Search Results

Search found 5638 results on 226 pages for 'scheduling algorithm'.

Page 120/226 | < Previous Page | 116 117 118 119 120 121 122 123 124 125 126 127  | Next Page >

  • How can I convert arbitrary strings to CLS-Compliant names?

    - by Brian Hinchey
    Does anyone know of an algorithm (or external library) that I could call to convert an arbitrary string (i.e. outside my control) to be CLS compliant? I am generating a dynamic RDLC (Client Report Definition) for an ASP.Net Report Viewer control and some of the field names need to be based on strings entered by the user. Unfortunately I have little control over the entry of the field names by the client (through a 3rd party CMS). But I am quite flexible around substitutions required to create the compliant string. I have a reactive hack algorithm for now along the lines of: public static string FormatForDynamicRdlc(this string s) { //We need to change this string to be CLS compliant. return s.Replace(Environment.NewLine, string.Empty) .Replace("\t", string.Empty) .Replace(",", string.Empty) .Replace("-", "_") .Replace(" ", "_"); } But I would love something more comprehensive. Any ideas? NOTE: If it is of any help, the algorithm I am using to create the dynamic RDLC is based on the BuildRDLC method found here: http://csharpshooter.blogspot.com/2007/08/revised-dynamic-rdlc-generation.html

    Read the article

  • Compression Array of Bytes

    - by Pedro Magalhaes
    Hi, My problem is: I want to store a array of bytes in compressed file, and then I want to read it with a good performance. So I create a array of bytes then pass to a ZLIB algorithm then store it in the file. For my surprise the algorithm doesn't work well., probably because the array is a random sample. Using this approach, it will will be ber easy to read. Just copy the stream to memory, decompress them and copy it to a array of bytes. But i need to compress the file. Do I have to use a algorithm, like RLE, for compresse the byte array? I think that I can store the byte array like a string and then compress it. But i think I am going to have a poor performance on reading data. Sorry for my poor english. Thanks

    Read the article

  • How to convert string "0671" or "0x45" into integer form with 0 and 0x in the beginning.

    - by Harshit Sharma
    I wanted to make my own encryption algorithm and decryption algorithm , encryption algorithm works fine and converts ascii value of the characters into alternate hexadecimal and octal representations. But when I tried decryption, problem occured as it return int('0671') = 671, as 0671 is string type in the following code. Is there a method to convert "ox56" into integer form?????? NOTE: Following string is alternate octal and hexa of ascii value of char. ///////////////DECRYPTION/////// l="01630x7401620x6901560x67" f=len(l) k=0 d=0 x=[] for i in range(0,f,4): g=l[i:i+4] print g k=k+1 if(k%2==0): p=g print p else: p=int(g) print p

    Read the article

  • What technologies to use for a particle system with enormous calculation demand?

    - by Amir Rezaei
    I have a particle system with X particles. Each particle tests for collision with other particles. This gives X*X = X^2 collision tests per frame. For 60f/s, this corresponds to 60*X^2 collision detection per second. What is the best technological approach for these intensive calculations? Should I use F#, C, C++ or C#, or something else? The following are constraints The code is written in C# with the latest XNA Multi-threaded may be considered No special algorithm that tests the collision with the nearest neighbors or that reduces the problem The last constraint may be strange, so let me explain. Regardless constraint 3, given a problem with enormous computational requirement what would be the best approach to solve the problem. An algorithm reduces the problem; still the same algorithm may behave different depending on technology. Consider pros and cons of CLR vs native C.

    Read the article

  • How to tell MATLAB to open and save specific files in the same directory

    - by its-me
    I have to run an image processing algorithm on numerous images in a directory. An image is saved as name_typeX.tif, so there are X different type of images for a given name. The image processing algorithm takes an input image and outputs an image result. I need to save this result as name_typeX_number.tif, where 'number' is also an output from the algorithm for a given image. Now.. How do I tell MATLAB to open a specific 'typeX' file? Also note that there are other non-tif files in the same directory. How to save the result as name_typeX_number.tif? The results have to be saved in the same directory where the input images are present. How do I tell MATLAB NOT to treat the results that have been saved as an input images? I have to run this as background code on a server... so no user inputs allowed Thanks

    Read the article

  • Parallelism in .NET – Part 1, Decomposition

    - by Reed
    The first step in designing any parallelized system is Decomposition.  Decomposition is nothing more than taking a problem space and breaking it into discrete parts.  When we want to work in parallel, we need to have at least two separate things that we are trying to run.  We do this by taking our problem and decomposing it into parts. There are two common abstractions that are useful when discussing parallel decomposition: Data Decomposition and Task Decomposition.  These two abstractions allow us to think about our problem in a way that helps leads us to correct decision making in terms of the algorithms we’ll use to parallelize our routine. To start, I will make a couple of minor points. I’d like to stress that Decomposition has nothing to do with specific algorithms or techniques.  It’s about how you approach and think about the problem, not how you solve the problem using a specific tool, technique, or library.  Decomposing the problem is about constructing the appropriate mental model: once this is done, you can choose the appropriate design and tools, which is a subject for future posts. Decomposition, being unrelated to tools or specific techniques, is not specific to .NET in any way.  This should be the first step to parallelizing a problem, and is valid using any framework, language, or toolset.  However, this gives us a starting point – without a proper understanding of decomposition, it is difficult to understand the proper usage of specific classes and tools within the .NET framework. Data Decomposition is often the simpler abstraction to use when trying to parallelize a routine.  In order to decompose our problem domain by data, we take our entire set of data and break it into smaller, discrete portions, or chunks.  We then work on each chunk in the data set in parallel. This is particularly useful if we can process each element of data independently of the rest of the data.  In a situation like this, there are some wonderfully simple techniques we can use to take advantage of our data.  By decomposing our domain by data, we can very simply parallelize our routines.  In general, we, as developers, should be always searching for data that can be decomposed. Finding data to decompose if fairly simple, in many instances.  Data decomposition is typically used with collections of data.  Any time you have a collection of items, and you’re going to perform work on or with each of the items, you potentially have a situation where parallelism can be exploited.  This is fairly easy to do in practice: look for iteration statements in your code, such as for and foreach. Granted, every for loop is not a candidate to be parallelized.  If the collection is being modified as it’s iterated, or the processing of elements depends on other elements, the iteration block may need to be processed in serial.  However, if this is not the case, data decomposition may be possible. Let’s look at one example of how we might use data decomposition.  Suppose we were working with an image, and we were applying a simple contrast stretching filter.  When we go to apply the filter, once we know the minimum and maximum values, we can apply this to each pixel independently of the other pixels.  This means that we can easily decompose this problem based off data – we will do the same operation, in parallel, on individual chunks of data (each pixel). Task Decomposition, on the other hand, is focused on the individual tasks that need to be performed instead of focusing on the data.  In order to decompose our problem domain by tasks, we need to think about our algorithm in terms of discrete operations, or tasks, which can then later be parallelized. Task decomposition, in practice, can be a bit more tricky than data decomposition.  Here, we need to look at what our algorithm actually does, and how it performs its actions.  Once we have all of the basic steps taken into account, we can try to analyze them and determine whether there are any constraints in terms of shared data or ordering.  There are no simple things to look for in terms of finding tasks we can decompose for parallelism; every algorithm is unique in terms of its tasks, so every algorithm will have unique opportunities for task decomposition. For example, say we want our software to perform some customized actions on startup, prior to showing our main screen.  Perhaps we want to check for proper licensing, notify the user if the license is not valid, and also check for updates to the program.  Once we verify the license, and that there are no updates, we’ll start normally.  In this case, we can decompose this problem into tasks – we have a few tasks, but there are at least two discrete, independent tasks (check licensing, check for updates) which we can perform in parallel.  Once those are completed, we will continue on with our other tasks. One final note – Data Decomposition and Task Decomposition are not mutually exclusive.  Often, you’ll mix the two approaches while trying to parallelize a single routine.  It’s possible to decompose your problem based off data, then further decompose the processing of each element of data based on tasks.  This just provides a framework for thinking about our algorithms, and for discussing the problem.

    Read the article

  • CodePlex Daily Summary for Monday, March 15, 2010

    CodePlex Daily Summary for Monday, March 15, 2010New ProjectsAT Accounts: AT Accounts helps developers to intergrate accounting functionality in their applications. It has both the WPF userinterface and SilverlightChild page list(for dnn4/5): A free module which can display sub pages list for a selected tab. It is template based and support options like Recursive/Child tab prefix/link...dashCommerce: dashCommerce is the leading ASP.NET e-commerce platform.Fire Utilities: My Development Utiltites and base classes: New Zealand Bank Account ValidatorFlyCatch (Bugtracking System): A simple webbased Bugtracking System.fracback: Fractal feedback concepts, based on video feedbackftc3650: code for ftc 3650Google AJAX Search Services for jQuery: This plug-in encapsulates part of the Google AJAX Search API to streamline the process of Google Search integration.Little Black Book DB: This is the Database for the following Projects: SQL Azure PHP Connection SQL Azure Ruby Connection SQL Azure Python Connection SQL Azure .NE...MediaCommMVC: MediaCommMVC is a community platform focusing on photos, videos and discussions. It's based on ASP.NET MVC and uses (fluent) nhibernate, jquery an...Miracle OS: The Miracle OS is an OS from Fox. We work on it, but it isn't ready. Do you want help us? Please send a mail to victor@fox.fi.stMultiwfn: (1)Plotting various graph(filled color/contour/relief map...) (2)Generate Cube file (3)Manipulate & analyze wavefunction Supportting lots of proper...MySpace DataRelay: Data Relay is the foundation of MySpace's middle tier. At its heart, it is a messaging system for relaying information both between clients and ser...NinjaCMS: Ninja CMS is an asp.net based content management system which provides a designer friendly, developer friendly interface to work with. It's flexibl...open gaze and mouse analyzer: Ogama allows recording and analyzing eye- and mouse-tracking data from slideshow eyetracking experiments in parallel. It´s developed in C#.NET and ...Özkasoft.Net | E-Commerce: Özkasoft's E-Commerce ProjectProfiCV: Profi CVpyTarget: Implement a powerful iscsi target in python, and easily use under most popular systems. It also includes the following features: multi-target, mult...SharePoint Platform Extensions: SharePoint Platform Extensions by Espora. Sorting Algorithm Visualization: Sorting Algorithm Visualization Displays Bead Sort, Binary Tree Sort, Bubble Sort, Bucket Sort, Cocktail Sort, Counting Sort, Gnome Sort, In Place ...Specify: A framework for creating executable specifications in .NET. Spell Corrector: A spell corrector that uses Bayes algorithm and BK (Burkhard-Keller) tree.SQL Azure Ruby Connection: This is a demo to show how to connect to SQL Azure with Ruby on Rails.uManage - AD Self-Service Portal: uManage is an Active Directory Self-Service Portal as well as Help Desk web application designed for use on intranet systems. It allows users to u...Winforms Rounded Group Box Control: Rounded Group Box - A Grouping control with Rounded Corners, Gradients, and Drop ShadowWizard Engine: Host application agnostic wizard engine platform, that allows you to fluently define complex conditional flows and provides means for execution of ...WS-Transfer based File Upload: WS-Transer based upload of large files in multiple partsXAMLStylePad: XAMLStylePad - is a simple in use styles and templates XAML-editor. It designed for comfortable coding in XAML with real-time preview result on aut...Your Twitt Engine: Ovo je aplikacija za sve ljude koji su na svom radnom mjestu pod prismotrom poslodavca ili sefa, koji kontroliraju njihov monitor. Tako uz ovu apl...New ReleasesAmiBroker Plug-ins with C#. A non official AmiBroker Plug-in SDK: AniBroker Plug-in SDK v0.0.5: Removed dependency on .NET 4.0, now it works fine with .NET 2.0BeerMath.net: 0.1: Version 0.1Initial set of calculations supported: IBUs Color ABV/ABWChild page list(for dnn4/5): Child Page List 2.6: Source code is also include in module package.dashCommerce: dashCommerce Releases: You can download both Source and WebReady packages at http://www.dashcommerce.org. If you wish to submit patches, then use the Source Code tab her...ExcelDna: ExcelDna Version 0.23: ExcelDna Version 0.23 2010/03/14 - Packing and other features This release adds a number of features to ExcelDna: Add ExplicitExports attribute to ...Family Tree Analyzer: Version 1.0.7.1: Version 1.0.7.0 Update Census form to show family totals Fix England and Wales Lost Cousins reports to be England OR Wales Problems with Gedcom in...Foursquare BlogEngine Widget: foursquare widget for BlogEngine.NET Version 0.2: To see the changes which have been made, visit http://philippkueng.ch/post/Foursquare-BlogEngineNET-Widget-Version-02.aspx For installation instruc...GLB Virtual Player Builder: 0.4.0 Official Archetypes Release: Updated for new archetypes. The builder still includes the old player formats, and you can still import your old players' builds. Please PM me an...Home Access Plus+: v3.1.4.0: Version 3.1.3.1 Release Change Log: Added Breadcrumbs to My Computer File Changes: ~/bin/CHS Extranet.dll ~/bin/CHS Extranet.pdb ~/images/arro...Little Black Book DB: Little Black Book R1: This is the first release of the Little black book presentation I presented at Confoo. I decided to package the Database along with the Windows Az...mite.net - .NET API for mite: Version 1.2.1: Added Support for budget type Modified TimerMapper to return timers Fixed Encoding issue in xml conversionMultiwfn: multiwfn1.0: multiwfn1.0Multiwfn: multiwfn1.0_source: multiwfn1.0_sourceMultiwfn: multiwfn1.1: multiwfn1.1Multiwfn: multiwfn1.1_source: multiwfn1.1_sourceMultiwfn: multiwfn1.2: 1.2 2010-FEB-9 *加入了对10f型轨道的支持。 *新支持非限制性Post-HF波函数用以计算自旋密度。 *新增加直接读入高斯03/09的fch文件的支持,可以观看NBO轨道,详见readme实例4.10。 *绘制平面图时允许通过输入三个点坐标定义平面,允许自定义平面的原点与平移向...Multiwfn: multiwfn1.2_source: Include all the file that needed by compilation in CVF6.5PowerShell Community Extensions: 2.0 Beta 2: Release NotesThis is a pretty close to final release. We have eliminated all of the names that ran afound of the module loading mechanism which me...pyTarget: pyTarget.binary-for-windows-x86.rar: pyTarget.binary-for-windows-x86.rarpyTarget: pyTarget.src.tar.bz2: pyTarget.src.tar.bz2RedBulb for XNA Framework: RedBulbConsole (Console, Menu and TrackHUD Sample): http://bayimg.com/image/jalhmaacd.jpgScrum Sprint Monitor: 1.0.0.45262 (.NET 4.0 RC): Tested against TFS 2010 RC. For the .NET 3.5 SP1 platform, use the .NET 3.5 SP1 download. What is new in this release? Major performance increase ...sELedit: sELedit v1.1: Removed: Clone and Delete Button Added: Context Menu to Item List Added: Clone and Delete button to Context Menu Added: Export / Import Item ...Sorting Algorithm Visualization: Beta 1: Sorting Algorithm VisualizationSpecify: Version 1.0: Version 1.0Spell Corrector: Spell Corrector 0.1: A basic version that supports basic functionality.Spell Corrector: Spell Corrector 0.1 Source Code: Source code of version 0.1Spiral Architecture Driven Development (SADD): SADD v.0.9: Pre-final release with the NEW materials now all in English ! The Final release is coming soon. After guest column for SADD publication in MS Ar...Spiral Architecture Driven Development (SADD) for Russian: SADD v.0.9: Pre-final release with the NEW materials now all in English ! The Final release is coming soon. After guest column for SADD publication in MS Ar...SQL Azure Ruby Connection: Little Black Book Ruby R1: This is the Ruby Demo that I demostrated at Confoo. Special Thanks to Tony Thompson for putting this demo together. To check out Tony's Portfolio ...The Scrum Factory: The Scrum Factory Server - V1a: This is the newest version of the server. Some minor bugs from version v1 were fixed, and some slighted changed were made some database views.twNowplaying: twNowplaying 1.0.0.4: Please note that the user has to press the Twitter logo to log in the first time the application is started.uManage - AD Self-Service Portal: uManage - v1.0 (.NET 4.0 RC): Initial Release of uManage. NOTE: Designed for ASP.NET and .NET 4.0 RC ONLY! This is the initial release of uManage and covers the first phase of ...Virtu: Virtu 0.8: Source Requirements.NET Framework 3.5 with Service Pack 1 Visual Studio 2008 with Service Pack 1, or Visual C# 2008 Express Edition with Service Pa...Visual Studio DSite: Speech Synthesizer (Text to Speech) in Visual C++: A very simple text to speech program written in visual c 2008.White Tiger: 0.0.4.0: *now you can disable the file security checks *winforms aplications created to manage tablesWinforms Rounded Group Box Control: Release 1.0: To use this control simply add the class to your project and compile it. It will then show up in the projects components section in the toolbox. ...WS-Transfer based File Upload: 0.5: Implements the binary file transfer mechanism onlyXsltDb - DotNetNuke XSLT module: 01.00.89: Super modules configuration names. 16767 - Fixed more bug fixes...Yakiimo3D: DirectX11 Rheinhard Tonemapping Source and Binary: DirectX11 Rheinhard tonemapping source and binary.Your Twitt Engine: test: Slobodno probajte sa vasim twitter korisničkim računomMost Popular ProjectsMetaSharpWBFS ManagerRawrAJAX Control ToolkitMicrosoft SQL Server Product Samples: DatabaseSilverlight ToolkitASP.NET Ajax LibraryWindows Presentation Foundation (WPF)ASP.NETLiveUpload to FacebookMost Active ProjectsLINQ to TwitterRawrN2 CMSBlogEngine.NETpatterns & practices – Enterprise LibrarySharePoint Team-MailerjQuery Library for SharePoint Web ServicesCaliburn: An Application Framework for WPF and SilverlightFarseer Physics EngineCalcium: A modular application toolset leveraging Prism

    Read the article

  • Cryptographic Validation Explained

    - by MarkPearl
    We have been using LogicNP’s CryptoLicensing for some of our software and I was battling to understand how exactly the whole process worked. I was sent the following document which really helped explain it – so if you ever use the same tool it is well worth a read. Licensing Basics LogicNP CryptoLicensing For .Net is the most advanced and state-of-the art licensing and copy protection system you can use for your software. LogicNP CryptoLicensing System uses the latest cryptographic technology to generate and validate licenses. The cryptographic algorithm used is the RSA algorithm which consists of a pair of keys called as the generation key and the validation key. Data encrypted using the generation key can only be decrypted using the corresponding validation key. How does cryptographic validation work? When a new license project is created, a unique validation-generation key pair is created for the project. When LogicNP CryptoLicensing For .Net generates licenses, it encrypts the license settings using the generation key. The validation key can be safely distributed with your software and is used during validation. During license validation, LogicNP CryptoLicensing For .Net attempts to decrypt the encrypted license code using the validation key. If the decryption is successful, this means that the data was encrypted using the generation key, since only the corresponding validation key can decrypt data encrypted with the generation key. This further means that not only is the license valid but that it was generated by you and only you since nobody else has access to the generation key. Generation Key This key is used by CryptoLicensing Generator to generate encrypted license codes. This key is stored in the license project file, so the license project file must be kept secure and confidential and must be accorded the same care as any other critical asset such as source code. Validation Key This key is used for validating generated license codes. It is the same key displayed in the 'Get Validation Key And Code' dialog (Ctrl+K) and is used by your software when validating license codes (using LogicNP.CryptoLicensing.dll). Unlike the generation key, it is not necessary to keep this key secure and confidential. Note that the generation key pair is stored in the project file created by LogicNP CryptoLicensing For .Net, so it is very important to backup this file and to keep it secure. Once the file is lost, it is not possible to retrieve the key pair. FAQ Do I use the same validation key to validate all license codes? Yes, the validation key (and generation key) for the project remains the same; you use the same key to validate all license codes generated using the project. You can retrieve the validation key using the "Project" menu --> "Get Validation Key & Code" menu item. Can license codes generated using generation key from one project be validated using validation key of another project? No! Q. Is every generated license code unique? A. Yes, every license code generated by CryptoLicensing is guaranteed to be unique, even if you generate thousands of codes at a time. Q. What makes CryptoLicensing so secure? A. CryptoLicensing uses the latest cryptographic technology to generate and validate licenses. The cryptographic algorithm used is the RSA asymmetric key algorithm which can use upto 3072-bit keys. Given current computing power, it takes years to break a 3072-bit key. Q. Is is possible for a hacker to develop a keygen for my software? A. Impossible. The cryptographic algorithm used by CryptoLicensing consists of a pair of keys called as the generation key and the validation key. Data encrypted with one key can only be decrypted by the other key and vice versa. Licenses are generated using the generation key and validated using the validation key. Without the generation key, it is impossible to generate valid licenses. Q. What is the difference between validation key and generation key? Generation Key This key is used by CryptoLicensing Generator to generate encrypted license codes. This key is stored in the license project file, so the license project file must be kept secure and confidential and must be accorded the same care as any other critical asset such as source code. Validation Key This key is used for validating generated license codes. It is the same key displayed in the 'Get Validation Key And Code' dialog (Ctrl+K) and is used by your software when validating license codes (using LogicNP.CryptoLicensing.dll). Unlike the generation key, it is not necessary to keep this key secure and confidential. Q. Do I have to include the license project file (.licproj) with my software? A. No!!! This goes against the very essence of the security of the asymmetric cryptographic scheme because the project file contains both the validation and generation key. With your software, you only need to include the validation key which will be used to validate licenses generated by CryptoLicensing using the generation key. The license project file should be treated as any other valuable and confidential asset such as your source code. Q. Does the license service need the license project file? A. Yes. The license project file is needed whenever new licenses are generated (via the UI, via the API or via the license service). As just one example, the license service generates new machine-locked licenses when activated licenses are presented to it for activation, therefore the license service needs the license project file. Q. Is it possible to embed my own data in the generated licenses? A. Yes. You can embed any amount of additional data in the licenses. This data will have the same amount of security as the license code itself and will be tamper-proof. The embedded user data can be retrieved from your software. Q. What additional steps can I take to ensure that my software does not get cracked? A. There are many methods and techniques which can make it extremely difficult for a hacker to crack your software. See Writing Effective License Checking Code And Designing Effective Licenses for more information. Q. Why is the license service not working? A. The most common cause is not setting the CryptoLicense.LicenseServiceURL property before trying to validate a license. Make sure that this property is set to the correct URL where your license service is hosted. The most common cause after this is that the license project file on the web server where your license service is hosted is not the latest. This happens if you make changes to the license project (for example, set the 'Enable With Serials' setting for a profile), but don't upload the updated project file to your web server. Q. Why are my serials not working? Serial codes require the user of a license service. See Using Serial Codes for more details. Also see the earlier question 'Why is the license service not working?' Q. Is the same validation key used to validate license codes generated from different profiles. A. Yes. Profiles are just pre specified license settings for quickly generating licenses having those settings. The actual license code is still generated using the license project's cryptographic generation key and thus, can be validated using the project's validation key. Q. Why are changes made to a profile not getting saved? A. Simply changing license settings via UI and saving the license project does not save those license settings to the active profile. You must first save the license settings to a profile using the Save/Save As command from the Profiles menu (see above). Q. Why is validation of activated licenses failing from CryptoLicensing Generator, but works from my software? A. Make sure that you have specified the URL of the license service using the Project Properties Dialog. Also see the earlier question 'Why is the license service not working?' Q. How can I extend the trial period of my customer? A. To extend the evaluation period of the customer, simply send him a new license code specifying the desired evaluation limits. Evaluation information such as the current used days, executions, etc are stored in garbled form in a registry location which is derived from the license code. Therefore, when a new license code is used, the old evaluation information will not be used and a new evaluation period will be started.

    Read the article

  • Quartz Scheduler - Not running the task

    - by pandi-sus
    I am working on scheduling the tasks using Quartz API. I tried scheduling notepad.exe and in the logs, I see the following line - org.quartz.jobs.NativeJob runNativeCommand About to runcmd.exe /C c:/WINDOWS/notepad.exe ... But the notepad is not coming up. Same is the issue with any exe or batch file. I also see the notepad.exe as a running process in Task Manager. Code:- JobDataMap map = new JobDataMap(); map.put(NativeJob.PROP_COMMAND, "c:/WINDOWS/notepad.exe");

    Read the article

  • Is it illegal to rewrite every line of an open source project in a slightly different way, and use it in a closed source project?

    - by optician
    There is some code which is GPL or LGPL that I am considering using for an iPhone project. If I took that code (javascript) and rewrote it in a different language for use on the iPhone would that be a legal issue? In theory the process that has happened is that I have gone through each line of the project, learnt what it is doing, and then re implemented the ideas in a new language. To me it seems this is like learning how to implement something, but then re-implementing it separate from the original licence. Therefore you have only copied the algorithm, which arguably you could have learnt from somewhere else other than the original project. Does the licence cover the specific implementation or the algorithm as well?

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Are there advantages for using recursion over iteration - other than sometimes readability and elegance?

    - by Prog
    I am about to make two assumptions. Please correct me if they're wrong: There isn't a recursive algorithm without an iterative equivalent. Iteration is always cheaper performance-wise than recursion (at least in general purpose languages such as Java, C++, Python etc.). If it's true that recursion is always more costly than iteration, and that it can always be replaced with an iterative algorithm (in languages that allow it) - than I think that the two remaining reasons to use recursion are: elegance and readability. Some algorithms are expressed more elegantly with recursion. E.g. scanning a binary tree. However apart from that, are there any reasons to use recursion over iteration? Does recursion have advantages over iteration other than sometimes elegance and readability?

    Read the article

  • Quartz in Webapplication

    - by JKV
    I have a question in scheduling jobs in web application. If we have to schedule jobs in web application we can either use java util Timer/TimerTask or Quartz(there are also other scheduling mechanism, but I considered Quartz). I was considering which one to use, when i hit the site http://oreilly.com/pub/a/java/archive/quartz.html?page=1 which says using timer has a bad effect as it creates a thread that is out of containers control in the last line. The other pages discuss Quartz and its capabilities, but I can read that Quartz also uses thread and/or threadpool to schedule tasks. My guess is that these threads are also not under the containers control Can anybody clarify this to me Is it safe to use Quartz in my web applications without creating hanging threads or thread locking issues? Thanks in advance

    Read the article

  • Validate java SAML signature from C#

    - by Adrya
    How can i validate in .Net C# a SAML signature created in Java? Here is the SAML Signature that i get from Java: <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#"> <ds:SignedInfo> <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"> </ds:CanonicalizationMethod> <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"> </ds:SignatureMethod> <ds:Reference URI="#_e8bcba9d1c76d128938bddd5ae8c68e1"> <ds:Transforms> <ds:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"> </ds:Transform> <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"> <ec:InclusiveNamespaces xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#" PrefixList="code ds kind rw saml samlp typens #default xsd xsi"> </ec:InclusiveNamespaces> </ds:Transform> </ds:Transforms> <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"> </ds:DigestMethod> <ds:DigestValue>zEL7mB0Wkl+LtjMViO1imbucXiE=</ds:DigestValue> </ds:Reference> </ds:SignedInfo> <ds:SignatureValue> jpIX3WbX9SCFnqrpDyLj4TeJN5DGIvlEH+o/mb9M01VGdgFRLtfHqIm16BloApUPg2dDafmc9DwL Pyvs3TJ/hi0Q8f0ucaKdIuw+gBGxWFMcj/U68ZuLiv7U+Qe7i4ZA33rWPorkE82yfMacGf6ropPt v73mC0bpBP1ubo5qbM4= </ds:SignatureValue> <ds:KeyInfo> <ds:X509Data> <ds:X509Certificate> MIIDBDCCAeygAwIBAgIIC/ktBs1lgYcwDQYJKoZIhvcNAQEFBQAwNzERMA8GA1UEAwwIQWRtaW5D QTExFTATBgNVBAoMDEVKQkNBIFNhbXBsZTELMAkGA1UEBhMCU0UwHhcNMDkwMjIzMTAwMzEzWhcN MTgxMDE1MDkyNTQyWjBaMRQwEgYDVQQDDAsxMC41NS40MC42MTEbMBkGA1UECwwST24gRGVtYW5k IFBsYXRmb3JtMRIwEAYDVQQLDAlPbiBEZW1hbmQxETAPBgNVBAsMCFNvZnR3YXJlMIGfMA0GCSqG SIb3DQEBAQUAA4GNADCBiQKBgQCk5EqiedxA6WEE9N2vegSCqleFpXMfGplkrcPOdXTRLLOuRgQJ LEsOaqspDFoqk7yJgr7kaQROjB9OicSH7Hhsu7HbdD6N3ntwQYoeNZ8nvLSSx4jz21zvswxAqw1p DoGl3J6hks5owL4eYs2yRHvqgqXyZoxCccYwc4fYzMi42wIDAQABo3UwczAdBgNVHQ4EFgQUkrpk yryZToKXOXuiU2hNsKXLbyIwDAYDVR0TAQH/BAIwADAfBgNVHSMEGDAWgBSiviFUK7DUsjvByMfK g+pm4b2s7DAOBgNVHQ8BAf8EBAMCBaAwEwYDVR0lBAwwCgYIKwYBBQUHAwEwDQYJKoZIhvcNAQEF BQADggEBAKb94tnK2obEyvw8ZJ87u7gvkMxIezpBi/SqXTEBK1by0NHs8VJmdDN9+aOvC5np4fOL fFcRH++n6fvemEGgIkK3pOmNL5WiPpbWxrx55Yqwnr6eLsbdATALE4cgyZWHl/E0uVO2Ixlqeygw XTfg450cCWj4yfPTVZ73raKaDTWZK/Tnt7+ulm8xN+YWUIIbtW3KBQbGomqOzpftALyIKLVtBq7L J0hgsKGHNUnssWj5dt3bYrHgzaWLlpW3ikdRd67Nf0c1zOEgKHNEozrtRKiLLy+3bIiFk0CHImac 1zeqLlhjrG3OmIsIjxc1Vbc0+E+z6Unco474oSGf+D1DO+Y= </ds:X509Certificate> </ds:X509Data> </ds:KeyInfo> </ds:Signature> I know to parse SAML, i need to validate the signature. I tried this: public bool VerifySignature() { X509Certificate2 certificate = null; XmlDocument doc = new XmlDocument(); XmlElement xmlAssertionElement = this.GetXml(doc); doc.AppendChild(xmlAssertionElement); // Create a new SignedXml object and pass it // the XML document class. SamlSignedXml signedXml = new SamlSignedXml(xmlAssertionElement); // Get signature XmlElement xmlSignature = this.Signature; if (xmlSignature == null) { return false; } // Load the signature node. signedXml.LoadXml(xmlSignature); // Get the certificate used to sign the assertion if information about this // certificate is available in the signature of the assertion. foreach (KeyInfoClause clause in signedXml.KeyInfo) { if (clause is KeyInfoX509Data) { if (((KeyInfoX509Data)clause).Certificates.Count > 0) { certificate = (X509Certificate2)((KeyInfoX509Data)clause).Certificates[0]; } } } if (certificate == null) { return false; } return signedXml.CheckSignature(certificate, true); } It validates the signature of a SAML signed in .Net but not of this Java one.

    Read the article

  • Modified Strategy Design Pattern

    - by Samuel Walker
    I've started looking into Design Patterns recently, and one thing I'm coding would suit the Strategy pattern perfectly, except for one small difference. Essentially, some (but not all) of my algorithms, need an extra parameter or two passed to them. So I'll either need to pass them an extra parameter when I invoke their calculate method or store them as variables inside the ConcreteAlgorithm class, and be able to update them before I call the algorithm. Is there a design pattern for this need / How could I implement this while sticking to the Strategy Pattern? I've considered passing the client object to all the algorithms, and storing the variables in there, then using that only when the particular algorithm needs it. However, I think this is both unwieldy, and defeats the point of the strategy pattern. Just to be clear I'm implementing in Java, and so don't have the luxury of optional parameters (which would solve this nicely).

    Read the article

  • Developing Schema Compare for Oracle (Part 3): Ghost Objects

    - by Simon Cooper
    In the previous blog post, I covered how we solved the problem of dependencies between objects and between schemas. However, that isn’t the end of the issue. The dependencies algorithm I described works when you’re querying live databases and you can get dependencies for a particular schema direct from the server, and that’s all well and good. To throw a (rather large) spanner in the works, Schema Compare also has the concept of a snapshot, which is a read-only compressed XML representation of a selection of schemas that can be compared in the same way as a live database. This can be useful for keeping historical records or a baseline of a database schema, or comparing a schema on a computer that doesn’t have direct access to the database. So, how do snapshots interact with dependencies? Inter-database dependencies don't pose an issue as we store the dependencies in the snapshot. However, comparing a snapshot to a live database with cross-schema dependencies does cause a problem; what if the live database has a dependency to an object that does not exist in the snapshot? Take a basic example schema, where you’re only populating SchemaA: SOURCE   TARGET (using snapshot) CREATE TABLE SchemaA.Table1 ( Col1 NUMBER REFERENCES SchemaB.Table1(col1));   CREATE TABLE SchemaA.Table1 ( Col1 VARCHAR2(100)); CREATE TABLE SchemaB.Table1 ( Col1 NUMBER PRIMARY KEY);   CREATE TABLE SchemaB.Table1 ( Col1 VARCHAR2(100)); In this case, we want to generate a sync script to synchronize SchemaA.Table1 on the database represented by the snapshot. When taking a snapshot, database dependencies are followed, but because you’re not comparing it to anything at the time, the comparison dependencies algorithm described in my last post cannot be used. So, as you only take a snapshot of SchemaA on the target database, SchemaB.Table1 will not be in the snapshot. If this snapshot is then used to compare against the above source schema, SchemaB.Table1 will be included in the source, but the object will not be found in the target snapshot. This is the same problem that was solved with comparison dependencies, but here we cannot use the comparison dependencies algorithm as the snapshot has not got any information on SchemaB! We've now hit quite a big problem - we’re trying to include SchemaB.Table1 in the target, but we simply do not know the status of this object on the database the snapshot was taken from; whether it exists in the database at all, whether it’s the same as the target, whether it’s different... What can we do about this sorry state of affairs? Well, not a lot, it would seem. We can’t query the original database, as it may not be accessible, and we cannot assume any default state as it could be wrong and break the script (and we currently do not have a roll-back mechanism for failed synchronizes). The only way to fix this properly is for the user to go right back to the start and re-create the snapshot, explicitly including the schemas of these 'ghost' objects. So, the only thing we can do is flag up dependent ghost objects in the UI, and ask the user what we should do with it – assume it doesn’t exist, assume it’s the same as the target, or specify a definition for it. Unfortunately, such functionality didn’t make the cut for v1 of Schema Compare (as this is very much an edge case for a non-critical piece of functionality), so we simply flag the ghost objects up in the sync wizard as unsyncable, and let the user sort out what’s going on and edit the sync script as appropriate. There are some things that we do do to alleviate somewhat this rather unhappy situation; if a user creates a snapshot from the source or target of a database comparison, we include all the objects registered from the database, not just the ones in the schemas originally selected for comparison. This includes any extra dependent objects registered through the comparison dependencies algorithm. If the user then compares the resulting snapshot against the same database they were comparing against when it was created, the extra dependencies will be included in the snapshot as required and everything will be good. Fortunately, this problem will come up quite rarely, and only when the user uses snapshots and tries to sync objects with unknown cross-schema dependencies. However, the solution is not an easy one, and lead to some difficult architecture and design decisions within the product. And all this pain follows from the simple decision to allow schema pre-filtering! Next: why adding a column to a table isn't as easy as you would think...

    Read the article

  • Is it true that the Google Spider gives the most relevance of a search result to the first 68 characters of the <title>?

    - by leeand00
    I am reading documentation about my CMS and it states that an HTML page <title> tag is really important in SEO. It states that the Google Spider gives the most relevance to the first 68 characters of a site title. (68 characters being the number of characters that Google will display in it's search engine result pages,) Can anyone verify this is still true? I read in The Information Diet that content farms were getting too good at gaming Google's algorithm for collecting and posting SERPs and so google had to change the search algorithm.

    Read the article

  • Obtaining In game Warcraft III data to program standalone AI

    - by Slav
    I am implementing common purpose behavioral algorithm and would like to test it under my lovely Warcraft III game and watch how it will fight against real players. The problem is how to obtain information about in game state (units, structures, environment, etc. ). Algorithm needs access to hard drive and possibly distributed computing, that's why JASS (WC3 Editor language) usage doesn't solve the issue. Direct 3D hooking is an approach, but it wasn't done for WC3 yet and significant drawback is inability to watch online at how AI performs since it uses the viewport to issue commands. How in game data can be obtained to a different process in a fastest and easiest way? Thank you.

    Read the article

  • Algorithms and Programmer's day-to-day job

    - by Lior Kogan
    As of July 10, 2012, Stack Overflow contains 3,345,864 questions, out of which 20,840 questions are tagged as "Algorithm" - this is less than 0.6% ! I find it disturbing. Many programmers have several years of academic education in computer science / software engineering. Most of them are smart... When asked, most would say that they love algorithms. Computer programming is generally about solving problems using algorithms... Yet, only 1 of 160 questions is tagged as algorithm related. What does it say about our profession?

    Read the article

  • Fast pixelshader 2D raytracing

    - by heishe
    I'd like to do a simple 2D shadow calculation algorithm by rendering my environment into a texture, and then use raytracing to determine what pixels of the texture are not visible to the point light (simply handed to the shader as a vec2 position) . A simple brute force algorithm per pixel would looks like this: line_segment = line segment between current pixel of texture and light source For each pixel in the texture: { if pixel is not just empty space && pixel is on line_segment output = black else output = normal color of the pixel } This is, of course, probably not the fastest way to do it. Question is: What are faster ways to do it or what are some optimizations that can be applied to this technique?

    Read the article

  • Conways Game of Life C#

    - by Darren Young
    Hi, Not sure if this is the correct place for this question or SO - mods please move if necessary. I am going to have a go at creating GoL over the weekend as a little test project : http://en.wikipedia.org/wiki/Conway's_Game_of_Life I understand the algorithm, however I just wanted to check regarding the implementation, from maybe somebody that has tried it. Essentially, my first (basic) implementation, will be a static grid at a set speed. If I understand correctly, these are the steps I will need: Initial seed Create 2d array with initial set up Foreach iteration, create temporary array, calculating each cells new state based on the Game of Life algorithm Assign temp array to proper array. Redraw grid from proper array. My concerns are over speed. When I am populating the grid from the array, would it simply be a case of looping through the array, assigning on or off to each grid cell and then redraw the grid? Am I on the correct path?

    Read the article

  • How does a VxWorks scheduler get executed?

    - by Ashwin
    Hello All, Would like to know how the scheduler gets called so that it can switch tasks. As in even if its preemptive scheduling or round robin scheduling - the scheduler should come in to picture to do any kind of task switching. Supposing a low priority task has an infinite loop - when does the scheduler intervene and switch to a higher priority task? Query is: 1. Who calls the scheduler? [in VxWorks] 2. If it gets called at regular intervals - how is that mechanism implemented? Thanks in advance. --Ashwin

    Read the article

  • Card deck and sparse matrix interview questions

    - by MrDatabase
    I just had a technical phone screen w/ a start-up. Here's the technical questions I was asked ... and my answers. What do think of these answers? Feel free to post better answers :-) Question 1: how would you represent a standard 52 card deck in (basically any language)? How would you shuffle the deck? Answer: use an array containing a "Card" struct or class. Each instance of card has some unique identifier... either it's position in the array or a unique integer member variable in the range [0, 51]. Shuffle the cards by traversing the array once from index zero to index 51. Randomly swap ith card with "another card" (I didn't remember how this shuffle algorithm works exactly). Watch out for using the same probability for each card... that's a gotcha in this algorithm. I mentioned the algorithm is from Programming Pearls. Question 2: how to represent a large sparse matrix? the matrix can be very large... like 1000x1000... but only a relatively small number (~20) of the entries are non-zero. Answer: condense the array into a list of the non-zero entries. for a given entry (i,j) in the array... "map" (i,j) to a single integer k... then use k as a key into a dictionary or hashtable. For the 1000x1000 sparse array map (i,j) to k using something like f(i, j) = i + j * 1001. 1001 is just one plus the maximum of all i and j. I didn't recall exactly how this mapping worked... but the interviewer got the idea (I think). Are these good answers? I'm wondering because after I finished the second question the interviewer said the dreaded "well that's all the questions I have for now." Cheers!

    Read the article

  • creating the nodes for path finding during run time - more like path making and more

    - by bigbadbabybear
    i'm making my 1st game. i'm using javascript as i currently want to learn to make games without needing to learn another language but this is more of a general game dev question its a 2d turn-based tile/grid game. you can check it here http://www.patinterotest.tk/ it creates a movable area when you hover a player and it implements the A* algo for moving the player. The Problem: i want to make the 'dynamic movable area creation' already implement a limited number of steps for a player. The Questions: what is a good way to do this? is there another algorithm to use for this? the A* algorithm needs a start and destination, with what i want to do i don't have a destination or should i just limit the iteration of the A* algo to the steps variable? hopefully you understand the problem & questions easily

    Read the article

  • Prefer algorithms to hand-written loops?

    - by FredOverflow
    Which of the following to you find more readable? The hand-written loop: for (std::vector<Foo>::const_iterator it = vec.begin(); it != vec.end(); ++it) { bar.process(*it); } Or the algorithm invocation: #include <algorithm> #include <functional> std::for_each(vec.begin(), vec.end(), std::bind1st(std::mem_fun_ref(&Bar::process), bar)); I wonder if std::for_each is really worth it, given such a simple example already requires so much code. What are your thoughts on this matter?

    Read the article

< Previous Page | 116 117 118 119 120 121 122 123 124 125 126 127  | Next Page >