are situations in which it can be useful to separate these sections. To reduce the size of objects in order to improve the speed at which they can be copied across wide area networks. To support fine grained debugging of highly optimized code requires considerable debug data. In modern systems, the debugging data can easily be larger than the code it describes. The size of a 32-bit object is limited to 4 Gbytes. In very large 32-bit objects, the debug data can cause this limit to be exceeded and prevent the creation of the object. To limit the exposure of internal implementation details. Traditionally, objects have been stripped of non-allocable sections in order to address these issues. Stripping is effective, but destroys data that might be needed later. The Solaris link-editor can instead write non-allocable sections to an ancillary object. This feature is enabled with the -z ancillary command line option. $ ld ... -z ancillary[=outfile] ...By default, the ancillary file is given the same name as the primary output object, with a .anc file extension. However, a different name can be provided by providing an outfile value to the -z ancillary option. When -z ancillary is specified, the link-editor performs the following actions. All allocable sections are written to the primary object. In addition, all non-allocable sections containing one or more input sections that have the SHF_SUNW_PRIMARY section header flag set are written to the primary object. All remaining non-allocable sections are written to the ancillary object. The following non-allocable sections are written to both the primary object and ancillary object. .shstrtab The section name string table. .symtab The full non-dynamic symbol table. .symtab_shndx The symbol table extended index section associated with .symtab. .strtab The non-dynamic string table associated with .symtab. .SUNW_ancillary Contains the information required to identify the primary and ancillary objects, and to identify the object being examined. The primary object and all ancillary objects contain the same array of sections headers. Each section has the same section index in every file. Although the primary and ancillary objects all define the same section headers, the data for most sections will be written to a single file as described above. If the data for a section is not present in a given file, the SHF_SUNW_ABSENT section header flag is set, and the sh_size field is 0. This organization makes it possible to acquire a full list of section headers, a complete symbol table, and a complete list of the primary and ancillary objects from either of the primary or ancillary objects. The following example illustrates the underlying implementation of ancillary objects. An ancillary object is created by adding the -z ancillary command line option to an otherwise normal compilation. The file utility shows that the result is an executable named a.out, and an associated ancillary object named a.out.anc. $ cat hello.c #include <stdio.h> int main(int argc, char **argv) { (void) printf("hello, world\n"); return (0); } $ cc -g -zancillary hello.c $ file a.out a.out.anc a.out: ELF 32-bit LSB executable 80386 Version 1 [FPU], dynamically linked, not stripped, ancillary object a.out.anc a.out.anc: ELF 32-bit LSB ancillary 80386 Version 1, primary object a.out $ ./a.out hello worldThe resulting primary object is an ordinary executable that can be executed in the usual manner. It is no different at runtime than an executable built without the use of ancillary objects, and then stripped of non-allocable content using the strip or mcs commands. As previously described, the primary object and ancillary objects contain the same section headers. To see how this works, it is helpful to use the elfdump utility to display these section headers and compare them. The following table shows the section header information for a selection of headers from the previous link-edit example. Index Section Name Type Primary Flags Ancillary Flags Primary Size Ancillary Size 13 .text PROGBITS ALLOC EXECINSTR ALLOC EXECINSTR SUNW_ABSENT 0x131 0 20 .data PROGBITS WRITE ALLOC WRITE ALLOC SUNW_ABSENT 0x4c 0 21 .symtab SYMTAB 0 0 0x450 0x450 22 .strtab STRTAB STRINGS STRINGS 0x1ad 0x1ad 24 .debug_info PROGBITS SUNW_ABSENT 0 0 0x1a7 28 .shstrtab STRTAB STRINGS STRINGS 0x118 0x118 29 .SUNW_ancillary SUNW_ancillary 0 0 0x30 0x30 The data for most sections is only present in one of the two files, and absent from the other file. The SHF_SUNW_ABSENT section header flag is set when the data is absent. The data for allocable sections needed at runtime are found in the primary object. The data for non-allocable sections used for debugging but not needed at runtime are placed in the ancillary file. A small set of non-allocable sections are fully present in both files. These are the .SUNW_ancillary section used to relate the primary and ancillary objects together, the section name string table .shstrtab, as well as the symbol table.symtab, and its associated string table .strtab. It is possible to strip the symbol table from the primary object. A debugger that encounters an object without a symbol table can use the .SUNW_ancillary section to locate the ancillary object, and access the symbol contained within. The primary object, and all associated ancillary objects, contain a .SUNW_ancillary section that allows all the objects to be identified and related together. $ elfdump -T SUNW_ancillary a.out a.out.anc a.out: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0x8724 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 a.out.anc: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0xfbe2 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 The ancillary sections for both objects contain the same number of elements, and are identical except for the first element. Each object, starting with the primary object, is introduced with a MEMBER element that gives the file name, followed by a CHECKSUM that identifies the object. In this example, the primary object is a.out, and has a checksum of 0x8724. The ancillary object is a.out.anc, and has a checksum of 0xfbe2. The first element in a .SUNW_ancillary section, preceding the MEMBER element for the primary object, is always a CHECKSUM element, containing the checksum for the file being examined. The presence of a .SUNW_ancillary section in an object indicates that the object has associated ancillary objects. The names of the primary and all associated ancillary objects can be obtained from the ancillary section from any one of the files. It is possible to determine which file is being examined from the larger set of files by comparing the first checksum value to the checksum of each member that follows. Debugger Access and Use of Ancillary Objects Debuggers and other observability tools must merge the information found in the primary and ancillary object files in order to build a complete view of the object. This is equivalent to processing the information from a single file. This merging is simplified by the primary object and ancillary objects containing the same section headers, and a single symbol table. The following steps can be used by a debugger to assemble the information contained in these files. Starting with the primary object, or any of the ancillary objects, locate the .SUNW_ancillary section. The presence of this section identifies the object as part of an ancillary group, contains information that can be used to obtain a complete list of the files and determine which of those files is the one currently being examined. Create a section header array in memory, using the section header array from the object being examined as an initial template. Open and read each file identified by the .SUNW_ancillary section in turn. For each file, fill in the in-memory section header array with the information for each section that does not have the SHF_SUNW_ABSENT flag set. The result will be a complete in-memory copy of the section headers with pointers to the data for all sections. Once this information has been acquired, the debugger can proceed as it would in the single file case, to access and control the running program. Note - The ELF definition of ancillary objects provides for a single primary object, and an arbitrary number of ancillary objects. At this time, the Oracle Solaris link-editor only produces a single ancillary object containing all non-allocable sections. This may change in the future. Debuggers and other observability tools should be written to handle the general case of multiple ancillary objects. ELF Implementation Details (From the Solaris Linker and Libraries Guide) To implement ancillary objects, it was necessary to extend the ELF format to add a new object type (ET_SUNW_ANCILLARY), a new section type (SHT_SUNW_ANCILLARY), and 2 new section header flags (SHF_SUNW_ABSENT, SHF_SUNW_PRIMARY). In this section, I will detail these changes, in the form of diffs to the Solaris Linker and Libraries manual. Part IV ELF Application Binary Interface Chapter 13: Object File Format Object File Format Edit Note: This existing section at the beginning of the chapter describes the ELF header. There's a table of object file types, which now includes the new ET_SUNW_ANCILLARY type. e_type Identifies the object file type, as listed in the following table. NameValueMeaning ET_NONE0No file type ET_REL1Relocatable file ET_EXEC2Executable file ET_DYN3Shared object file ET_CORE4Core file ET_LOSUNW0xfefeStart operating system specific range ET_SUNW_ANCILLARY0xfefeAncillary object file ET_HISUNW0xfefdEnd operating system specific range ET_LOPROC0xff00Start processor-specific range ET_HIPROC0xffffEnd processor-specific range Sections Edit Note: This overview section defines the section header structure, and provides a high level description of known sections. It was updated to define the new SHF_SUNW_ABSENT and SHF_SUNW_PRIMARY flags and the new SHT_SUNW_ANCILLARY section. ... sh_type Categorizes the section's contents and semantics. Section types and their descriptions are listed in Table 13-5. sh_flags Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions are listed in Table 13-8. ... Table 13-5 ELF Section Types, sh_type NameValue . . . SHT_LOSUNW0x6fffffee SHT_SUNW_ancillary0x6fffffee . . . ... SHT_LOSUNW - SHT_HISUNW Values in this inclusive range are reserved for Oracle Solaris OS semantics. SHT_SUNW_ANCILLARY Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section. ... Table 13-8 ELF Section Attribute Flags NameValue . . . SHF_MASKOS0x0ff00000 SHF_SUNW_NODISCARD0x00100000 SHF_SUNW_ABSENT0x00200000 SHF_SUNW_PRIMARY0x00400000 SHF_MASKPROC0xf0000000 . . . ... SHF_SUNW_ABSENT Indicates that the data for this section is not present in this file. When ancillary objects are created, the primary object and any ancillary objects, will all have the same section header array, to facilitate merging them to form a complete view of the object, and to allow them to use the same symbol tables. Each file contains a subset of the section data. The data for allocable sections is written to the primary object while the data for non-allocable sections is written to an ancillary file. The SHF_SUNW_ABSENT flag is used to indicate that the data for the section is not present in the object being examined. When the SHF_SUNW_ABSENT flag is set, the sh_size field of the section header must be 0. An application encountering an SHF_SUNW_ABSENT section can choose to ignore the section, or to search for the section data within one of the related ancillary files. SHF_SUNW_PRIMARY The default behavior when ancillary objects are created is to write all allocable sections to the primary object and all non-allocable sections to the ancillary objects. The SHF_SUNW_PRIMARY flag overrides this behavior. Any output section containing one more input section with the SHF_SUNW_PRIMARY flag set is written to the primary object without regard for its allocable status. ... Two members in the section header, sh_link, and sh_info, hold special information, depending on section type. Table 13-9 ELF sh_link and sh_info Interpretation sh_typesh_linksh_info . . . SHT_SUNW_ANCILLARY The section header index of the associated string table. 0 . . . Special Sections Edit Note: This section describes the sections used in Solaris ELF objects, using the types defined in the previous description of section types. It was updated to define the new .SUNW_ancillary (SHT_SUNW_ANCILLARY) section. Various sections hold program and control information. Sections in the following table are used by the system and have the indicated types and attributes. Table 13-10 ELF Special Sections NameTypeAttribute . . . .SUNW_ancillarySHT_SUNW_ancillaryNone . . . ... .SUNW_ancillary Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section for details. ... Ancillary Section Edit Note: This new section provides the format reference describing the layout of a .SUNW_ancillary section and the meaning of the various tags. Note that these sections use the same tag/value concept used for dynamic and capabilities sections, and will be familiar to anyone used to working with ELF. In addition to the primary output object, the Solaris link-editor can produce one or more ancillary objects. Ancillary objects contain non-allocable sections that would normally be written to the primary object. When ancillary objects are produced, the primary object and all of the associated ancillary objects contain a SHT_SUNW_ancillary section, containing information that identifies these related objects. Given any one object from such a group, the ancillary section provides the information needed to identify and interpret the others. This section contains an array of the following structures. See sys/elf.h. typedef struct { Elf32_Word a_tag; union { Elf32_Word a_val; Elf32_Addr a_ptr; } a_un; } Elf32_Ancillary; typedef struct { Elf64_Xword a_tag; union { Elf64_Xword a_val; Elf64_Addr a_ptr; } a_un; } Elf64_Ancillary; For each object with this type, a_tag controls the interpretation of a_un. a_val These objects represent integer values with various interpretations. a_ptr These objects represent file offsets or addresses. The following ancillary tags exist. Table 13-NEW1 ELF Ancillary Array Tags NameValuea_un ANC_SUNW_NULL0Ignored ANC_SUNW_CHECKSUM1a_val ANC_SUNW_MEMBER2a_ptr ANC_SUNW_NULL Marks the end of the ancillary section. ANC_SUNW_CHECKSUM Provides the checksum for a file in the c_val element. When ANC_SUNW_CHECKSUM precedes the first instance of ANC_SUNW_MEMBER, it provides the checksum for the object from which the ancillary section is being read. When it follows an ANC_SUNW_MEMBER tag, it provides the checksum for that member. ANC_SUNW_MEMBER Specifies an object name. The a_ptr element contains the string table offset of a null-terminated string, that provides the file name. An ancillary section must always contain an ANC_SUNW_CHECKSUM before the first instance of ANC_SUNW_MEMBER, identifying the current object. Following that, there should be an ANC_SUNW_MEMBER for each object that makes up the complete set of objects. Each ANC_SUNW_MEMBER should be followed by an ANC_SUNW_CHECKSUM for that object. A typical ancillary section will therefore be structured as: TagMeaning ANC_SUNW_CHECKSUMChecksum of this object ANC_SUNW_MEMBERName of object #1 ANC_SUNW_CHECKSUMChecksum for object #1 . . . ANC_SUNW_MEMBERName of object N ANC_SUNW_CHECKSUMChecksum for object N ANC_SUNW_NULL An object can therefore identify itself by comparing the initial ANC_SUNW_CHECKSUM to each of the ones that follow, until it finds a match. Related Other Work The GNU developers have also encountered the need/desire to support separate debug information files, and use the solution detailed at http://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html. At the current time, the separate debug file is constructed by building the standard object first, and then copying the debug data out of it in a separate post processing step, Hence, it is limited to a total of 4GB of code and debug data, just as a single object file would be. They are aware of this, and I have seen online comments indicating that they may add direct support for generating these separate files to their link-editor. It is worth noting that the GNU objcopy utility is available on Solaris, and that the Studio dbx debugger is able to use these GNU style separate debug files even on Solaris. Although this is interesting in terms giving Linux users a familiar environment on Solaris, the 4GB limit means it is not an answer to the problem of very large 32-bit objects. We have also encountered issues with objcopy not understanding Solaris-specific ELF sections, when using this approach. The GNU community also has a current effort to adapt their DWARF debug sections in order to move them to separate files before passing the relocatable objects to the linker. The details of Project Fission can be found at http://gcc.gnu.org/wiki/DebugFission. The goal of this project appears to be to reduce the amount of data seen by the link-editor. The primary effort revolves around moving DWARF data to separate .dwo files so that the link-editor never encounters them. The details of modifying the DWARF data to be usable in this form are involved — please see the above URL for details.

    Read the article

  • SQL SERVER – Weekly Series – Memory Lane – #050

    - by Pinal Dave
    Here is the list of selected articles of SQLAuthority.com across all these years. Instead of just listing all the articles I have selected a few of my most favorite articles and have listed them here with additional notes below it. Let me know which one of the following is your favorite article from memory lane. 2007 Executing Remote Stored Procedure – Calling Stored Procedure on Linked Server In this example we see two different methods of how to call Stored Procedures remotely.  Connection Property of SQL Server Management Studio SSMS A very simple example of the how to build connection properties for SQL Server with the help of SSMS. Sample Example of RANKING Functions – ROW_NUMBER, RANK, DENSE_RANK, NTILE SQL Server has a total of 4 ranking functions. Ranking functions return a ranking value for each row in a partition. All the ranking functions are non-deterministic. T-SQL Script to Add Clustered Primary Key Jr. DBA asked me three times in a day, how to create Clustered Primary Key. I gave him following sample example. That was the last time he asked “How to create Clustered Primary Key to table?” 2008 2008 – TRIM() Function – User Defined Function SQL Server does not have functions which can trim leading or trailing spaces of any string at the same time. SQL does have LTRIM() and RTRIM() which can trim leading and trailing spaces respectively. SQL Server 2008 also does not have TRIM() function. User can easily use LTRIM() and RTRIM() together and simulate TRIM() functionality. http://www.youtube.com/watch?v=1-hhApy6MHM 2009 Earlier I have written two different articles on the subject Remove Bookmark Lookup. This article is as part 3 of original article. Please read the first two articles here before continuing reading this article. Query Optimization – Remove Bookmark Lookup – Remove RID Lookup – Remove Key Lookup Query Optimization – Remove Bookmark Lookup – Remove RID Lookup – Remove Key Lookup – Part 2 Query Optimization – Remove Bookmark Lookup – Remove RID Lookup – Remove Key Lookup – Part 3 Interesting Observation – Query Hint – FORCE ORDER SQL Server never stops to amaze me. As regular readers of this blog already know that besides conducting corporate training, I work on large-scale projects on query optimizations and server tuning projects. In one of the recent projects, I have noticed that a Junior Database Developer used the query hint Force Order; when I asked for details, I found out that the basic concept was not properly understood by him. Queries Waiting for Memory Allocation to Execute In one of the recent projects, I was asked to create a report of queries that are waiting for memory allocation. The reason was that we were doubtful regarding whether the memory was sufficient for the application. The following query can be useful in similar cases. Queries that do not have to wait on a memory grant will not appear in the result set of following query. 2010 Quickest Way to Identify Blocking Query and Resolution – Dirty Solution As the title suggests, this is quite a dirty solution; it’s not as elegant as you expect. However, it works totally fine. Simple Explanation of Data Type Precedence While I was working on creating a question for SQL SERVER – SQL Quiz – The View, The Table and The Clustered Index Confusion, I had actually created yet another question along with this question. However, I felt that the one which is posted on the SQL Quiz is much better than this one because what makes that more challenging question is that it has a multiple answer. Encrypted Stored Procedure and Activity Monitor I recently had received questionable if any stored procedure is encrypted can we see its definition in Activity Monitor.Answer is - No. Let us do a quick test. Let us create following Stored Procedure and then launch the Activity Monitor and check the text. Indexed View always Use Index on Table A single table can have maximum 249 non clustered indexes and 1 clustered index. In SQL Server 2008, a single table can have maximum 999 non clustered indexes and 1 clustered index. It is widely believed that a table can have only 1 clustered index, and this belief is true. I have some questions for all of you. Let us assume that I am creating view from the table itself and then create a clustered index on it. In my view, I am selecting the complete table itself. 2011 Detecting Database Case Sensitive Property using fn_helpcollations() I received a question on how to determine the case sensitivity of the database. The quick answer to this is to identify the collation of the database and check the properties of the collation. I have previously written how one can identify database collation. Once you have figured out the collation of the database, you can put that in the WHERE condition of the following T-SQL and then check the case sensitivity from the description. Server Side Paging in SQL Server CE (Compact Edition) SQL Server Denali is coming up with new T-SQL of Paging. I have written about the same earlier.SQL SERVER – Server Side Paging in SQL Server Denali – A Better Alternative,  SQL SERVER – Server Side Paging in SQL Server Denali Performance Comparison, SQL SERVER – Server Side Paging in SQL Server Denali – Part2 What is very interesting is that SQL Server CE 4.0 have the same feature introduced. Here is the quick example of the same. To run the script in the example, you will have to do installWebmatrix 4.0 and download sample database. Once done you can run following script. Why I am Going to Attend PASS Summit Unite 2011 The four-day event will be marked by a lot of learning, sharing, and networking, which will help me increase both my knowledge and contacts. Every year, PASS Summit provides me a golden opportunity to build my network as well as to identify and meet potential customers or employees. 2012 Manage Help Settings – CTRL + ALT + F1 This is very interesting read as my daughter once accidently came across a screen in SQL Server Management Studio. It took me 2-3 minutes to figure out how she has created the same screen. Recover the Accidentally Renamed Table “I accidentally renamed table in my SSMS. I was scrolling very fast and I made mistakes. It was either because I double clicked or clicked on F2 (shortcut key for renaming). However, I have made the mistake and now I have no idea how to fix this. If you have renamed the table, I think you pretty much is out of luck. Here are few things which you can do which can give you an idea about what your table name can be if you are lucky. Identify Numbers of Non Clustered Index on Tables for Entire Database Here is the script which will give you numbers of non clustered indexes on any table in entire database. Identify Most Resource Intensive Queries – SQL in Sixty Seconds #029 – Video Here is the complete complete script which I have used in the SQL in Sixty Seconds Video. Thanks Harsh for important Tip in the comment. http://www.youtube.com/watch?v=3kDHC_Tjrns Advanced Data Quality Services with Melissa Data – Azure Data Market For the purposes of the review, I used a database I had in an Excel spreadsheet with name and address information. Upon a cursory inspection, there are miscellaneous problems with these records; some addresses are missing ZIP codes, others missing a city, and some records are slightly misspelled or have unparsed suites. With DQS, I can easily add a knowledge base to help standardize my values, such as for state abbreviations. But how do I know that my address is correct? Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Memory Lane, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

< Previous Page | 8 9 10 11 12 13 14 15 16 17 18 19  | Next Page >